COMMENT ON "THE ROLE OF H_3O^+ IN THE CRYSTAL STRUCTURE OF ILLITE" BY F. NIETO, M. MELINI, AND I. ABAD

OLIVIER VIDAL^{1,*}, BENOÎT DUBACQ², AND PIERRE LANARI¹

¹ LGCA, Université Grenoble, CNRS, 1381 rue de la Piscine, BP53, 38041 Grenoble cedex 09, France ² Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

Abstract—The arguments of Nieto *et al.* (2010) in favor of the incorporation of H_3O^+ rather than H_2O in interlayer positions of illite are disputable. Stoichiometric arguments suggest that the excess water in the Silver Hill illite is in the form of H_2O . Moreover, recent thermodynamic models assuming the incorporation of interlayer H_2O in illite provide reasonable estimates of temperature and water content using the AEM/TEM analyses of Nieto *et al.* (2010).

Key Words-Composition, Hydronium, Illite, Water.

INTRODUCTION

Illite is a dioctahedral alkali-deficient mica with excess water incorporated in apparent interlayer vacancies (Hower and Mowatt, 1966; Loucks, 1991; Drits and McCarthy, 2007; Vidal and Dubacq, 2009; Dubacq et al., 2010, Nieto et al., 2010). These vacancies are cationfree crystallographic sites that appear due to chargebalance constraints of the pyrophyllitic substitution K^+ + $Al^{3+} = \Box + Si^{4+}$ (e.g. Abad et al., 2006). Excess water in the interlayer is generally considered to be in the form of H_2O because a significant incorporation of H_3O^+ would imply unrealistically low pH (Hower and Mowatt, 1966; Loucks, 1991; Jiang et al., 1994). However, Nieto et al. (2010) suggest that the excess water in illite is in the form of H_3O^+ . If this is true, a modification of the common assumptions made to calculate the structural formulae of alkali-deficient mica is necessary. A revision of the recent thermodynamic models of Vidal and Dubacq (2009) and Dubacq et al. (2010) would also be necessary, as the hydrated and dehydrated interlayer vacancies in illite are modeled using dehydrated and hydrated pyrophyllite end-members.

Although Nieto *et al.* (2010) performed a very careful and welcome study, we think that their arguments in favor of the incorporation of H_3O^+ instead of H_2O in interlayer position are disputable. Thermogravimetric analyses (Drits and McCarty, 2007; Nieto *et al.*, 2010) or Fourier-transform infrared (FTIR) measurements (*e.g.* Dubacq *et al.*, 2010) indicate the presence of water in alkali-deficient mica, but do not allow us to distinguish H_3O^+ from H_2O . Consequently, the arguments of Nieto *et al.* (2010) rely mainly on the calculation of structural formulae assuming the presence of either H_2O or H_3O^+ :

DOI: 10.1346/CCMN.2010.0580510

(1) "The amount of interlayer water $(H_2O(i) = 0.42 \text{ a.p.f.u.})$ calculated from the chemical data of Silver Hill illites and the water content measured by Hower and Mowatt (1966) is higher than the available space in interlayer position (=0.3 a.p.f.u)." (a.p.f.u. = atoms or molecules per formula unit).

However, the amount of water measured by Hower and Mowatt (1966) ($H_2O = 6.4\%$) is too great for the analysis selected by Nieto et al. (2010) as it leads to an oxide total >100 wt.%. Ignoring TiO₂ as in the study of Nieto et al. (2010), an oxide total of 100 wt.% is obtained for $H_2O = 5.88\%$, which corresponds to 0.305 a.p.f.u. ($H_2O(i)$ in the first column of Table 1, Case 1) and to the number of apparent interlayer vacancies. The same reasoning can be used for the structural formulae of illite reported by Nieto et al. (2010). With the value of $H_2O = 5.88\%$ determined above, $H_2O(i) = 0.28$ a.p.f.u. for the "average" composition listed in their table 2, which is again compatible with the value of 0.3 apparent interlayer vacancies. For the AEM/TEM analyses listed in table 1 of Nieto et al. (2010), the apparent vacancies range between 0.115 and 0.463. Assuming that they are occupied by molecular water, H₂O is found to range between 5 and 6.64 wt.%, with an average value of 5.8 wt.% (Table 1). The average value is in agreement with the value estimated above from the analysis by Hower and Mowatt (1966).

