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Abstract

Data-informed predictive maintenance planning largely relies on stochastic deterioration models. Monitoring
information can be utilized to update sequentially the knowledge on model parameters. In this context, on-line
(recursive) Bayesian filtering algorithms typically fail to properly quantify the full posterior uncertainty of time-
invariant model parameters. Off-line (batch) algorithms are—in principle—better suited for the uncertainty quan-
tification task, yet they are computationally prohibitive in sequential settings. In this work, we adapt and investigate
selected Bayesian filters for parameter estimation: an on-line particle filter, an on-line iterated batch importance
sampling filter, which performs Markov Chain Monte Carlo (MCMC) move steps, and an off-line MCMC-based
sequential Monte Carlo filter. A Gaussian mixture model approximates the posterior distribution within the
resampling process in all three filters. Two numerical examples provide the basis for a comparative assessment.
The first example considers a low-dimensional, nonlinear, non-Gaussian probabilistic fatigue crack growth model
that is updated with sequential monitoring measurements. The second high-dimensional, linear, Gaussian example
employs a random field to model corrosion deterioration across a beam, which is updated with sequential sensor
measurements. The numerical investigations provide insights into the performance of off-line and on-line filters in
terms of the accuracy of posterior estimates and the computational cost, when applied to problems of different nature,
increasing dimensionality and varying sensor information amount. Importantly, they show that a tailored implemen-
tation of the on-line particle filter proves competitive with the computationally demanding MCMC-based filters.
Suggestions on the choice of the appropriate method in function of problem characteristics are provided.

Impact Statement

Stochastic models describing time-evolving deterioration processes are widespread in engineering. In the
modern data-rich engineering landscape, Bayesian methods can exploit monitoring data to sequentially update
knowledge on underlying model parameters. The precise probabilistic characterization of these parameters is
indispensable for several real-world tasks, where decisions need to be taken in view of the evaluated margins of
risk and uncertainty. This work investigates and compares on-line and off-line Bayesian filters and adapts the
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former for posterior uncertainty quantification of time-invariant parameters. We show that tailored on-line
particle filters are competitive alternatives to off-line Bayesian filters, especially in certain high-dimensional
settings.

1. Introduction

Structural deterioration of various forms is present in most mechanical and civil structures and infra-
structure systems. Accurate and effective tracking of structural deterioration processes can help to
effectively manage it and minimize the total life-cycle costs (Cadini et al., 2009a; Frangopol, 2011;
Kim et al., 2017; Kamariotis et al., 2022). The deployment of sensors on structural components/systems
can enable long-term monitoring of such processes. Monitoring data obtained sequentially at different
points in time must be utilized in an efficient manner within a Bayesian framework to enable data-
informed estimation and prediction of the deterioration process evolution.

Monitored structural deterioration processes are commonly modeled using Markovian state-space
representations (Myötyri et al., 2006; Cadini et al., 2009b; Baraldi et al., 2013), whereby the deterioration
state evolution is represented by a recursiveMarkov process equation, and is subject to stochastic process
noise (Corbetta et al., 2018). Monitoring information is incorporated by means of the measurement
equation. The deterioration models further contain time-invariant uncertain parameters. The state-space
can be augmented to include these parameters, if one wishes to obtain updated estimates thereof
conditional on the monitoring information (Saha et al., 2009; Straub, 2009; Sun et al., 2014; Corbetta
et al., 2018; Yi and Song, 2018; Cristiani et al., 2021; Kamariotis et al., 2023); this is referred to as joint
state-parameter estimation (Särkkä, 2013; Kantas et al., 2015).

A different approach entails defining the structural deterioration state evolution solely as a function
of uncertain time-invariant model parameters (Ditlevsen and Madsen, 1996; Vu and Stewart, 2000;
Elingwood, 2005; Stewart and Mullard, 2007), which can be updated in view of the monitoring data.
This updating, referred to herein as Bayesian parameter estimation, is often the primary task of interest.
In this approach, the deterioration state variables are obtained as outputs of the calibrated deterioration
model with posterior parameter estimates (Kennedy and O’Hagan, 2001; Ramancha et al., 2022). The
parameter estimation problem can be cast into a Markovian state-space representation. Quantifying the
full posterior uncertainty of the time-invariant model parameters is essential for performingmonitoring-
informed predictions on the deterioration process evolution, the subsequent monitoring-informed
estimation of the time-variant structural reliability (Melchers and Beck, 2017; Straub et al., 2020) or
the remaining useful life (Sun et al., 2014; Kim et al., 2017), and eventually for predictive maintenance
planning.

Bayesian estimation of time-invariant deterioration model parameters is the main focus of this article.
In long-term deterioration monitoring settings, where data is obtained sequentially at different points in
time, Bayesian inference can be performed either in an on-line or an off-line framework (Storvik, 2002;
Kantas et al., 2015; Azam et al., 2017). In literature, these are also referred to as recursive (on-line) and
batch (off-line) estimation (Särkkä, 2013). Parameter estimation is cast into a state-space setup to render it
suitable for application with on-line Bayesian filtering algorithms (Kantas et al., 2015), such as the
Kalman filter (Kalman, 1960) and its nonlinear variants (Jazwinski, 1970; Julier and Uhlmann, 1997;
Daum, 2005; Song et al., 2020), the ensemble Kalman filter (Evensen, 2006), and particle filters (Doucet
et al., 2001; Chopin, 2004; Doucet and Johansen, 2008; Hu et al., 2008; Särkkä, 2013; Tatsis et al., 2022).
We employ on-line particle filter methods for pure recursive estimation of time-invariant deterioration
model parameters. This is not the typical use case for such methods, which often yield degenerate and
impoverished posterior estimates, hence, failing to effectively characterize the posterior uncertainty (Del
Moral et al., 2006; Särkkä, 2013). In this work, we tailor on-line particle filters for quantifying the full
posterior uncertainty of time-invariant model parameters. Subsequently, we provide a formal investiga-
tion and discussion on their suitability with respect to this task.
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In itsmost typical settingwithin engineering applications, Bayesian parameter estimation is commonly
performed with the use of off-line Markov Chain Monte Carlo (MCMC) methods, which have been used
extensively in statistics and engineering to sample from complex posterior distributions of model
parameters (Hastings, 1970; Gilks et al., 1995; Beck and Au, 2002; Haario et al., 2006; Ching and Chen,
2007; Papaioannou et al., 2015; Wu et al., 2017; Lye et al., 2021). However, use of off-line methods for
on-line estimation tasks is computationally prohibitive (Del Moral et al., 2006; Kantas et al., 2015).
Additionally, when considering off-line inference, in settings when measurements are obtained sequen-
tially at different points in time, off-line MCMCmethods tend to induce a larger computational cost than
on-line particle filter methods, which can be important, for example, when optimizing inspection and
monitoring (Papakonstantinou and Shinozuka, 2014; Luque and Straub, 2019; Kamariotis et al., 2023).
Questions that we investigate in this context include: Can one precisely quantify the posterior uncertainty
of time-invariant parameters when employing on-line particle filter methods? How does this quantifica-
tion compare against the posterior estimates obtained with off-line MCMC methods? How does the
estimation accuracy depend on the nature of the problem, that is, dimensionality, nonlinearity, or non-
Gaussianity?What is the computational cost induced by the different methods? Ideally, one would opt for
the method which can provide sufficiently accurate posterior results at the expense of the least compu-
tational cost. To address these questions, this article selects and adapts algorithms in view of parameter
estimation, and performs a comparative assessment of selected off-line and on-line Bayesian filters
specifically tailored for posterior uncertainty quantification of time-invariant parameters. The innovative
comparative assessment results in a set of suggestions on the choice of the appropriate algorithm in
function of problem characteristics.

