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Abstract

In this paper we follow the approach of Bertrand–Beukers (and of Bertrand’s later work), based on
differential Galois theory, to prove a very general version of Shidlovsky’s lemma that applies to Padé-
approximation problems at several points, both at functional and numerical levels (that is, before and
after evaluating at a specific point). This allows us to obtain a new proof of the Ball–Rivoal theorem
on irrationality of infinitely many values of the Riemann zeta function at odd integers, inspired by the
proof of the Siegel–Shidlovsky theorem on values of E-functions: Shidlovsky’s lemma is used to replace
Nesterenko’s linear independence criterion with Siegel’s, so that no lower bound is needed on the linear
forms in zeta values. The same strategy provides a new proof, and a refinement, of Nishimoto’s theorem
on values of L-functions of Dirichlet characters.

2010 Mathematics subject classification: primary 11J72; secondary 11M06, 34M03.

Keywords and phrases: irrationality, zeta values, Padé approximation, Shidlovsky’s lemma.

1. Introduction

Very few results are known on the arithmetic nature of ζ(s), where ζ is the Riemann
zeta function and s ≥ 2 is an integer. If s is even, ζ(s) is a rational multiple of πs and
therefore, a transcendental number. Apéry has proved [2] that ζ(3) is irrational, but
there is no odd integer s ≥ 5 for which ζ(s) is known to be irrational. The next major
step is due to Ball–Rivoal [3, 22]:

dimQ SpanQ(1, ζ(3), ζ(5), . . . , ζ(a)) ≥
1 + o(1)
1 + log 2

log a (1.1)

as a→ ∞, where a is odd. In particular, ζ(s) is irrational for infinitely many odd
integers s.

The proofs of these results rely on very ingenious explicit constructions; many
authors have tried to make them more natural by establishing connections to various
settings (see, for instance, [9] for a survey). One of these is the Padé approximation:
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the construction appears as the (unique) solution of a Padé-approximation problem.
This has been done for Apéry’s theorem in several ways, including works of Beukers
[6] and Sorokin [26, 27]. On the other hand, the Ball–Rivoal theorem is proved by
considering

S (z) =

∞∑
t=1

(t − rn)rn(t + n + 1)rn

(t)a
n+1

z−t

where r and n are positive integers (with 1 ≤ r < a/2 and n→∞), and z = 1; recall
that Pochhammer’s symbol is defined by (α)p = α(α + 1) . . . (α + p − 1). This function
S (z) is the unique solution, up to proportionality, of the following Padé-approximation
problem [10]: find polynomials P1, . . . , Pa+2 of degree at most n such that

S (z) := Pa+2(z) +

a∑
i=1

Pi(z)Lii(1/z) = O(z−rn−1), z→∞,

S̃ (z) := Pa+1(z) +

a∑
i=1

Pi(z)(−1)iLii(z) = O(z(r+1)n+1), z→ 0,

T (z) :=
a∑

i=1

Pi(z)(−1)i−1 (log z)i−1

(i − 1)!
= O((z − 1)(a−2r)n+a−1), z→ 1.

(1.2)

In the present paper we give a new proof of the Ball–Rivoal theorem, in which
this Padé-approximation problem plays a central role. Our strategy is inspired by the
Siegel–Shidlovsky theorem on values of E-functions (see, for instance, [25, Ch. 3]):
we prove a general version of Shidlovsky’s lemma and use it to find sufficiently many
values of k, bounded from above independently from n, such that the derivatives
S (k−1)(1) − S̃ (k−1)(1) are linearly independent linear forms in 1, ζ(3), ζ(5), . . . , ζ(a).
This allows us to apply Siegel’s linear independence criterion (instead of Nesterenko’s)
and deduce the lower bound (1.1).

In order to state our version of Shidlovsky’s lemma, we need some notation. To
begin with, given σ ∈ C ∪ {∞}, recall that the Nilsson class at σ is the set of finite
sums

f (z) =
∑
e∈C

∑
i∈N

λi,e hi,e(z)(z − σ)e(log(z − σ))i

where λi,e ∈ C, hi,e is holomorphic at σ, and z − σ should be understood as 1/z if
σ =∞. If such a function f (z) is not identically zero, we may assume that hi,e(σ) , 0
for any i, e; then the (generalized) order of f at σ, denoted by ordσ f , is the minimal
real part of an exponent e such that λi,e , 0 for some i.

Let q be a positive integer, and A ∈ Mq(C(z)). We fix P1, . . . , Pq ∈ C[z] and n ∈ N =

{0, 1, 2, . . .} such that deg Pi ≤ n for any i. Then with any solution Y = t(y1, . . . , yq) of
the differential system Y ′ = AY is associated a remainder R(Y) defined by

R(Y)(z) =

q∑
i=1

Pi(z)yi(z).
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Let Σ be a finite subset of C ∪ {∞}. For each σ ∈ Σ, let (Y j) j∈Jσ be a family of
solutions of Y ′ = AY such that the functions R(Y j), j ∈ Jσ, are C-linearly independent
and belong to the Nilsson class at σ; here σ ∈ C ∪ {∞} might be a singularity of the
differential system Y ′ = AY . The Padé-approximation problem (1.2) is a special case
of this setting, with q = a + 2, Σ = {0, 1,∞}, Jσ = {σ} for any σ ∈ Σ, R(Y∞)(z) = S (z),
R(Y0)(z) = S̃ (z), and R(Y1)(z) = T (z) (see Section 2 for details). In most cases all R(Y j)
are holomorphic at σ for j ∈ Jσ, but a term in log(z − σ) is necessary to fit Beukers’
problem for ζ(3) [6] into this setting.

We agree that Jσ = ∅ if σ < Σ, and let M(z) = [Pk,i(z)]1≤i,k≤q ∈ Mq(C(z)) where the
rational functions Pk,i ∈ C(z) are defined for k ≥ 1 and 1 ≤ i ≤ q by

Pk,1
...

Pk,q

 =

( d
dz

+ tA
)k−1


P1
...

Pq

 . (1.3)

Obviously the poles of the coefficients Pk,i of M are among those of A. These
rational functions Pk,i play an important role because they are used to differentiate
the remainders [25, Ch. 3, Section 4]:

R(Y)(k−1)(z) =

q∑
i=1

Pk,i(z)yi(z). (1.4)

The following multiplicity estimate appears essentially (see below) in [4, Théorème
2].

Theorem 1.1. There exists a positive constant c1, which depends only on A and Σ, such
that if ∑

σ∈Σ

∑
j∈Jσ

ordσ(R(Y j)) ≥ (n + 1)q − n#J∞ − τ (1.5)

with 0 ≤ τ ≤ n − c1, then det M(z) is not identically zero.

The special case where Σ = {0}, #J0 = 1, and Y j is analytic at 0 is essentially
Shidlovsky’s lemma (see [25, Ch. 3, Lemma 8]). When Σ ⊂ C, #Jσ = 1 for any σ, and
all functions Y j are obtained by analytic continuation from a single one, analytic at all
σ ∈ Σ, this result was proved by Bertand–Beukers [5] with more details on the constant
c1. Then Bertrand has allowed [4, Théorème 2] an arbitrary number of solutions at
each σ, proving Theorem 1.1 under the additional assumptions that ∞ < Σ and the
functions Y j, j ∈ Jσ, are analytic at σ.

Our proof of Theorem 1.1 (like that of [4, Théorème 2]) follows the strategy of [5],
based on differential Galois theory. The point is that we allow Σ to contain ∞, and/or
singularities of the differential system Y ′ = AY; moreover, the functions Y j, j ∈ Jσ,
are not assumed to be holomorphic at σ. These features make Theorem 1.1 general
enough to cover essentially all Padé-approximation problems related to polylogarithms
we have found in the literature, for instance, the ones mentioned above. In such a
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setting, τ in Equation (1.5) appears as the difference between the number of unknowns
and the number of equations.

Then we evaluate at a point α, going from functional to numerical linear forms (see
[25, Ch. 3, Lemma 10] for the classical setting). The point here is that we allow α
to be a singularity of the differential system Y ′ = AY , and/or an element of Σ (in our
proof of the Ball–Rivoal theorem, α = 1 is both).

Theorem 1.2. There exists a positive constant c2, which depends only on A and Σ, with
the following property. Assume that, for some α ∈ C:

(i) If α is a singularity of the differential system Y ′ = AY, it is a regular one and all
nonzero exponents at α have positive real parts.

(ii) Equation (1.5) holds for some τ with 0 ≤ τ ≤ n − c1.
(iii) All rational functions Pk,i, with 1 ≤ i ≤ q and 1 ≤ k < τ + c2, are holomorphic at

z = α.

Then the matrix [Pk,i(α)]1≤i≤q,1≤k<τ+c2 ∈ Mq,τ+c2−1(C) has rank at least q − #Jα.

In particular, assertion (i) holds if the differential system Y ′ = AY has a basis of local
solutions at α with coordinates in C[log(z − α)][[(z − α)e]] for some positive rational
number e. As far as we know, Theorem 1.2 is the first general result in which α is
allowed to be a singularity. The case where α is not a singularity is much easier, and
assumptions (i) and (iii) are then trivially satisfied.

If α < Σ then Jα = ∅ so that we obtain a matrix of maximal rank q. On the other
hand, if α ∈ Σ then the corresponding #Jα linearly independent linear combinations of
the rows of the matrix [Pk,i(z)]i,k are holomorphic at α and (probably) vanish at α: the
lower bound q − #Jα is the best possible.

