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THE PROBLEM

We suppose that a risk business issues a single type of contract
under which, in return for a unit "premium", it will pay a "sum
insured" m (m being an integer) on the occurrence of a contingency
of probability q < £. The expected gain on each contract is i—mq
and is assumed to be positive. This type of enterprise is conveniently
denominated a simple risk business. Two "real life" situations it
simulates are those of a group life policy for a uniform amount
covering a number of young lives (e.g., university students), and a
roulette casino where the stakes are uniform and the bets are
limited to the single numbers o to 36.

The risk business is supposed to commence its operations with a
"risk reserve" of K units. Each premium is added to this reserve
as it is received and all claims by contract holders are paid there-
from. We say that the business is "ruined" as soon as the risk
reserve becomes zero or negative (though it could be argued that it
would be unethical to accept a premium once the risk reserve is
less than m — 1). On the other hand, if the reserve reaches an
amount M units no further premiums are paid into it until a claim
occurs to reduce it below M (de Finetti, 1957). The risk business
intends to continue its operations for a long, but finite, period
unless ruined in the meantime.

We consider two probabilities: (i) vx, the chance of eventual
ruin given that the risk reserve is now x, and (ii) vx> «, the probability
that ruin occurs as a result of the wth contract (simultaneous
contracts being ranked in a prearranged, e.g., alphabetical, order).
Clearly

V% = 2 vz, n (!)
n - l

and we will write 1 — vx = ux.
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20 THE RANDOM WALK OF A SIMPLE RISK BUSINESS

HISTORY AND PRESENT STATUS

The problem of a gambler with limited funds playing a series of
games in each of which he has a constant probability of winning
against an infinitely rich adversary is a special case of that in which
the adversary has limited funds. The classical case assumes that
the stake is a unit and the return is two units (including the player's
own stake). The history of the calculation of vx and vx, % under
these conditions is excellently sketched in Czuber (1906) and the
mathematics are provided in §§ 1-5 of ch. XIV of Feller (1957).

The more general problem in which the player's stake is a units
and the return is a -\- b = m was first considered by Rouche (1888).
He found the probability of a player with capital A being ruined by
an adversary with capital B to be vA = 1 — UA where

«4=( I—X^) / ( I—X^+B) (2)

and X is "la racine positive, autre que 1" of the equation
pza+b — za _|_ q = 0_ (3)

Under these circumstances the expected duration of the game was
found to be

DA = {(A+B)uA — A}l{{a + b)p — a} (4)

where f is the player's chance of winning any game. These results
were reproduced by Bertrand (1889) in his text-book and similar,
supposedly exact, formulae were derived by Bachelier (1912) and
Baudez (1947).

But in 1903, in a Russian journal, Markov pointed out that
equation (3) has a -\- b roots and that they all contribute to the
solution. By an elegant device, reproduced in his (1912) text-book,
in Uspensky (1937), and briefly in Feller (1957), he obtained upper
and lower bounds for ux (x = 0, i, 2, . . . A + B). No attempt was
made to obtain the value of vx< n for this general case.

During the second world war the problem was taken up once
again in connection with the sequential sampling of manufactured
items from a large batch. Wald's sequential procedure for accepting
or rejecting the batch on the basis of the number of defective items
in a growing sample can be expressed as a random walk along the
X-axis commencing at a point A. One step is taken to the right
along the axis whenever an acceptable item is inspected (with
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probability p = i — q) and a steps are taken to the left when a
defective item is encountered (with probability q). Acceptance
of the batch occurs with probability uA when the "absorbing
barrier" A -\- B is reached while attainment of, or passage through,
the barrier at zero means that the batch should be rejected (the
probability of rejection being VA). It is readily seen that this proce-
dure is equivalent to Rouche's problem with b = i.

Burman (1946) and Girshick (1946) were able to obtain explicit
expressions for ux under these conditions. Their answers appear as
the quotient of two similar series. The former author also extended
his procedure to the derivation of the generating function of vx, n
(fixed x). From this he obtained expressions for the mean and
variance of the random variable N, the number of items inspected,
in terms of series of the same form as those appearing in ux. Ans-
combe (1949) used these results to prepare tables of mq (in our
notation) and E{N)jm for UA = .99, .9, -5, -i and .01 and a
selected set of pairs of values of Aim and Bjm ranging from (1, 1)
to (i,j), i + j = 8. Finally, Walker (1950) generalized Burman's
series results to include arbitrary integer b. Since the new formulae
require the inversion of a matrix of order min (a, b) they are not
convenient for numerical application.

