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On Semisimple Hopf Algebras of
Dimension pqn

Li Dai and Jingcheng Dong

Abstract. Let p, q be prime numbers with p2 < q, n ∈ N, and H a semisimple Hopf algebra of
dimension pqn over an algebraically closed field of characteristic 0. This paper proves that H must
possess one of the following two structures: (1) H is semisolvable; (2) H is a Radford biproduct R#kG,
where kG is the group algebra of group G of order p and R is a semisimple Yetter–Drinfeld Hopf algebra
in kG

kGYD of dimension qn.

1 Introduction

Let H be a semisimple Hopf algebra of dimension pmqn, where p, q are prime num-
bers and m, n are nonnegative integers. Then H is solvable. That is, the fusion cat-
egory rep(H) of its finite-dimensional representations is solvable in the sense of the
paper [4]. Solvability is a categorical notion, meaning that the category rep(H) can
be obtained from the category of finite-dimensional vector spaces by means of suc-
cessive cyclic group extensions or equivariantizations. Nevertheless, the explicit clas-
sification, up to isomorphism, of semisimple Hopf algebras of dimension pmqn is not
known up to now. The only known examples that are completely classified are those
of dimension p, p2, p3, pq, and pq2 [2, 4, 6, 7, 17].

In this paper, we shall investigate the classification of semisimple Hopf algebras of
dimension pqn, where p, q are prime numbers with p2 < q and n is a nonnegative
integer.

The notion of upper or lower semisolvability for finite-dimensional Hopf algebras
was introduced by Montgomery and Witherspoon [8], as a generalization of the no-
tion of solvability for finite groups. In particular, if a finite-dimensional semisimple
Hopf algebra A is upper or lower semisolvable, then A can be constructed by succes-
sive extensions from trivial Hopf algebras. A Hopf algebra is called trivial if it is a
group algebra or a dual of a group algebra.

Let A be a semisimple Hopf algebra and let A
AYD denote the braided category of

Yetter–Drinfeld modules over A. Let R be a semisimple Yetter–Drinfeld Hopf algebra
in A

AYD (see [16], for example). As observed by Radford (see [13, Theorem 1]), the
Yetter–Drinfeld condition assures that R⊗A becomes a Hopf algebra with additional
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structures. This Hopf algebra is called the Radford biproduct of R and A. We denote
this Hopf algebra by R#A.

Let H be the semisimple Hopf algebras of dimension pqn mentioned above. Our
main work proves that either H or H∗ contains a nontrivial central group-like ele-
ment, or |G(H)| and |G(H∗)| have the same prime factor p. We then prove, by in-
duction on n, that if H or H∗ contains a nontrivial central group-like element, then
it is upper or lower semisolvable. If |G(H)| and |G(H∗)| have the same prime factor
p, then it follows from [10, Lemma 4.1.9] that H is a Radford biproduct R#kG, where
kG is the group algebra of group G of order p, and R is a semisimple Yetter–Drinfeld
Hopf algebra in kG

kGYD of dimension qn.
The definitions and some of the basic properties of semisolvability and Drinfeld

double are recalled in Section 2. Some useful lemmas are also contained in this sec-
tion. Our main result is given in Section 3.

Throughout this paper, all modules and comodules are left modules and left co-
modules, and, moreover, they are finite-dimensional over an algebraically closed field
k of characteristic 0, and ⊗, dim mean ⊗k, dimk, respectively. Our reference for the
theory of Hopf algebras is [9].

2 Preliminaries

In this paper, we always assume that all Hopf algebras involved are finite-dimensional
semisimple, although some results may hold for non-semisimple ones.

Let H be a semisimple Hopf algebra over k. We define two actions of H∗ on H as

f ⇀ h =
∑

f (h2)h1 and h ↼ f =
∑

f (h1)h2

for all f ∈ H∗, h ∈ H.
Then the Drinfeld double D(H) of H is defined as follows: D(H) has H∗ cop ⊗ H

as its underlying vector space; the multiplication of D(H) is given by

(g ⊗ h)( f ⊗ l) =
∑

g
(

h1 ⇀ f ↼ S−1(h3)
)
⊗ h2l,

and the coalgebra structure of D(H) is the usual tensor product of coalgebras. It
follows from [9] that D(H) is also semisimple.

The main result in [3] proves that if V is a simple D(H)-module, then the dimen-
sion of V divides the dimension of H.