The article is structured as follows. Section 2 provides a detailed description of on-line and off-line
Bayesian inference in the context of parameter estimation. Three different selected and adapted Bayesian
filters are presented in algorithmic detail, namely an on-line particle filter with Gaussian mixture-based
resampling (PFGM) (van derMerwe andWan, 2003;McLachlan andKrishnan, 2007), the on-line iterated
batch importance sampling filter (IBIS) (Chopin, 2002), which performs off-line MCMC steps with a
Gaussianmixture as a proposal distribution, and an off-lineMCMC-based sequentialMonte Carlo (SMC)
filter (Del Moral et al., 2006), which enforces tempering of the likelihood function (known as simulated
annealing) to sequentially arrive to the single final posterior density of interest (Neal, 2001; Jasra et al.,
2011). The tPFGM and tIBIS variants, which adapt the PFGMand IBIS filters by employing tempering of
the likelihood function of each new measurement, are further presented and proposed for problems with
high sensor information amount. Section 3 describes the two case studies that serve as the basis for
numerical investigations, one nonlinear, non-Gaussian, and low-dimensional, and one linear, Gaussian,
and high-dimensional. MATLAB codes implementing the different algorithms and applying them on the
two case studies introduced in this article are made publicly available via a GitHub repository.1 Section 4
summarizes the findings of this comparative assessment, provides suggestions on choice of the appro-
priate method according to the nature of the problem, discusses cases which are not treated in our
investigations, and concludes this work.

2. On-Line and Off-Line Bayesian Filtering for Time-Invariant Parameter Estimation

This work assumes the availability of a stochastic deteriorationmodelD, parametrized by a vector θ∈ IRd

containing the d uncertain time-invariant model parameters. We collect the uncertain parameters influ-
encing the deterioration process in the vector θ. In the Bayesian framework, θ is modeled as a vector of
random variables with a prior distribution πpr θð Þ. We assume that the deterioration process is monitored
via a permanently installed monitoring system. Long-term monitoring of a deterioration process leads to
sets of noisy measurements y1,…,ynf g obtained sequentially at different points in time t1,…, tnf g
throughout the lifetime of a structural component/system. Such measurements can be used to update

1 https://github.com/antoniskam/Offline_online_Bayes.
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the distribution of θ; this task is referred to as Bayesian parameter estimation. Within a deterioration
monitoring setting, Bayesian parameter estimation can be performed either in an on-line or an off-line
framework (Kantas et al., 2015), depending on the task of interest.

In an on-line framework, one is interested in updating the distribution of θ in a sequential manner, that
is, at every time step tn when a new measurement yn becomes available, conditional on all measurements
available up to tn. Thus, in an on-line framework, inference of the sequence of posterior densities
πpos θjy1:nð Þ� �

n≥ 1 is the goal, where y1:n denotes the components y1,…,ynf g. We point out that in this
article the term on-line does not relate to “real-time” estimation, although on-line algorithms are also used
in real-time estimation (Chatzi and Smyth, 2009; Russell and Norvig, 2021).

In contrast, in an off-line framework, inference of θ is performed at a fixed time step tN using a fixed set
of measurements y1,…,yNf g, and the single posterior density πpos θjy1:Nð Þ is sought, which can be
estimated via Bayes’ rule as:

πpos θjy1:Nð Þ∝L y1:N jθð Þπpr θð Þ, (1)

where L y1:N jθð Þ denotes the likelihood function of the whole measurement set y1:N given the parameters
θ. With the assumption that measurements are independent given the parameter state, L y1:N jθð Þ can be
expressed as a product of the likelihoods L ynjθð Þ as:

L y1:N jθð Þ=
YN
n= 1

L ynjθð Þ: (2)

MCMC methods sample from πpos θjy1:Nð Þ via simulation of a Markov chain with πpos θjy1:Nð Þ as its
stationary distribution, for example, by performing Metropolis Hastings (MH) steps (Hastings, 1970).
MCMCmethods do not require estimation of the normalization constant in equation (1). However, in the
on-line framework, MCMC methods are impractical, since they require simulating anew a different
Markov chain for each new posterior πpos θjy1:nð Þ, and the previously generated Markov chain for the
posterior estimation of πpos θjy1:n�1ð Þ is not accounted for, except when choosing the seed for initializing
the newMarkov chain. This implies thatMCMCmethods quickly become computationally prohibitive in
the on-line framework, already for a small n. An additional computational burden stems from the fact that
each stepwithin theMCMCsampling process requires evaluation of the full likelihood function L y1:njθð Þ,
that is, the whole set of measurements y1:n needs to be processed. This leads to increasing computational
complexity for increasing n, and can render use of MCMC methods computationally inefficient even for
off-line inference, especially when N is large.

On-line particle filters (Särkkä, 2013;Kantas et al., 2015) operate in a sequential fashion bymaking use
of the Markovian property of the employed state-space representation, that is, they compute πpos θjy1:nð Þ
solely based on πpos θjy1:n�1ð Þ and the new measurement yn. The typical use of particle filters targets the
tracking of a system’s response (dynamic state) by means of a state-space representation (Gordon et al.,
1993; Särkkä, 2013), while they are often also used also for joint state-parameter estimation tasks, wherein
the state-space is augmented to include the model parameters to be estimated (Särkkä, 2013; Kantas et al.,
2015). In addition, particle filters can also be applied for pure recursive estimation of time-invariant
parameters, for which the noise in the dynamic model is formally zero (Del Moral et al., 2006; Särkkä,
2013), although this is not the typical setting for application of particle filters. A model of the Markovian
discrete-time state-space representation for the case of time-invariant parameter estimation is given in
equations (3a) and (3b).

θn = θn�1, (3a)

yn =Dn θnð Þexp εnð Þ, (3b)

where εnmodels the error/noise of themeasurement at time tn, and θn denotes the time-invariant parameter
vector at time step n. The dynamic equation for the time-invariant parameters equation (3a) is introduced
for the sole purpose of casting the problem into a state-space representation. Since the measurements are
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assumed independent given the parameter state, the errors εn in equation (3b) are independent. It should be
noted that the measurement error, which is introduced in multiplicative form in equation (3b), is
commonly expressed in an additive form (Corbetta et al., 2018). Indeed, equation (3b) can be reformu-
lated in the logarithmic scale, whereby the measurement error is expressed in an additive form. The
multiplicative form of the measurement error in equation (3b) is consistent with the fact that—in the
context of structural deterioration—measurements yn cannot be negative. All target distributions of
interest in the sequence πpos θnjy1:nð Þ are defined on the same space of θ∈ IRd. In the remainder of this
article, the subscript n will therefore be dropped from θn. As previously discussed, particle filters are
mainly used for on-line inference. However, these can also be used in exactly the same way for off-line
inference, where only a single posterior density πpos θjy1:Nð Þ is of interest. In this case, particle filters use
the sequence of measurements successively to sequentially arrive to the final single posterior density of
interest via estimating all the intermediate distributions.

2.1. On-line particle filter

Particle filter (PF) methods, also referred to as sequential Monte Carlo (SMC) methods, are importance

sampling-based techniques that use a set of weighted samples θ ið Þ
n ,w ið Þ

n

� �
: i= 1,…,Npar

n o
, called

particles, to represent the posterior distribution of interest at estimation time step n, πpos θjy1:nð Þ. PFs
form the following approximation to the posterior distribution of interest:

πpos θjy1:nð Þ≈
XNpar

i = 1

w ið Þ
n δ θ�θ ið Þ

n

� �
, (4)

where δ denotes the Dirac delta function.
When a new measurement yn becomes available, PFs shift from πpos θjy1:n�1ð Þ to πpos θjy1:nð Þ by

importance sampling using an appropriately chosen importance distribution, which results in a reweight-
ing procedure (updating of the weights). An important issue that arises from this weight-updating
procedure is the sample degeneracy problem (Särkkä, 2013). This relates to the fact that the importance
weights w ið Þ

n become more unevenly distributed with each updating step. In most cases, after a certain
number of updating steps, theweights of almost all the particles assume values close to zero (see Figure 1).

Prior particle distribution

Posterior particle distribution (sample degeneracy)

Resampled posterior particle distribution (sample impoverishment)

Ideal posterior particle distribution

Prior distribution
Posterior distribution

Figure 1. Sample degeneracy and impoverishment.
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This problem is alleviated by the use of adaptive resampling procedures based on the effective sample size

Neff = 1=
PNpar

i = 1 w ið Þ
n

� �2
(Liu andChen, 1998).Most commonly, resampling is performedwith replacement

according to the particle weights whenever Neff drops below a user-defined threshold
NT = cNpar,c∈ 0,1½ �. Resampling introduces additional variance to the parameter estimates (Särkkä,
2013). In the version of the PF algorithm presented in Algorithm 1, the dynamic model of equation (3)
is used as the importance distribution, as originally proposed in the bootstrap filter byGordon et al. (1993).
Theoretical analysis of PF algorithms can be found in numerous seminal sources (e.g., Chopin, 2004; Del
Moral et al., 2006; Hu et al., 2008).