When we try to apply some of the foregoing results to the simple
risk business defined above some unexpected difficulties arise.
We now have A = K, B —>oo, and q possibly very small, e.g., .001
or less. The result is that m is quite large and K must be many
times larger than m if VK, the risk of ultimate ruin, is to be very
small. This in turn prevents the use of Burman's (1946) series for
numerical calculations but encourages the employment of asympto-
tic results. In particular, we have been able to find simple approxi-
mate expressions for the mean and variance of the distribution
of 2V conditional on ruin occurring, and what appears to be a good
approximation to the distribution itself by means of the Normal
law.

DETERMINATION OF VX

Following the arguments of Feller (1957) for the case m = 2 it is
observed that ux = 1 — vx satisfies the difference equation

ux = pux + 1 + qux + 1 _ m (x = 1, 2, . . . M — 1) (5)
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22 THE RANDOM WALK OF A SIMPLE RISK BUSINESS

subject to the m boundary conditions

(o x = o, — i , — 2, . . . — (m — 2)
Ux ~~ (uM x = M

We note that UM will appear in the solution and must thus be
given a numerical value. It represents the probability of not being
ruined once the risk reserve has attained its ceiling of M. Suppose
that the business is assumed to wind-up once it has issued L further
contracts after this point. Then UM decreases monotonically from
unity, when L < M\[m — 1), to zero as Z.^00. Thus a value of L
exists such that, with close approximation, UM equals any suitably
chosen value, e.g., 1—10—8. In particular we may let M-+00 and
write lim UM = i-

There are two commonly used methods of solving (5). The first
is to note that the general solution has the form

ux = Ci X* + C2 X* + . . . + Cm X* (6)

(as can be seen by substituting (6) into (5) ) where Xi, X2, . . . Xm

are the m roots (supposed unequal) of the equation

pzm — zm — 1 -f- q = 0 (7)

namely equation (3) with a + b = m and 6 = 1.

Now (7) can be shown to have only two real positive roots Xi = 1
and X2 = X, where X < 1 provided mq < 1. [When mq = 1 there
is a repeated root of unity, ux = o and ruin is certain. Ruin is also
certain when mq, the expected claim, exceeds the unit premium.]
When m is odd there is one real negative root and when m is even
there are m — 2 imaginary roots. All the m — 2 roots that are not
real and positive have moduli less than X.

Hence, for large x,
C l f~* "l -7*

„ 1 ~T" ^ 2 A

and, using the boundary conditions at % = o and x = M,

Mx r^J T^T UM r^' I 1 — A*) U][f (o)

if M is supposed very large in comparison with x.
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The Markov upper and lower bounds for the solution become in
this case (cp. Uspensky, 1937)

ux<(i—\*+™~*)uM (9)

The alternative procedure for obtaining the solution of (5) is
to use the method of generating functions (Feller, 1957; Ch. XI).

It can be shown that in this case

= I ux 6* = q _ d _ m + 1 + p e _ m (10)

Developing the right-hand side of this relation in powers of 0 it is
found that (cp. Burman, 1946)

H(x)

where H{x)~p-x+^ 2 (—1)* f k \(j>m ~ *q)*

Alternatively we may express relation (10) as the sum of m partial
fractions (Feller, 1957) and obtain the asymptotic result

( 1 — mq ) \ 1 — mq )— 1

f - mq Xi— - 1 X*i " T S ^ ^ I H (I2)

in agreement with Cramer (1941) when M-^oo. It can be proved
that the factor multiplying \ x in the expression on the right exceeds
ym — 2 k ^ j s j e s s than unity. The result (12) therefore lies between
the two Markov bounds when M-^oo.

To illustrate the foregoing formulae we may use parameters that
correspond to the ' 'real life" examples of our introductory paragraph.

Let us choose

(i) m = 900, q = .001, x = 25,000 and UM = 1; and
(ii) m = 36, q = 1/37, x = 3,000 and uM = 1.

In case (i) we find X—1 = 1.00023044 and (9) provides

• 99685 < Ux < • 99744
while (12) becomes

Mx ~ • 99706
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24 THE RANDOM WALK OF A SIMPLE RISK BUSINESS

On the other hand in illustration (ii) X = .998444 and

.99075 <ux < .99123

while (12) gives

ux ~ • 99°95

One is tempted to conclude that use of the left hand member of (9)
will produce a value that is lower than the truth by not more than
a few units in the fourth decimal place.

THE CONTRACT N AT WHICH RUIN OCCURS

The probability that the random walk ends at the wth step after
the commencement has been written vXt n. By an argument similar
to that used in obtaining the equation (5) we now have

Vx, n+l = j> Vx+i,n + q Vx+i—m, n X = I , 2, . . . W—I (13)

subject to the boundary conditions
vx,n = o, x < 0, n = 1,2,3, . . .

and (14)
% , » = % , » x = M + 1, M + 2, . . .