(2) "When assuming that the excess water corresponds to H_3O^+ and eventually adjusting the Fe²⁺/Fe³⁺ ratio, the calculated structural formulae have an octahedral occupancy (OC) of 2 and an interlayer occupancy (IC) of 1. It follows that the Si in excess of 3 a.p.f.u. and the amount of Mg + Fe²⁺ are explained by the Tschermak substitution alone."

The total number of cations in the illite structural formula, calculated on the basis of 22 negative charges $(O_{10}(OH)_2)$ and assuming that $(K^+ + Na^+ + H_3O^+)_{interlayer}$

^{*} E-mail address of corresponding author: Olivier.Vidal@ujf-grenoble.fr

IM(6) Im-21 Im-22 Im-23 Im-24 Im-21 Im-22 Im-23 Im-24 Im-23 Im-24 Im-23 Im-24 Im-23 Im-24 Im-24 <th< th=""><th>HM(66) Imt-2/1 Imt-2/2 Imt-2/3 Imt-2/4 Imt interlayer vacancies filled by H₂O 0.00</th><th>= $(AI + Fe^{-} - z)$ order to have $(K + z)$</th><th>114 1 1130</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	HM(66) Imt-2/1 Imt-2/2 Imt-2/3 Imt-2/4 Imt interlayer vacancies filled by H ₂ O 0.00	= $(AI + Fe^{-} - z)$ order to have $(K + z)$	114 1 1130									
yer vexnatise filled y H ₀ 900 000	yer vacancies filled by H_2O 0.00 0.00 0.00 0.00 0.00 0.00 5.89 6.00 5.51 5.89 6.15 5 3.66 3.44 3.41 3.33 3.43 3 0.234 0.56 0.59 0.65 0.57 0 0.06 0.27 0.21 0.23 0.19 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.17 0.06 0.17 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	-2/4 Imt-2/6 Imt-2/	7 Imt-2/12	Imt-2/13 Imt	-2/14 Imt-2/16	5 Imt-2/20	Imt-2/22	Imt-2/23	Imt-2/24	Imt-2/25	Imt-2/26	[mt-2/27
580 000 531 539 000 530 <td>0.00 0.00 0.00</td> <td></td> <td>00.0</td> <td>000</td> <td>00 0</td> <td>00 0</td> <td>00.0</td> <td>00.0</td> <td>00.0</td> <td>00.0</td> <td>000</td> <td>000</td>	0.00 0.00		00.0	000	00 0	00 0	00.0	00.0	00.0	00.0	000	000
	3.66 3.44 3.41 3.41 3.34 3.43	u u.uu u.uu 15 5.99 6.63	0.00 5.53	0.00 6.39 5	.00 0.00 .61 5.53	0.00 5.86	0.00 6.55	0.00 5.00	000 6.66	0.00 5.04	0.00 5.32	0.00 5.29
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- - -	, 14 17		07 C	, ,	90 c	0) (, ,	ыс с 1	ç
	0.37 0.03 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07	43 3.44 3.03 57 0.56 0.37	3.34 0.66	5.45 0.55 0	.33 3.44 67 0.56	3.40 0.60	5.05 0.37	5.28	5.08 0.37	5.45 0.57	5.5 0 65	5.42 0.58
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58 1.65 1.51	0.00	0 cc.0 1.51 1	.54 1.45	0.00	1.63	0.72 1.54	1.65	1.43 1.43	0.0 1.49	1.48
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04 0.07	0.06	0.06 0	.07 0.06	0.06	0.05	0.06	0.04	0.07	0.07	0.06
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 0.12 0.21	0.17	0.20 0	.21 0.19	0.20	0.14	0.18	0.13	0.21	0.23	0.20
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	1 0.69 0.67 0.77 0.69 0.64 0 2.00 2.09 2.06 2.11 2.09 2.0 2.09 2.09 2.0 2.09 2.09 0.07 <	28 0.24 0.26	0.27	0.35 0	.26 0.37	0.26	0.19	0.28	0.17	0.32	0.27	0.30
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$		54 0.68 0.54	0.77	0.59 0	.75 0.77	0.70	0.57	0.88	0.55	0.87	0.81	0.82
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 0.32 0.46	0.23	0.41 0	.25 0.23	0.30	0.43	0.12	0.45	0.13	0.19	0.18