Algorithm 1 Particle Filter (PF)

1: generate Npar initial particles θ ið Þ from πpr θð Þ, i= 1,…,Npar

2: assign initial weights w ið Þ
0 = 1=Npar, i= 1,…,Npar

3: for n= 1,…,N do
4: evaluate likelihood of the particles based on new measurement yn, L

ið Þ
n = L ynjθ ið Þ� �

5: update particle weights w ið Þ
n ∝L ið Þ

n �w ið Þ
n�1 and normalize s:t:

PNpar

i= 1w
ið Þ
n = 1

6: evaluate Neff = 1PNpar

i= 1
w ið Þ
nð Þ2

7: if Neff <NT then
8: resample particles θ ið Þ with replacement according to w ið Þ

n

9: reset particle weights to w ið Þ
n = 1=Npar

10: end if
11: end for

When using PFs to estimate time-invariant parameters, for which the process noise in the dynamic
equation is zero, one runs into the issue of sample impoverishment (Särkkä, 2013). The origin of this issue
is the resampling process.More specifically, after a few resampling steps, most (or in extreme cases all) of
the particles in the sample set end up assuming the exact same value, that is, the particle set consists of only
few (or one) distinct particles (see Figure 1). The sample impoverishment issue poses the greatest obstacle
for time-invariant parameter estimation with PFs. A multitude of techniques has been suggested in
literature to alleviate the sample impoverishment issue in joint state-parameter estimation setups (see, e.g.,
Gilks and Berzuini, 2001; Liu and West, 2001; Musso et al., 2001; Storvik, 2002; Andrieu et al., 2004;
Andrieu et al., 2010; Carvalho et al., 2010; Chatzi and Smyth, 2013; Chopin et al., 2013). Fewer works
have proposed solutions for resolving this issue in parameter estimation setups (see, e.g., Chopin, 2002;
Del Moral et al., 2006). One of the simplest and most commonly used approaches consists in introducing
artificial dynamics in the dynamic model of the parameter vector, that is, the dynamic model θn = θn�1þ
εn�1 is employed, where εn�1 is a small artificial process noise (Kitagawa, 1998). In this way, the time-
invariant parameter vector is transformed into a time-variant one, therefore, the parameter estimation
problem deviates from the original one (Särkkä, 2013; Kantas et al., 2015). This approach can introduce a
bias and an artificial variance inflation in the estimates (Kantas et al., 2015). For these reasons, this
approach is not considered in this article.

To resolve the sample impoverishment issue encounteredwhen using the PFAlgorithm 1 for parameter
estimation, this work employs the particle filter with Gaussian mixture resampling (PFGM), described in
Algorithm 2. The PFGMalgorithm relates to preexisting concepts (van derMerwe andWan, 2003; Veettil
and Chakravorty, 2016), and is here specifically tailored for the parameter estimation task, with its main
goal being, in contrast to previous works, the quantification of the full posterior parameter uncertainty. A
comparison between Algorithms 1 and 2 shows that the only difference lies in the way that the resampling
step is performed. PFGM replaces the standard resampling process of PF by first approximating
the posterior distribution at estimation step n by a Gaussian mixture model (GMM), which is fitted via
the Expectation–Maximization (EM) algorithm (McLachlan and Krishnan, 2007; Chen et al., 2010) on
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the weighted particle set. The degenerating particle set is then rejuvenated by samplingNpar new particles
from the GMM of equation (5),

pðθjy1:nÞ≈
XNGM

i = 1

ϕiN ðθ;μi,ΣiÞ, (5)

where ϕi represents theweight of theGaussian component i, while μi andΣi are the respectivemean vector
and covariance matrix. The number of Gaussians in the mixtureNGM, has to be chosen in advance, or can
be estimated by use of appropriate algorithms (Schubert et al., 2017; Celeux et al., 2019; Geyer et al.,
2019). In the numerical investigations of Section 3, we set NGM = 8. We point out that the efficacy of
PFGM strongly depends on the quality of the GMM posterior approximation. The reason for applying a
GMM (and not a single Gaussian) is that the posterior distribution can deviate from the normal
distribution, and can even be multimodal or heavy-tailed.

Algorithm 2 Particle Filter with Gaussian mixture resampling (PFGM)

1: generate Npar initial particles θ ið Þ from πpr θð Þ, i= 1,…,Npar

2: assign initial weights w ið Þ
0 = 1=Npar, i= 1,…,Npar

3: for n= 1,…,N do
4: evaluate likelihood of the particles based on new measurement yn, L

ið Þ
n = L ynjθ ið Þ� �

5: update particle weights w ið Þ
n ∝L ið Þ

n �w ið Þ
n�1 and normalize s:t:

PNpar

i = 1w
ið Þ
n = 1

6: evaluate Neff = 1PNpar

i= 1
w ið Þ
nð Þ2

7: if Neff <NT then
8: EM: fit a Gaussian mixture proposal distribution gGM θð Þ according to θ ið Þ,w ið Þ

n

n o
9: sample Npar new particles θ ið Þ from gGM θð Þ
10: reset particle weights to w ið Þ

n = 1=Npar

11: end if
12: end for

The simple reweighting procedure used in the on-line PFs is based on the premise that πpos θjy1:n�1ð Þ
and πpos θjy1:nð Þ are likely to be similar, that is, that the new measurement yn will not cause a very large
change in the posterior. However, when that is not the case, this simple reweighting procedure is bound
to perform poorly, leading to very fast degeneration of the particle set. In cases where already the first
measurement set y1 is strongly informative relative to the prior, the PF is bound to strongly degenerate
already in the first weight updating step (e.g., we observe this in the second case study of subsec:RF in
the case of 10 sensors). To counteract this issue, in this article, we incorporate the idea of simulated
annealing (enforcing tempering of the likelihood function) (Neal, 2001) when neededwithin the on-line
PFGM algorithm, which we term the tPFGM Algorithm 3. The tPFGM algorithm draws inspiration
from previous works (Deutscher et al., 2000; Gall et al., 2007), but is here tailored for the parameter
estimation task, opting for the quantification of the full posterior parameter uncertainty. The algorithm
operates as follows: At estimation time step n, before performing the reweighting operation, the
algorithm first checks the updated effective sample size for indication of sample degeneracy. If no
degeneracy is detected, tPFGM operates exactly like PFGM.When sample degeneracy occurs, tPFGM
employs adaptive tempering of the likelihood L ynjθð Þ of the new measurement yn in order to
“sequentially” sample from πpos θjy1:n�1ð Þ to πpos θjy1:nð Þ by visiting a sequence of artificial intermediate
posteriors, as defined by the tempered likelihood function Lq ynjθð Þ. The tempering factor q takes values
between 0 and 1. When q= 0, the new measurement yn is neglected, while q= 1 entails considering the
whole likelihood function of yn, thus reaching to πpos θjy1:nð Þ. The intermediate values of q are
adaptively selected via solution of the optimization problem in line 11 of Algorithm 3, which ensures
that the effective sample size does not drop below the thresholdNT for the chosen q value. Naturally, use
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of tPFGM can trigger more resampling events than PFGM, as resampling can occur more than once
within a time step n.