Let H
HYD denote the category of (left-left) Yetter–Drinfeld modules over H. Ob-

jects of this category are vector spaces V endowed with an H-coaction ρ : V → H⊗V
and an H-action · : H ⊗V → V that satisfy the compatibility condition

ρ(h · v) = h1v−1S(h3)⊗ h2 · v0,

for all v ∈ V, h ∈ H. Morphisms of this category are H-linear and colinear maps.
Majid proved ([5, Proposition 2.1]) that the Yetter–Drinfeld category H

HYD can be
identified with the category D(H)M of left modules over the Drinfeld double D(H).

In view of Majid’s result and the main result in [3], the dimension of every simple
Yetter–Drinfeld H-module divides dim H.

It is well known that H becomes a Yetter–Drinfeld H-module with respect to the
left adjoint action adl : H ⊗ H → H, (adl h)(a) = h1aS(h2) and the left regular
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coaction ∆ : H → H ⊗ H. Furthermore, the Yetter–Drinfeld submodule V ⊆ H is
exactly the left coideal V of H such that h1V S(h2) ⊆ V , for all h ∈ H. Following this
observation, we have the following result.

Lemma 2.1 The 1-dimensional Yetter–Drinfeld H-submodule is exactly the span of
a central group-like element of H.

Let π : H → K be a Hopf algebra map. Then

Hco π = {h ∈ H : (id⊗π)∆(h) = h⊗ 1}

is a left coideal subalgebra of H. We call Hco π the subspace of coinvariant of π. The
left coideal subalgebra Hco π is stable under the left adjoint action of H and dim H =
dim Hco π dimπ(H). See [15] for details.

Lemma 2.2 Let π : H → K be a Hopf algebra map. Then Hco π is a Yetter–Drinfeld
submodule of H.

In fact, the lemma above follows from the fact that Hco π is a left coideal of H and
is stable under the left adjoint action.

A semisimple Hopf algebra H is called lower semisolvable if there exists a chain of
Hopf subalgebras

Hn+1 = k ⊆ Hn ⊆ · · · ⊆ H1 = H

such that Hi+1 is a normal Hopf subalgebra of Hi , for all i, and all quotients
Hi/HiH+

i+1 are trivial. A Hopf subalgebra A ⊆ H is called normal if h1AS(h2) ⊆ A,
for all h ∈ H. Dually, H is called upper semisolvable if there exists a chain of quotient
Hopf algebras

H(0) = H
π1

−→ H(1)

π2

−→ · · ·
πn

−→ H(n) = k

such that Hco πi
(i−1) is a normal Hopf subalgebra of H(i−1), and all Hco πi

(i−1) are trivial.
By [8, Corollary 3.3], we have that H is upper semisolvable if and only if H∗ is

lower semisolvable. We call H semisolvable if it is upper or lower semisolvable.

Remark 2.3 Let K be a proper normal Hopf subalgebra of H. Then

K ↪→ H → H := H/HK+

is an exact sequence of Hopf algebras. If K is lower semisolvable and H is trivial, then
H is lower semisolvable. On the other hand, if K is trivial and H is upper semisolv-
able, then H is upper semisolvable.

Proposition 2.4 Let H be a semisimple Hopf algebra of dimension pqn, where p, q are
prime numbers and n is a nonnegative integer. Suppose that H has a nontrivial central
group-like element g. Then H is upper semisolvable.

Proof Our proof follows from an induction on n. First, the semisimple Hopf al-
gebras of dimension pq are upper semisolvable by the classification of such Hopf
algebras [2]. Then we assume that all semisimple Hopf algebras of dimension pqi

(1 ≤ i ≤ n− 1) are upper semisolvable.
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Let 〈g〉 denote the subgroup of G(H) generated by g. Since g is central in H, k〈g〉
is a normal Hopf subalgebra of H. Hence, H := H/Hk〈g〉+ is a Hopf algebra, and we
have an exact sequence of Hopf algebras:

k〈g〉 ↪→ H → H.

By [12], the order of g divides dim H = pqn. Suppose that the order of g is of the
form pqi (0 ≤ i ≤ n). In this case, dim H = qn−i . By [8, Theorem 3.5], H is upper
semisolvable. So H is upper semisolvable by Remark 2.3.

Suppose that the order of g is of the form qi (1 ≤ i ≤ n). In this case, dim H =
pqn−i . By induction, H is upper semisolvable. So H is upper semisolvable, also by
Remark 2.3.