Using a zero estimate such as Theorem 1.2 is the key point in the classical proof
of the Siegel–Shidlovsky theorem on values of E-functions. Following a similar
but different strategy, Nikishin constructed explicitly [19] linearly independent linear
forms in 1, Li1(α), . . . , Lia(α) to prove that these numbers are linearly independent
over Q when α = u/v is a rational number with v sufficiently large in terms of |u|.
His approach was used by several authors, including Marcovecchio [15] to bound
from below the dimension of the Q-vector space spanned by these numbers, for any
fixed algebraic number α with |α| < 1 (thereby generalizing to nonreal numbers α
Rivoal’s result [23] based on Nesterenko’s linear independence criterion). The zero
estimate used by Marcovecchio is similar to Theorem 1.2 but deals only with a specific
situation in which (essentially) τ = 1 in Equation (1.5), α < Σ, and α is not a singularity.
Moreover, he does not define Pk,i for k ≥ 2 using Equation (1.3) (that is, differentiating
the remainders as in the proof of the Siegel–Shidlovsky theorem): following Nikishin
he uses an additional parameter instead.

In this paper we use Theorem 1.2 to obtain a new proof, and a refinement, of the
following result of Nishimoto [20] on L-functions L(χ, s) =

∑∞
n=1 (χ(n)/ns) associated

with Dirichlet characters χ. He proved it with d instead of N in the lower bound (1.6);
see Section 4.1 for this easy improvement.
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Theorem 1.3. Let χ be a Dirichlet character modulo d, of conductor N. Let p ∈ {0, 1}
and a ≥ 2. Denote by δχ,p,a the dimension of the Q-vector space spanned by 1 and the
numbers L(χ, s) with 2 ≤ s ≤ a and s ≡ p mod 2. Then,

δχ,p,a ≥
1 + o(1)
N + log 2

log a (1.6)

where o(1) is a sequence that depends on N and a, and tends to 0 as a→∞ (for any
N).

If p and χ have the same parity then L(χ, s)π−s is a nonzero algebraic number for
any s ≥ 2 such that s ≡ p mod 2 (see, for instance, [18, Ch. VII, Section 2]): this result
is interesting when p and χ have opposite parities.

Nishimoto’s proof is similar to Ball–Rivoal’s, except that obtaining the lower bound
necessary to apply Nesterenko’s criterion is very technical: the saddle point method
has to be used because cancellations take place (see [17]). In this paper we present
an alternative proof of Theorem 1.3, based on the zero estimate stated above. It
makes it unnecessary to use the saddle point method, since Siegel’s criterion is applied
instead of Nesterenko’s. In the special case d = N = 1 (so that χ(n) = 1 for any n, and
L(χ, s) = ζ(s)) this is exactly the proof of the Ball–Rivoal theorem mentioned above.
As Zudilin pointed out to us, using the same strategy, it could be possible to generalize
to any algebraic number q, |q| > 1, the results on q-zeta values proved in [14] when 1/q
is an integer. Another question asked by Zudilin is whether Galochkin’s lemma ([11],
see also [29, Lemma 1.4]) can be used in this approach.

We also obtain the following refinement of Theorem 1.3, by improving the
arithmetic estimates.

Theorem 1.4. In the setting of Theorem 1.3, if N is a multiple of 4 then Equation (1.6)
can be replaced with

δχ,p,a ≥
1 + o(1)

(N/2) + log 2
log a.

When χ is the nonprincipal character mod d = 4, so that N = 4, this result was
proved by Rivoal–Zudilin [24] as a first step towards the (conjectural) irrationality of
Catalan’s constant L(χ, 2) =

∑∞
k=0 (−1)k/(2k + 1)2.

The structure of this paper is as follows. We first give, in Section 2, our proof
of the Ball–Rivoal theorem. Then Section 3 is devoted to Shidlovsky’s lemma: we
prove Theorems 1.1 and 1.2. Finally, in Section 4 we prove, in detail, a general result
which contains Theorem 1.3, Theorem 1.4, and the Ball–Rivoal theorem; in particular,
Section 4.6 is devoted to Siegel’s linear independence criterion.

2. A new proof of the Ball–Rivoal theorem

In this section we provide the new proof of the Ball–Rivoal theorem obtained as a
special case of the proof of Theorem 4.1 in Section 4 below (namely N = 1, f (n) = 1
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for any n, p = 1, z0 = 1, i0 = 2, ξ1 = 0, and ξ j = ζ( j) for any j ≥ 2). Of course we refer
to Section 4 for more details.

Let a, r, r′, n be such that a is odd and r, r′ < a/2. It turns out that the best estimates
come from the case where r and r′ have essentially the same size, so we shall restrict
in Section 4 to the case r′ = r; however, the proof works in the same way if r′ , r.
Consider the rational function

F(t) = n!a−r−r′ (t − rn)rn(t + n + 1)r′n

(t)a
n+1

,

where (α)k = α(α + 1) . . . (α + k − 1) is Pochhammer’s symbol, and let

S 0(z) =

∞∑
t=n+1

F(−t)zt, S∞(z) =

∞∑
t=1

F(t)z−t.

For any k ≥ 1 we let
Λk = S (k−1)

0 (1) − S (k−1)
∞ (1), (2.1)

where S (k−1) is the (k − 1)th derivative of S ; if r′ = r and k = 1 this is essentially the
linear form used in [3] and [22]. We shall use a symmetry phenomenon to get rid
of even zeta values, but it does not appear exactly as in the original proof of Ball–
Rivoal. Indeed, even if r′ = r, S (k−1)

0 (1) and S (k−1)
∞ (1) involve both odd and even zeta

values when k ≥ 2: they are values at z = 1 of hypergeometric series which are no
longer well-poised. The cancellation of even zeta values comes at a different stage, by
considering Λk in Equation (2.1). Indeed there exist integers sk,i, 2 ≤ i ≤ a, and uk, vk
such that for any k ≤ (a − r − r′)n + a − 1, both

da
nS (k−1)

0 (1) = uk +

a∑
i=2

(−1)isk,iζ(i)

and

da
nS (k−1)
∞ (1) = vk +

a∑
i=2

sk,iζ(i)

where dn = lcm(1, 2, . . . , n), so that da
nΛk = da

nS (k−1)
0 (1) − da

nS (k−1)
∞ (1) is a Z-linear

combination of 1 and odd zeta values:

da
nΛk = sk,a+1 − 2

∑
2≤i≤a
i odd

sk,iζ(i),

with sk,a+1 = uk − vk. Using Theorem 1.2 we prove that the matrix [sk,i]2≤i≤a+1,1≤k≤c2

has maximal rank, equal to a (see below). This enables one to apply Siegel’s linear
independence criterion (see Section 4.6) instead of Nesterenko’s: no lower bound on
|Λk| is needed. The upper bounds on |sk, j| and |Λk| are essentially the same as in the
proof of Ball–Rivoal, because k is bounded from above by a constant c2 (independent
from n); therefore, we obtain the same lower bound:

dimQ SpanQ(1, ζ(3), ζ(5), . . . , ζ(a)) ≥
1 + o(1)
1 + log 2

log a.
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Let us focus now on the functional aspects of this proof, which play an important
role (whereas the proof of Ball–Rivoal can be written with z = 1 throughout). For
simplicity we restrict ourselves to the case r′ = r. The functions S 0(z) and S∞(z) are
solutions of the following Padé-approximation problem: find polynomials P1, . . . ,Pa+2
of degree at most n such that:

S 0(z) := Pa+1(z) +

a∑
i=1

Pi(z)(−1)iLii(z) = O(z(r+1)n+1), z→ 0,

S∞(z) := Pa+2(z) +

a∑
i=1

Pi(z)Lii(1/z) = O(z−rn−1), z→∞,

a∑
i=1

Pi(z)(−1)i−1 (log z)i−1

(i − 1)!
= O((z − 1)(a−2r)n+a−1), z→ 1.

(2.2)

This is exactly the Padé-approximation problem of [10, Théorème 1], stated in the
introduction: it has a unique solution up to proportionality, (n + 1)(a + 2) unknowns
and (n + 1)(a + 2) − 1 equations. Let A ∈ Ma+2(C(z)) denote the following matrix:

A =



0 0 0 . . . 0 0
1

z − 1
1

z(1 − z)
−1
z

0 0 . . . 0 0 0 0

0
−1
z

0 . . . 0 0 0 0

0 0
−1
z
. . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . .
−1
z

0 0 0

0 0 0 . . . 0 0 0 0
0 0 0 . . . 0 0 0 0


and consider the following solutions of the differential system Y ′ = AY:

Y0(z) = t(−Li1(z), Li2(z), . . . , (−1)aLia(z), 1, 0),

Y∞(z) = t(Li1(1/z), Li2(1/z), . . . ,Lia(1/z), 0, 1),

Y1(z) = t
(
1,− log z,

(log z)2

2
, . . . , (−1)a−1 (log z)a−1

(a − 1)!
, 0, 0

)
.

Let Σ = {0, 1,∞} and J0 = {0}, J1 = {1}, J∞ = {∞}. Then with the notation in the
introduction, we have R(Y0) = S 0(z), R(Y∞) = S∞(z), and R(Y1) is the left-hand side
of the third equation of (2.2); Equation (1.5) stated in the introduction holds with τ = 1
as a consequence of the Padé-approximation problem (2.2). In general, τ corresponds
in Equation (1.5) to the difference between the number of unknowns and the number
of equations. To apply Theorem 1.2 it is not useful to prove that the problem has a
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unique solution up to proportionality: the upper bound τ ≤ n/2, for instance, would be
sufficient since n is taken arbitrarily large.

Defining Pk,i as in the introduction by Equation (1.3), Equation (1.4) yields for any
k ≥ 1:

S (k−1)
0 (z) = Pk,a+1(z) +

a∑
i=1

Pk,i(z)(−1)iLii(z) and

S (k−1)
∞ (z) = Pk,a+2(z) +

a∑
i=1

Pk,i(z)Lii(1/z). (2.3)

Moreover, Pk,i is a rational function of which 0 is the only possible pole if i ≤ a. If
i = a + 1 or i = a + 2, both 0 and 1 may be poles of Pk,i; but if k ≤ (a − 2r)n + a − 1,
the functions S (k−1)

0 (z) and S (k−1)
∞ (z) have finite limits as z→ 1 so that 1 is not a pole.