We also adopt the convention that

vXy 0 = 1 x < 0 (ruin has just occurred!) (17)
vXi 0 = o x = 1, 2, 3, . . .

We now write the generating function of vx, n as

vx(Q) = i v X t n e« (18)

multiply (13) by 6re+1 and sum over n = 0, 1, 2, . . . The result is

Vx{%) = p% VX+X{V) + qWx+l-m{%) x = i,2,3,...M — i (19)

We note that Vx(i) — vx from (1).

Regarding 0 as fixed at a value a little less than unity we may
suppress it when used as an argument in (19) and write

Vx = j>QVx+i + q9Vx+1-m X=I,2,...M — I (19)'

with boundary conditions derived from (13), (14) and (18), namely

Vx = vx, 0 6° = 1 x = o, — 1 , —2, . . . — (m — 2)

Vx = vM, « / ( I — 6) x = M (20)
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This equation is similar to (5) but with different boundary condi-
tions. Its characteristic equation

pQ zm — zm~-! + 96 = 0 (21)

behaves in the same way as equation (7). In particular the two
real roots Xi, X2 have moduli in excess of those of the remaining
m—2 roots. When z = 1 the left hand side of (21) equals 6 — 1,
which is negative by hypothesis, and thus Xi > 1 and X2 < 1.

Hence

Vx(%) ~ Ci(6) {Xi(6) }* + C2(6) {xa (6) Y (22)

where dependency on 0 has now been made explicit, and the proce-
dure that previously led to the Markov upper and lower bounds
(Uspensky, 1937) now results in

(23)

which is equivalent to (9) (with UM = 1) when 0 = 1. We must
therefore find an approximation to X2(0).

When 0 = i equation (21) reduces to equation (7) which has a
root X < 1. We therefore write

(24)

where e(0) is to be determined. Suppressing the 0 of s(0) equation
(21) may now be written

z\m I z \
1 + — — Xm-i 1 + — -f 06 = 0

or, approximately (since m is large),

pQ \m eet\ _ ym-i ettx _f_ qQ = 0

so that
ê /x ^ q e/(x»>-i — p% Xm)

and from (24)

X2(0) £? X {1 + m—1 \n[q ©/(X"1"1 — pQhm)]} (25)

where X is the real positive root of equation (7) that is less than unity.
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26 THE RANDOM WALK OF A SIMPLE RISK BUSINESS

Hence

Vx{%) "̂ lx{i +

~Vx{i [) MX(T)

[?e/(x»-i_^ex»)]}*
= vx Mx(z)

(26)

(27)

where 0 = eT and

is the moment generating function of the random variable IV, the
number of contracts until ruin occurs1), given that ruin is certain
with a current risk reserve of x units.

Now

MI(T) = 1 + m—1 In (qlX™—1) + m—*T — m—1 In (1 — p\e^)

and
00 00

ln( i—*X eT = — > - (p\)j ) , , provided 4>Xe

* - 0

* - 2 ( - 0

where s|_j is a Stirling number of the second kind (Bucking-
ham, 1957)

t-2 i-1

We may thus calculate the cumulants of Ar with x = 1 up to any
desired order (Kendall & Stuart, 1958) and, on multiplication by
x, the corresponding cumulants of N with x an integer greater
than unity.

In fact it can be shown that the mean and variance of this
distribution of N are

x m—1 (1 — ph)—1 and xm~2 (mpX — 1) (1 — p\)—2,

i.e., the number of steps to first-passage of the barrier at zero.
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respectively. Furthermore the Fisher measures of skewness and
kurtosis tend asymptotically to

i—pl lm\
• I — I a n d\xl fk • x

respectively. Since pX is close to unity both these parameters
converge rapidly towards zero as x increases.

Reverting to the two numerical illustrations used earlier the
foregoing parameters become:

(i) mean = 22,580.7 variance = (4279.364)2
skewness •—• .0002 kurtosis .—' .2160

(ii) mean = 2,919.78 variance = (3io.7o86)a

skewness ~ .0033 kurtosis ~ .0720

An indication of the corresponding conditional distributions of risk
is given by the following table.

Probability that if ruin is
certain it occurs at
or before contract n

. 1

. 2

•3
•4
• 5
. 6

• 7
. 8
•9

Approximate ^lvalue of n for
illustration:

(i)

17,096
i8,979
20,336
21,496
22,580
23,664
24,824
26,182
28,064

(ii)

2,521
2,658
2,756
2,841
2,919
2,998
3,082
3,181
3.317
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