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A Remark on Extensions of CR Functions
from Hyperplanes

Luca Baracco

Abstract. In the characterization of the range of the Radon transform, one encounters the problem

of the holomorphic extension of functions defined on R
2 \ ∆R (where ∆R is the diagonal in R

2)

and which extend as “separately holomorphic” functions of their two arguments. In particular, these

functions extend in fact to C
2 \ ∆C where ∆C is the complexification of ∆R . We take this theorem

from the integral geometry and put it in the more natural context of the CR geometry where it accepts

an easier proof and a more general statement. In this new setting it becomes a variant of the celebrated

“edge of the wedge” theorem of Ajrapetyan and Henkin.

Let x = (x1, x2) and z = (z1, z2), with z = x + i y, be variables in R
2 and C

2,
respectively. We will use the notations

T = (R × {0}) ∪ ({0} × R), Ṫ = T \ {0}.

We consider a C1-curve without boundary L in R
2 and focus our attention on the

CR manifold (R
2 + iT) \ L. We note that the set (R

2 + iT) \ L is rather unusual in

several complex variables, in the sense that it is neither a manifold with boundary
nor a wedge-like domain. In this set there is a distinguished subset E = R

2 \L, which
plays the role of edge, and four manifolds issuing from it, namely the ones which are
defined by y1 ≥ 0, y2 ≥ 0, y1 ≤ 0 and y2 ≤ 0. We denote by Q j , j = 1, . . . , 4, the

four quadrants of R
2 with vertex at 0. The aim of this paper is to prove the following

extension result.

Theorem 1 Assume that for any x ∈ R
2\L and a suitable j we have (x+Q j )∩L = ∅.

Let f : R
2 \L → C be a continuous function which extends, as a separately holomorphic

continuous function (i.e., a continuous CR function) to the set (R
2 + iT) \ L. Then

f extends as a holomorphic function to C
2 unless L is a straight line, in which case f

extends to C
2 \ LC, the complement of the complexification of L.

Before giving the proof, let us make some comments. When L is a line, defined say
by l(x) = 0, then the function f (z) =

1
l(z)

exhibits an example of a function which

extends to C
2 \ LC but not to the whole C

2; we are thus in the second instance of
the statement of Theorem 1. We point out that the above theorem generalizes re-
sults from [1, 5] in the context of the characterization of the range of the exponential

Radon transform. In those statements L was assumed to be the diagonal of R
2, which

can be easily generalized to any staight line. Our improvement consists in treating
the case of general curves L. It is worth noticing that this is the first time that this
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extension problem is treated in the framework of the CR geometry. More precisely,
it is reduced to an “edge of the wedge” theorem of the type from [2] in the presence

of a singular set such as L. Also, let us notice that an initial holomorphic extension
to a neighborhood of (R

2 \ L) + iT is guaranteed by [2]. Our goal is to continue in
this process of extension, first reaching the set (R

2 \ L) + iR
2, and then eventually the

whole set C
2 or C

2 \ LC according as L is curved or straight.

Proof of Theorem 1 We begin by noticing that any CR function on (R
2 + iT) \ L

extends holomorphically to a neighborhood of (R
2 \ L) + iT. In fact, fix any point

x ∈ R
2 outside L. Then locally around x, (R

2 + iT) \ L is the union of the two
hyperplanes y1 = 0 and y2 = 0. By the edge of the wedge theorem from [2], f
extends as a holomorphic function to the wedges

Q1 = {y1 ≥ 0, y2 ≥ 0}, Q2 = {y1 ≥ 0y2 ≤ 0},

Q3 = {y1 ≤ 0, y2 ≤ 0}, Q4 = {y1 ≤ 0y2 ≥ 0}.

Then f extends to a full neighborhood of x. We observe next that by [4] the ana-
lyticity of f in x propagates along the complex lines γ1(z1) = (z1, x2) and γ2(z2) =

(x1, z2). Since all the points of (R
2 \ L) + iT lie on a line of type γ1 or γ2, we conclude

that f extends to a neighborhood of (R
2 \ L) + iT which we will denote by V .

