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Hilbert’s 14th problem and Cox rings

Ana-Maria Castravet and Jenia Tevelev

Abstract

Our main result is the description of generators of the total coordinate ring of the blow-up
of Pn in any number of points that lie on a rational normal curve. As a corollary we show
that the algebra of invariants of the action of a two-dimensional vector group introduced
by Nagata is finitely generated by certain explicit determinants. We also prove the finite
generation of the algebras of invariants of actions of vector groups related to T-shaped
Dynkin diagrams introduced by Mukai.

1. Introduction

Hilbert’s 14th problem that we discuss is the following question: If an algebraic group G acts linearly
on a polynomial algebra S, is the algebra of invariants SG finitely generated? The answer is known
to be affirmative if G is reductive (see [Hil90]) and if G is the simplest nonreductive group Ga

(see [Wei32]). However, in general the answer is negative – the first counterexample was found by
Nagata in 1958. Let

G = Gg
a ⊂ Gr

a (1.1)
be a general linear subspace of codimension at least 3. Consider the following linear action of Gr

a

on S := C[x1, . . . , xr, y1, . . . , yr]: an element (t1, . . . , tr) ∈ Gr
a acts by

xi �→ xi, yi �→ yi + tixi, 1 � i � r.

The induced action of G on S is called the Nagata action. The algebra of invariants SG is not finitely
generated if g = 13 (see [Nag59]), g = 6 (see [Ste97]), and finally g = 3, r = 9 (see [Muk01]). Thus,
Hilbert’s 14th problem has a negative answer for G3

a. In [Muk01], Mukai asks what happens if g = 2.

Theorem 1.1. Assume without loss of generality that G = G2
a ⊂ Gn+3

a is a linear subspace spanned
by rows of the matrix [

1 1 . . . 1
a1 a2 . . . an+3

]
,

where a1, . . . , an+3 are general numbers. Then SG is generated by 2n+2 invariants

FI =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi1 xi2 . . . xi2k+1

ai1xi1 ai2xi2 . . . ai2k+1
xi2k+1

...
...

. . .
...

ak
i1
xi1 ak

i2
xi2 . . . ak

i2k+1
xi2k+1

yi1 yi2 . . . yi2k+1

ai1yi1 ai2yi2 . . . ai2k+1
yi2k+1

...
...

. . .
...

ak−1
i1

yi1 ak−1
i2

yi2 . . . ak−1
i2k+1

yi2k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.2)

where I = {i1, . . . , i2k+1} ⊂ {1, . . . , n+ 3} is any subset of odd cardinality 2k + 1.
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Of course, it is possible that the algebra of invariants of G2
a is not finitely generated for actions

more complicated than Nagata actions.
The ingenious insight of Nagata was to relate SG to a Cox ring. Let X be a projective algebraic

variety over C. Assume that divisors D1, . . . ,Dr freely generate the Picard group Pic(X). Then the
Cox ring of X is the multigraded ring

Cox(X) =
⊕

(m1,...,mr)∈Zr

H0(X,m1D1 + · · · +mrDr)

(the basis is necessary to introduce multiplication in a canonical way). This definition is a gen-
eralization of the total coordinate ring of a toric variety introduced by Cox [Cox95]. In fact,
Cox(X) is isomorphic to a polynomial ring if and only if X is a toric variety [HK00, Proposi-
tion 2.10]. For an arbitrary variety X, Hu and Keel [HK00, Proposition 2.9] proved that Cox(X) is
finitely generated if and only if X is a Mori dream space: (1) the cone of nef divisors is generated
by finitely many semi-ample line bundles, and (2) the cone of moving divisors (divisors whose base
locus is of codimension at least 2 in X) is the union of nef cones of small modifications of X,
i.e. varieties X ′ isomorphic to X in codimension 1.

In recent years, an explicit description of the ring Cox(X) has also proved useful for applications
in arithmetic algebraic geometry. Universal torsors were used for proving the Hasse principle and
weak approximation for certain Del Pezzo surfaces or for the counting of rational points of bounded
height [CS87, CSS87a, CSS87b, Bre02, HT04, Sal98, Hea03].

The relation to Nagata actions is as follows: If G is as in (1.1), by [Muk01] one has

SG � Cox(BlrPr−g−1),

where BlrPr−g−1 is the blow-up of Pr−g−1 at r distinct points. Using this isomorphism, Theorem 1.1
is equivalent to describing the Cox ring of a blow-up of Pn at n + 3 points. It is a well-known fact
that there is a unique rational normal curve C of degree n in Pn passing through n + 3 points in
general position. We generalize Theorem 1.1 as follows.

Theorem 1.2. Let C ⊂ Pn be a rational normal curve of degree n and let p1, . . . , pr be distinct
points on C, r � n + 3. Let X = Blp1,...,prP

n. Then Cox(X) is finitely generated by unique (up to
scalar) global sections of exceptional divisors E1, . . . , Er and divisors

E = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei (1.3)

for each subset I ⊂ {1, . . . , r}, |I| = n + 2 − 2k, 1 � k � 1 + n/2. Here H is the pull-back of the
hyperplane class in Pn.

Geometrically, the divisors (1.3) are proper transforms of the following hypersurfaces in Pn

[Har92, Example 9.6]. If I is empty then (1.3) is the (n/2)-secant variety of C. More generally, if
πI : Pn ��� P2k−2 is the projection from the linear subspace spanned by the points pi, i ∈ I, and
C ′ = πI(C), then C ′ is a rational normal curve of degree 2k − 2 and (1.3) is the cone over the
(k − 1)-secant variety of C ′.

An obvious generalization of Theorem 1.2 would be to consider the Cox ring of the iterated
blow-up of Pn along points, lines connecting them, 2-planes, etc. A special case of this construction
is M0,n, the Grothendieck–Knudsen moduli space of stable n-pointed rational curves. If the Cox
ring of M0,n is finitely generated, then results of [HK00] and [KM97] almost imply the ‘Fulton
conjecture’ for M0,n and therefore the description of the Mori cone of Mg,n (Gibney–Keel–Morrison
[GKM01]).

Following Mukai [Muk04], we also generalize Theorem 1.1 in a different direction. Let Ta,b,c be
the T-shaped tree with legs of length a, b, and c with a+ b+ c− 2 vertices. We assume that a, c � 2
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and if c = 2 then a > 2. Let

Xa,b,c = Blb+c(Pc−1)a−1

be the blow-up of (Pc−1)a−1 in r = b+c points in general position. The effective cone Eff(Xa,b,c) is the
set of effective divisors in Pic(Xa,b,c). Mukai proves in [Muk04] that if Ta,b,c is not a Dynkin diagram
of a finite root system then Eff(Xa,b,c) is not a finitely generated semigroup and therefore Cox(Xa,b,c)
is not a finitely generated algebra. Mukai also shows in [Muk04] that the Cox algebra of any Xa,b,c

is isomorphic to the algebra of invariants of a certain ‘extended Nagata action’. From Theorem 1.2,
using a trick from commutative algebra, we deduce the following theorem.

Theorem 1.3. The following statements are equivalent:

(i) Cox(Xa,b,c) is a finitely generated algebra;

(ii) Eff(Xa,b,c) is a finitely generated semigroup;

(iii) Ta,b,c is a Dynkin diagram of a finite root system;

(iv)
1
a

+
1
b

+
1
c
> 1.

Moreover, in these cases consider Z = Proj(Cox(X)) with respect to the natural Z-grading of
Cox(X) defined in (3.4). Then Z is a locally factorial, Cohen–Macaulay, and Gorenstein scheme with
rational singularities. The Picard group Pic(Z) = Z is generated by OZ(1) and the anticanonical
class is −KZ = OZ(d), where

d = abc

(
1
a

+
1
b

+
1
c
− 1

)
> 0.