Algorithm 3 Particle Filter with Gaussian mixture resampling and likelihood tempering (tPFGM)

1: generate Npar initial particles θ ið Þ from πpr θð Þ, i= 1,…,Npar

2: assign initial weights w ið Þ
0 = 1=Npar, i= 1,…,Npar

3: for n= 1,…,N do
4: evaluate likelihood of the particles based on new measurement yn, L

ið Þ
n = L ynjθ ið Þ� �

5: set q= 0 and create auxiliary particle weights w ið Þ
a =w ið Þ

n�1
6: while q ≠ 1 do

7: if Neff =
PNpar

i = 1w
ið Þ
a �L ið Þ

n
1�q

� �2
=
PNpar

i = 1 w ið Þ
a �L ið Þ

n
1�q

� �2
>NT then

8: update auxiliary particle weights w ið Þ
a ∝w ið Þ

a �L ið Þ
n

1�q
and normalize s:t:

PNpar

i = 1w
ið Þ
a = 1

9: set q = 1
10: else

11: solve
PNpar

i = 1w
ið Þ
a �L ið Þ

n
dq

� �2
=
PNpar

i = 1 w ið Þ
a �L ið Þ

n
dq

� �2
�NT = 0 for dq

12: set qnew = min qþdq,1½ �
13: set dq= qnew�q and q= qnew
14: update auxiliary particle weights w ið Þ

a ∝w ið Þ
a �L ið Þ

n
dq

and normalize s:t:
PNpar

i = 1w
ið Þ
a = 1

15: EM: fit a Gaussian mixture proposal distribution gGM θð Þ according to θ ið Þ,w ið Þ
a

n o
16: sample Npar new particles θ ið Þ from gGM θð Þ
17: reset auxiliary particle weights to w ið Þ

a = 1=Npar

18: end if
19: end while
20: set w ið Þ

n =w ið Þ
a

21: end for

The PFGM and tPFGM filters rely entirely on the posterior approximation via a GMM for sampling
Npar new particles during the resampling process. However, there is no guarantee that these new particles
follow the true posterior distribution of interest. The IBIS filter of the following Section 2.2 aims at
addressing this issue.

2.2. Iterated batch importance sampling

Implementing MCMC steps within PF methods to move the particles after a resampling step was
originally proposed by Gilks and Berzuini (2001), in the so-called resample-move algorithm. Chopin
(2002) introduced a special case of the resample-move algorithm, specifically tailored for application to
static parameter estimation purposes, namely the iterated batch importance sampling (IBIS) filter. IBIS
was originally introduced as an iterative method for solving off-line estimation tasks by incorporating the
sequence of measurements one at a time. In doing this, the algorithm visits the sequence of intermediate
posteriors within its process, and can therefore also be used to perform on-line estimation tasks. An on-line
version of the IBIS filter is presented in Algorithm 5, used in conjuction with the MCMC routine of
Algorithm 4.

The core idea of the IBIS filter is the following: At estimation step n, if sample degeneracy is identified,
first the particles are resampled with replacement, and subsequently the resampled particles are moved
with aMarkov chain transition kernel whose stationary distribution is πpos θjy1:nð Þ.More specifically, each
of the Npar resampled particles is used as the seed to perform a single MCMC step. This approach is
inherently different to standard applications ofMCMC, where a transition kernel is applied multiple times
on one particle.
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A question that arises is how to choose the Markov chain transition kernel. Chopin (2002) argues for
choosing a transition kernel that ensures that the proposed particle only weakly depends on the seed
particle value. It is therefore recommended to use an independent Metropolis-Hastings (IMH) kernel,
wherein the proposed particle is sampled from a proposal distribution g, which has to be as close as
possible to the target distribution πpos θjy1:nð Þ. In obtaining such a proposal distribution, along the lines
of what is described in Section 2.1, in this work we employ a GMM approximation (see equation (5)) of
the target distribution as the proposal density gGM θð Þwithin the IMH kernel (Papaioannou et al., 2016;
South et al., 2019). The IMH kernel with a GMMproposal distribution is denoted IMH-GMherein. The
acceptance probability (line 6 of Algorithm 4) of the IMH-GM kernel is a function of both the initial
seed particle and the GMM proposed particle. The acceptance rate can indicate how efficient the IMH-
GM kernel is in performing theMCMCmove step within the IBIS algorithm. It is important to note that
when computing the acceptance probability, a call of the full likelihood function is invoked, which
requires the whole set of measurements y1:n to be processed; this leads to a significant additional
computational demand, which pure on-line methods are not supposed to accommodate (Doucet et al.,
2001).

The performance of the IBIS sampler depends highly on the mixing properties of the IMH-GM
kernel. If the kernel leads to slowly decreasing chain auto-correlation, the moved particles are bound to
remain in regions close to the particles obtained by the resampling step. This can lead to an under-
representation of the parameter space of the intermediate posterior distribution. It might therefore be
beneficial to add a burn-in period within the IMH-GM kernel (Del Moral et al., 2006). Implementing
that is straightforward and is shown in Algorithm 4, where nB is the user-defined number of burn-in
steps. Naturally, the computational cost of the IMH-GM routine increases linearly with the number of
burn-in steps.

Algorithm 4 Independent Metropolis Hastings with GM proposal (IMH-GM)

1: IMH-GM Input: θ ið Þ,L ið Þ �πpr θ ið Þ� �� �
, πpr θð Þ, L y1:njθð Þ and gGM θð Þ

2: for i= 1,…,Npar do
3: for j = 1,…,nBþ1 do
4: sample candidate particle θ ið Þ

c,j from gGM θð Þ
5: evaluate L ið Þ

c,j = L y1:njθ ið Þ
c,j

� �
for candidate particle

6: evaluate acceptance ratio α= min 1,
L ið Þ
c,j �πpr θ ið Þ

c,jð Þ�gGM θ ið Þð Þ
L ið Þ�πpr θ ið Þð Þ�gGM θ ið Þ

c,jð Þ
� 	

7: generate uniform random number u∈ 0,1½ �
8: if u< α then
9: replace

n
θðiÞ,LðiÞ �πprðθðiÞÞ

o
with θ ið Þ

c,j ,L
ið Þ
c,j �πpr θ ið Þ

c,j

� �n o
10: end if
11: end for
12: end for
13: IMH-GM Output: θ ið Þ,L ið Þ �πpr θ ið Þ� �� �

Algorithm 5 details the workings of the IMH-GM-based IBIS filter used in this work. In line 11 of
this algorithm, the IMH-GM routine of Algorithm 4 is called, which implements the IMH-GM kernel
for the MCMC move step. Comparing Algorithms 2 and 5, it is clear that both filters can be used for
on-line inference within a single run, but the IBIS filter has significantly larger computational cost, as
will also be demonstrated in the numerical investigations of Section 3. In the same spirit as the proposed
tPFGM Algorithm 3, which enforces simulated annealing (tempering of the likelihood function) in
cases when πpos θjy1:n�1ð Þ and πpos θjy1:nð Þ are likely to be quite different, the same idea can be
implemented also within the IBIS algorithm. That leads to what we refer to as the tIBIS algorithm in
this article.
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Algorithm 5 IMH-GM-based Iterated Batch Importance Sampling (IBIS)

1: generate Npar initial particles θ ið Þ from πpr θð Þ, i= 1,…,Npar

2: assign initial weights w ið Þ
0 = 1=Npar, i= 1,…,Npar

3: for n= 1,…,N do
4: evaluate likelihood of the particles based on new measurement yn, L

ið Þ
n = L ynjθ ið Þ� �

5: evaluate the new target distribution, L y1:njθ ið Þ� � �πpr θ ið Þ� �
= L ið Þ

n �L y1:n�1jθ ið Þ� � �πpr θ ið Þ� �
6: update particle weights w ið Þ

n ∝L ið Þ
n �w ið Þ

n�1 and normalize s:t:
PNpar

i= 1w
ið Þ
n = 1

7: evaluate Neff = 1PNpar

i= 1
w ið Þ
nð Þ2

8: if Neff <NT then
9: EM: fit a Gaussian mixture proposal distribution gGM θð Þ according to θ ið Þ,w ið Þ

n

n o
10: resample Npar new particles θ ið Þ,L y1:njθ ið Þ� � �πpr θ ið Þ� �� �

with replacement according to w ið Þ
n

11: IMH-GM step with inputs θ ið Þ,L y1:njθ ið Þ� � �πpr θ ið Þ� �� �
, πpr θð Þ, L y1:njθð Þ, and gGM θð Þ

12: reset particle weights to w ið Þ
n = 1=Npar

13: end if
14: end for

2.3. Off-line sequential Monte Carlo sampler

In Section 4 of Del Moral et al. (2006), the authors presented a generic approach to convert an off-line
MCMC sampler into a sequential Monte Carlo (SMC) sampler tailored for performing off-line estimation
tasks, that is, for estimating the single posterior density of interest πpos θjy1:Nð Þ. The off-line SMC sampler
used in this work is presented in Algorithm 6 based on Del Moral et al. (2006) and Jasra et al. (2011). The
key idea of this sampler is to adaptively construct the following artificial sequence of densities,

πj θjy1:Nð Þ∝Lqj y1:N jθð Þπpr θð Þ, (6)

where qj is a tempering parameter which obtains values between 0 and 1, in order to “sequentially” sample
in a smooth manner from the prior to the final single posterior density of interest. Once qj = 1, πpos θjy1:Nð Þ
is reached. Similar to what was described in tPFGM, the intermediate values of qj are adaptively found via
solution of the optimization problem in line 5 of Algorithm 6. The GMM approximation of the
intermediate posteriors and the IMH-GM kernel of Algorithm 4 in order to move the particles after
resampling are also key ingredients of this SMC sampler. Unlike PFGM and IBIS, this SMC algorithm
cannot provide the on-line solution within a single run, and has to be rerun from scratch for every new
target posterior of interest. In this regard, use of Algorithm 6 for on-line inference is impractical. We
choose to include this algorithm for the purpose of the comparative assessment in this article, as off-line
algorithms are generally considered to be better suited for the full posterior uncertainty quantification of
time-invariant parameters.