At this point our plan is to use the continuity principle to gain extendibility to
other points of C

2. Now we will be able to extend f to those points z for which there
exists a continuous family of analytic discs attached to (R

2 + iT) \ L, that is, having

their boundaries in (R
2 + iT) \ L starting from an initial disc entirely contained in V

and ending up with a disc passing through z. The hard part of this task is to find discs
attached to (R

2+iT)\L. Let us recall some standard notations. The symbol ∆ denotes
the standard disc in C and A an analytic disc in C

2, that is, an analytic mapping

A(ζ) = (z1(ζ), z2(ζ)) for ζ ∈ ∆ which is of class C1,α (i.e., differentiable with α-
Hölder continuous derivative up to ∂∆). We denote by the same notation A both
the disc A(∆) and its parametrization ζ 7→ A(ζ). The disc A is said to be attached to
(R

2 + iT)\L when A(∂∆) ⊂ (R
2 + iT)\L. The set (R

2 + iT)\L is contained in the set

defined by y1 y2 = 0, and hence a disc A is attached to (R
2 + iT) \ L if y1(ζ)y2(ζ) =

0 ∀ζ ∈ ∂∆ and if for y1(ζ) and y2(ζ) simultaneously 0 we have (x1(ζ), x2(ζ)) /∈ L. To
check this condition it is convenient to look for a represention formula for analytic
discs which involves only the imaginary part. Let K be the Cauchy transform, i.e.,

K(g)(ζ) =
1

2πi

∫

∂∆

g(τ )

τ − ζ
dτ .

Then if we have a holomorphic function h(ζ) = u(ζ) + iv(ζ), it is easily verified that

(1) h(ζ) = 2iK(v)(ζ) + u(0) − iv(0).

Let us point out that (1) gives a holomorphic function h starting from its arbitrary
imaginary part v.
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Let η1(ζ) and η2(ζ) for ζ ∈ ∂∆ be two positive C1,α functions with unitary mean
whose support is contained in {Re ζ ≥ 0} and {Re ζ ≤ 0}, respectively, and which

are simultaneously 0 only at ±i. (Their choice will be further specified in the course
of the proof.) We write η(ζ) = (η j(ζ)) j , and take xo

= (xo
1, xo

2) and yo
= (yo

1, yo
2) in

R
2. The analytic disc

Axo,yo
·η(ζ) =

(

2iK(yo
jη j)(ζ) + xo

j − i yo
j

)

j=1,2

is attached to the set defined by y1 y2 = 0, and its center is (xo
j + i yo

j ) j=1,2. To get the

disc attached to (R
2 + iT) \ L, we need A(ζ) /∈ L whenever Im A(ζ) = 0. But we see

that the only case when Im A(ζ) = 0 is when η1(ζ) and η2(ζ) are simultaneously 0,
that is, for ζ = +i and −i. By (1) we have

A(i) =

(

xo
j −

1

2π

∫ 2π

0

yo
jη j(eiθ)

cos(θ)

1 − sin(θ)
dθ

)

j
,

A(−i) =

(

xo
j +

1

2π

∫ 2π

0

yo
jη j(eiθ)

cos(θ)

1 + sin(θ)
dθ

)

j
.

We call

a = −
1

2π

∫ 2π

0

η1(eiθ)
cos(θ)

1 − sin(θ)
dθ, b = −

1

2π

∫ 2π

0

η2(eiθ)
cos(θ)

1 − sin(θ)
dθ,

c =
1

2π

∫ 2π

0

η1(eiθ)
cos(θ)

1 + sin(θ)
dθ, d =

1

2π

∫ 2π

0

η2(eiθ)
cos(θ)

1 + sin(θ)
dθ.

With our notations we have

A(i) = (xo
1 + yo

1a, xo
2 + yo

2b), A(−i) = (xo
1 + yo

1c, xo
2 + yo

2d).

To carry on our proof we need the following.

Proposition 2 For every point zo
= (zo

1, zo
2) such that Re zo /∈ L, we can choose the

functions η j j = 1, 2 in such a way that

(2) Axo,t yo
·η(±i) /∈ L for any 0 ≤ t ≤ 1.