		2.05 2.05 2.05	2.07	2.12 2	.08 2.07	2.07	2.01	2.06	1.99	2.03	2.06	2.04
0.00 0.09 0.06 0.11 0.09 0.05 0.07 0.12 0.07 0.01 0.06 0.03 0.03 0.06 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>36 0.32 0.46</td><td>0.23</td><td>0.41 0</td><td>.25 0.23</td><td>0.30</td><td>0.43</td><td>0.12</td><td>0.45</td><td>0.13</td><td>0.19</td><td>0.18</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 0.32 0.46	0.23	0.41 0	.25 0.23	0.30	0.43	0.12	0.45	0.13	0.19	0.18
0.36 0.11 0.18 0.07 0.07 0.12 0.16 0.11 0.16 0.23 0.36 0.16 0.23 0.36 0.16 0.23 0.36 0.16 0.32 0.36 0.16 0.32 0.36 0.36 0.33 0.36 0.34 0.46 0.33 0.36 0.34 0.36 0.34 0.36 0.34 0.36 0.34 0.36 0.34 0.36 0.35 0.34 0.36 0.34 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.36 0.35 0.36 0.35 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0.05 0.05 0.05</td><td>0.07</td><td>0.12 0</td><td>.08 0.07</td><td>0.07</td><td>0.01</td><td>0.06</td><td>0.00</td><td>0.03</td><td>0.06</td><td>0.04</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05 0.05 0.05	0.07	0.12 0	.08 0.07	0.07	0.01	0.06	0.00	0.03	0.06	0.04
0.34 0.46 0.53 0.51 0.48 0.51 0.32 0.59 0.49 0.52 0.36 0.32 0.37 0.39 0.31 Iayer vacancies filled by H ₃ O ⁺ 1.52 1.64 1.12 1.51 1.76 1.57 2.24 1.12 1.9 1.21 1.46 2.11 0.58 2.21 0.63 0.92 0.87 4.56 4.56 6.04 6.61 6.97 6.73 7.67 6.06 7.29 6.14 0.71 0.52 0.54 7.51 5.35 5.75 5.70 3.61 3.39 3.37 3.38 3.55 3.30 3.39 3.29 3.40 3.35 3.30 3.39 3.37 3.38 3.55 3.76 0.66 0.70 0.61 0.71 0.69 0.76 0.78 0.66 0.79 0.66 0.79 0.68 0.66 0.79 0.68 0.61 0.79 0.76 0.79 0.76 0.76 0.76 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07 0.12 0.16	0.11	0.04 0	.08 0.21	0.10	0.20	0.16	0.23	0.30	0.16	0.24
Hayer vacancies filled by H ₃ O ⁺ dister vacancies filled by H ₃ O ⁺ 1.52 1.64 1.12 1.51 1.76 1.57 224 1.12 1.99 1.21 1.12 0.68 5.35 5.75 5.70 4.56 6.04 6.61 6.97 6.73 7.67 6.06 7.29 6.14 0.51 5.35 5.75 5.70 3.61 3.39 3.37 3.38 3.55 3.30 3.39 3.40 3.36 3.56 3.56 3.56 3.56	Idayer vacancies filled by H_3O^+ 1.52 1.64 1.12 1.51 1.76 1 4.56 4.56 6.04 6.61 6.97 6 3.61 3.39 3.37 3.33 3.37 3 3.61 3.39 3.37 3.33 3.37 3 3.61 3.39 3.37 3.33 3.37 3 1.31 1.40 1.42 1.48 1 48 1 1.31 1.40 1.42 1.43 1.48 1 1 0.38 0.07 0.07 0.07 0.06 0.05 0	48 0.51 0.32	0.59	0.42 0	.59 0.49	0.52	0.36	0.66	0.32	0.54	0.59	0.54
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
4.56 4.56 6.04 6.61 6.97 6.73 7.67 6.06 7.29 6.18 6.05 6.54 7.51 5.28 7.66 5.35 5.75 5.75 5.70 3.61 3.39 3.37 3.37 3.37 3.38 3.55 3.30 3.39 3.37 3.38 3.55 3.30 3.39 3.37 3.38 3.55 3.30 3.39 3.37 3.38 3.55 3.30 3.39 3.37 3.38 3.57 3.30 3.39 3.37 3.38 3.55 3.30 3.39 3.37 3.38 3.55 3.30 3.39 3.37 3.39 3.37 3.39 3.39 3.37 3.39 3.37 3.39 3.37 3.38 3.55 3.30 3.41 3.35 3.40 3.35 3.40 3.35 3.40 3.35 3.30 3.41 3.32 3.39 1.31 1.40 1.42 1.43 1.67 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.25 0.21 0.22 0.17 0.19 0.17 0.19 0.19 0.19 0.19 0.07 0.06 0.66 0.76 0.67 0.68 0.67 0.67 0.66 0.76 0.29 0.76 0.28 0.21 0.29 0.28 0.21 0.29 0.21 0.29 0.21 0.29 0.28 0.21 0.29 0.29 0.29 <t< td=""><td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td>76 1.57 2.24</td><td>1.12</td><td>1.99 1</td><td>.21 1.12</td><td>1.46</td><td>2.11</td><td>0.58</td><td>2.21</td><td>0.63</td><td>0.92</td><td>0.87</td></t<>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	76 1.57 2.24	1.12	1.99 1	.21 1.12	1.46	2.11	0.58	2.21	0.63	0.92	0.