The proof of the ‘moreover’ part is exactly the same as Popov’s proof [Pop04] of the analogous
statement for Del Pezzo surfaces (or X2,s−3,3 in our notation). We only sketch it for the reader’s
convenience.

Explicitly, Theorem 1.3 includes the following cases. Mukai [Muk04] shows that Xa,b,c is a small
modification of Xc,b,a, so we assume that a � c (if X ′ is a small modification of X then of course
Pic(X) ∼= Pic(X ′), Eff(X) ∼= Eff(X ′), and Cox(X) ∼= Cox(X ′)).

(i) X2,2,n+1 = Bln+3(Pn).

(ii) X2,3,4 = Bl7P3, X2,3,5 = Bl8P4.

(iii) X3,2,3 = Bl5(P2)2, X3,2,4 = Bl6(P3)2, X3,2,5 = Bl7(P4)2.

(iv) Xs+1,1,n+1 = Bln+2(Pn)s. This case is well known; see Remark 3.9.

(v) Del Pezzo surfaces X2,s−3,3 = BlsP2, s = 4, 5, 6, 7, 8. In this case the finite generation of the
Cox ring was proved by Batyrev and Popov [BP04].

We prove Theorems 1.1–1.3 in reverse order. In § 2 we describe the effective cone of Xa,b,c.
In § 3 we prove Theorem 1.3 (the finite generation of Cox(Xa,b,c)) in all cases, except for X2,3,4 and
X2,3,5, for which the proof relies on the cases n = 3 and n = 4 of Theorem 1.2. The latter is proved
in Section 4, which is the main section of the paper and is independent of the previous sections.
Theorem 1.1 is proved in § 5. In particular, we prove the finite generation of Cox(Bln+3P

n) twice.
First, we give a simple proof in the framework of Theorem 1.3. Second, we give an independent
proof of the much stronger Theorem 1.2 that gives explicit generators for this ring. It is crucial
for our proof to consider any number of points on a rational normal curve. For example, finding
generators for Cox(Bln+3P

n) relies on finding generators for the Cox ring of the blow-up of Pn−1 in
n+ 3 points lying on a rational normal curve, etc., up to the blow-up of P2 in n+ 3 points lying on
a conic. Our proof of Theorem 1.2 was inspired by the ‘whole-genome shotgun’ [VAM01] method
of genome sequencing that involves breaking the genome up into very small pieces, sequencing the
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pieces, and reassembling the pieces into the full genome sequence. This method has some advantages
(and disadvantages) over the ‘clone-by-clone’ approach that involves breaking the genome up into
relatively large chunks.

During the final stages of the preparation of this paper, Professor Shigeru Mukai sent us his
preprint [Muk05], where he proves that the Cox ring of X2,b,c is finitely generated when 1/2+1/b+
1/c > 1 by using a completely different approach based on results of S. Bauer about parabolic
bundles on curves.

2. Root systems and effective cones

From now on we assume that Ta,b,c is a Dynkin diagram of a finite root system. It is well known
that this is equivalent to 1/a+ 1/b + 1/c > 1. Let

X = Xa,b,c.

The Picard group Pic(X) is a free Z-module of rank a+ b+ c− 1 with a basis

H1, . . . ,Ha−1 and E1, . . . , Er,

where Hi is the pull-back of the hyperplane class from the ith factor of (Pc−1)a−1 and Ej is the
class of the exceptional divisor over pj, for j = 1, . . . , r, r = b + c. We call this basis tautological.
If a = 2 then we write H instead of H1 and make the appropriate modifications in all notations.
The anticanonical class of X is

−K = c(H1 + · · · +Ha−1) − (ac− a− c)(E1 + · · · + Er).

Following [Muk04], we define a symmetric bilinear form on Pic(X) as follows:

(Hi, Ej) = 0, (Hi,Hj) = (c− 1) − δi,j, (Ei, Ej) = −δi,j. (2.1)

The following lemma is a straightforward calculation.

Lemma 2.1 [Muk04]. Pic(X) has another Z-basis α1, . . . , αa+r−2, Er, where

α1 = E1 − E2, . . . , αr−1 = Er−1 − Er,

αr = H1 − E1 − · · · − Ec,

αr+1 = H1 −H2, . . . , αa+r−2 = Ha−2 −Ha−1.

Moreover, α1, . . . , αa+r−2 is a Z-basis of the orthogonal complement K⊥ and a system of simple
roots of a finite root system with a Dynkin diagram Ta,b,c.

Let W be the Weyl group generated by orthogonal reflections with respect to α1, . . . , αa+r−2.
Then K is W-invariant. Mukai calls D ⊂ X a (−1)-divisor if there is a small modification X ��� X ′

such that D is the exceptional divisor for a blow-up X ′ → Y at a smooth point. Note that any
(−1)-divisor must appear in any set of generators of Eff(X).

Lemma 2.2 [Muk04]. For each transformation w : Pic(X) → Pic(X) of W, there is a small mod-
ification X ��� Xw with the following property: Xw is also a blow-up of (Pc−1)a−1 in r = b + c
points q1, . . . , qr in general position and the pull-back of the tautological basis of Xw coincides with
the transformation of the tautological basis of X by w. In particular, every divisor E ∈ W ·Er is a
(−1)-divisor and H0(X,E) is spanned by a single section xE.

The proof is an application of Cremona transformations. The case a = 2 appeared in [Dol83]
(where it is attributed to Coble). The case a = 2, c = 3 is well known from the theory of marked
Del Pezzo surfaces.
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Lemma 2.3. The action of W on Pic(X) preserves Eff(X).

Proof. Let D ∈ Pic(X) and w ∈ W. We claim that H0(X,D) � H0(X,w ·D). We have

D = d1H1 + · · · + da−1Ha−1 −m1E1 − · · · −mrEr.

Then H0(X,D) can be identified with the subspace of polynomial functions on (Cc)a−1 of multi-
degree (d1, . . . , da−1) vanishing to the order at most mi at the point pi. By Lemma 2.2, H0(X,w ·D)
has the same interpretation for another choice of general points q1, . . . , qr. Now the claim follows
from semi-continuity if the points p1, . . . , pr are sufficiently general.

Let EffR(X) ⊂ Pic(X) ⊗ R be the cone spanned by Eff(X). Let N1(X) be the group generated
over Z by 1-cycles on X modulo rational equivalence. Intersection of cycles gives a nondegenerate
pairing Pic(X)×N1(X) → Z. For i = 1, . . . , a−1, let li ∈ N1(X) be the class of the proper transform
of a general line in the ith copy of Pc−1. For i = 1, . . . , r, let ei ∈ N1(X) be the class of a general
line in Ei. Then it is easy to check that

Hi · lj = δi,j , Hi · ej = 0, Ei · ej = δi,j . (2.2)

Since the intersection pairing is nondegenerate, it follows that N1(X) is generated over Z by the
classes l1, . . . , la−1, e1, . . . , er. The action of W on Pic(X) induces an action on N1(X).

A class γ in N1(X) is called nef if, for any effective divisor D on X, D · γ � 0.

Lemma 2.4. The classes li, l1 + · · · + la−1 − ei are nef, for all i = 1, . . . , r.

Proof. Note that if a family of curves with class f covers X (i.e. through a general point of X there
is an irreducible curve in the family that passes through it), then f is a nef class: if D is an effective
divisor, there is an irreducible curve in the family that is not contained in D, therefore, D · f � 0.
This is obviously the case if f = li. If f = l1 + · · ·+ la−1 − ei, then f is the proper transform in X of
a curve of multidegree (1, . . . , 1) in (Pc−1)a−1 that passes through the point pi. This family contains
an irreducible curve by Bertini’s theorem and we can use the 2-transitive action of (PGLc)a−1 on
(Pc−1)a−1 to find a curve through any point.