Proof We recall that the functions η1 and η2 must be chosen with support in the
half-circles {eiθ : −π

2
≤ θ ≤ π

2
} and {eiθ : π

2
≤ θ ≤ 3

2
π}, respectively, vanishing

only at the points ±i, and with unit mean value. For the rest, we can play freely with
the displacement of their masses in order to achieve (2). To this end we will make

a choice which depends on xo and yo. We assume without loss of generality that it
is for the first quadrant Q1 that we have (xo + Q1) ∩ L = ∅. Suppose first, yo

1 > 0
yo

2 > 0. We take any η2 and choose η1 with its mass so close to −i that a is small
(negative) and c is big (positive) and so that (ayo

1, byo
2) and (cyo

1, dyo
2) are close to the
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x2 ≥ 0 and x1 ≥ 0 axes, respectively. We get, therefore, for 0 ≤ t ≤ 1,

(xo
1 − t yo

1a, xo
2 − t yo

2b) /∈ L,(3)

(xo
1 + t yo

1c, xo
2 + t yo

2d) ∈ xo + Q1 ⊂ R
2 \ L.(4)

Suppose now yo
1 > 0 and yo

2 < 0. In this case, we take η1 and η2 both with most
of their masses at −i so that ayo

1 and byo
2 are small and therefore (3) follows. In this

situation cyo
1 and dyo

2 are both positive, and hence (4) also trivially holds. In both the

above cases, the discs obtained by the described choices of η1 and η2 do not intesect L
at either of the two points where they meet R

2, namely ±i, and this is the case for all
values of the parameter t for 0 ≤ t ≤ 1; thus they are attached to (R

2 \ L) + iT. It is
clear that all other choices of signs for the y j can be handled likewise which concludes

the proof of the proposition.

End of proof of Theorem 1 It follows easily from Proposition 2 that any CR func-
tion f on (R

2 +iT)\L extends to any zo ∈ (R
2\L)+iR

2. In fact, for every such zo with
real part xo

= (xo
1, xo

2) /∈ L, we can find a continuous family of analytic discs A, de-
pending on the parameter t with 0 ≤ t ≤ 1, attached to (R

2 +iT)\L and such that for

t = 0 the disc A reduces to the single point xo, and for t = 1, the center of A reaches
the point zo. Then by applying the continuity principle to the function f , which was
already known to extend holomorphically to a neighborhood V of (R

2 \ L) + iT, f
extends, in fact, to the whole family of discs A for any t in [0, 1], hence in particular

to zo. We shall denote by F the holomorphic extension of f .

Denote now by M the hypersurface L+iR
2 of C

2. We suppose first that M contains
no complex curve, that is, it is “minimal” in the sense of Tumanov. This implies that
M contains no complex straight line and hence L is not a line; in particular, it is not

a line parallel to the axes. In this case the complex lines z1 = xo
1 or z2 = xo

2 for xo /∈ L
cover the full set (L + iT)\L, and hence by the propagation theorem from [4] already
used, it extends through M over L+iṪ. But according to the theory by Tumanov [6], it
also extends by minimality at the points of L. Thus F is holomorphic on the whole C

2.

The other case is when M contains a complex curve, say γ. For any zo
= xo +

i yo ∈ γ, we have Tzoγ = Txo L + iTxo L. Hence γ contains the straight line is-
sued from zo in direction iTxo L, and therefore γ is in fact the straight complex line
γ = zo + (Txo L + iTxo L) and L is the real line L = xo + Txo L. At this point, we switch

from the notation γ to LC. We then prove that F extends also to those points in L+iR
2

which are not in LC. We denote by l(z) = 0 an equation for LC and notice that M is
foliated by the complex lines {z : l(z) = it} for all values of the real parameter t . All
these lines meet R

2 outside L except for the line LC which corresponds to t = 0. We

also notice that the boundary values of F on M define a CR function on M. We then
apply [4] and conclude that the analyticity of F propagates along the above lines Lt

for t 6= 0 to reach all points in M except for those which belong to LC. This completes
the proof of Theorem 1.
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