A COMMUTATIVITY CONDITION FOR

SEMI PRIME RINGS-II

Murtaza A. Quadri, Mohd. Ashraf and M.A. Khan

It is shown that if R is a semi prime ring in which $(x y)^{2}-x y$ is central for every $x, y \in R$, then R is commutative.

1. Introduction

Throughout the paper R will represent a nonzero associative ring with centre $Z(R)$. It is well known that a Boolean ring satisfies $x^{2}=x$, for all $x \in R$ and this implies commutativity. Now the question arises as to what we can say about the rings R in which $(x y)^{2}=x y$, for each pair of elements $x, y \in R$. In this direction we prove the following theorem:

THEOREM. Let R be a semi prime ring in which $(x y)^{2}-x y \in Z(R)$, for alz $x, y \in R$, then R is commutative.

2. Preliminary Results

We begin with the following lemmas:
LEMMA 2.1. Let R be a prime ring and $x \neq 0$ be an element in $Z(R)$. If for any $y \in R, x y \in Z(R)$, then $y \in Z(R)$.

[^0]Proof. x and $x y$ in $Z(R)$ give $x R(y z-z y)=0$, for all $z \in R$. But since $x \neq 0$ and R is prime, this forces $y z-z y=0$. Hence $y \in Z(R)$.

LEMMA 2.2. Let R be a semi prime ring in which $x y^{2} x=y x^{2} y$, for all, $x, y \in R$. Then R is commutative.

Proof. A particular case of the first author's theorem [3].
LEMMA 2.3. Let R be a semi prime ring satisfying $(x y)^{2}-x y \in Z(R)$, for all $x, y \in R$. Then R has no nonzero nilpotent elements.

Proof. Let $x \in R$ such that $x^{2}=0$. By our hypothesis we have $\left\{(x y)^{2}-x y\right\} y=y\left\{(x y)^{2}-x y\right\}$. On replacing y by $(x-y x)$ and using the fact that $x^{2}=0$, we get $(x y)^{2} x=0$ or $(x y)^{3}=0$, for all $y \in R$. If $x R \neq 0$, then $x R$ is a nonzero nil right ideal in R satisfying the identity $z^{3}=0$, for all $z \in x R$. Now by lemma 1.1 of [2] R has a nonzero nilpotent ideal which is a contradiction since R is semi prime. Thus $x R=0$ and hence $x R x=0$. This implies that $x=0$.

Now lemma 1.1.1 of [2] together with the above result readily yield the following

LEMMA 2.4. Let R be a prime ring satisfying $(x y)^{2}-x y \in 2(R)$, for all $x, y \in R$. Then R has no zero divisors.

3. Proof of the Theorem

Since R is semi prime, it is isomorphic to a subdirect sum of prime rings R_{α} each of which as a homomoxphic image of R satisfies the hypothesis of the theorem. Hence we can assume that R is a prime ring satisfying $(x y)^{2}-x y \in Z(R)$, for all $x, y \in R$. First we assert that $Z(R) \neq(0)$. Assume on the contrary that $Z(R)=(0)$. In that case,

$$
\begin{equation*}
(x y)^{2}=x y, \quad \text { for all } x, y \in R \tag{1}
\end{equation*}
$$

Replacing x by $(x+y)$ in (1) and simplifying we get,

$$
\begin{equation*}
\left(x y^{2}+y^{2} x\right) y=0 \tag{2}
\end{equation*}
$$

With $x=x r$, (2) gives

$$
\begin{equation*}
\left(x r y^{2}+y^{2} x r\right) \tag{3}
\end{equation*}
$$

But from (2), $r y^{2} y=-y^{2} x y$ and so (3) yields that $\left(x y^{2}-y^{2} x\right) m y=0$ or $\left(x y^{2}-y^{2} x\right) R y=0$. Since R is prime, either $y=0$ or $\left(x y^{2}-y^{2} x\right)=0$. But $y=0$ also gives $\left(x y^{2}-y^{2} x\right)=0$. This implies that $y^{2} \in Z(R)=(0)$ or $y^{2}=0$ for every $y \in R$ which gives that $(x+y)^{2} y=0$ or $y R y=0$. Again R prime forces $y=0$ that is $R=(0)$, a contradiction. Hence $Z(R) \neq(0)$.

Now let c be a nonzero element in $Z(R)$. Replacing x by $(x+c)$ in $(x y)^{2}-x y Z(R)$, we get $c\left(x y^{2}+y x y\right) \in Z(R)$. Thus by lemma 2.1. $\left(x y^{2}+y x y\right) \in Z(R)$ for all $x, y \in R$ and we get,

$$
\begin{equation*}
\left\{\left(x y^{2}+y x y\right\} y=y\left\{x y^{2}+y x y\right\}\right. \tag{4}
\end{equation*}
$$

that is $\left(x y^{2}-y^{2} x\right) y=0$.
Therefore by lemma 2.4, we have either $y=0$ or $\left(x y^{2}-y^{2} x\right)=0$. But $y=0$ also gives $\left(x y^{2}-y^{2} x\right)=0$ and so in every case

$$
\begin{equation*}
x y^{2}=y^{2} x \tag{5}
\end{equation*}
$$

Now putting $y=x+y$ in (4) and using $x^{2} y^{2}=y^{2} x^{2}, x^{2} y x=y x^{3}$, easy consequences of (5), we get $x y^{2} x=y x^{2} y$, for every $x, y \in R$. Hence by lemma 2.2, R is commutative.

References

[1] I.N. Herstein, Topics in ring theory (University of Chicago Press, Chicago; London, 1969).
[2] I.N. Herstein, Rings with involution (University of Chicago Press, Chicago; London, 1976).
[3] Murtaza A. Quadri, "A note on commutativity of semi prime rings", Math. Japonica 22 (1978), 509-511.

Department of Mathematics

Aligarh Muslim University
Aligarh 202001 (INDIA)

[^0]: Received 2 May 1985. This research is supported by a grant from U.G.C., India to the authors.

 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