Definition 2.5. Define the degree of D ∈ Pic(X) as an integer

deg(D) =
1

ac− a− c
(D,−K).

Clearly, deg(D) is W-invariant and any divisor in the orbit W ·Er has degree 1.

Definition 2.6. Let ga,b,c be a semisimple Lie algebra with the Dynkin diagram Ta,b,c.
Let Λ ⊂ K⊥ ⊗ Q be the weight lattice spanned by fundamental weights ω1, . . . , ωa+r−2 defined by
(ωi, αj) = δi,j . For any ω ∈ Λ, let Lω be an irreducible ga,b,c-module with the highest weight ω
(see for example [VO90]). Then Lω is called minuscule if weights W · ω are its only weights.
Let π : Pic(X) → K⊥ ⊗ Q denote the orthogonal projection.

Theorem 2.7. Eff(X) is generated as a semigroup by divisors of degree 1. EffR(X) is generated as
a cone by D ∈ W · Er. Projection π induces a bijection between divisors of degree 1 and weights
of Lωr−1 such that divisors in W · Er correspond to weights in W · ωr−1. In particular, Lωr−1 is
minuscule if and only if the only effective divisors of degree 1 are D ∈ W ·Er.

Remark 2.8. The classification of minuscule representations is well known. The only arising cases
are

Bln+3P
n, Bln+2(Pn)s, and BlsP2 (s = 4, 5, 6, 7).
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If X = Bln+3Pn then Lωr−1 is a halfspinor representation of so2n+6. Here is another example: let
X = X2,3,3 be the blow-up of P2 in six general points, i.e. a smooth cubic surface. Divisors of
degree 1 are the 27 lines. The corresponding minuscule representation Lωr−1 is the 27-dimensional
representation of E6 as a Lie algebra of infinitesimal norm similarities of the exceptional Jordan
algebra.

Proof of Theorem 2.7. Let Γk be the intersection of the convex hull of W · (kEr) with Eff(X) and
let Γ ⊂ Pic(X) ⊗ R be the cone spanned by Γ1. Since π(Er) = ωr−1 and any element of K⊥ is
an integral combination of roots, it follows from the basic representation theory of semisimple Lie
algebras [VO90] that π(Γk) is the set of weights of an irreducible g-module Lkωr−1 with the highest
weight kωr−1. Since Lkωr−1 ⊂ L⊗k

ωr−1
(Lkωr−1 is the so-called Cartan component of L⊗k

ωr−1
), any weight

in π(Γk) is a sum of k weights from π(Γ1), and therefore any divisor in Γk is a sum of k divisors
from Γ1. It follows that Eff(X) ∩ Γ is generated by Γ1 as a semigroup.

It remains to show that Eff(X)R ⊂ Γ. We will find all faces of Γ and show that the inequalities
that define them are satisfied by any effective divisor.

By Lemma 2.3, it suffices to find faces of Γ adjacent to the ray spanned by Er up to the action
of the stabilizer of Er in W. The algorithm for finding faces of these so-called Coxeter polytopes
is explained, for example, in [Cas97, p. 9]. They are in one-to-one correspondence with connected
maximal subdiagrams of Ta,b,c that contain the support of the highest weight, i.e. the node that
corresponds to the simple root αr−1 in our case. There are two types of such diagrams given by
roots:

(1) α2, α3, . . . , αa+r−2;
(2) α1, α2, . . . , αa+r−3.

For each subdiagram, the linear span of the corresponding face is spanned by simple roots in the
subdiagram and by Er.

Using formulas (2.2), any face of Γ is given (up to the action of W) by inequality

D · f � 0, (2.3)

where

(1) f = l1 + · · · + la−1 − e1;
(2) f = la−1.

By Lemma 2.4, the class f is nef. Hence, for any D effective, D · f � 0. We conclude that (2.3) is,
in fact, satisfied by any effective divisor and EffR(X) = Γ.

3. Proof of Theorem 1.3

The following is a direct generalization from [BP04, Proposition 4.4].

Proposition 3.1. Let π : X → X ′ be the blow-up of a smooth point. Let E ⊂ X be an excep-
tional divisor, and let xE ∈ H0(X,E) ⊂ Cox(X) be the corresponding section. Then there is an
isomorphism of rings

Cox(X)xE
∼= Cox(X ′)[T, T−1].

Proof. Any divisor D ∈ Pic(X) can be uniquely written as D = D0 −mE, where D0 ∈ π∗Pic(X ′),
m ∈ Z. We identify Pic(X ′) with π∗Pic(X ′) ⊂ Pic(X) and Cox(X ′) with π∗Cox(X ′) ⊂ Cox(X).
The latter embedding extends to a ring homomorphism

Cox(X ′)[T, T−1] → Cox(X)xE

by sending T to xE . We show that this is an isomorphism by constructing an inverse to it.
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If m � 0 and s is a section in H0(X,D), then let s0 = s · xm
E ∈ H0(X ′,D0). Define a map

H0(X,D) → H0(X ′,D0)T−m, s �→ s0T
−m.

If m < 0 then the canonical inclusion H0(X,D0) ↪→ H0(X,D) is an isomorphism. To see this,
note that for any i � 0 there is an exact sequence

0 → H0(X,D0 + iE) → H0(X,D0 + (i+ 1)E) → H0(E, (D0 + (i+ 1)E)|E) = 0,

where the last equality follows from

O(D0)|E = OE and O(E)|E = OE(−1).

Define a map H0(X,D) → H0(X ′,D0)T−m in the same way, by sending s to s0 · T−m, where
s ∈ H0(X,D) is the image of a section s0 ∈ H0(X,D0). This gives a map Cox(X) → Cox(X ′)[T, T−1]
which maps xE to T . One can check directly that this is a ring homomorphism. The induced map
Cox(X)xE

→ Cox(X ′)[T, T−1] is the desired inverse.

Notation 3.2. In this section,

X = Xa,b,c.

Proposition 3.3. Cox(X) is a unique factorization domain (UFD).

Proof. The Cox ring of a normal projective variety is known to be a UFD [EKW04]. We can also
use a simple observation: the ring of invariants of a UFD with respect to the action of a connected
algebraic group without nontrivial characters is a UFD (see [PV94]). By [Muk04], Cox(X) is a ring
of invariants of an extended Nagata action.

Definition 3.4. We define a Z-grading of Cox(X) by deg(s) = deg(D) for any s ∈ H0(X,D).
In particular, deg(xE) = 1 for any E ∈ W · Er.

Definition 3.5. Let Cox′(X) ⊂ Cox(X) be a subalgebra generated by sections xE, for E ∈ W ·Er.
We say that Cox(X) is minuscule if Cox(X) = Cox′(X).

Definition 3.6. Let P(X) = Proj(Cox(X)), A(X) = Spec(Cox(X)), and Z = Proj(Cox′(X)),
where Cox(X) and Cox′(X) are considered with their Z-grading as in Definition 3.4 (we will show
that in fact Z ∼= P(X)).

Inspecting the list of all possible Xa,b,c given in § 1, we see that Xa,b−1,c is contained in the
following list:

(i) Xs+1,1,n+1 = Bln+2(Pn)s. This variety is minuscule; see Remark 3.9;

(ii) Del Pezzo surfaces X2,s−3,3 = BlsP2, s = 4, 5, 6, 7. In this case Cox(X) is minuscule by a
theorem of Batyrev and Popov [BP04];

(iii) X2,2,4 = Bl6(P3), X2,2,5 = Bl7(P4). These varieties are also minuscule by our Theorem 1.1
(which will be proved later).