3 Main Result

Since the trivial Hopf algebras are automatically upper and lower semisolvable, we
assume in this section that H is a nontrivial semisimple Hopf algebra of dimension
pqn, where p, q are prime numbers with p2 < q and n is a nonnegative integer.

By [4, Proposition 9.9], H has a nontrivial 1-dimensional simple module. Equiv-
alently, the order of G(H∗) is greater than 1. Moreover, the order of G(H∗) divides
the dimension of H by [12].

Theorem 3.1 Either

(i) H or H∗ contains a nontrivial central group-like element, or
(ii) |G(H)| and |G(H∗)| have the same prime factor p.

Proof We consider the projection π : H → (kG(H∗))∗ obtained by transposing the
inclusion kG(H∗) ↪→ H∗.

By the discussion in Section 2, we know that the coinvariant subspace Hco π is a
Yetter–Drinfeld H-submodule of H and dim Hco π dim(kG(H∗))∗ = dim H.

We assume that the decomposition of Hco π into simple Yetter–Drinfeld submod-
ules of H is

Hco π = k1⊕
∑
i∈I

Vi ,

where k1 is the trivial Yetter–Drinfeld H-submodule and Vi ’s are the nontrivial ones.
Suppose that the order of G(H∗) is qn. Then dim Hco π = p. Since p2 < q, the

dimension of any Vi (i ∈ I) cannot be of the form qm for some m ∈ N. Therefore,
the dimension of every Vi is 1. We should notice that the dimension of every sim-
ple Yetter–Drinfeld H-module divides dim H = pqn, as mentioned in Section 2. It
follows that H has a nontrivial central group-like element by Lemma 2.1.

Suppose that the order of G(H∗) is not qn. That is, it is of the form

piq j , 0 ≤ i ≤ 1, 0 ≤ j ≤ n− 1, i + j 6= 0.

Then we may write dim Hco π = qm for some m ∈ N. In this case, if there exists i ∈ I
such that dim Vi = 1, then we are done. However, if the dimension of every Vi is
greater than 1, then there must exist i ∈ I such that dim Vi = p. In fact, if it is not
this case, we will encounter a contradiction qm = 1 + qs for some s ∈ N. Let V be a
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simple Yetter–Drinfeld H-submodule with dim V = p. We decompose V ⊗V ∗ into
simple Yetter–Drinfeld H-modules as follows:

V ⊗V ∗ = k1⊕
∑
i∈I

Ui .

Since p2 < q, the dimension of Ui is 1 or p. Obviously, not all dim Ui ’s are p,
otherwise we will encounter a contradiction p2 = 1+ pm for some m ∈ N. Therefore,
there exists i ∈ I such that dim Ui = 1.

By [11, Theorem 10], the 1-dimensional simple Yetter–Drinfeld H-modules
(equivalently, the 1-dimensional simple D(H)-modules) entering the decomposition
of V ⊗ V ∗ form a subgroup G of G(D(H)∗). Moreover, the order of G divides p2

[1, Lemma 2.1]. By the discussion in the paragraph above, we know that G is not
trivial. In other words, G(D(H)∗) contains an element of order p.

By [14, Propositions 10], every group-like element of D(H)∗ is of the form g ⊗ η,
where g ∈ G(H) and η ∈ G(H∗). Let g ⊗ η ∈ G(D(H)∗) be the group-like element
of order p. If the orders of g and η are different, then the proof of [1, Corollary 2.7]
shows that either H or H∗ contains a nontrivial central group-like element. If g and
η have the same orders, then both of them are equal to p. Hence, |G(H)| and |G(H∗)|
have the same prime factor p. This completes the proof.

Corollary 3.2 H possesses one of the following structures:

(i) H is upper or lower semisolvable;
(ii) H is a Radford biproduct R#kG, where kG is the group algebra of group G of order

p, and R is a semisimple Yetter–Drinfeld Hopf algebra in kG
kGYD of dimension qn.

Proof If H (or H∗) contains a nontrivial central group-like element, then H (or H∗)
is upper semisolvable by Proposition 2.4. In addition, if H∗ is upper semisolvable,
then H is lower semisolvable (as recalled in Section 2). So the first part follows.

If |G(H)| and |G(H∗)| have the same prime factor p, then the second part follows
from [10, Lemma 4.1.9].
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