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97 6.73 7.67	6.06	7.29 6	.18 6.05	6.54	7.51	5.28	7.66	5.35	5.75	5.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37 3.38 3.55	3.30	3.39 3	.29 3.40	3.35	3.56	3.26	3.60	3.41	3.32	3.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53 0.62 0.45	0.70	0.61 0	.71 0.60	0.65	0.44	0.74	0.40	0.59	0.68	0.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.08 0.07 0.07 0.06 0.05 0 0.25 0.21 0.23 0.19 0.17 0 0.27 0.33 0.28 0.34 0.28 0 0 1 0.67 0.66 0.76 0.68 0.63 0 6 0.32 0.34 0.28 0.34 0.28 0 6 0 6 0.63 0 6 0.63 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 3 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 <td>48 1.57 1.40</td> <td>1.51</td> <td>1.41 1</td> <td>.48 1.39</td> <td>1.48</td> <td>1.52</td> <td>1.51</td> <td>1.53</td> <td>1.40</td> <td>1.44</td> <td>1.43</td>	48 1.57 1.40	1.51	1.41 1	.48 1.39	1.48	1.52	1.51	1.53	1.40	1.44	1.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.25 0.21 0.23 0.19 0.17 0 a 0.27 0.33 0.28 0.34 0.28 0 a 0.67 0.66 0.76 0.68 0.63 0 0.32 0.34 0.28 0.63 0 0 0 0.37 0.38 0 </td <td>0.04 0.07</td> <td>0.05</td> <td>0.06 0</td> <td>.07 0.06</td> <td>0.06</td> <td>0.04</td> <td>0.06</td> <td>0.04</td> <td>0.07</td> <td>0.07</td> <td>0.06</td>	0.04 0.07	0.05	0.06 0	.07 0.06	0.06	0.04	0.06	0.04	0.07	0.07	0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 0.12 0.21	0.17	0.19 0	.21 0.19	0.19	0.14	0.18	0.13	0.21	0.23	0.20
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ia 0.67 0.66 0.76 0.68 0.63 0 0.32 0.34 0.24 0.32 0.37 0 1.91 2.00 1.99 2.03 1.99 1 0.35 0.39 0.35 0.40 0.33 0 0.55 0.61 0.65 0.60 0.67 0	28 0.24 0.25	0.27	0.34 0	.26 0.37	0.26	0.19	0.28	0.17	0.32	0.27	0.30
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.32 0.34 0.24 0.32 0.37 0 1.91 2.00 1.99 2.03 1.99 1 0.35 0.39 0.35 0.40 0.33 0 0.65 0.61 0.65 0.60 0.67 0	53 0.67 0.53	0.76	0.58 0	.74 0.76	0.69	0.56	0.88	0.54	0.87	0.80	0.82
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.91 2.00 1.99 2.03 1.99 1 0.35 0.39 0.35 0.40 0.33 0 0.65 0.61 0.65 0.67 0	37 0.33 0.47	0.24	0.42 0	.26 0.24	0.31	0.44	0.12	0.46	0.13	0.20	0.18
0.35 0.39 0.35 0.40 0.32 0.40 0.32 0.43 0.32 0.24 0.34 0.31 0.34 0.31 0.34 0.34 0.31 0.34 <th< td=""><td>0.35 0.39 0.35 0.40 0.33 0 0.65 0.61 0.65 0.60 0.67 0</td><td>99 1.96 1.92</td><td>2.01</td><td>2.01 2</td><td>.01 2.01</td><td>1.99</td><td>1.89</td><td>2.02</td><td>1.87</td><td>1.99</td><td>2.01</td><td>1.99</td></th<>	0.35 0.39 0.35 0.40 0.33 0 0.65 0.61 0.65 0.60 0.67 0	99 1.96 1.92	2.01	2.01 2	.01 2.01	1.99	1.89	2.02	1.87	1.99	2.01	1.99
0.65 0.61 0.65 0.60 0.67 0.73 0.68 0.68 0.60 0.68 0.57 0.68 0.77 0.66 0.79 0.62 0.66 0.64	0.65 0.61 0.65 0.60 0.67 0	33 0.27 0.32	0.32	0.40 0	.32 0.43	0.32	0.23	0.34	0.21	0.38	0.34	0.36
		57 0.73 0.68	0.68	0.60 0	.68 0.57	0.68	0.77	0.66	0.79	0.62	0.66	0.64