Therefore, Xa,b−1,c is minuscule in all cases.
Let R = Cox(X), R′ = Cox′(X), and R0 = Cox(Xa,b−1,c). Let Q be the field of fractions of R.

We claim that R is contained in all the localizations R′
xE

⊂ Q. By Lemma 2.2, there is a small
modification X̃ of X isomorphic to Blr(Pc−1)a−1, the blow-up of (Pc−1)a−1 in r = b + c points
q1, . . . , qr in general position, such that the pull-back of E is contracted to qr. By Proposition 3.1,
R ⊂ (R0)xE

. It remains to notice that R0 ⊂ R′ because R0 is minuscule.

Claim 3.7. We claim that R is integral over R′.
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Proof. This is a standard proof; see for example [Har77, p. 123]. Let z ∈ R be a homogeneous
element of a positive degree. To show that z is integral over R′, it suffices to find a faithful
R′[z]-module M finitely generated as an R′-module. Let M be the set of elements in R′ of
degree greater than N , where N has to be chosen adequately. Obviously, M is an R′[z]-module
if zM ⊂ R′. So choose N to be kn + 1, where k is the number of generators xi in R′, and n is the
maximum of integers ni such that zxni

i ∈ R′. Clearly, M is a finitely generated R′-module. Since R
is a domain, M is of course a faithful R′[z]-module.

It follows that R is integral over R′ and, therefore, R is finitely generated.
Now we prove the ‘moreover’ part of the theorem following Popov’s proof [Pop04] of the analo-

gous statement for Del Pezzo surfaces.
For each E ∈ W · Er consider the open chart UE(X) ⊂ Z given by xE 	= 0. These charts

cover Z. Let U ′
E(X) ⊂ P(X) be a chart given by xE 	= 0. Since R is integral over R′, it is easy

to see that the radical of the ideal of R generated by the xE is the irrelevant ideal. It follows that
charts U ′

E(X) cover P(X). Since R ⊂
⋂

E R
′
xE

, we have R′
xE

= RxE
for any E ∈ W · Er. It follows

that, in fact, UE(X) � U ′
E(X), the inclusion R′ ⊂ R induces an isomorphism φ : P(X) → Z, and

φ∗OZ(m) ∼= OP(X)(m). Moreover, it is true in general that, if a graded ring R is a UFD and the
irrelevant ideal is the radical of the ideal generated by degree 1 elements, then the Picard group of
Proj(R) is Z and it is generated by O(1).

It follows from Proposition 3.1 that UE(X) ∼= A(Xa,b−1,c) is factorial by Proposition 3.3.
Therefore, Z is locally factorial and, in particular, Z is normal.

Arguing by induction on b, we can assume that all statements of Theorem 1.3 are satisfied for
Y = Xa,b−1,c. Let W = P(Y ). Thus W is a Cohen–Macaulay and Gorenstein scheme with rational
singularities, Pic(W ) = Z is generated by OW (1) and the anticanonical line bundle ωW is ample.

Lemma 3.8. We have H i(W,O(k)) = 0 for i � 1, k � 0.

Proof. Notice that O(k) = ωW ⊗ L with L ample. Let π : W̃ → W be a resolution of singularities.
Then H i(W̃ , ωW̃ ⊗π∗(L)) = 0 by Kodaira vanishing because π∗(L) is big and nef. Now use the Leray
spectral sequence and the definition of rational singularities (Riπ∗ωW̃ = 0 for i > 0) to conclude
that H i(W,O(k)) = 0.

Since Y is minuscule, W is projectively normal in the projective embedding given by OW (1).
Note that UE(X) ∼= A(Y ) is an affine cone over Y . It follows that A(Y ) has rational singularities
by [KR87, Theorem 1] and therefore is Cohen–Macaulay [Kem73]. Since A(Y ) is factorial and
Cohen–Macaulay, it is Gorenstein [Eis95, Example 21.21].

It remains to calculate the anticanonical class of P(X). By [HK00], X is the GIT quotient
of A(X) for the action of the torus Hom(Pic(X),Gm) = Gr+1

m . Moreover, X is the GIT quotient of
P(X) for the induced action of Gr

m. Let U be the semistable locus in P(X). Note that there are
no strictly semistable points [HK00, Proposition 2.9]. It is easy to see by induction using charts
UE(X) that Gr

m acts on P(X) with connected stabilizers. By Luna’s étale slice theorem [MFK94,
p. 199], this implies that π : U → X is a principal étale fiber bundle. In particular, U is smooth.
By the general theory of Cox varieties [HK00, Proposition 2.9], P(X)\U has codimension at least 2
in P(X), and therefore Pic(U) ∼= Z{O(1)}. By the GIT, the pull-back map π∗ between the Picard
groups is the map given by degree: π∗(D) = deg(D).

It is enough to prove that KU = OU (−d). Let TX (respectively TU ) be the tangent sheaf of X
(respectively U). There is an exact sequence of locally free sheaves:

0 → Or
U → TU → π∗TX → 0
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(the relative tangent sheaf of a principal étale bundle is canonically a trivial bundle with fiber
isomorphic to the Lie algebra of Gr

m). Taking Chern classes, it follows that c1(TU ) = π∗(c1(TX));
hence, −KU = π∗(−KX) = O(d), where

d = deg(−KX) = abc

(
1
a

+
1
b

+
1
c
− 1

)
. �

Remark 3.9. Here we consider the case of X = Xs+1,1,n+1 = Bln+2(Pn)s. Then it is well known and
easy to check that X is the GIT quotient of the Grassmannian G(s + 1, n + s+ 2). It follows from
[HK00] that Cox(X) is isomorphic to the total coordinate ring of G(s+1, n+s+2) which is generated
by the

(n+s+2
s+1

)
Plücker coordinates. On the other hand, the orbit W · Er in this case consists of

precisely
(
n+s+2

s+1

)
divisors, the dimension of the minuscule representation of gs+1,1,n+1 = sln+s+2 in

Lωn = Λs+1Cn+s+2. It follows that Cox(X) is minuscule.

4. Proof of Theorem 1.2

Notation 4.1. Let X = BlrPn be the blow-up of Pn at r distinct points p1, . . . , pr (r � n+ 3) that
lie on a rational normal curve C of degree n. Let E1, . . . , Er be the exceptional divisors and H the
hyperplane class. Let

α = r − n− 2.
Let C̃ be the proper transform of C on X.

Lemma 4.2. Let D ⊂ Pn be a hypersurface of degree d that contains C with multiplicity m. If D
has multiplicity mi at pi, i = 1, . . . , r, then one has:

m �
∑r

i=1mi − nd

α
.

Proof. Recall that the multiplicity of a divisor along a curve is the multiplicity at a general point
of a curve. Let D̃ be the proper transform of D on X. Let π′ : X ′ → X be the blow-up of X
along C̃ and let E be the exceptional divisor. Then E ∼= P(NC̃|X), where NC̃|X is the normal bundle
of C̃ in X. One has

NC|Pn
∼= O(n+ 2)⊕(n−1),

and therefore

NC̃|X ∼= π∗NC|Pn ⊗OX(−E1 − · · · − Er) ∼= O(n+ 2)⊕(n−1) ⊗O(−r) ∼= O(−α)⊕(n−1).

It follows that E ∼= P1 × Pn−2. Let

q1 : P1 × Pn−2 → P1, q2 : P1 × Pn−2 → Pn−2

be the two projections. Then O(E)|E ∼= q∗1O(−α) ⊗ q∗2O(−1).

Let D′ be the proper transform of D̃ on X ′. Then π′∗D̃ = D′ +mE. Denote

a = −D̃.C̃ =
r∑

i=1

mi − nd.

Note that π′∗OX(D̃)|E = q∗1O(−a). Since OX′(D′)|E = q∗1O(−a+mα) ⊗ q∗2O(m) is an effective
divisor on E, it follows that −a+mα � 0. Hence, m � a/α.