Algorithm 6 IMH-GM-based Sequential Monte Carlo (SMC)

1: generate Npar initial particles θ ið Þ from πpr θð Þ, i= 1,…,Npar

2: evaluate for every particle the full likelihood L ið Þ = L y1:N jθ ið Þ� �
and the prior πpr θ ið Þ� �

3: set q= 0
4: while q ≠ 1 do

5: solve
�PNpar

i= 1L
ðiÞdq

�2
=
PNpar

i = 1L
ðiÞ2�dq �NT = 0 for dq

6: set qnew = min qþdq,1½ �
7: set dq= qnew�q and q= qnew
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8: evaluate particle weights w ið Þ ∝ L ið Þdq and normalize s:t:
PNpar

i = 1w
ið Þ = 1

9: EM: fit a Gaussian mixture proposal distribution gGM θð Þ according to θ ið Þ,w ið Þ� �
10: resample Npar new particles θ ið Þ,L ið Þq �πpr θ ið Þ� �� �

with replacement according to w ið Þ

11: IMH-GM step with inputs fθðiÞ,LðiÞq �πprðθðiÞÞg, πpr θð Þ, Lq y1:N jθð Þ, and gGM θð Þ
12: reset particle weights to w ið Þ = 1=Npar

13: end while

2.4. Computational remarks

The algebraic operations in all presented algorithms are implemented in the logarithmic scale, which
employs evaluations of the logarithm of the likelihood function and, hence, ensures computational
stability. Furthermore, the EM step for fitting the GMM is performed after initially transforming the
prior joint probability density function of θ to an underlying vector u of independent standard normal
random variables (Kiureghian and Liu, 1986). In standard normal space, the parameters are decorrelated,
which enhances the performance of the EM algorithm.

3. Numerical Investigations

3.1. Low-dimensional case study: Paris–Erdogan fatigue crack growth model

A fracture mechanics-based model serves as the first case study. This describes the fatigue crack growth
evolution under increasing stress cycles (Paris and Erdogan, 1963; Ditlevsen and Madsen, 1996). The
crack growth follows the following first-order differential equation (7), known as Paris–Erdogan law,

da n,θð Þ
dn

= exp Clnð Þ ΔS
ffiffiffiffiffiffiffiffiffiffiffiffi
πa nð Þ

ph im
, (7)

where θ = a,ΔS,Cln,m½ � is a vector containing the uncertain time-invariant model parameters. Specific-
ally, a is the crack length, n is the number of stress cycles, ΔS is the stress range per cycle when assuming
constant stress amplitudes,C andm represent empirically determined model parameters; Cln corresponds
to the natural logarithm of C.

The solution to this differential equation, with boundary condition a n= 0ð Þ= a0, can be written as a
function of the number of stress cycles n and the vector θ = a0,ΔS,Cln,m½ � as (for the derivation see, e.g.,
Ditlevsen and Madsen (1996)):

aðn,θÞ=
h
ð1�m

2
ÞexpðClnÞΔSmπm=2nþað1�m=2Þ

0

ið1�m=2Þ�1

: (8)

We assume that noisy measurements of the crack yn are obtained sequentially at different values of n.
The measurement equation (9) assumes a multiplicative lognormal measurement error, exp εnð Þ.

yn = a n,θð Þexp εnð Þ: (9)

In numerical investigations that follow, the measurement equation (9) is used for generating synthetic
measurements of the deterioration state. In this context, a multiplicative lognormal measurement error
ensures that nonnegative generated measurements of the deterioration state are not feasible.

Under this assumption in equation (9), the likelihood function for a measurement at a given n is shown
in equation (10).

L yn;a n,θð Þð Þ= 1

σεn
ffiffiffiffiffi
2π

p exp �1
2

ln ynð Þ�μεn � ln a n,θð Þð Þ
σεn

� �2
" #

: (10)

Table 1 shows the prior probability distribution model for each random variable in the vector θ
(Ditlevsen and Madsen, 1996; Straub, 2009), as well as the assumed probabilistic model of the
measurement error. In this case study we are dealing with a nonlinear model and a parameter vector with
non-Gaussian prior distribution.
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3.1.1. Markovian state-space representation for application of on-line filters
AMarkovian state-space representation of the deterioration process is required for application of on-line
filters. The number of stress cycles is discretized as n= kΔn, with k = 1,…,100 denoting the estimation
time step and Δn= 1× 105 the number of stress cycles per time step. The dynamic and measurement
equations of the discrete-time state-space representation of the fatigue crack growthmodel with unknown
time-invariant parameters θ = a0,ΔS,Cln,m½ � are shown below:

θk = θk�1

yk = a kΔn,θkð Þexp εkð Þ= 1�mk

2

� �
exp Cln kð ÞΔSmk

k πmk=2kΔnþa 1�mk=2ð Þ
0

h i 1�mk=2ð Þ�1

exp εkð Þ: (11)

The state-space model of equation (11) is nonlinear and the prior is non-Gaussian. For reasons
explained in Section 2, the subscript k in θk is dropped in the remainder of this section.

3.1.2. Reference posterior solution
For the purpose of performing a comparative assessment of the different filters, an underlying “true”
realization of the fatigue crack growth process a∗ n,θð Þ is generated for n= kΔn, with k = 1,…,100 and
Δn= 1× 105. This realization corresponds to the randomly generated “true” vector of time-invariant
parameters θ∗ = a∗0 = 2:0,ΔS

∗ = 50:0,C∗
ln = �33:5,m∗ = 3:7


 �
. Sequential synthetic crack monitoring

measurements yk are sampled from the measurement equation (9) for a kΔn,θ∗ð Þ, and for randomly
generated measurement noise samples exp εkð Þ. These measurements are scattered in green in
Figure 3.

Based on the generated measurements, the sequence of reference posterior distributions πpos θjy1:kð Þ
is obtained using the prior distribution as an envelope distribution for rejection sampling (Smith and
Gelfand, 1992; Rubinstein and Kroese, 2016). More specifically, for each of the 100 posterior
distributions of interest πpos θjy1:kð Þ, 105 independent samples are generated. The results of this
reference posterior estimation of the four time-invariant model parameters are plotted in Figure 2.

Table 1. Prior distribution model for the fatigue crack growth model parameters and the measurement
error.

Parameter Distribution Mean Standard Deviation Correlation

a0 Exponential 1 1 —

ΔS Normal 60 10 —

Cln,m Binormal (�33;3.5) (0.47;0.3) ρCln,m = �0:9
exp εnð Þ Lognormal 1.0 0.1508
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Figure 2. Reference posterior solution: mean and credible intervals for the sequence of posterior
distributions πpos θjy1:kð Þ.

e17-12 Antonios Kamariotis et al.

https://doi.org/10.1017/dce.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.13


With posterior samples, the reference filtered estimate of the crack length a kΔn,θð Þ at each estimation
step is also obtained via the model of equation (8) and plotted in Figure 3. In the left panel of this figure,
the filtered state is plotted in logarithmic scale. In an off-line estimation, a single posterior density is of
interest. One such reference posterior estimation result for the last estimation step, πpos θjy1:100ð Þ, is
plotted for illustration in Figure 4.