Finally, Theorem 1.2 applies at α = 1: the matrix [Pk,i(1)]1≤i≤a+2,1≤k≤c2 has rank at
least a + 1. Actually, Pk,1(1) = 0 for any k ≤ (a − 2r)n + a − 1 (which can be seen by
letting z tend to 1 in Equation (2.3)) so that the first row of this matrix is zero (provided
n is large enough) and its rank is exactly a + 1. Since the coefficients sk,i defined
above are given by sk,i = da

nPk,i(1) for 2 ≤ i ≤ a and sk,a+1 = da
n(Pk,a+1(1) − Pk,a+2(1)),

the matrix [sk,i]2≤i≤a+1,1≤k≤c2 has rank a: Siegel’s criterion (stated and proved in
Section 4.6) applies.

3. Zero estimates

In this section we prove Theorems 1.1 and 1.2. We start with the functional part
of the proof (Section 3.1), in which we follow the approach of Bertrand–Beukers [5]
to generalize Shidlovsky’s lemma (see Theorem 3.1). Then in Section 3.2 we deduce
Theorems 1.1 and 1.2 stated in the introduction: the important point is to evaluate at
α, which may be a singularity and/or an element of Σ.

3.1. Functional zero estimate. Throughout this section we consider a positive
integer q and a matrix A ∈ Mq(C(X)). We let P1, . . . ,Pq ∈ C[X] with deg Pi ≤ n for any
i. We also denote by Ω a simply connected open subset of C in which A has no pole.
We assume that Ω is obtained from C by removing finitely many half-lines, so that Ω is
dense in C, and denote byH the space of functions holomorphic on Ω. A solution Y of
the differential system Y ′ = AY will always be a column matrix in Mq,1(H), identified
with the corresponding element (y1, . . . , yq) ofHq. Since P1, . . . , Pq are fixed, to such
a solution is associated a remainder R(Y) defined on Ω by

R(Y)(z) =

q∑
i=1

Pi(z)yi(z).

Let Σ be a finite subset of P1(C) = C ∪ {∞}. For each σ ∈ Σ, let (Y j) j∈Jσ be a family
of solutions of Y ′ = AY such that:

• For any j ∈ Jσ, the function R(Y j) belongs to the Nilsson class at σ.
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• The functions R(Y j), for j ∈ Jσ, are linearly independent over C.

The point is that we do not assume any relation (or lack of relation) between the
families (Y j) j∈Jσ at distinct points σ, except of course that all are solutions of the
same differential system. To prove Theorems 1.1 and 1.2 we may omit all pairs
( j, σ) with j ∈ Jσ such that ordσ(R(Y j)) ≤ 0, so that we shall assume from now on
that ordσ(R(Y j)) ≥ 0 for any j ∈ Jσ.

Finally, we let Jσ = ∅ when σ < Σ.
Defining Pk,i(z) and M(z) as in the introduction, our functional multiplicity estimate

is the following generalization of Bertrand–Beukers’ version of Shidlovsky’s lemma;
if ∞ < Σ and the functions Y j, j ∈ Jσ, are analytic at σ it is due to Bertrand [4,
Théorème 2]. The constant c1 is the same as in Theorem 1.1 (that we shall deduce
from Theorem 3.1 at the beginning of Section 3.2).

Theorem 3.1. Let µ denote the order of a nonzero differential operator L ∈ C(z)[d/dz]
such that L(R(Y j)) = 0 for any σ and any j ∈ Jσ. Then,∑

σ∈Σ

∑
j∈Jσ

ordσ(R(Y j)) ≤ (n + 1)(µ − #J∞) + c1

where c1 is a constant that depends only on A and Σ.

In the special case where Σ ⊂ C, Jσ consists of a single element jσ, and the function
Y jσ is the same for all σ and is analytic at all σ, this is exactly [5, Théorème 2] except
that we did not try to make the constant c1 explicit (we refer to [5], and to [1, Appendix
of Ch. III] in the Fuchsian case, for discussions on effectivity, which are not relevant for
our purposes). Indeed we have fixed a simply connected open subset Ω for convenience
only: analytic continuation from a point of Σ to another could be performed along any
fixed path.

Let us prove Theorem 3.1 now, following the strategy of [5].
Given σ ∈ P1(C), we letAσ denote the set of all finite sums∑

α∈E

∑
Q∈P

J∑
j=0

uα,Q, j(z − σ)(z − σ)α(log(z − σ)) j exp(Q((z − σ)−1/q!)), (3.1)

where E ⊂ C andP ⊂ C[X] are finite subsets, J ≥ 0, and uα,Q, j(z −σ) ∈ C[[(z −σ)1/q!]]
for any α, Q, j. Here and below, we agree that z − σ stands for 1/z si σ = ∞. Then
the differential system Y ′ = AY has a complete system of formal solutions in Aq

σ.
Moreover, we let Kσ denote the fraction field of Aσ, and Fσ denote the differential
subfield of Kσ generated over C(z) by all components of all solutions of Y ′ = AY in
K

q
σ. Then the differential extension Fσ/C(z) is Picard–Vessiot, and we denote by Gσ

its group of differential automorphisms.
To prove Theorem 3.1 we may assume that 0 ∈ Σ, that µ is the minimal order of a

nonzero differential operator that annihilates R(Y j) for any j ∈ Jσ and any σ ∈ Σ, and
that the coefficient of (d/dz)µ in L is 1.
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Given σ ∈ Σ and j ∈ Jσ, all components of Y j are holomorphic on the cut plane Ω,
and can be seen as elements ofA0. Indeed, if 0 is a regular singularity (or an ordinary
point) of the system Y ′ = AY then all components of Y j have a generalized Taylor
expansion at the origin inA0 (of the form (3.1) with P = {0}). In the general case, we
identify each component of Y j with its asymptotic expansion at 0 in a fixed large sector
(see [21]). By definition of F0, all components of Y j (seen inA0) belong to F0 so that
R(Y j) ∈ F0. We consider the C-vector space V ⊂ F0 spanned by the images γ(R(Y j))
of all R(Y j), j ∈ Jσ, σ ∈ Σ, under all γ ∈ G0. Since the kernel of L : F0 → F0 is stable
under G0, we have V ⊂ ker L so that m ≤ µ, where m = dimC V . Let (R1, . . . ,Rm) be a
basis of V , such that Ri = γi(R(Y ji )) with γi ∈ G0 and ji ∈ Jσi for any i ∈ {1, . . . ,m}.

Arguing as in the proof of [5, Proposition 3],

Ly =
1

W(R1, . . . ,Rm)
det


y y′ . . . y(m)

R1 R′1 . . . R
(m)
1

...
...

...

Rm R′m . . . R
(m)
m


where W(R1, . . . ,Rm) = det[R( j−1)

i ]1≤i, j≤m is the Wronskian determinant. In particular,
m = µ and V = ker L.

Now we claim that for anyσ ∈ P1(C) there exist µ solutions Y [σ, j] = (y[σ, j]
1 , . . . , y[σ, j]

q )
of Y ′ = AY in Fq

σ, with 1 ≤ j ≤ µ, such that R(Y [σ,1]), . . . , R(Y [σ,µ]) span the C-vector
space of solutions of Ly = 0 in Fσ. Indeed, as in [5, Corollaire], using a differential
isomorphism F0→ Fσ we may assume σ = 0. Then for any i ∈ {1, . . . ,m}, γi(Y ji ) ∈ Fq

0
is a solution of Y ′ = AY and π0(γi(Y ji )) = R(γi(Y ji )) = γi(R(Y ji )) = Ri so that the claim
is proved since (R1, . . . ,Rm) is a basis of V = ker L.

Let us recall the following terminology from [5]: an element of Aσ has rank
≤ κ ∈ (1/q!)N and generalized order ≥ r if it is of the form (3.1) with deg Q ≤ q!κ
for any Q ∈ P and Reα ≥ r for any α ∈ E. The differential operator L has rank ≤ κ at
σ and (r1, . . . , rµ) ∈ Rµ is an admissible system of exponents of L at σ if the differential
equation Ly = 0 has a complete system of solutions (y1, . . . , yµ) in Aµ

σ such that each
yi has rank ≤ κ and generalized order ≥ ri.

Given σ ∈ P1(C) all functions y[σ, j]
i with 1 ≤ i ≤ q and 1 ≤ j ≤ µ have rank ≤ κσ and

generalized order ≥ rσ for some κσ ∈ (1/q!)N and rσ ∈ R which depend only on A and
σ (see [5, Proposition 1]). If σ , ∞, R(Y [σ, j]) =

∑q
i=1 Pi(z)y[σ, j]

i (z) has rank ≤ κσ and
generalized order ≥ rσ; these functions make up a complete system of solutions of L
(using the claim above). Moreover, ifσ ∈ Σ \ {∞} then for any j ∈ Jσ the function R(Y j)
can be seen as an element of Aσ with rank ≤ 0 and generalized order ≥ ordσ(R(Y j)).
Combining these C-linearly independent solutions of Ly = 0 with suitable functions
R(Y [σ, j]), we obtain that L has rank ≤ κσ at σ and an admissible system of exponents
of L at σ consists in rσ repeated µ − #Jσ times, and ordσ(R(Y j)) for each j ∈ Jσ. In
the same way, at infinity, for any j ∈ J∞ the function R(Y j) ∈ A∞ has rank ≤ 0 and
generalized order ≥ ord∞(R(Y j)). To obtain a complete system of solutions of Ly = 0
inA∞ we use also µ − #J∞ functions R(Y [∞, j]), which have rank ≤ κσ and generalized
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order ≥ r∞ − n since deg Pi(z) ≤ n for any i ∈ {1, . . . , q}. Therefore, L has rank ≤ κ∞
at ∞ and an admissible system of exponents of L at ∞ consists in r∞ − n repeated
µ − #J∞ times, and ord∞(R(Y j)) for each j ∈ J∞.