Lemma 4.3. Consider the divisor (1.3) on X. Then E is the proper transform of a unique hyper-
surface of degree k in Pn that has multiplicity k at any pi with i ∈ I and k − 1 at all other points
of C. In particular, H0(X,E) ∼= C and E − Ei is not effective for any i = 1, . . . , r.
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Proof. Let J ⊂ Ic be any subset with |J | = 2k + 1. The divisor

E′ = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈J

Ei

is an effective divisor of degree 1 on the blow-up Bln+3P
n of Pn along the points pi for i ∈ I ∪ J .

It follows that h0(X,E′) = 1 and, for any i ∈ I ∪ J , the divisor E − Ei is not effective. It follows
that E is the proper transform of a unique hypersurface Z of degree k in Pn such that

multpiZ = k (i ∈ I) and multpiZ = k − 1 (i ∈ J).

Since Z is the image of E, and therefore does not depend on the choice of J , we have multpiZ = k−1
for any i ∈ Ic. If p is a point on C different from p1, . . . , pr, consider the variety Blr+1Pn that is
the blow-up of X at p. Let Er+1 be the exceptional divisor. By applying the same argument to the
divisor E − (k − 1)Er+1 on Blr+1P

n, it follows that the multiplicity of Z at p is exactly k − 1.

Definition 4.4. We call the divisors E in (1.3) minimal divisors on BlrPn. We call an element in
Cox(X) a distinguished section if it is a monomial in the sections xE ∈ H0(X,E), where E is either
a minimal divisor on X or an exceptional divisor Ei. The ring Cox(X) is minuscule if it is generated
by distinguished sections.

We prove that Cox(X) is minuscule by induction on n and r. Theorem 4.23 proves this for n = 2.
Assume from now on that n � 3.

Definition 4.5. Let

D = dH −
r∑

i=1

miEi (4.1)

be any divisor on X. We call d the H-degree of D, denoted by hdeg(D).

Notation 4.6. Consider the projection π1 : Pn ��� Pn−1 from p1 and let qi = π(pi) for i = 2, . . . , r.
Note that q2, . . . , qr lie on a rational normal curve π1(C) of degree n−1 in Pn−1. Let Y = Blr−1P

n−1

be the blow-up of Pn−1 at q2, . . . , qr. Let E2, . . . , Er be the exceptional divisors on Y and H the
hyperplane class. Consider the linear map Pic(X) → Pic(Y ) that maps (4.1) to

D̃ = m1H −
r∑

i=2

(mi +m1 − d)Ei. (4.2)

Lemma 4.7. If hdeg(D) = hdeg(D′) and D̃ = D̃′ then D = D′.

Proof. This is because, by (4.2), ∆̃ = 0 implies that ∆ = e(H −
∑r

i=1Ei), for some e ∈ Z. Hence,
if the H-degree of ∆ is 0, then ∆ = 0.

Lemma 4.8. There is a map r that makes the following diagram commutative.

H0(X,D) r ��

r′
��

H0(Y, D̃)

i
��

H0(E1,D|E1
) H0(Pn−1,O(m1))

Here r′ is the restriction map and i is the canonical injective map given by push-forward. For any
divisors D1, D2 on X and s1 ∈ H0(X,D1), s2 ∈ H0(X,D2), if D = D1 +D2, then

D̃ = D̃1 + D̃2, r(s1s2) = r(s1)r(s2).

Proof. We can identify E1 with the image of the projection π1 and view r′ as a map

r′ : H0(X,D) → H0(Pn−1,O(m1)) = H0(Y,m1H).
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Let xEi
be a generator for H0(Y,Ei) ∼= C. Note that if for some i = 2, . . . , r one has m1+mi−d > 0,

then the image of r′ lies in the linear subsystem

|m1H − (m1 +mi − d)Ei| ⊂ |m1H|
and therefore r′(s) is divisible by x−d+m1+mi

Ei
for any s ∈ H0(X,D). It follows that we can formally

define

r(s) = r′(s)
r∏

i=2

xd−m1−mi

Ei
.

The last statement of the lemma is clear.

Remark 4.9. The geometric interpretation for the map r is as follows. Let li,j be the proper transform
on X of the line in Pn joining the points pi and pj . Then q2, . . . , qr are the points on E1

∼= Pn−1 where
l1,2, l1,3, . . . , l1,n intersect E1. Let X̃ be the blow-up of X along l1,2, . . . , l1,n and let E1,2, . . . , E1,n be
the exceptional divisors. The normal bundleNli,j |X of li,j ∼= P1 in X is O(−1)⊕(n−1). The exceptional
divisors E1,j are given by:

E1,i
∼= P(Nli,j |X) ∼= li,j × Pn−2 ∼= P1 × Pn−2.

For any n � 3, there is morphism X̃ → X ′ that contracts all the divisors E1,i using the projection
onto Pn−2. There is an induced rational map ψ : X ��� X ′ that is an isomorphism in codimension 1.
Let E′

1 = ψ(E1). Then E′
1
∼= Y . In fact, the rational map X ��� Y is resolved by this flip and induces

a regular mapX ′ → Y that is a P1-bundle, with E′
1 as a section. IfD is a divisor onX, letD′ = ψ(D).

Using geometric arguments, one checks that on E′
1
∼= Y one has D′

|E′
1

= D̃ when D = H, H − E1,
Ei, for i = 2, . . . , r. Hence, the formula holds in general by linearity. Then r is the composition of
the isomorphism H0(X,D) ∼= H0(X ′,D′) with the restriction map H0(X,D′) → H0(E′

1,D
′
|E′

1
).

Notation 4.10. Let q = C̃ ∩ E1. Obviously, q ∈ π1(C). Let Y ′ = BlrPn−1 be the blow-up of Y at q
and let Eq be the exceptional divisor.

Lemma 4.11. Let E be a minimal divisor on X of H-degree k. Then E · (l − e1) is either 0 or 1.
In the first case, Ẽ is a minimal divisor on Y . In the second case, the divisor E′ = Ẽ − (k− 1)Eq is
minimal on Y ′, except when k = 1. In the latter case, one has:

E = H −
∑
i∈I

Ei, Ẽ =
∑
i∈Ic

Ei, I ⊂ {2, . . . , r}, |I| = n, |Ic| = α+ 1. (4.3)

Proof. In the first case,

E = kH − kE1 − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei, (4.4)

where I ⊂ {2, . . . , r}, |I| = n+ 1 − 2k, and

Ẽ = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei. (4.5)

In the second case
E = kH − (k − 1)E1 − k

∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei,

where I ⊂ {2, . . . , r}, |I| = n+ 2 − 2k, and

Ẽ = (k − 1)H − (k − 1)
∑
i∈I

Ei − (k − 2)
∑
i∈Ic

Ei. (4.6)
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Let s ∈ H0(Y, Ẽ) be the image of the section xE via the map r of Lemma 4.8. Let Z be the zero
locus of s. By Lemma 4.3, the divisor E has multiplicity k − 1 along C̃. Therefore,

multqZ = multqE ∩ E1 � multqE � multC̃E = k − 1.

It follows that the image of r is in each case contained in the push-forward of the linear system |E′|
on Y ′. Except in the second case when k = 1, E′ is minimal on Y ′.

We prove that H0(X,D) is generated by distinguished sections for any effective divisor D.

Claim 4.12. We may assume that 0 < m1 � m2 � · · · � mr.

Proof. Indeed, if mi � 0 for some i, then H0(X,D) ∼= H0(X,D0), where D0 = D+miEi is a divisor
on Blr−1P

n. The ring Cox(Blr−1P
n) is minuscule: this follows by Remark 3.9 if r = n + 3, and by

induction if r > n+ 3. Hence, H0(X,D0) is generated by distinguished sections.