3.1.3. Comparative assessment of the investigated on-line and off-line filters
We apply the PFGM filter with 5,000 and 50,000 particles, the IBIS filter with 5,000 particles, and the
SMC filter with 5,000 particles for performing on-line and off-line time-invariant parameter estimation
tasks. We evaluate the performance of each filter by taking the relative error of the estimated mean and
standard deviation of each of the four parameters with respect to the reference posterior solution. For
example, the relative error in the estimation of the mean of parameter a0 at a certain estimation step k is

computed as jμa0,k�μ̂a0,k
μa0,k

j, where μa0,k is the reference posterior mean from rejection sampling

(Section 3.1.2), and μ̂a0,k is the posterior mean estimated with each filter. Each filter is run 50 times,
and the mean relative error of the mean and the standard deviation of each parameter, together with the
90% credible intervals (CI), are obtained. These are plotted in Figure 5.

Figure 6 plots the L2 relative error norm of the mean and the standard deviation of all four parameters,
that is, the quantity of equation (12) (here formulated for the mean at estimation step k).ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i = 1
μi,k� μ̂i,k
� �2
Pd
i = 1

μi,k
� �2

vuuuuuut , (12)
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Figure 4. Reference final posterior: prior and single posterior distribution of interest πpos θjy1:100ð Þ.
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Figure 3. Reference mean and credible intervals for the filtered crack growth state a kΔn,θð Þ.
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where d is the dimensionality of the time-invariant parameter vector θ (in this example d = 4). More
specifically, Figure 6 plots the mean and credible intervals of the L2 relative error norm of the estimated
mean and standard deviation, as obtained from 50 runs of each filter.

Figures 5 and 6 reveal that, when all three filters are runwith the same number of particles, the IBIS and
SMC filters yield superior performance over PFGM. When the number of particles in the PFGM filter is
increased to 50,000, the PFGM filter performance is comparable to the one of the IBIS and SMC filters. In
estimating the mean, the mean L2 relative error norm obtained from the PFGM filter with 50,000 particles
is slightly larger than the corresponding error obtained from IBIS and SMCwith 5,000 particles, while the
90% credible intervals of the PFGM filter estimation are still wider. In estimating the standard deviation,
the PFGM filter with 50,000 particles proves competitive.

Figures 5 and 6 show the estimation accuracy of each filter when used for on-line inference, that is, for
estimating the whole sequence of 100 posterior distributions πpos θjy1:kð Þ, k = 1,…,100. The PFGM and
IBIS filters, being intrinsically on-line filters, provide the whole posterior sequence with one run. On the

Figure 6. Comparison of the L2 relative error norm of the mean and the standard deviation of the
parameters evaluated for each filter. The solid lines show themean and the shaded areas the 90% credible
intervals inferred from 50 repeated runs of each filter. In the horizontal axis, n is the number of stress

cycles.

Figure 5. Comparison of the relative error of the mean and standard deviation of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible intervals
inferred from 50 repeated runs of each filter. In the horizontal axis, n is the number of stress cycles.
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other hand, the off-line SMC filter is run anew for each of the 100 required posterior estimations. Hence,
Figures 5 and 6 enclose the results of both the on-line and the off-line inference. If one is interested in the
off-line estimation accuracy at a specific stress cycle n, one can simply consider a vertical “cut” at n.

Table 2 documents the computational cost associated with each filter, expressed in the form of required
model evaluations induced by calls of the likelihood function. When using the term model, we refer to the
model defined in equation (8), which corresponds to an analytical expression with negligible associated
runtime. However, unlike the simple measurement equation that we have assumed in this example, in many
realistic deterioration monitoring settings, the deterioration state cannot be measured directly (e.g., in
vibration-based structural health monitoring Kamariotis et al., 2022). In such cases, each deterioration
model evaluation often entails evaluation of a finite element (FE) model, which has substantial runtime. It,
therefore, appears appropriate to evaluate the filters’ computational cost in terms of required model
evaluations. The on-line PFGM filter with 5,000 particles requires 5× 105 model evaluations, and yields
by far the smallest computational cost, while at the same time providing the solution to both on-line and off-
line estimation tasks. However, it also yields the worst performance in terms of accuracy of the posterior
estimates. Running the IBIS filter with 5,000 particles, which performs MCMC move steps, leads to
3:4 × 106 model evaluations. Comparing this value against the 5× 105 model evaluations required by the
PFGM filter with 5,000 particles for performing the same task distinctly shows the computational burden
associated withMCMCmove steps, which require a complete browsing of the whole measurement data set
in estimating the acceptance probability.However, the IBIS filter also leads to enhanced estimation accuracy,
whichmight prove significant when the subsequent tasks entail prognosis of the deterioration evolution, the
structural reliability or the remaining useful lifetime, and eventually the predictive maintenance planning.
Using50,000particles, the PFGMfilter performance increases significantlywith a computational cost that is
comparable to the IBIS filter with 5,000 particles. For the off-line SMC algorithm, 4:5× 106 model
evaluations are required only for the task of estimating the final posterior density. The 1:9× 108 model
evaluations required by the SMC for obtaining the whole sequence of posteriors πpos θjy1:kð Þ, k = 1,…,100,
clearly demonstrate that off-line MCMC techniques are unsuited to on-line estimation tasks.

3.2. High-dimensional case study: Corrosion deterioration spatially distributed across beam

As a second case study, we employ the deterioration model of equation (13), which describes the spatially
and temporally varying corrosion deterioration across the structural beam shown in Figure 7.

D t,xð Þ=A xð ÞtB xð Þ, t = 0,…,50: (13)

A xð Þ,B xð Þ,x∈Ω are random fields defined on Ω= 0,L½ �, with L denoting the length of the beam taken as
L= 4m. A xð Þmodels the deterioration rate, while B xð Þmodels the nonlinearity effect of the deterioration
process in terms of a power law in time. The corrosion deterioration D t,xð Þ is therefore also a spatial
random field.

A random field, by definition, contains an infinite number of random variables, and must therefore be
discretized (Vanmarcke, 2010). One of the most common methods for discretization of random fields is
the midpoint method (Der Kiureghian and Ke, 1988). Thereby the spatial domain Ω is discretized into m
elements, and the random field is approximated within each element through the random variable that
corresponds to midpoint of the element. In that case, the uncertain time-invariant deterioration model

Table 2. Average number of model evaluations (equation (8)) for the fatigue crack growth model
parameter estimation.

Method PFGM 5,000 PFGM 50,000 IBIS
SMC

(final posterior)
SMC

(all posteriors)

Model evaluations 5 × 105 5 × 106 3.4 × 106 4.5 × 106 1.9 × 108
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parameter vector is θ = A1,…,Am,B1,…,Bm½ �, where Ai : =AðxiÞ,Bi : =BðxiÞ, i= 1,…,m, are the random
variables corresponding to the element midpoints. With the midpoint discretization, the spatial deterior-
ation D t,xð Þ is parametrized by θ.

We assume that noisymeasurements of the corrosion deterioration stateDt,l θð Þ≔D t,xl,θð Þ at time t and
at certain locations l of the beam are obtained sequentially (summarized in one measurement per year)
from nl sensors deployed at these locations (nl = 10 sensor locations are shown in Figure 7). The
measurement equation (14), describing the corrosionmeasurement at time t and sensor location l, assumes
a multiplicative measurement error, exp εt,lð Þ.

yt,l =Dt,l θð Þexp εt,lð Þ=Ail t
Bil exp εt,lð Þ, (14)

where il returns the discrete element number of the midpoint discretization within which the measurement
location l lies. Table 3 shows the prior distribution model for the two random fields of the deterioration
model of equation (13) and the assumed probabilistic model of the multiplicative measurement error.
Since A xð Þmodels a lognormal random field, ln A xð Þð Þ follows the normal distribution. For both random
fields ln A xð Þð Þ and B xð Þ, the exponential correlation model with correlation length of 2 m is applied
(Sudret and Der Kiureghian, 2000).

The goal is to update the time-invariant deterioration model parameters θ = A1,…,Am,B1,…,Bm½ �
given sequential noisy corrosion measurements yt,l from nl deployed sensors. The dimensionality of the
problem is d = 2×m. Hence, the more elements in the midpoint discretization, the higher the dimension-
ality of the parameter vector.

The main goal of this second case study is to investigate the effect of the problem dimensionality and
the amount of sensor information on the posterior results obtained with each filter. We choose the
following three midpoint discretization schemes:

1. m= 25 elements: d = 50 time-invariant parameters to estimate.
2. m= 50 elements: d = 100 time-invariant parameters to estimate.
3. m= 100 elements: d = 200 time-invariant parameters to estimate.