So far we have found an upper bound on the rank of L, and an admissible system of
exponents of L, at any σ ∈ Σ. Enlarging Σ if necessary, we may assume that it contains
∞ and all poles of A. Then for any σ ∈ P1(C) \ Σ the differential system Y ′ = AY has
a complete system of solutions holomorphic at σ, and therefore, the same property
holds for the differential equation Ly = 0 using the claim above. Accordingly, Σ

contains∞ and all nonapparent singularities of L, so that the Corollary of [5, Théorème
3] provides an inequality involving upper bounds on the ranks of L and admissible
systems of exponents of L at all points of Σ, namely:

(µ − #J∞)(r∞ − n) +

( ∑
j∈J∞

ord∞(R(Y j))
)
− (κ∞ + 1)µ(µ − 1)/2

+
∑

σ∈Σ\{∞}

[
(µ − #Jσ)rσ +

( ∑
j∈Jσ

ordσ(R(Y j))
)
− (κσ + 1)µ(µ − 1)/2

]
≤ −µ(µ − 1)

so that (∑
σ∈Σ

∑
j∈Jσ

ordσ(R(Y j))
)
− (n + 1)(µ − #J∞) ≤ c1

where c1 is a constant that can be written down explicitly in terms of Σ, µ, κσ, rσ, and
#Jσ for σ ∈ Σ. This concludes the proof of Theorem 3.1.

3.2. Numerical zero estimate. In this section we prove Theorems 1.1 and 1.2 stated
in the introduction. The proof falls into three steps; the first one is Theorem 1.1.

Step 1. M(z) ∈ Mq(C(z)) is an invertible matrix.
As in [25], if M is singular in Mq(C(z)) then there is a nontrivial linear relation

with coefficients in C(z) between the rk(M) + 1 first columns of M; this provides
a differential operator L of order µ = rk(M) to which Theorem 3.1 applies, in
contradiction with Equation (1.5) since τ ≤ n − c1. Indeed, for any solution Y of the
differential system Y ′ = AY ,

tY M = [R(Y) R(Y)′ . . . R(Y)(q−1) ].

Step 2. Determination of det M(z) up to factors of bounded degree.
Let S denote the set of finite singularities of the differential system Y ′ = AY , that

is, poles of coefficients of A. For any s ∈ S , let Ns denote the maximal order of s
as a pole of a coefficient of A; let Ns = 0 for s ∈ C \ S . Then Equation (1.3) shows
that (z − s)(k−1)Ns Pk,i(z) is holomorphic at z = s for any k ≥ 1 and any i ∈ {1, . . . , q}.
Therefore, det M(z) ·

∏
s∈S (z − s)q(q−1)Ns has no pole: is it a polynomial.

Now let σ ∈ Σ, and denote by Tσ ∈ M#Jσ,q(H) the matrix with rows tY j, j ∈ Jσ.
The vector-valued functions Y j, j ∈ Jσ, are linearly independent over C because the
functions R(Y j) are, therefore, the #Jσ first elements of a basis of solutions B of the
differential system Y ′ = AY . The Wronskian determinant of B may vanish at σ if σ
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is a singularity, but even in this case it has generalized order ≤ c0(σ) at σ (with the
terminology of Section 3.1) where c0(σ) is a constant depending only on A and σ
(not on B). On the other hand, all components of all elements of B have generalized
order ≥ rσ at σ (as in Section 3.1). Therefore, there exists a subset Iσ of {1, . . . , q},
with #Iσ = q − #Jσ, such that the determinant of the submatrix of Tσ corresponding
to the columns indexed by {1, . . . , q} \ Iσ has generalized order ≤ c(σ) at σ, where
c(σ) = c0(σ) − rσ#Iσ depends only on A and σ. Increasing c0(σ) and c(σ) if necessary,
we may assume that c(σ) ∈ N.

Let Pσ ∈ Mq(H) denote the matrix of which the #Jσ first rows are that of Tσ, and
the other rows are the tei, i ∈ Iσ, where (e1, . . . , eq) is the canonical basis of Mq,1(C).
Then PσM has its first rows equal to [R(Y j) R(Y j)′ . . . R(Y j)(q−1) ] with j ∈ Jσ, and

its last rows equal to [P1,i . . . Pq,i ] with i ∈ Iσ. Therefore, all coefficients in the row
corresponding to j ∈ Jσ have order at σ at least ordσR(Y j) − q + 1, and (if σ ,∞) all
coefficients in the row corresponding to i ∈ Iσ are either holomorphic at σ, or have
a pole of order at most (q − 1)Nσ is σ ∈ S . Since Nσ = 0 if σ < S , we have for any
σ ∈ Σ \ {∞}:

ordσ det(PσM) ≥
( ∑

j∈Jσ

ordσR(Y j)
)
− (q − 1)#Jσ − (q − 1)Nσ(q − #Jσ).

Since det Pσ has generalized order ≤ c(σ) at σ,

ordσ det(M) ≥
( ∑

j∈Jσ

ordσR(Y j)
)
− c(σ).

Now let
Q2(z) =

(∏
s∈S

(z − s)q(q−1)Ns

)
·

( ∏
σ∈Σ\{∞}

(z − σ)c(σ)
)

so that Q2(z) det M(z) is a polynomial and vanishes at any σ ∈ Σ \ {∞} with order at
least

∑
j∈Jσ ordσR(Y j). To bound from above the degree of this polynomial, we define

P∞ as above if ∞ ∈ Σ, and let P∞ denote the identity matrix (and J∞ = ∅) otherwise.
Then for some nonnegative integer t we have R(Y j)(k−1) = O(z−ord∞R(Y j)(log z)t) as
|z| → ∞ for any j ∈ J∞ and any k ≥ 1, and Pk,i(z) = O(zn+(q−1)d) for any i ∈ I∞ and
any k ∈ {1, . . . , q} (where d is greater than or equal to the degree of all coefficients of
A). Since det M(z) is a rational function we deduce det M(z) = O(zu) as |z| → ∞, with

u = (q − #J∞)(n + (q − 1)d) −
∑
j∈J∞

ord∞R(Y j),

so that
deg(Q2(z) det M(z)) ≤ u + deg Q2 ≤

∑
σ∈Σ\{∞}

∑
j∈Jσ

ordσR(Y j) + τ + c1

using Equation (1.5), where c1 depends only on A and Σ (since 0 ≤ #Jσ ≤ q for any σ).
To sum up, we have found a polynomial Q1 of degree at most τ + c1 such that

det M(z) =
Q1(z)
Q2(z)

∏
σ∈Σ\{∞}

(z − σ)
⌈∑

j∈Jσ ordσR(Y j)
⌉
,

where dωe is the least integer greater than or equal to ω.
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Step 3. Evaluation at α.
To begin with, we denote by Lα the C-vector space spanned by the functions

h(z)(z − α)e(log(z − α))i with h holomorphic at α, i ∈ N, and e ∈ C such that either
e = 0 or Re (e) > 0.

Let qα = #Jα and q′α = q − qα, where Jα = ∅ if α < Σ; for simplicity we assume that
Jα = {1, . . . , qα}. Since the solutions Y1, . . . , Yqα of the differential system Y ′ = AY are
linearly independent over C, there exist solutions Yqα+1, . . . , Yq such that (Y1, . . . ,Yq) is
a local basis of solutions at α. LetY be the matrix with columns Y1, . . . , Yq; then tYM
is the matrix [R(Yi)(k−1)]1≤i,k≤q, and assumption (i) of Theorem 1.2 yieldsY ∈ Mq(Lα).

For any subset E of {1, . . . , q} of cardinality q′α = q − qα, we denote by ∆E the
determinant of the submatrix of [R(Yi)(k−1)] obtained by considering only the rows
with index i ≥ qα + 1 and the columns with index k ∈ E, and by ∆̃E the one obtained
by removing these rows and columns. Then Laplace expansion by complementary
minors yields

detY(z) · det M(z) =
∑

E⊂{1,...,q}
#E=q′α

εE∆E(z)∆̃E(z) (3.2)

with εE ∈ {−1, 1}. Now detY is the Wronskian of Y1, . . . , Yq: it is a solution of the
first order differential equation

w′(z) = w(z)trace(A(z)). (3.3)

Moreover, it is nonzero, and belongs to Lα. Therefore, we have $1 := ordα detY(z) ≥
0. Moreover, $2 := ordα det M(z) ∈ N using Step 1 and the assumption that all entries
of M(z) are rational functions holomorphic at α. Then Equation (3.2) provides a subset
E such that

$3 := ordα∆E(z) ≤ $1 +$2 − ordα∆̃E(z). (3.4)

Now letting ωα = d
∑

j∈Jα ordαR(Y j)e if α ∈ Σ and ωα = 0 otherwise, Step 2 shows that
$2 ≤ ωα + τ + c1. Moreover, the (generalized) order at α of any nonzero solution of
Equation (3.3), and in particular $1, can be bounded from above in terms of A only.
At last, for any i ∈ Jα = {1, . . . , qα} and any k ∈ {1, . . . , q} we have ordαR(Yi)(k−1) ≥

ordαR(Yi) − (q − 1) so that ordα∆̃E(z) ≥ ωα − qα(q − 1). Therefore, Equation (3.4)
yields $3 ≤ τ + c3 for some constant c3 depending only on A and Σ. Using this upper
bound we shall prove now that $3 is a nonnegative integer, and ∆

($3)
E (z) has a finite

nonzero limit as z tends to α.
Since Y ∈ Mq(Lα) and Pi,k has no pole at α for k ≤ q, we have ∆E(z) ∈ Lα so that

∆E(z) =
∑
e∈E

I∑
i=0

λi,e hi,e(z)(z − α)e(log(z − α))i (3.5)

where hi,e(z) is holomorphic at α and E is a finite subset of C such that for any e ∈ E,
either e = 0 or Re (e) > 0. Moreover, we may assume that e − e′ < Z for any distinct
e, e′ ∈ E, and that for any e ∈ E there exists i such that λi,ehi,e(α) , 0. Finally, the
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integer I can be chosen in terms of A only, since the exponents of log(z − α) in local
solutions at α of Y ′ = AY are bounded.