718

= 1 a.p.f.u., is indeed less than if H_2O is assumed to be incorporated in the interlayer position. As a result, both the Si content and the OC decrease and the extent of both di-trioctahedral and pyrophyllitic substitutions is reduced.

Unfortunately, Nieto et al. (2010) compared the structural formulae calculated assuming the incorporation of H_2O or H_3O^+ for the average illite composition only. The structural formulae of all the individual TEM/ AEM analyses reported by Nieto et al. (2010) are listed in Table 1. In Case 2 (incorporation of H_3O^+), they have been calculated on a 22 negative charge basis, and H_3O^+ was adjusted in order to obtain $(K^+ + Na^+ + H_3O^+)_{interlayer}$ = 1. In contrast with the statement of Nieto *et al.* (2010), the OC is generally different from the ideal value of 2 a.p.f.u. (Table 1). It is often less than this value, which implies that the composition of illite cannot be explained by the Tschermak substitution alone (Ransom and Helgeson, 1993). This point is further illustrated in Figure 2, which shows that a linear combination of the celadonite (XCel = Mg + Fe²⁺) and muscovite (XMusc = 1 - XCel) end-members does not reproduce the Si content of the structural formulae. The scatter of the open symbols in Figure 1 shows that the octahedral $(Fe^{2+} + Mg)$ and tetrahedral Si contents cannot both be described by the Tschermak substitution alone between (K^+, H_3O^+) -celadonite and muscovite. Additional endmembers are thus required. The OC obtained when assuming the incorporation of H₂O (Case 1) are also different but generally >2. This is easily explained by the incorporation of a trioctahedral component in illite, as observed in phengite at high temperature or smectite at lower temperature. In this case, the molar fraction of pyrophyllite (Prl: Si₄(Al,Fe³⁺)₂O₁₀(OH)₂), hydrated pyrophyllite (PrlH: Si₄(Al,Fe³⁺)₂O₁₀(OH)₂.H₂O), biotite (Bt: $(Si_3Al)(Mg,Fe^{2+})_3KO_{10}(OH)_2)$, celadonite (Cel: $Si_4(Al, Fe^{3+})(Mg, Fe^{2+})KO_{10}(OH)_2)$, and muscovite (Musc: $(Si_3Al)(Al, Fe^{3+})_2KO_{10}(OH)_2)$ end-members proposed by Dubacq *et al.* (2010) are listed in Table 1. The structural formulae are fully reproduced with these end-members, *e.g.* the Si content of the structural formulae (Figure 1, filled symbols).