Furthermore, we choose the following three potential sensor arrangements:

1. nl = 2 sensors (the 4th and 7th sensors of Figure 7).
2. nl = 4 sensors (the 1st,4th,7th, and 10th sensors of Figure 7).
3. nl = 10 sensors of Figure 7.

We, therefore, study nine different cases of varying problem dimensionality and the number of sensors.

Table 3. Prior distribution model for the corrosion deterioration model parameters and the
measurement error.

Parameter Distribution Mean Standard Deviation Corr. length (m)

A xð Þ Lognormal 0.8 0.24 2
B xð Þ Normal 0.8 0.12 2
exp εt,lð Þ Lognormal 1.0 0.101 –

4m

Figure 7. Structural beam subjected to spatially and temporally varying corrosion deterioration. The
deterioration process is monitored from sensors deployed at specific sensor locations (in green).
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3.2.1. Markovian state-space representation for application of on-line filters
AMarkovian state-space representation of the deterioration process is required for application of on-line
filters. The dynamic and measurement equations are shown in equation (15). The measurement equation
is written in the logarithmic scale. Time t is discretized in yearly estimation time steps k, that is,
k = 1,…,50, and the subscript l= 1,…,nl corresponds to the sensor location.

θk = θk�1

ln yk,l
� �

= ln Dk,l θkð Þð Þþ εk,l ) ln yk,l
� �

= ln Ak,ilð ÞþBk,il ln kð Þþ εk,l,
(15)

where θk denotes the time-invariant parameter vector at time step k. In the logarithmic scale, both the
dynamic and measurement equations are linear functions of Gaussian random variables. For reasons
explained in Section 2, the subscript k in θk is dropped in the following.

3.2.2. Underlying “true” realization
To generate a high-resolution underlying “true” realization of the two random fields A xð Þ and B xð Þ, and
the corresponding synthetic monitoring data set, we employ the Karhunen–Loève (KL) expansion
using the first 400 KLmodes. The KL expansion is an alternative random field discretization scheme to
the midpoint method that represents the random field in terms of the eigenfunctions of its autocovar-
iance function (Ghanem and Spanos, 1991; Sudret and Der Kiureghian, 2000). The implementation of
the KL expansion can be found in the Matlab codes accompanying this article.2 We remark that a fine
resolution KL expansion is chosen to represent the “true” realization in order to avoid the inverse crime
(Wirgin, 2004). These realizations are shown in the left panel of Figure 8. Given these A xð Þ and B xð Þ
realizations, the underlying “true” realizations of the deterioration process at 10 specific beam locations
are generated, which correspond to the 10 potential sensor placement locations shown in Figure 7.
Subsequently, a synthetic corrosion sensor measurement data set (one measurement per year) at these
10 locations is generated from the measurement equation (14). These are shown in the right panel of
Figure 8.

, , , ,
,,,,,

,

Figure 8. Left: the blue solid line plots the underlying “true” realization of ln A xð Þð Þ and B xð Þ created
using the KL expansion. Right: the blue solid line plots the underlying “true” realization of ln D t,xð Þð Þ at
10 specific sensor locations and the corresponding synthetic sensor monitoring data are scattered in
black. In both figures, the black dashed lines plot the prior mean and the black solid lines the prior 90%

credible intervals.

2 https://github.com/antoniskam/Offline_online_Bayes.
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3.2.3. Reference posterior solution
For the investigated linear Gaussian state space representation of equation (15), we create reference
on-line posterior solutions for each of the nine considered cases by applying the Kalman filter
(KF) (Kalman, 1960), which is the closed-form solution to the Bayesian filtering equations. The process
noise covariance matrix in the KF equations is set equal to zero. The linear Gaussian nature of the chosen
problem ensures existence of an analytical reference posterior solution obtained with the KF. One such
reference on-line posterior solution for the case described bym = 25 elements (d = 50) and nl = 4 sensors is
shown in Figure 9.

3.2.4. Comparative assessment of the investigated on-line and off-line filters
The goal of this section is to offer a comparative assessment among the three Bayesian filtering algorithms
presented in this article when applied on a high-dimensional problem. To be able to derive a reference
solution, as described above, a linear Gaussian state space representation of a structural deterioration
problem has been defined (equation (15)).We apply the tPFGM filter, the tIBIS filter, and the SMC filter, all
withNpar = 2000 particles, for estimating the time-invariant parameter vector θ. For each of the nine cases of
varying problem dimensionality and number of sensors described above, we compute the L2 relative error
normof the estimatedmeans, correlation coefficients, and standard deviations of the parameterswith respect
to the correspondingKF reference posterior solution, that is, we estimate a quantity as in equation (12) for all
estimation steps k = 1,…,50. In Figures 10–12, we plot the mean and credible intervals of these relative
errors as obtained from 50 different runs. The off-line SMC filter, which does not provide the on-line
solutionwithin a single run, is run anew for estimating the single posterior density of interest at years 10, 20,
30, 40, and 50, and in between, the relative error is linearly interpolated. Although each of the nine panels in
the figures corresponds to a different case with a different underlying KF reference solution, their y-axes
have the same scaling. Table 4 documents the computational cost of each filter in each considered case,
measured by average number of evaluations of the model of equation (13).

Figures 10 and 11 show that the off-line IMH-GM-based SMC filter yields the best performance in
estimating the KF reference posterior mean and correlation, for all nine considered cases, while at the
same time producing the narrowest credible intervals. Comparison of the relative errors obtained with the
SMC and tIBIS filters reveals that, although they are both reliant on the IMH-GMMCMCmove step, the

Figure 9. Case with m= 25,nl = 4: reference on-line posterior solution at 10 locations across the beam
obtained by applying the Kalman filter for solving equation (15). The solid blue horizontal line represents
the underlying “true” values of ln A xð Þð Þ and B xð Þ at these locations. The black dashed lines plot the
posterior mean and the black solid lines the posterior 90% credible intervals. Locations 1, 4, 7, and

10 correspond to the four assumed sensor placement locations.
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on-line tIBIS filter leads to larger estimation errors. The on-line tPFGM and tIBIS filters generate quite
similar results in estimating the reference posterior mean and correlation, thus rendering the benefit of the
MCMC move step in tIBIS unclear, except in cases with more sensors and lower parameter dimension.
Figures 10 and 11 reveal a slight trend, indicating that for fixed dimensionality, the availability of more
sensors (i.e., stronger information content in the likelihood function) leads to a slight decrease in the

Figure 10. Comparison of the L2 relative error norm of the means of the parameters evaluated for each
filter. The solid lines show the mean and the shaded areas the 90% credible intervals inferred from

50 repeated runs of each filter.

Figure 11. Comparison of the L2 relative error norm of the correlation coefficients of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible intervals

inferred from 50 repeated runs of each filter.
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relative errors when using the SMC and tIBIS filters, whereas the opposite trend can be identified for the
tPFGM filter. Increasing problem dimensionality (for fixed number of sensors) does not appear to have
strong influence on the posterior results in any of the columns of Figures 10–12, a result that initially
appears puzzling.

Figure 12 conveys that the tPFGM filter, which entirely depends on the GMM posterior approxima-
tion, induces the smallest relative errors for the estimation of the standard deviation of the parameters in all
considered cases. This result reveals a potential inadequacy of the single application of the IHM-GM
kernel for the move step within the tIBIS and SMC filters in properly exploring the space of θ. In all
50 runs of the tIBIS and SMC filters, the standard deviation of the parameters is consistently underesti-
mated compared to the reference, unlike when applying the tPFGM filter.