Claim 4.13. It suffices to prove that any distinguished section in the image of

r : H0(X,D) → H0(Y, D̃)

can be lifted to a linear combination of distinguished sections.

Proof. Since Cox(Y ) is minuscule by induction and the kernel of r is H0(X,D − E1), we are then
reduced to showing that H0(X,D−E1) is generated by distinguished sections. If D−E1 is effective,
we may replace D with D − E1 and repeat the process. The process stops only when D − E1 is
not effective, in which case rE1 is an isomorphism onto its image. Since for any effective D, one has
D.(l − ei) = d−mi � 0, for all i, the process must stop.

Notation 4.14. We denote

m = max
{⌈∑r

i=1mi − nd

α

⌉
, 0

}
. (4.7)

Proposition 4.15. If m = 0, then r surjects onto H0(Y, D̃) and any distinguished section s ∈
H0(Y, D̃) can be lifted to a distinguished section.

Proof. The section s is a monomial in the sections corresponding to minimal divisors on Y and
sections xEi

, i = 2, . . . , r; hence, it corresponds to a decomposition

D̃ = S +
r∑

i=2

liEi, (4.8)

where li � 0 and S is a sum of minimal divisors on Y . Denote

β = d−m1 = D.(l − e1) � 0.

We now need the following lemma, before completing the proof.

Lemma 4.16. We have li � β and
∑r

i=2 li � (α+ 1)β.

Proof. For each k � 0, let ak � 0 be the number of minimal divisors of H-degree k that appear
in S. Since D̃ and S have the same H-degree,

m1 =
∑
k�1

kak.

By counting the number of the Ei on both sides of (4.8), one has the following formula:
r∑

i=2

li = (α+ 1)β +
(
nd−

r∑
i=1

mi

)
+ α

(
m1 −

∑
k�1

ak

)
. (4.9)
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Since m = 0 and

m1 =
∑
k�1

kak �
∑
k�1

ak,

it follows that
r∑

i=2

li � (α+ 1)β.

Finally,

d−mi = D̃.(l − ei) = S.(l − ei) + li � li,

and therefore

li � (d−mi) � (d−m1) = β.

We lift the minimal divisors (4.5) on Y to minimal divisors (4.4) on X of the same H-degree.
Let D0 be the divisor on X equal to the sum of the lifts of all terms of S. Hence, S = D̃0 and

hdeg(D) − hdeg(D0) = hdeg(D) − hdeg(D̃) = β. (4.10)

By Lemmas 4.16 and 4.17, we may lift
∑r

i=2 liEi to an effective divisor D1 on X, with
hdeg(D1) = β. Let D′ = D0 +D1. Then D′ has the same H-degree as D. Since D̃′ = D̃, it follows
from Lemma 4.7 that D = D′. By construction, there is a distinguished section t in H0(X,D) such
that r(t) = s. This completes the proof of Proposition 4.15.

Lemma 4.17. Consider the divisor
∑r

i=2 liEi on Y and assume that

li � β (i = 2, . . . , r),
r∑

i=2

li � (α+ 1)β.

Then we may lift
∑r

i=2 liEi to an effective divisor D1 on X with hdeg(D1) = β. Moreover, there is

a distinguished section t ∈ H0(X,D1) such that r(t) =
∏r

i=2 x
li
Ei

.

Proof. For all i = 2, . . . , r, we may write li = l′i + l′′i , for some l′i, l
′′
i � 0, such that 0 � l′i � β and∑r

i=2 l
′
i = (α+1)β. By partitioning

∑r
i=2 l

′
iEi into a sum of (α+1)-tuples of the form Ei1+· · ·+Eiα+1

(the precise procedure for the partitioning is explained in the proof of Lemma 4.24), we may lift∑r
i=2 l

′
iEi using (4.3) to a divisor D′

1 on X which is a sum of β ‘hyperplane classes’ H−
∑
Ei. Hence,

hdeg(D′
1) = β. Moreover, there is a distinguished section t′ ∈ H0(X,D′

1) such that r(t′) =
∏r

i=2 x
l′i
Ei

.
Let D1 = D′

1 +
∑r

i=2 l
′′
i Ei and t = t′

∏r
i=2 x

l′′i
Ei

. Since Ẽi = Ei and r(xEi) = xEi
, for all i = 2, . . . , r,

the lemma follows.

Proposition 4.18. Let m > 0. Then the image of r is the push-forward of H0(Y ′, D̃−mEq), and we
may lift any distinguished section s ∈ Hp(Y ′, D̃ −mEq) to a section t in the subspace of Hp(X,D)
generated by distinguished sections. By lift, here we mean that r(t) = s.xm

Eq
.

Proof. By Lemma 4.2, the multiplicity of D|E1
at q is at least m. Hence, the map r has image in

H0(Y ′, D̃ −mEq).
We need the following lemma before completing the proof.

Lemma 4.19. If E′ is a minimal divisor on Y ′ of H-degree k � 1, then the multiplicity at q of a
push-forward of E′ to Y is either:

(1) k − 1, or

(2) k.
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The push-forward is equal to Ẽ, where E is a minimal divisor on X of H-degree k in case (1) and
k + 1 in case (2).

Proof. We may lift E′ using (4.5) and (4.6) to a minimal divisor E on X by:

(1) E = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei, |I| = n+ 2 − 2k, 1 ∈ I;

(2) E = (k + 1)H − (k + 1)
∑
i∈I

Ei − k
∑
i∈Ic

Ei, |I| = n− 2k, 1 ∈ Ic.

Then r(xE) = xE′xk−1
Eq

in case (1) and r(xE) = xE′xk
Eq

in case (2).

Let S be the sum of the minimal divisors E′ on Y ′ whose sections xE′ appear in s. Then

D̃ −mEq = S +
r∑

i=2

liEi + aEq (4.11)

for some integers li, a � 0. Hence, the section s in H0(Y ′, D̃ −mEq) is of the form s′xa
Eq

, for s′ a
section in H0(Y ′, D̃− (a+m)Eq). So it is enough to show that we may lift sections s = s′xa

Eq
, with

s′ a distinguished section in H0(Y ′, D̃ − (a+m)Eq).
The above lifting Ẽ = E′ constructs a divisor D0 on X which lifts S, i.e. S = D̃0.

Notation 4.20. We denote

β = hdeg(D) − hdeg(D0).

If β = 0, from Lemma 4.7 and Ẽi = Ei and r(xEi) = xEi
, for all i = 2, . . . , r, it follows that

D = D0 +
∑r

i=2 liEi and we may lift s to a distinguished section in H0(X,D). For the general case,
it is enough to show that, by eventually rewriting s as a sum of distinguished sections in H0(Y, D̃)
corresponding to different decompositions of D̃−mEq, we may reduce to the case when li = l′i + l′′i ,
for some l′i, l

′′
i � 0, such that 0 � l′i � β and

∑r
i=2 l

′
i = (α + 1)β. Then we can finish the proof by

using Lemma 4.17.
For each k � 1, let ak � 0 (respectively bk � 0), be the number of divisors E′ as in case (1)

(respectively case (2)) of Lemma 4.19, whose sections xE′ appear in the monomial s (taken with
multiplicities). One has the following relations:

0 = hdeg(D̃) − hdeg(S) = m1 −
∑
k�1

kak −
∑
k�1

kbk; (4.12)

β = hdeg(D) − hdeg(D0) = d−
∑
k�1

kak −
∑
k�1

(k + 1)bk = d−m1 −
∑
k�1

bk. (4.13)

Note that by finding the coefficients of Eq on both sides of the expression in (4.11), one has the
following relation:

m+ a =
∑
k�1

(k − 1)ak +
∑
k�1

kbk. (4.14)

By counting the number of the Ei on both sides of (4.11) and using (4.12) and (4.14), one has
r∑

i=1

mi − nd = (α+ 1)β + (m+ a)α−
r∑

i=2

li. (4.15)

Claim 4.21. We may assume that a = 0 or
∑

k�1 bk = 0.
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Proof. Assume a > 0 and bk > 0, for some k � 1. Then the monomial s contains a section xE′ ,
where E′ is a minimal divisor of the form

E′ = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei − kEq,

where I ⊂ {2, . . . , r}, |I| = n− 2k. By Lemma 4.22, applied to the divisor E′ +Eq, we may replace
the section xE′xEq with a linear combination of sections of the form xE′′xEj

, where j ∈ {2, . . . , r}
and E′′ = E′ + Eq − Ej . Then E′′ is a minimal divisor as in case (1) of Lemma 4.19. Hence, we may
replace s with a linear combination of distinguished sections with smaller a and smaller

∑
k�1 bk.