We choose the constant c2 of Theorem 1.2 to be c2 = c3 + I + q + 1. For any
nonnegative integer $ ≤ c2 + τ − q − 1, the $th derivative ∆

($)
E (z) is a Z-linear

combination of determinants of matrices of the form

Nk1,...,kq′α
= [R(Yqα+i)(k j−1)]1≤i, j≤q′α

with 1 ≤ k1 < · · · < kq′α ≤ q + $ < c2 + τ. Since Yi ∈ Mq,1(Lα) and Pk,i is assumed
to be holomorphic at α for any i and any k < τ + c2, we have R(Yi)(k−1) ∈ Lα.
Accordingly det Nk1,...,kq′α

∈ Lα, and finally ∆
($)
E (z) ∈ Lα for any nonnegative integer

$ ≤ c2 + τ − q − 1. Therefore, in the expression (3.5), all pairs (e, i) such that
λi,ehi,e(α) , 0 and Re (e) + i ≤ c2 + τ − q − 1 satisfy e ∈ N and i = 0. Now recall
that $3 = ordα∆E(z) ≤ τ + c3 = c2 + τ − q − 1 − I. Then there is a term (e, i) in
Equation (3.5) such that λi,ehi,e(α) , 0 and Re (e) = $3 ≤ c2 + τ − q − 1 − I, and
accordingly Re (e) + i ≤ c2 + τ − q − 1: we have e ∈ N, i = 0, and no other term (e′, i′)
such that λi′,e′hi′,e′(α) , 0 satisfies Re (e′) = $3. In particular, $3 is a nonnegative
integer, and ∆

($3)
E (z) has a finite nonzero limit as z tends to α.

Let evα : Lα → C denote regularized evaluation at α, defined by evα( f ) =

λ0,0 h0,0(α) if f (z) is the right-hand side of Equation (3.5), and of course evα( f ) = 0
if 0 < E. The important point here is that any e ∈ E satisfies either e = 0 or Re (e) > 0,
so that evα is a C-algebra homomorphism; moreover, evα( f ) is equal to the limit of
f (z) as z→ α whenever this limit exists. In particular, we have evα(∆($3)

E ) , 0. Now,
as above evα(∆($3)

E ) is a Z-linear combination of evα(det Nk1,...,kq′α
) with 1 ≤ k1 < · · · <

kq′α ≤ q +$3 < c2 + τ, so that evα(det Nk1,...,kq′α
) , 0 for some tuple (k1, . . . , kq′α). For this

tuple we consider the equality tỸM̃ = Nk1,...,kq′α
, where Ỹ ∈ Mq,q′α(Lα) is the matrix

with columns Yqα+1, . . . , Yq, and M̃ = [Pk j,i]1≤i≤q,1≤ j≤q′α . The Cauchy–Binet formula
yields

det Nk1,...,kq′α
=

∑
B⊂{1,...,q}

#B=q′α

det tỸB · det M̃B (3.6)

where ỸB (respectively M̃B) is the square matrix consisting in the rows of Ỹ
(respectively of M̃) corresponding to indices in B. Extending evα coefficientwise to
matrices, Equation (3.6) yields

evα(det Nk1,...,kq′α
) =

∑
B⊂{1,...,q}

#B=q′α

evα(det tỸB) · evα(det M̃B).

Now the left-hand side is nonzero, so that evα(det M̃B) , 0 for some B. Since all
coefficients Pk,i are holomorphic at α, so is det M̃B and therefore, det(M̃B(α)) =

evα(det M̃B) , 0. We have found an invertible submatrix of M(α) of size q′α, so that
rkM(α) ≥ q′α: this concludes the proof of Theorem 1.2.

https://doi.org/10.1017/S1446788717000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000386


[15] Shidlovsky’s multiplicity estimate and irrationality of zeta values 159

4. Diophantine part of the proof

In this section we prove Theorem 1.4 stated in the introduction, and give, in detail,
new proofs of the Ball–Rivoal theorem and Nishimoto’s theorem 1.3. To provide a
unified treatment, we state a general result (namely Theorem 4.1) and deduce these
results from it in Section 4.1. In order to help the reader, we first give the proof of
Theorem 4.1 in Section 4.2, then construct the linear forms (Section 4.3), apply the
zero estimate (namely Theorem 1.2) to obtain an invertible matrix (Section 4.4), and
study the arithmetic and asymptotic properties (Section 4.5). Finally, we state and
prove Siegel’s linear independence criterion in Section 4.6.

4.1. Statement of the main theorem and consequences.

Theorem 4.1. Let N ≥ 1, and f : N→ C be such that f (n + N) = f (n) for any n. Let
p ∈ {0, 1}, a ≥ 2, and z0 ∈ {1, eiπ/N}; put

ξ j =

∞∑
n=1

f (n)zn
0

n j for any j ∈ {1, . . . , a},

except that ξ1 = 0 if z0 = 1. Then as a→∞,

dimQ SpanQ({ξ j, 1 ≤ j ≤ a, j ≡ p mod 2}) ≥
1 + o(1)
N + log 2

log a.

We refer to Section 2 for the special case of the Ball–Rivoal theorem.
Let us deduce Theorems 1.3 and 1.4 stated in the introduction from this result.

Let χ be a Dirichlet character mod d. Its conductor is the smallest divisor e of d for
which there exists a character χ′ mod e such that χ(n) = χ′(n) for any n coprime to d.
Comparing the L-functions of χ and χ′ (see, for instance, [13, Sections 3.2 and 3.3])
yields

L(χ, s) = L(χ′, s)
∏
p|d
p-e

(1 − χ′(p)p−s)

so that δχ,p,a = δχ′,p,a for any p, a (with the notation of Theorem 1.3). Therefore,
we may assume that e = d, that is, χ is primitive. Then Theorem 1.3 follows from
Theorem 4.1 by letting z0 = 1 and f = χ.

To prove Theorem 1.4, we first prove that for any primitive Dirichlet character χ
modulo a multiple e of 4,

χ
(
n +

e
2

)
= −χ(n) for any n ∈ Z. (4.1)

Indeed we have n(e/2 + 1) ≡ n + e/2 mod e if n is odd, so that χ(n + e/2) =

χ(n)χ(e/2 + 1) for any n ∈ Z (since both sides vanish if n is even). Moreover,
(χ(e/2 + 1))2 = 1 since (e/2 + 1)2 ≡ 1 mod e, and χ(e/2 + 1) , 1 because χ is primitive
(so that χ(n + e/2) , χ(n) for some n). Therefore, χ(e/2 + 1) = −1: this concludes the
proof of (4.1).

https://doi.org/10.1017/S1446788717000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000386


160 S. Fischler [16]

Now let N = e/2 and define f : N→ C by f (r) = χ(r)z−r
0 for any r ∈ {1, . . . , N},

where z0 = eiπ/N . Then Equation (4.1) yields

∞∑
n=1

f (n)zn
0

n j =

N∑
r=1

f (r)zr
0

∑
n≥1

n≡r mod 2N

( 1
n j −

1
(n + N) j

)
=

∞∑
n=1

χ(n)
n j = L(χ, j)

so that Theorem 4.1 implies Theorem 1.4.

4.2. Sketch of the proof. To prove Theorem 4.1, we let r, n ≥ 1 be such that
r < a/2N and N divides n. We define ξ′1, . . . , ξ′a+N as follows:

ξ′j = 2(−1)pξ j for j ∈ {1, . . . , a} such that j ≡ p mod 2,
ξ′j = 0 for j ∈ {1, . . . , a} such that j . p mod 2,

ξ′a+1+λ = zλ0 f (λ) for any λ ∈ {0, . . . ,N − 1}.
(4.2)

We also let
δn = (Ndn)aNan/N ,

and define i0 to be equal to 1 if z0 = eiπ/N , and equal to 2 otherwise (that is, if z0 = 1).
In Section 4.3 (see (4.15)) we shall construct integers sk,i, i0 ≤ i ≤ a + N, such that

as n→ +∞:

max
i0≤i≤a+N

|sk,i| ≤ β
n(1+o(1)) and

∣∣∣∣ a+N∑
i=i0

sk,iξ
′
i

∣∣∣∣ ≤ αn(1+o(1)) (4.3)

where

α = ea4a/N−r(N + 1)2r+2r−a/N+4r+2 and β = (2eN)a/N(rN + 1)2r+2.

Then Lemma 4.2 (that will be stated and proved in Section 4.4 using Theorem 1.2)
provides a positive constant c2 (which depends only on a and N) and integers 1 ≤
ki0 < ki0+1 < · · · < ka+N ≤ c2 (which depend on a, N, r, and n) such that the matrix
[sk j,i]i0≤i, j≤a+N is invertible. Since k j ≤ c2 for any j, the symbols o(1) in (4.3) with
k = k j can be made uniform with respect to k. Therefore, Siegel’s linear independence
criterion applies (see Section 4.6). Taking a very large, N fixed, and r equal to the
integer part of a/(log(a))2 concludes the proof of Theorem 4.1 since ξ′i = 0 if i ≤ a and
i . p mod 2, and

1 −
logα
log β

=
1 + εa

N + log 2
log a where lim

a→+∞
εa = 0.

4.3. Construction of the linear forms. Let a, r, N be positive integers such that
1 ≤ r < a/2N. For any integer multiple n of N we let

F(t) = (n/N)!a−2rN (t − rn)rn(t + n + 1)rn∏n/N
h=0(t + Nh)a

.
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Then F is a rational function, and its degree −d0 satisfies

d0 := a
( n

N
+ 1

)
− 2rn = −deg F ≥ n + a ≥ 2. (4.4)

Its partial fraction expansion reads

F(t) =

n/N∑
h=0

a∑
j=1

p j,h

(t + Nh) j

with rational coefficients p j,h. Let

P j(z) =

n/N∑
h=0

p j,hzNh ∈ Q[z]≤n for any j ∈ {1, . . . , a},

and also

S 0(z) =

∞∑
t=n+1

F(−t)zt, S∞(z) =

∞∑
t=1

F(t)z−t.

As in [3],

S∞(z) = V(z) +

a∑
j=1

P j(z)Li j(1/z)

where

V(z) = −

n−1∑
t=0

zt
a∑

j=1

n/N∑
h=d(t+1)/Ne

p j,h

(Nh − t) j ∈ Q[z]≤n.