Based on the discussion of Section 2.2, we introduce a burn-in period of nB = 5 in the IMH-GM kernel
of Algorithm 4 and perform 50 new runs of the tIBIS and SMC filters. One can expect that inclusion of a
burn-in is more likely to ensure sufficient exploration of the intermediate posterior distributions.
However, at the same time, the computational cost of tIBIS and SMC increases significantly, with a
much larger number of required model evaluations than in Table 4. In Figures 13 and 14, we plot the mean
and credible intervals for the relative errors in the estimation of the mean and standard deviation of the
parameters. Comparing Figures 10 and 13, inclusion of burn-in is shown to lead to an improved
performance of tIBIS and SMC in estimating the mean of the parameters in all cases. This improvement
is more evident in the lower-dimensional case with 25 elements, and lessens as the problem dimension
increases. Hence, it is only after the inclusion of burn-in, which leads to an enhanced posterior solution,
that one starts observing the anticipated deterioration of the tIBIS and SMC filters’ performance with
increasing dimensionality. This effect was masked in the results of Figure 10 without burn-in. This point
becomesmore evident when looking at the relative errors of the estimated standard deviation in Figure 14.
With burn-in, the tIBIS and SMC filters provide better results than the tPFGM filter in estimating the
standard deviation in the case of 25 elements, but perform progressively worse as the dimensionality
increases, where they underestimate the KF reference standard deviation. This underestimation is clearly
illustrated in Figure 15. The reason for this behavior is the poor performance of the IMH-GM algorithm in
high dimensions, which is numerically demonstrated in Papaioannou et al. (2016). We suspect that this

Figure 12. Comparison of the L2 relative error norm of the standard deviations of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible intervals

inferred from 50 repeated runs of each filter.
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behavior is related to the degeneracy of the acceptance probability of MH samplers in high dimensions,
which has been extensively discussed in the literature for random walk samplers, for example, in Gelman
et al. (1997), Au and Beck (2001), Katafygiotis and Zuev (2008), Beskos and Stuart (2009), Cotter et al.
(2013), and Papaioannou et al. (2015). Single application of the IHM-GM kernel without burn-in yielded
acceptance rates of around 50% for all cases. With inclusion of burn-in, in higher dimensions, the
acceptance rate in IMH-GM drops significantly in the later burn-in steps, leading to rejection of most
proposed particles. To alleviate this issue, one could consider using the preconditioned Crank Nicolson
(pCN) sampler to perform themove step within the IBIS and SMC filters, whose performance is shown to
be independent of the dimension of the parameter space when the prior is Gaussian (Cotter et al., 2013).

Increase of dimensionality does not seem to have any influence on the results obtainedwith the tPFGM
filter. The illustrated efficacy of the tPFGM filter in estimating the time-invariant parameters in all
considered cases of increasing dimensionality is related to the nature of the studied problem. The tPFGM
filter relies entirely on theGMMapproximation of the posterior distributionwithin its resampling process,
in that it simply “accepts” all the Npar GMM-proposed particles, unlike the tIBIS and SMC filters, which
contain the degenerating acceptance-rejection step within the IMH-GMmove step. Clearly, the worse the
GMM fit, the worse the expected performance of the tPFGM filter. The particular case investigated here
has a Gaussian reference posterior solution, hence the GMM fitted by EM proves effective in approxi-
mating the posterior with a relatively small number of particles, even when going up to d = 200

Table 4. Average number of model evaluations (equation (13)) for the high-dimensional case study.

Elements 25 50 100

Sensors 2 4 10 2 4 10 2 4 10

tPFGM 129,480 154,000 194,440 129,440 155,560 195,760 130,480 157,120 199,040
tIBIS 602,400 1,038,440 1,878,000 603,240 1,049,400 1,909,880 567,720 1,017,280 1,876,240
SMC 1,130,000 1,596,000 2,298,000 1,108,000 1,582,000 2,250,000 1,100,000 1,504,000 2,150,000

Note. For the SMC, the required model evaluations for obtaining the single final posterior density are reported.

Figure 13. Comparison of the L2 relative error norm of the mean of the parameters evaluated for each
filter. The solid lines show the mean and the shaded areas the 90% credible intervals inferred from

50 repeated runs of each filter. Burn-in nB = 5.
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Figure 14. Comparison of the L2 relative error norm of the standard deviation of the parameters
evaluated for each filter. The solid lines show the mean and the shaded areas the 90% credible intervals

inferred from 50 repeated runs of each filter. Burn-in nB = 5.

, ,

,

Figure 15. Updating of the random field ln D t = 50,xð Þð Þ in three different cases of varying problem
dimensionality. The solid lines show the mean and the shaded areas the 90% credible intervals inferred
from 10 repeated runs of each filter. The black dashed line represented the posterior mean obtained via the

KF, and the black solid lines the KF 90% credible intervals.
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dimensions, thus leading to a good proposal distribution for sampling Npar new particles in tPFGM. As
reported in Table 4, the tPFGM filter is associated with a significantly lower computational cost than its
MCMC-based counterparts.

4. Concluding Remarks

In this article, we present in algorithmic detail three different on-line and off-line Bayesian filters. The
on-line filters are specifically tailored for quantifying the full posterior uncertainty of time-invariant
deterioration model parameters in long-term monitoring settings. Specifically, the three presented
methods are an on-line particle filter with Gaussian mixture resampling (PFGM), an on-line iterated
batch importance sampling (IBIS) filter, and an off-line sequential Monte Carlo (SMC) filter, which
applies simulated annealing to sequentially arrive to a single posterior density of interest. The IBIS and
SMC filters performMarkov Chain Monte Carlo (MCMC) move steps via application of an independent
Metropolis Hastings kernel with a Gaussian mixture proposal distribution (IMH-GM) whenever degen-
eracy is identified. A simulated annealing process (tempering of the likelihood function) is further
incorporated within the update step of the on-line PFGM and IBIS filters for cases when each new
measurement is expected to have a strong information content; this leads to the presented tPFGM and
tIBIS filters. The SMC filter can be employed only for off-line inference, while the PFGM, tPFGM, IBIS,
and tIBIS filters can perform both on-line and off-line inference tasks.

With the aid of two numerical examples, a comparative assessment of these algorithms for off-line and
on-line Bayesian filtering of time-invariant deterioration model parameters is performed. In contrast to
other works, the main focus here lies on the efficacy of the investigated Bayesian filters in quantifying the
full posterior uncertainty of deterioration model parameters, as well as on the induced computational cost.

For the first nonlinear, non-Gaussian, and low-dimensional case study, the IBIS and SMC filters, which
both contain IMH-GM-based MCMC move steps, are shown to consistently outperform the purely
on-line PFGM filter in estimating the parameters’ reference posterior distributions. However, they induce
a computational cost of at least an order of magnitude larger than the PFGM filter, when the same initial
number of particles is used in all three filters.With similar computational cost, that is, when increasing the
number of particles in PFGM, it achieves enhanced posterior accuracy, comparable to the IBIS and SMC
filters.

The second case study involves a linear, Gaussian, and high-dimensional model. The focus here lies on
evaluating the performance of the investigated filters in increasing dimensions. The linear Gaussian
nature of the problem allows access to an exact reference posterior solutionwith theKalman filter. For this
case study, the results vary with increasing problem dimensionality and number of sensors. The on-line
tPFGM filter achieves a consistently satisfactory quality with increasing dimensionality, a behavior
explained by the linear Gaussian nature of the problem, while a slight drop in the posterior quality is
observed for increasing amount of sensor information. The tIBIS and SMC filters are shown to
consistently outperform the tPFGM filter in lower dimensions, they however perform progressively
worse in higher dimensions, a behavior likely explained by the degeneracy of the acceptance probability
of MH samplers in high dimensions. The computational cost of the tIBIS and SMC filters is an order of
magnitude larger than the tPFGM filter.

Some general conclusions drawn from the delivered comparative assessment are listed below.

1. The purely on-line PFGM (and its tPFGM variant) filter is competitive with MCMC-based filters,
especially for higher-dimensional well-behaved problems.

2. The IBIS (and its tIBIS variant) and SMC filters, which contain MCMC move steps, offer better
approximations of the posterior mean of the model parameters than the purely on-line PFGM (and
its tPFGM variant) filter with the same number of samples, as shown in both studied examples.

3. The independent Metropolis Hastings (IMH)-based MCMCmove step performed within the IBIS,
tIBIS, and SMC filters proves inadequate in properly exploring the posterior parameter space in
high-dimensional problems.
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Finally, to support the reader with the selection of the appropriate algorithm for a designated scenario, we
provide Table 5, which contains an assessment of the methods presented in this article in function of
problem characteristics.

This article does not investigate the performance of these filters when applied to high-dimensional and
highly non-Gaussian problems. Such problems are bottlenecks for most existing filters and we expect the
investigated filters to be confronted with difficulties in approximating the posterior distributions.
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