A COMMUTATIVITY CONDITION FOR

SEMI PRIME RINGS-II

MURTAZA A. QUADRI, MOHD. ASHRAF AND M.A. KHAN

It is shown that if R is a semi prime ring in which $(xy)^2 - xy$ is central for every $x, y \in R$, then R is commutative.

1. Introduction

Throughout the paper R will represent a nonzero associative ring with centre Z(R). It is well known that a Boolean ring satisfies $x^2 = x$, for all $x \in R$ and this implies commutativity. Now the question arises as to what we can say about the rings R in which $(xy)^2 = xy$, for each pair of elements $x, y \in R$. In this direction we prove the following theorem:

THEOREM. Let R be a semi prime ring in which $(xy)^2 - xy \in Z(R)$, for all $x, y \in R$, then R is commutative.

2. Preliminary Results

We begin with the following lemmas:

LEMMA 2.1. Let R be a prime ring and $x \neq 0$ be an element in Z(R). If for any $y \in R$, $xy \in Z(R)$, then $y \in Z(R)$.

Received 2 May 1985. This research is supported by a grant from U.G.C., India to the authors.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

Proof. x and xy in Z(R) give xR(yz-zy) = 0, for all $z \in R$. But since $x \neq 0$ and R is prime, this forces yz - zy = 0. Hence $y \in Z(R)$.

LEMMA 2.2. Let R be a semi prime ring in which $xy^2x = yx^2y$, for all, $x, y \in R$. Then R is commutative.

Proof. A particular case of the first author's theorem [3].

LEMMA 2.3. Let R be a semi prime ring satisfying

 $(xy)^2 - xy \in Z(R)$, for all $x, y \in R$. Then R has no nonzero nilpotent elements.

Proof. Let $x \in R$ such that $x^2 = 0$. By our hypothesis we have $\{(xy)^2 - xy\} y = y \{(xy)^2 - xy\}$. On replacing y by (x-yx) and using the fact that $x^2 = 0$, we get $(xy)^2x = 0$ or $(xy)^3 = 0$, for all $y \in R$. If $xR \neq 0$, then xR is a nonzero nil right ideal in R satisfying the identity $z^3 = 0$, for all $z \in xR$. Now by lemma 1.1 of [2] R has a nonzero nilpotent ideal which is a contradiction since R is semi prime. Thus xR = 0 and hence xRx = 0. This implies that x = 0.

Now lemma l.l.l of [2] together with the above result readily yield the following

LEMMA 2.4. Let R be a prime ring satisfying $(xy)^2 - xy \in Z(R)$, for all $x, y \in R$. Then R has no zero divisors.

3. Proof of the Theorem

Since R is semi prime, it is isomorphic to a subdirect sum of prime rings R_{α} each of which as a homomorphic image of R satisfies the hypothesis of the theorem. Hence we can assume that R is a prime ring satisfying $(xy)^2 - xy \in Z(R)$, for all $x, y \in R$. First we assert that $Z(R) \neq (0)$. Assume on the contrary that Z(R) = (0). In that case,

$$(xy)^2 = xy$$
, for all $x, y \in R$ (1)

Replacing x by (x + y) in (1) and simplifying we get,

$$(xy^{2} + y^{2}x)y = 0$$
 (2)

72

With x = xr, (2) gives

$$(xry^2 + y^2 xr) \qquad \dots (3)$$

But from (2), $ry^2y = -y^2ry$ and so (3) yields that $(xy^2 - y^2x)ry = 0$ or $(xy^2 - y^2x)Ry = 0$. Since *R* is prime, either y = 0 or $(xy^2 - y^2x) = 0$. But y = 0 also gives $(xy^2 - y^2x) = 0$. This implies that $y^2 \in Z(R) = (0)$ or $y^2 = 0$ for every $y \in R$ which gives that $(x + y)^2y = 0$ or yRy = 0. Again *R* prime forces y = 0 that is R = (0), a contradiction. Hence $Z(R) \neq (0)$.

Now let c be a nonzero element in Z(R). Replacing x by (x + c) in $(xy)^2 - xy Z(R)$, we get $c(xy^2 + yxy) \in Z(R)$. Thus by lemma 2.1, $(xy^2 + yxy) \in Z(R)$, for all $x, y \in R$ and we get,

$$\{(xy^{2} + yxy)\} y = y\{xy^{2} + yxy\},$$

that is $(xy^{2} - y^{2}x)y = 0.$ (4)

Therefore by lemma 2.4, we have either y = 0 or $(xy^2 - y^2x) = 0$. But y = 0 also gives $(xy^2 - y^2x) = 0$ and so in every case

$$xy^2 = y^2 x \qquad \dots \qquad (5)$$

Now putting y = x + y in (4) and using $x^2y^2 = y^2x^2$, $x^2yx = yx^3$, easy consequences of (5), we get $xy^2x = y x^2y$, for every $x, y \in \mathbb{R}$. Hence by lemma 2.2, R is commutative.

References

- [1] I.N. Herstein, Topics in ring theory (University of Chicago Press, Chicago; London, 1969).
- [2] I.N. Herstein, Rings with involution (University of Chicago Press, Chicago; London, 1976).
- [3] Murtaza A. Quadri, "A note on commutativity of semi prime rings", Math. Japonica 22 (1978), 509-511.

Department of Mathematics Aligarh Muslim University

Aligarh 202 001 (INDIA)