In the same way (see [10]),

S 0(z) = U(z) +

a∑
j=1

P j(z)(−1) jLi j(z)

with the same polynomials P1, . . . , Pa, and

U(z) = −

n∑
t=1

zt
a∑

j=1

b(t−1)/Nc∑
h=0

p j,h

(t − Nh) j ∈ Q[z]≤n.

Now let P1, j = P j for any j ∈ {1, . . . , a}, and define inductively Pk, j ∈ Q(z) by

Pk, j(z) = P′k−1, j(z) −
1
z

Pk−1, j+1(z) for any k ≥ 2 and any j ∈ {1, . . . , a}, (4.5)

where Pk−1,a+1 = 0 for any k; we shall check in Section 4.4 below that this notation
Pk, j is consistent with the one used in the introduction. We let also U1 = U, V1 = V ,
and define Uk, Vk for any k ≥ 2 by the recurrence relations

Uk(z) = U′k−1(z) −
1

1 − z
Pk−1,1(z), (4.6)
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Vk(z) = V ′k−1(z) +
1

z(1 − z)
Pk−1,1(z). (4.7)

Then for any k ≥ 1,

S (k−1)
0 (z) = Uk(z) +

a∑
j=1

Pk, j(z)(−1) jLi j(z) (4.8)

and

S (k−1)
∞ (z) = Vk(z) +

a∑
j=1

Pk, j(z)Li j(1/z). (4.9)

Moreover, Equations (4.5), (4.6), and (4.7) show that the rational functions Pk, j with
1 ≤ j ≤ a (respectively Uk and Vk) have only 0 (respectively only 0 and 1) as possible
finite poles. Now,

S (k−1)
0 (z) =

∞∑
t=n+1

F(−t)(t − k + 2)k−1zt−k+1 for |z| < 1

and

S (k−1)
∞ (z) =

∞∑
t=1

F(t)(−1)k−1(t)k−1z−t−k+1 for |z| > 1.

Let us assume that k − 1 ≤ d0 − 2, where d0 = − deg F is defined by Equation (4.4);
then these formulas hold also when |z| = 1 and we may let z tend to 1 in Equations (4.8)
and (4.9). Since Pk, j is holomorphic at z = 1 for any k ≥ 1 and any j, a possible
divergence may come only from poles of Uk or Vk at z = 1, or from the logarithmic
term involving Li1(z) or Li1(1/z). Since a pole and a logarithmic term cannot cancel
each other out, and S (k−1)

0 (z) and S (k−1)
∞ (z) have finite limits as z→ 1, then,

For any k ≤ d0 − 1, Pk,1(1) = 0 and Uk,Vk do not have a pole at z = 1. (4.10)

Now let k ≤ d0 − 1, and z ∈ C be such that |z| = 1. Then Equations (4.8) and (4.9)
hold, upon agreeing that the sums start at j = 2 if z = 1; the same remark applies
in what follows. Since P j(z) ∈ Q[zN] for any j ∈ {1, . . . , a}, Equation (4.5) yields
Pk, j ∈ z1−kQ[zN] (see the proof of Proposition 4.4 in Section 4.5 for details). On the
other hand, since Uk,Vk ∈ Q[z, z−1] for any k ≤ d0 − 1, we can write

zk−1Uk(z) =

N−1∑
λ=0

zλUk,λ(z) and zk−1Vk(z) =

N−1∑
λ=0

zλVk,λ(z) (4.11)

with Uk,λ,Vk,λ ∈ Q[zN , z−N]. Then Equations (4.8) and (4.9) yield

zk−1S (k−1)
0 (z) =

N−1∑
λ=0

zλUk,λ(z) +

a∑
j=1

zk−1Pk, j(z)(−1) jLi j(z) (4.12)
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and

zk−1S (k−1)
∞ (z) =

N−1∑
λ=0

zλVk,λ(z) +

a∑
j=1

zk−1Pk, j(z)Li j(1/z). (4.13)

The point now is that Uk,λ(z), Vk,λ(z), and zk−1Pk, j(z) depend only on zN . For any
` ∈ {1, . . . ,N} we consider

µ` =
1
N

N∑
λ=1

f (λ)ω−`λ. (4.14)

Let z0 ∈ {1, eiπ/N} and p ∈ {0, 1} be as in Theorem 4.1, and recall that ω = e2iπ/N . For
any k ≤ d0 − 1 we let

Λk =

N∑
`=1

µ`

[
(ω`z0)k−1S (k−1)

0 (ω`z0) + (−1)p(ω`z0)1−kS (k−1)
∞

( 1
ω`z0

)]
.

Then Equations (4.12) and (4.13) yield, since Uk,λ(z), Vk,λ(z), and zk−1Pk, j(z) depend
only on zN and (ω`z0)N = (ω`z0)−N = zN

0 :

Λk =

N−1∑
λ=0

[( N∑
`=1

µ`(ω`z0)λ
)
Uk,λ(z0) + (−1)p

( N∑
`=1

µ`(ω`z0)−λ
)
Vk,λ(z0)

]
+

a∑
j=1

zk−1
0 Pk, j(z0)

N∑
`=1

µ`Li j(ω`z0)((−1) j + (−1)p).

Now Equation (4.14) yields
N∑
`=1

µ`ω
n` = f (n) for any n ∈ Z, so that

N∑
`=1

µ`Li j(ω`z0)

=

∞∑
n=1

f (n)zn
0

n j = ξ j for any j ≤ a.

Letting Vk,N = Vk,0,

Λk = 2(−1)p
∑

1≤ j≤a
j≡p mod 2

zk−1
0 Pk, j(z0)ξ j +

N−1∑
λ=0

(Uk,λ(z0) + (−1)pVk,N−λ(z0))zλ0 f (λ).

As announced in Section 4.2 we now define the coefficients sk,i: sk,i = δnzk−1
0 Pk,i(z0) for 1 ≤ i ≤ a,

sk,a+1+λ = δn(Uk,λ(z0) + (−1)pVk,N−λ(z0)) for 0 ≤ λ ≤ N − 1,
(4.15)

where δn = (Ndn)aNan/N , so that

δnΛk =

a+N∑
i=i0

sk,iξ
′
i
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since ξ′1 = 0 if z0 = 1 (recall from Section 4.2 that i0 = 2 in this case, and i0 = 1
otherwise, that is, if z0 = eiπ/N ; ξ′i is defined in Equation (4.2)).

Since zN
0 ∈ {−1, 1} and zk−1Pk, j(z), Uk,λ(z) and Vk,N−λ(z) are polynomials in zN with

rational coefficients, the numbers sk,1, . . . , sk,a+N are rational. We shall prove in
Proposition 4.4 (Section 4.5) that they are integers, thanks to the factor δn.

4.4. Application of the zero estimate. In this section we deduce from Theorem 1.2
the following lemma, used at the end of Section 4.2. It provides an invertible matrix
which enables us to apply Siegel’s linear independence criterion (see Section 4.6).

Lemma 4.2. In the setting of Section 4.2, let i0 = 1 if z0 = eiπ/N and i0 = 2 if z0 = 1;
let sk,i be defined by Equation (4.15). Then there exist a positive constant c2 (which
depends only on a and N) and integers 1 ≤ ki0 < ki0+1 < · · · < ka+N ≤ c2 (which depend
on a, N, r, and n) such that the matrix [sk j,i]i0≤i, j≤a+N is invertible.

To begin with, let us recall from Section 4.2 that ω = e2iπ/N , a, r, N, n are positive
integers such that 1 ≤ r < a/2N, n is a multiple of N, and

F(t) = (n/N)!a−2rN (t − rn)rn(t + n + 1)rn∏n/N
h=0(t + Nh)a

.

Then,

S 0(z) =

∞∑
t=n+1

F(−t)zt = U(z) +

a∑
j=1

P j(z)(−1) jLi j(z)

and

S∞(z) =

∞∑
t=1

F(t)z−t = V(z) +

a∑
j=1

P j(z)Li j(1/z).

Since P j ∈ C[zN] for any j ∈ {1, . . . , a}, we have P j(ω`z) = P j(z) for any ` ∈ Z.
Therefore, letting

R0,`(z) = S 0(ω`z), R∞,`(z) = S∞(ω`z), P0,`(z) = U(ω`z), P∞,`(z) = V(ω`z)
(4.16)

for any ` ∈ {1, . . . ,N},

R0,`(z) = P0,`(z) +

a∑
j=1

P j(z)(−1) jLi j(ω`z) = O(z(r+1)n+1), z→ 0, (4.17)

and

R∞,`(z) = P∞,`(z) +

a∑
j=1

P j(z)Li j

( 1
ω`z

)
= O(z−rn−1), z→∞. (4.18)

Moreover, recall that d0 = −deg F = a(n/N + 1) − 2rn; Lemma 3 of [10] shows that
a∑

j=1

P j(z)(−1) j−1 (log z) j−1

( j − 1)!
= O((z − 1)d0−1), z→ 1.

https://doi.org/10.1017/S1446788717000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000386


[21] Shidlovsky’s multiplicity estimate and irrationality of zeta values 165

Using again the fact that P j(ω−`z) = P j(z), we obtain for any ` ∈ {1, . . . ,N}:

Rω` (z) :=
a∑

j=1

P j(z)(−1) j−1 (log(ω−`z)) j−1

( j − 1)!
= O((z − ω`)d0−1), z→ ω`. (4.19)

Combining Equations (4.17)–(4.19) with 1 ≤ ` ≤ N, we have solved a simultaneous
Padé-approximation problem. The (n + 1)(a + 2N) unknowns are the coefficients of
P1, . . . , Pa, P0,1, . . . , P0,N , P∞,1, . . . , P∞,N , which are polynomials of degree less than
or equal to n. There are

2N((r + 1)n + 1) + N(d0 − 1) = n(a + 2N) + (a + 1)N

linear equations, since apriori we have R∞,`(z) = O(zn) as z→ ∞. The difference
between the number of unknowns and the number of equations is equal to N − a(N −
1). If N = 1 this is equal to 1: the Padé-approximation problem is exactly (2.2), that
is, the one of [10, Théorème 1], which has a unique solution up to proportionality.
Whenever N ≥ 2 we have N − a(N − 1) < 0: the problem we have solved has more
equations than unknowns. This is due to the fact that we always assume n to be
an integer multiple of N. Anyway to complete the proof, it is sufficient to bound
from above the difference between the number of unknowns and the number of
equations by a constant independent from n; we do not need to study whether the
Padé-approximation problem has a unique solution or not.