Assume
∑
bk = 0. Then β = d −m1 � 0. It follows that β � li � 0, for all i = 2, . . . , r. This is

because one has from (4.11)

d−mi = D̃.(l − ei) = S.(l − ei) + li � li. (4.16)

Hence, li � d−mi � β, for all i = 2, . . . , r.
By definition (4.7), one has 0 � mα− (

∑r
i=1mi − nd). From (4.15) it follows that

(α+ 1)β �
r∑

i=2

li.

We are done by Lemma 4.17.

Assume a = 0. We show that in this case β � 0. By definition (4.7), one has 0 � mα−(
∑r

i=1mi−
nd) < α. From (4.15) it follows that

0 �
r∑

i=2

li − (α+ 1)β < α.

It follows that β � 0. We find l′i, l
′′
i � 0 such that li = l′i + l′′i and l′i � β, for all i = 2, . . . , r and∑r

i=2 l
′
i = (α+ 1)β. First, randomly choose l′i, l

′′
i with li = l′i + l′′i , l′i, l

′′
i � 0 and

∑r
i=2 l

′
i = (α+ 1)β.

We show that, by eventually replacing s with a linear combination of distinguished sections (with
smaller l′i), we may reduce to the case when l′i � β, for all i. First take the case when i ∈ {2, . . . , r}
is such that in S there is no minimal divisor E′ of the form

E′ = kH − kEi − k
∑
j∈I

Ej − (k − 1)
∑
j∈J

Ej − kEq, (4.17)

where I ⊂ {2, . . . , r}, i /∈ I and |I| = n − 1 − 2k, J = {2, . . . , r} \ ({i} ∪ I). We claim that li � β.
Since, in each E′ appearing in S, the divisor Ei appears with coefficient −(k − 1), one has

d−mi = D̃.(l − ei) = S.(l − ei) + li �
∑
k�1

bk + li.

It follows that li � (d−mi) −
∑

k�1 bk � β.
Assume now that i ∈ {2, . . . , r} is such that l′i > β. By the previous observation, S contains at

least one minimal divisor E′ of the form (4.17). By Lemma 4.22 applied to the divisor E′ + Ei, we
may replace the section xE′xEi

with a linear combination of sections of the form xE′′xEj
, where

j ∈ J and E′′ = E′ + Eq −Ej is a minimal divisor on Y ′. Moreover, we claim that we may choose
only indices j ∈ J with l′j < β. Let us call j ∈ {2, . . . , r} a good index if l′j < β. We claim that there
are at least k+ 1 good indices in J . Clearly, |J | = r−n+ 2k− 1 � k+ 1. Assume there are at most
k good indices in J . Then there are at least (r − n+ k − 1) = (α+ k + 1) indices in J that are not
good. Since l′i > β and i /∈ J , it follows that

(α+ 1)β =
r∑

i=2

l′i > (α+ k + 1)β + β � (α+ 1)β,
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which is a contradiction. Hence, the claim follows. By repeating the process, we end up with l′i � β,
for all i = 2, . . . , r, and we are done by Lemma 4.17.

This completes the proof of Proposition 4.18.

Lemma 4.22. Let X = BlrPn be the blow-up of Pn in r � n+4 points on a rational normal curve C
of degree n. For any 1 � k � (n + 1)/2 and any I ⊂ {1, . . . , r}, |I| = n+ 1 − 2k, let

D = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei.

Then h0(X,D) = k + 1. For any i ∈ Ic, the divisor D − Ei is minimal and, for any choice of k + 1
indices i ∈ Ic, the sections xD−EixEi generate H0(X,D).

Proof. Consider the exact sequence

0 → H0(X,D − Ei) → H0(X,D) → H0(Ei,D|Ei
). (4.18)

We argue by induction on n � 2. If n = 2, then k = 1 and D = H −Ej , for some j ∈ {1, . . . , r}.
Clearly, for any i 	= j, the divisor H − Ei − Ej is minimal. Since (H − Ej).Ei = 0, one has
H0(Ei,D|Ei

) ∼= C. For any l 	= i, j, the section xH−Ej−El
xEl

has nonzero restriction to Ei. Hence, the
map H0(X,D) → H0(Ei,D|Ei

) is surjective and H0(X,D) is generated by the sections xH−Ei−EjxEi

and xH−Ej−El
xEl

.
Assume n � 3. Fix some i ∈ Ic. From Lemma 4.3 the divisor E = D − Ei is a minimal divisor.

Let Y = Blr−1Pn−1 be the blow-up of Pn−1 at r− 1 points corresponding to the projection from pi

and let Y ′ = BlrPn−1 be the blow-up of Y at the extra point q. Then the restriction map in (4.18)
factors through the map rEi : H0(X,D) → H0(Y, D̃), where

D̃ = (k − 1)H − (k − 1)
∑
j∈I

Ej − (k − 2)
∑

j∈Ic\{i}
Ej .

Note that, by Lemma 4.2, the multiplicity at q of any divisor in the linear system |D| is at least

k(n+ 1 − 2k) + (k − 1)(r + 2k − n− 1) − nk

r − n− 2
= k − 1 − 1

r − n− 2
.

Since r � n+ 4, the map rEi has image in H0(Y ′,D′), where D′ = D̃− (k− 1)Eq. By induction,
H0(Y ′,D′) has dimension k and it is generated by any distinct k sections of the form xE′xEj , where
E′ = D′ − Ej and j ∈ Ic \ {i}. On X, the divisor E = D − Ej is minimal. By Lemma 4.19,
rEi(xE) = xE′xk−1

Eq
. Since rEi(xEj) = xEj , it follows that rEi(xExEj) = xE′xEjx

k−1
Eq

. Hence, the

map rEi has image H0(Y ′,D′)xk−1
Eq

. Therefore, H0(X,D) has dimension k+1 and it is generated by
any k + 1 sections of the form xExEi , where i ∈ Ic, E = D − Ei.

Theorem 4.23. Let r � 5 and let X = BlrP2 be the blow-up of P2 at r distinct points p1, . . . , pr

that lie on an irreducible conic. Then Cox(X) is minuscule.

Proof. Let C be the proper transform on X of the conic in P2 that contains the points p1, . . . , pr.
Then C = 2H −

∑r
i=1Ei. For any i, j ∈ {1, . . . , r} with i 	= j, let Li,j be the proper transform on X

of the line that passes through pi, pj. The classes C and Li,j are the minimal divisors on X. Let xC

(respectively xLi,j ) be the corresponding sections. A distinguished section on X is a monomial in
xC , xLi,j and xEi , for all i, j.

We prove by induction on r that Cox(BlrP2) is generated by distinguished sections. The case
r = 5 was proved in [BP04]. Assume r � 6.