Because of the stoichiometric reasons listed above, the excess water in the illite grains analysed by Nieto et al. (2010) is more likely, or at least possibly, in the form of molecular water rather than H_3O^+ The thermodynamic model of Dubacq et al. (2010) was used to estimate the amount of H₂O(i) and the temperature of equilibrium among the Silver Hill illite, quartz, and water at 1 kbar (Figure 2). Although the illite compositions reported by Nieto et al. (2010) are highly variable, the calculated temperatures are quite similar and define conditions at ~210°C (Figure 2). Moreover, the predicted amount of interlayer water is very close in each case to the maximum value estimated from the stoichiometric criteria above. These results can be viewed as an additional and independent argument in favor of the incorporation of neutral water in the apparent vacancies of illite.

CONCLUSION

(1) We agree with Nieto *et al.* (2010) that thermobarometric estimates cannot be made without consideration of excess water in illite, *i.e.* using the model of Vidal and Parra (2000) or Parra *et al.* (2002) derived for phengites. However, stoichiometric and thermodynamic arguments both suggest that the excess water in the Silver Hill illite is in the form of H₂O rather than H₃O⁺. An independent argument against a significant incorporation of H₃O⁺ is that it would imply unrealistically low pH, as already discussed by Hower and Mowatt (1966), Loucks (1991), and Jiang *et al.* (1994).

Figure 1. Si content calculated from the proportion of endmembers in Cases 1 (incorporation of H₂O, filled symbols) and 2 (incorporation of H₃O⁺, open symbols) vs. Si content of the structural formulae. In Case 2, the molar fraction of Cel and Musc are calculated from the octahedral (Mg + Fe²⁺) content.

Figure 2. Frequency histogram showing temperatures of equilibrium for illite, quartz, and water, calculated using the model of Dubacq *et al.* (2010) for the compositions of the Silver Hill illite listed in Nieto *et al.* (2010).

(2) No evidence was found to support the assumption that octahedral occupancy in illite should exactly equal 2 or that the interlayers should sum exactly to unity.

(3) The thermobarometric model of Dubacq *et al.* (2010) gives reasonable estimates of equilibrium conditions and water content when assuming that H_2O is incorporated in the interlayer position of illite. The thermodynamic model of Dubacq *et al.* (2010) is, therefore, in good agreement with the analytical results of Nieto *et al.* (2010).

REFERENCES

- Abad, I., Nieto, F., Gutierrez-Alonso, G., do Campo, M., Lopez-Munguira, A., and Velilla, N. (2006) Illitic substitution in micas of very low-grade metamorphic clastic rocks. *European Journal of Mineralogy*, 18, 59–69.
- Drits, V.A. and McCarty, D.K. (2007) The nature of structurebonded H₂O in illite and leucophyllite from dehydration and dehydroxylation experiments. *Clays and Clay Minerals*, 55, 45–58.
- Dubacq, B., Vidal, O., and De Andrade, V. (2010) Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. *Contributions to Mineralogy and Petrology*, **159**, 159–174.
- Hower, J. and Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. *American Mineralogist*, 51, 825-854.

- Jiang, W.T., Peacor, D.R., and Essene, E.J. (1994) Clay minerals in the McAdams sandstone, California: implications for substitution of H_3O^+ and H_2O and metastability of illite. *Clays and Clay Minerals*, **42**, **35**–**45**.
- Nieto, F., Mellini, M., and Abad, I. (2010) The role of H_3O^+ in the crystal structure of illite. *Clays and Clay Minerals*, **58**, 238–246.
- Loucks, R.R. (1991) The bound interlayer H₂O content of potassic white micas; muscovite-hydromuscovite-hydropyrophyllite solutions. *American Mineralogist*, **76**, 1563–1579.
- Parra, T., Vidal, O., and Agard, P. (2002) A thermodynamic model for Fe-Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. *Contributions to Mineralogy and Petrology*, 143, 706-732.
- Ransom, B. and Helgeson, H. (1993) Compositional endmembers and thermodynamic components of illite and dioctahedral aluminous smectite solid-solutions. *Clays and Clay Minerals*, 41, 537–550.
- Vidal, O. and Dubacq, B. (2009) Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H₂O activity. *Geochimica et Cosmochimica Acta*, **73**, 6544–6564.
- Vidal, O. and Parra, T. (2000) Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. *Geological Journal*, 35, 139–161.

(Received 16 July 2010; revised 27 October 2010; Ms. 462; A.E. J.W. Stucki)