Let q = a + 2N, and A ∈ Mq(C(z)) be the matrix of which the coefficients Ai, j are
given by: 

Ai,i−1(z) =
−1
z

for any i ∈ {2, . . . , a},

A1,a+`(z) =
ω`

ω`z − 1
for any ` ∈ {1, . . . ,N},

A1,a+N+`(z) =
1

z(1 − ω`z)
for any ` ∈ {1, . . . ,N}

and all other coefficients are zero. We consider the following solutions of the
differential system Y ′ = AY , with 1 ≤ ` ≤ N:

Y0,`(z) = t(−Li1(ω`z),Li2(ω`z), . . . , (−1)aLia(ω`z), 0, . . . , 0, 1, 0, . . . , 0),

Y∞,`(z) = t
(
Li1

( 1
ω`z

)
,Li2

( 1
ω`z

)
, . . . ,Lia

( 1
ω`z

)
, 0, . . . , 0, 1, 0, . . . , 0

)
,

Yω` (z) = t
(
1,−log(ω−`z),

(log(ω−`z))2

2!
, . . . , (−1)a−1 (log(ω−`z))a−1

(a − 1)!
, 0, . . . , 0

)
where the coefficient 1 in Y0,`(z) (respectively Y∞,`(z)) is in position a + ` (respectively
a + N + `).

We let J0 = {(0, 1), (0, 2), . . . , (0, N)}, J∞ = {(∞, 1), (∞, 2), . . . , (∞, N)}, Jω` = {ω`}
for 1 ≤ ` ≤ N, and Σ = {0,∞} ∪ {ω`, 1 ≤ ` ≤ N}. We also let Pa+`(z) = P0,`(z) = U(ω`z)
and Pa+N+` = P∞,`(z) = V(ω`z) for any ` ∈ {1, . . . , N}. Then with the notation of the
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introduction we have R(Y0,`) = R0,`(z), R(Y∞,`) = R∞,`(z), and R(Yω` ) = Rω` (z) for any
` ∈ {1, . . . ,N}.

Since Pa is not the zero polynomial, we have Rω` (z) , 0 for any `; the C-linear
independence of R0,1(z), . . . , R0,N(z) (respectively of R∞,1(z), . . . , R∞,N(z)) follows
directly (respectively up to changing z to 1/z) from the following lemma, which is
not difficult to prove using monodromy (see [28]).

Lemma 4.3. Functions 1 and Li j(ω`z), for j ≥ 1 and 1 ≤ ` ≤ N, are linearly
independent over C(z).

Equations (4.17)–(4.19) yield ord0(R0,`(z)) ≥ (r + 1)n + 1, ord∞(R∞,`(z)) ≥ rn + 1,
and ordω` (Rω` (z)) ≥ d0 − 1 for any ` ∈ {1, . . . ,N}, so that∑

σ∈Σ

∑
j∈Jσ

ordσR j(z)≥ (2r + 1)Nn + N(d0 + 1) = (n + 1)q − nN − τ

with τ = N − a(N − 1);

here q = a + 2N, and we recall that d0 = − deg F = a(n/N + 1) − 2rn. This number τ is
exactly the difference between the number of unknowns and the number of equations
computed after Equation (4.19).

Now for any k ≥ 1 and any ` ∈ {1, . . . ,N} we let

Pk,0,` = ω`(k−1)Uk(ω`z) and Pk,∞,` = ω`(k−1)Vk(ω`z), (4.20)

and

Pk = t(Pk,1, Pk,2, . . . , Pk,a, Pk,0,1, . . . , Pk,0,N , Pk,∞,1, . . . , Pk,∞,N) ∈ Mq,1(C(z)),

so that P1 = t(P1, . . . , Pa+2N). Then it is not difficult to check that

Pk =

( d
dz

+ tA
)k−1

P1.

To illustrate this equality, we notice that Equation (4.16) yields

R(k−1)
0,` = Pk,0,`(z) +

a∑
j=1

Pk, j(z)(−1) jLi j(ω`z)

and

R(k−1)
∞,`

= Pk,∞,`(z) +

a∑
j=1

Pk, j(z)Li j

( 1
ω`z

)
since (as in [25, Ch. 3, Section 4])

S (k−1)
0 = Uk(z) +

a∑
j=1

Pk, j(z)(−1) jLi j(z)

and

S (k−1)
∞ = Vk(z) +

a∑
j=1

Pk, j(z)Li j(1/z).
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Provided n is large enough, we have checked all assumptions of Theorem 1.2 (using,
among others, Equation (4.10)). We apply this result with α = z0; recall that z0 ∈

{1, eiπ/N}. In the case z0 = 1, we obtain positive integers k2 < · · · < kq < τ + c2 ≤ c2 + 1
such that the matrix with columns Pk2 (1), . . . ,Pkq (1) has rank q − 1. Now Pk,1(1) = 0
for any k ≤ c2 (using Equation (4.10) since n is large enough) so that the first row
of this matrix is identically zero. Removing this row yields the following invertible
matrix (with z0 = 1 and i0 = 2):

[zk j−1
0 Pk j,i(z0)]i0≤i≤a,i0≤ j≤q

[zk j−1
0 Pk j,0,i(z0)]1≤i≤N,i0≤ j≤q

[zk j−1
0 Pk j,∞,i(z0)]1≤i≤N,i0≤ j≤q

 . (4.21)

If z0 = eiπ/N < Σ then Theorem 1.2 provides directly k1 < · · · < kq ≤ c2 such that the
matrix (4.21) with i0 = 1 is invertible.

Now Equation (4.11) with z = ω`z0 yields, since Uk,λ ∈ Q[zN , z−N]:

ω(k−1)`zk−1
0 Uk(ω`z0) =

N−1∑
λ=0

ω`λzλ0Uk,λ(z0) for any ` ∈ {1, . . . ,N}.

Therefore, we have for any λ ∈ {0, . . . ,N − 1}:

Uk,λ(z0) =
zk−1−λ

0

N

N∑
`=1

ω(k−1−λ)`Uk(ω`z0) =
zk−1−λ

0

N

N∑
`=1

ω−λ`Pk,0,`(z0) (4.22)

using Equation (4.20). Moreover, the same relation holds with Vk,λ and Pk,∞,` for
λ ∈ {0, . . . ,N − 1}. We recall that sk,i was defined in Equation (4.15) (Section 4.3) by

sk,i = δnzk−1
0 Pk,i(z0) for 1 ≤ i ≤ a,

and

sk,a+1+λ = δn(Uk,λ(z0) + (−1)pVk,N−λ(z0)) for 0 ≤ λ ≤ N − 1.

For any λ ∈ {0, . . . ,N − 1} we deduce that

sk,a+1+λ =
δn

N
z−λ0

N∑
`=1

ω−λ`zk−1
0 Pk,0,`(z0) ± (−1)p δn

N
z−N+λ

0

N∑
`=1

ωλ`zk−1
0 Pk,∞,`(z0)

where ± is + if 1 ≤ λ ≤ N − 1, and zN
0 if λ = 0; indeed Vk,N = Vk,0 satisfies the equation

analogous to Equation (4.22) with λ = 0, but not with λ = N if z0 = eiπ/N .
Let M = [mi, j]i0≤i≤a+N,i0≤ j≤a+2N be the matrix defined by:

mi,i = δn for any i ∈ {i0, . . . , a},

ma+1+λ,a+` =
δn

N
z−λ0 ω−λ` for any λ ∈ {0, . . . ,N − 1} and any ` ∈ {1, . . . ,N},

ma+1+λ,a+N+` =±(−1)p δn

N
z−N+λ

0 ωλ` for any λ ∈ {0, . . . ,N − 1}

and any ` ∈ {1, . . . ,N},
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and all other coefficients are zero. Then M has rank a + N + 1 − i0; denoting by
P ∈ GLa+2N+1−i0 (C) the matrix (4.21), the matrix MP has rank a + N + 1 − i0. Now
MP is exactly the matrix [sk j,i]i0≤i, j≤a+N . This concludes the proof of Lemma 4.2.

4.5. Arithmetic and asymptotic properties. In this section we prove the following
result, used in the proof of Theorem 4.1; see Section 4.2 for the notation.

Proposition 4.4. Let

α = ea4a/N−r(N + 1)2r+2r−a/N+4r+2 and β = (2eN)a/N(rN + 1)2r+2.

Then we have sk,i ∈ Z for any i ∈ {1, . . . , a + N} and any k ≤ d0 − 1, and as n→∞:∣∣∣∣ a+N∑
i=i0

sk,iξ
′
i

∣∣∣∣ ≤ αn(1+o(1)), max
1≤i≤a+N

|sk,i| ≤ β
n(1+o(1)).

In this proposition and throughout this section, we denote by o(1) any sequence that
tends to 0 as n→∞; it usually depends also on a, r, N, and k. When Proposition 4.4 is
applied in the proof of Theorem 4.1 (see Section 4.2), this dependence is not a problem
since a, r, N are fixed parameters and k is bounded from above by c2. At last we recall
that dn is the least common multiple of 1, 2, . . . , n, and that

δn = (Ndn)aNan/N .

Let us start with a lemma, in which (as in Section 4.3)

F(t) = (n/N)!a−2rN (t − rn)rn(t + n + 1)rn∏n/N
h=0(t + Nh)a

=

n/N∑
h=0

a∑
j=1

p j,h

(t + Nh) j .