Let D be an effective divisor (4.1) on X. If mi = D.Ei � 0 for some i ∈ {1, . . . , r}, then
H0(X,D) ∼= H0(X,D0), whereD0 = D+miEi is a divisor on Blr−1P

n and H0(X,D0) is generated by
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distinguished sections by induction. It follows that H0(X,D) is generated by distinguished sections
(obtained by multiplying sections of H0(X,D0) by x−mi

Ei
). Hence, we may assume that d,mi > 0

and argue by induction on d.
From the exact sequence

0 → H0(X,D − C) → H0(X,D) → H0(C,D|C)

it follows that, if D.C = −a < 0, then H0(C,D|C ) = 0 and H0(X,D) ∼= H0(X,D − C) is generated
by global sections by induction.

Assume now D.C = 2d−
∑r

i=1mi � 0 and mi > 0 for all i = 1, . . . , r. Without loss of generality,
we may assume m1 � mi, for all i. Consider the exact sequence

0 → H0(X,D −E1) → H0(X,D) → H0(E1,D|E1
).

Note that H0(E1,D|E1
) = H0(P1,O(m1)). For i = 2, . . . , r, let qi = L1,i ∩ E1. Let xi ∈

H0(P1,O(1)) be the section vanishing at qi. The divisor D|E1
has multiplicity at least m1 +mi − d

at qi. Let I ⊂ {2, . . . , r} be the set of indices i for which m1 +mi − d � 0. It follows that the image
of the restriction map

r : H0(X,D) → H0(E1,D|E1
) (4.19)

lies in the subspace

V =
∏
i∈I

xm1+mi−d
i H0(P1,O(e)) ⊂ H0(P1,O(m1)),

where

e = m1 −
∑
i∈I

(m1 +mi − d). (4.20)

We claim that one may lift any section in V to a section in H0(X,D) that is generated by distin-
guished sections. Then we are reduced to showing that H0(X,D−E1) is generated by distinguished
sections. If D − E1 is not effective, we are done; if not, we replace D with D − E1 and repeat the
process until either D − E1 is not effective or D.Ei � 0.

Clearly, H0(P1,O(e)) is generated by sections
∏r

i=2 x
ki
i , where ki � 0 and

∑
ki = e (of course,

we may assume that, for example, k4 = k5 = · · · = 0). Note that r(xL1,j ) = xj, for all j = 2, . . . , r.
Consider the following divisor on X:

D0 =
∑
i∈Ic

kiL1,i +
∑
i∈I

(ki +m1 +mi − d)L1,i

= m1H −m1E1 −
∑
i∈Ic

kiEi −
∑
i∈I

(ki +m1 +mi − d)Ei.

The restriction map r maps the section

t′ =
r∏

i=2

xki
L1,i

∏
i∈I

xm1+mi−d
L1,i

∈ H0(X,D0)

to the section

s =
r∏

i=2

xki
i

∏
i∈I

xm1+mi−d
i ∈ H0(E1,D0|E1

) = H0(P1,O(m1)).

Consider

D −D0 = (d−m1)H −
∑
i∈Ic

(mi − ki)Ei −
∑
i∈I

(d−m1 − ki)Ei.

1495

https://doi.org/10.1112/S0010437X06002284 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002284


A.-M. Castravet and J. Tevelev

Since

d � m1, mi � m1 � e � ki, d−m1 � m1 � e � ki

and using (4.20) one has

∑
i∈Ic

(mi − ki) +
∑
i∈I

(d−m1 − ki) =
∑
i∈Ic

mi + (d−m1)|I| − e =
r∑

i=1

mi − 2m1 � 2(d−m1).

It follows from Lemma 4.24 that D −D0 is an effective divisor on X. Since (D −D0).E1 = 0, the
space H0(X,D −D0) is generated by distinguished sections by induction. Let t′′ ∈ H0(X,D −D0)
be any distinguished section not zero on E1. Then t′t′′ is a distinguished section in H0(X,D) that
maps to s.

Lemma 4.24. Let X be the blow-up of Pn in any r distinct points. Let D = dH −
∑r

i=1miEi, with
d,mi � 0, be a divisor class with

∑r
i=1mi � nd and d � mi, for all i = 1, . . . , r. Then D is an

effective divisor.

Proof. We claim that D is an effective combination of (effective) classes H − (Ei1 + · · · + Eil), for
i1, . . . , il ∈ {1, . . . , r} and 0 � l � n. Consider the table with n rows and d columns filled with Ei

in the following way. Start in the upper left corner and write E1 a total of m1 times in the first
row. Then write E2 a total of m2 times, passing to the second row if necessary, and so on. Fill the
remaining entries with zeros. In the following example n = 3 and D = 5H − 3E1 − 3E2 − 2E3 −
5E4 − E5:

E1 E1 E1 E2 E2

E2 E3 E3 E4 E4

E4 E4 E4 E5 0
Our conditions guarantee that all entries of a given column are different. Therefore D is the sum
of classes H − (Ei1 + · · · + Eil), one for each column, where Ei1 , . . . , Eil are entries of the column.
In the example above

D = (H − E1 − E2 − E4) + (H −E1 − E3 − E4) + · · · + (H − E2 − E4).

5. Proof of Theorem 1.1

By [Muk01], there is an isomorphism φ : SG → Cox(X) where X is the blow-up of Pn in n+3 points
p1, . . . , pn+3 in general position. By Theorem 1.3, the ring Cox(X) is generated by the sections xEi ,
for each exceptional divisor Ei, i = 1, . . . , n+ 3, and the sections xE, corresponding to the minimal
divisors

E = kH − k
∑
i∈I

Ei − (k − 1)
∑
i∈Ic

Ei (5.1)

for each subset I ⊂ {1, . . . , n+ 3}, |I| = n+ 2− 2k, 1 � k � 1 +n/2. Then |Ic| = 2k+ 1. Note that
if k = 0 in (5.1), then E = Ei.

The polynomials FI in (1.2) are clearly invariant (just use the rule of differentiating a deter-
minant). We claim that, for all 0 � k � 1 + n/2 one has φ(FIc) = xE , where E is as in (5.1).
It is clear from [Muk01] that φ(xi) = xEi . Following [Muk01], if F0 = · · · = Fn = 0 are n + 1
linear equations (in t1, . . . , tr) that cut G in Gn+3, let J0, . . . , Jn be the polynomials in S given by
Ji = Fi(y1/x1, . . . , yr/xr)x1 . . . xr. Then sections of the divisor D = dH −

∑n+3
i=1 miEi on X, for

d,mi � 0, correspond by φ to an invariant polynomial of the form

Q =
P (J0, . . . , Jn)∏n+3

i=1 x
mi
i

,
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where P (z0, . . . , zn) is a homogeneous polynomial of degree d in variables z0, . . . , zn, such that
P (J0, . . . , Jn) is divisible by

∏n+3
i=1 x

mi
i . If we let degx(Q) (respectively degy(Q)), be the degree of

Q in the xi (respectively in the yi), then

degy(Q) = d, degx(Q) = (n+ 2)d −
n+3∑
i=1

mi, deg(D) = degx(Q) − degy(Q). (5.2)

Hence, φ(FIc) is a section in H0(X,D), where D is a divisor with d = k and deg(D) = 1.
To show that D = E, consider the following action of the torus Gr

m on S: (λ1, . . . , λr) ∈ Gr
m acts

by xi �→ λixi, yi �→ λiyi. The action of Gr
m on S is compatible with the action of Gr

a on S. Hence,
there is an induced action of Gr

m on SG. Since (λ1, . . . , λr) ∈ Gr
m maps Ji onto λ1 . . . λrJi, it follows

that Q is mapped to
∏r

i=1 λ
d−mi
i . Since FIc is mapped to

∏
i∈Ic λi, it follows that D = E.
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