Lemma 4.5. For any j ∈ {1, . . . , a} and any h ∈ {0, . . . , n/N},

(Ndn/N)a− jNan/N p j,h ∈ Z (4.23)

and
|p j,h| ≤ ((2/N)a/N(rN + 1)2r+2)n(1+o(1)) (4.24)

where o(1) is a sequence that tends to 0 as n→∞ and may depend also on N, a, and
r.

Proof of Lemma 4.5. We follow the approach of [12] and [7] by letting

F0(t) =
(n/N)!∏n/N

h=0(t + Nh)
=

n/N∑
h=0

(−1)hN−n/N( n/N
h

)
t + Nh

,

Gi(t) =
(t − in/N)n/N∏n/N

h=0(t + Nh)
=

n/N∑
h=0

(−1)h+n/N N−n/N( n/N
h

)( Nh + in/N
n/N

)
t + Nh

for 1 ≤ i ≤ rN,

Hi(t) =
(t + 1 + in/N)n/N∏n/N

h=0(t + Nh)
=

n/N∑
h=0

(−1)hN−n/N( n/N
h

)(
−Nh + (i + 1)n/N

n/N

)
t + Nh

for N ≤ i ≤ (r + 1)N − 1.
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Then the partial fraction expansion of F = Fa−2rN
0 G1 . . .GrN HN . . .H(r+1)N−1 can be

obtained my multiplying those of F0, Gi, and Hi using repeatedly the formula

1
(t + Nh)(t + Nh′)`

=
1

N`(h′ − h)`(t + Nh)
−

∑̀
i=1

1
N`+1−i(h′ − h)`+1−i(t + Nh′)i

with h , h′. The denominator of p j,h comes both from this formula (and this
contribution divides (Ndn/N)a− j) and from the denominators of the coefficients in the
partial fraction expansions of F0, Gi, Hi (which belong to N−n/NZ, so that Nan/N

accounts for this contribution). This concludes the proof of (4.23).
On the other hand, bounding from above the coefficients of the partial fraction

expansions of F0, Gi, Hi yields

|p j,h| ≤ nO(1)N−an/N2an/N
rN∏
i=1

(n + in/N)!
(n/N)!(n + (i − 1)n/N)!

(r+1)N−1∏
i=N

((i + 1)n/N)!
(n/N)!(in/N)!

where O(1) is a constant depending only on a, r, N which can be made explicit (see [7]
for details). Simplifying the products and using the bound m!/m1! . . .mc! ≤ cm valid
when m1 + · · · + mc = m, one obtains

|p j,h| ≤ nO(1)(2/N)an/N
( ((r + 1)n)!
n!(n/N)!rN

)2
≤ nO(1)(2/N)an/N(rN + 1)2(r+1)n.

This concludes the proof of Lemma 4.5.

Proof of Proposition 4.4. Let H(P) denote the exponential height of a polynomial
P ∈ C[X], that is the maximum modulus of a coefficient of P. Recall that
P j(z) =

∑n/N
h=0 p j,hzNh, U(z) = −

∑n
t=1 zt ∑a

j=1
∑b(t−1)/Nc

h=0 (p j,h/(t − Nh) j) and V(z) =

−
∑n−1

t=0 zt ∑a
j=1

∑n/N
h=d(t+1)/Ne (p j,h/(Nh − t) j). Using Lemma 4.5 we see that these

polynomials have coefficients in δ−1
n Z and height less than Hn for some Hn ≤

((2/N)a/N(rN + 1)2r+2)n(1+o(1)). Now let P̃k, j = zk−1Pk, j for any k, j. Then the recurrence
relation (4.5) yields

P̃k, j = zP̃′k−1, j − (k − 2)P̃k−1, j − P̃k−1, j+1

where P̃k−1, j+1 = 0 if j = a, so that P̃k, j is a polynomial of degree at most n, with
coefficients in δ−1

n Z and height H(P̃k, j) ≤ (n + 1)k−1Hn, by induction on k.
In the same way, letting Ũk = zk−1Uk, Equation (4.6) yields

Ũk = zŨ′k−1 − (k − 2)Ũk−1 − zQk−1

where Qk−1 = 1/1 − zP̃k−1,1. Provided k ≤ d0 − 1, Equation (4.10) asserts that
Pk−1,1(1) = 0 so that Qk−1 is a polynomial and H(Qk−1) ≤ nH(Pk−1,1) ≤ (n)k−1Hn. By
induction on k ≤ d0 − 1, we deduce that Ũk is a polynomial of degree at most n,
with coefficients in δ−1

n Z and height H(Ũk) ≤ k(n)k−1Hn. Now Equation (4.11) reads
Ũk(z) =

∑N
λ=1 zλ−1Uk,λ(z) with Uk,λ ∈ Q[zN , z−N]. If k ≤ d0 − 1 then Uk,λ belongs to
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Q[zN], has degree at most n (as a polynomial in z), coefficients in δ−1
n Z and height

H(Uk,λ) ≤ k(n)k−1Hn.
Proceeding in the same way, it is not difficult to prove that the same properties hold

for Vk,λ. This implies immediately that sk,i ∈ Z, and (since dn = en(1+o(1))) the upper
bound on |sk,i| in Proposition 4.4.

To prove that |
∑a+N

i=i0 sk,iξ
′
i | ≤ α

n(1+o(1)), we recall that d0 = −deg F and write, as
|t| → ∞:

F(t) =
∑
d=d0

Ad

td where Ad =

a∑
j=1

n/N∑
h=0

(−Nh)d− j
(d − 1
d − j

)
p j,h

since (t + Nh)− j =
∑∞
`=0

( ` + j − 1
`

)
(−Nh)`t− j−` (see [10, page 1378]). Lemma 4.5 provides

a positive real number An ≤ ((2/N)a/N(rN + 1)2r+2)n(1+o(1)) such that |Ad | ≤ (2n)dAn for
any d ≥ d0. Then we have for any t ∈ Z such that |t| ≥ 2n + 1:

|F(t)| ≤ An

∞∑
d=d0

(2n/t)d ≤ (2n + 1)An(2n/t)d0 .

For any z ∈ C such that |z| ≤ 1, and any k ≤ d0 − 1,

|S (k−1)
0 (z)|=

∣∣∣∣∣ ∞∑
t=(r+1)n+1

F(−t)(t − k + 2)k−1zt−k+1
∣∣∣∣∣ ≤ (2n + 1)An(2n)d0

∞∑
t=(r+1)n+1

tk−1−d0

≤ (2n + 1)An(2n)d0

∫ ∞

(r+1)n
tk−1−d0 dt ≤ (2n + 1)An2d0 nkrk−d0 .

Moreover, the same upper bound holds for S∞(z) =
∑∞

t=rn+1 F(t)z−t provided |z| ≥ 1.
Since

S (z) =

N∑
`=1

ω`µ`S 0(ω`z) + ω`νN−`S∞(ω`z)

and d0 = a(n/N + 1) − 2rn, we obtain |δnS (k−1)(1)| ≤ αn(1+o(1)) for any z ∈ C such that
|z| = 1, and any k ≤ d0 − 1; here the constant implied in o(1) may depend on k (but not
on n). This concludes the proof of Proposition 4.4.

4.6. Siegel’s linear independence criterion. The proofs of all linear independence
results in this paper rely on the following criterion, which is based on Siegel’s ideas
(see for instance [8, pages 81–82 and 215–216], [16, Section 3] or [15, Proposition
4.1]).

Proposition 4.6. Let θ1, . . . , θp be real numbers, not all zero. Let τ > 0, and (Qn) be
a sequence of real numbers with limit +∞. Let N be an infinite subset of N, and for
any n ∈ N let L(n) = [`(n)

i, j ]1≤i, j≤p be a matrix with integer coefficients and a nonzero
determinant, such that as n→∞ with n ∈ N:

max
1≤i, j≤p

|`(n)
i, j | ≤ Q1+o(1)

n
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and
max
1≤ j≤p

|`(n)
1, jθ1 + · · · + `(n)

p, jθp| ≤ Q−τ+o(1)
n .

Then,
dimQ SpanQ(θ1, . . . , θp) ≥ τ + 1.

In the proof of Theorem 4.1 we apply this proposition with Qn = βn and τ =

−logα/ log β (so that Q−τn = αn), where α and β are defined in Section 4.2;N is the set
of integer multiples of N.

Even though it is a classical result, let us recall the proof of Proposition 4.6. Let
d = dimQ SpanQ(θ1, . . . , θp), and F be a subspace of Rp defined over Q, of dimension
d, which contains the point (θ1, . . . , θp). Let n ∈ N be sufficiently large, and denote
by L(n)

j the linear form `(n)
1, jX1 + · · · + `(n)

p, jXp on Rp. Up to reordering L(n)
1 , . . . , L(n)

p ,

we may assume the restrictions of L(n)
1 , . . . , L(n)

d to F to be linearly independent linear
forms on F. Denoting by (u1, . . . , ud) an R-basis of F consisting in vectors of Zp, the
matrix [L(n)

j (ut)]1≤ j,t≤d has a nonzero integer determinant. Now (θ1, . . . , θp) is a linear
combination of u1, . . . , ud; the same linear combination of the columns has coefficients
less than Q−τ+o(1)

n in absolute value. Therefore, Qd−1−τ+o(1)
n is an upper bound on this

nonzero integer determinant: this concludes the proof of Proposition 4.6.
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[27] V. N. Sorokin, ‘Apéry’s theorem’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math.

Bull.] 53(3) (1998), 48–53 [48–52].
[28] G. Wechsung, ‘Functional equations of hyperlogarithms’, in: Structural Properties of

Polylogarithms, Mathematics Surveys and Monographs, 37 (ed. L. Lewin) (American
Mathematical Society, 1991), 171–184.

[29] W. Zudilin, ‘Lower bounds for polynomials in the values of certain entire functions’, Mat. Sbornik
[Sb. Math.] 187(12) (1996), 57–86 [1791–1818].

STÉPHANE FISCHLER, Laboratoire de Mathématiques d’Orsay,
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