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Abstract

A posteriori error estimates for a class of elliptic unilateral boundary value problems are obtained for
functions satisfying only part of the boundary conditions. Next, we give an alternative approach to the
a posteriori error estimates for self-adjoint boundary value problems developed by Aubin and
Burchard. Further, we are able to construct an alternative estimate with mild additional assumptions.
An example of a linear differential operator of order 2k is given.

1980 Mathematics subject classification (Amer. Math. Soc): primary 35 J 30, 35 J 35, 35 J 40;
secondary 65 N 15.

1. Introduction

In considering a mixed boundary value problem, Aubin (1972) has obtained a
posteriori error estimates for functions satisfying only the natural boundary
conditions and the forced boundary conditions respectively through the introduc-
tion of conjugate problems. In this note, we consider a similar problem for
unilatenal boundary value problems. A posteriori error estimates are obtained for
functions satisfying partially the given boundary conditions. Error bounds are
also obtained in terms of another type of function, following a result obtained by
Aubin (1972), page 287. Our method, however, does not need the introduction of
any conjugate problems.
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2. Preliminaries and assumptions

Let fi be a smooth bounded domain in R" with boundary F. We introduce the
Sobolev space of order k, denoted by Hk(£l), consisting of real-valued functions
in $2 such that

and yy = dJ/dnj, j > 0, will be the trace operators mapping Hk(il) onto
Hk~J-1/2(T). The differential operator defined by

A«= I (-l)™D«(apq(x)D'u)

is the formal operator associated with the bilinear form

a(u,v)= £ / apq{x)D"uDqvdx.

There exist operators 82k_j_l mapping Hk(Q, A) into H~(k-J-1/2)(T), 0 < 7 < k
— 1, where

Hk(Q, A) = {« G Hk(Q): Aw e L2(fi)},

such that Green's formula

a(u, v) = (Au, v)L2(a) + £ ($ik-j-iu> T/f)ff*-y-i/2(r)

holds for all u e // ' '(fl, A), u G Hk(Q). Here (•, •) denotes inner product and
( • , • > denotes duality pairing. We also make the following assumptions:

ja(u,v) < M||M||J7*(B)||I>||/7*(B) for all M, I>

\ a(u, v) > cWufH'w for all u e /

Formulation of the problem.
Look for M satisfying

(2) A«=/,
(YyM > 0, S2k_j_lU > 0, (iik-j-iu, ijU) = 0, 0 <y < k - 1,

where/ G L2{Q,) is given. It is easy to verify that (2) is equivalent to

(3)

\a(u, v — u) > (f, v - M) for all v such that yjV > 0, 0 <y < k — 1.
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We see that (3) is a variational inequality and it is known that under the
assumption (1), it has a unique solution (see Lions and Stampacchia (1967)).

3. A posteriori error estimates

THEOREM 1. Let u be a solution of (2), v e Hk(tt) satisfy y^ > 0, 0 <y < k - 1
and w e Hk(Q,, A) satisfy 8lk_j^lw > 0, 0 <y < k — 1. 77ie« /̂je following a
posteriori error estimates hold:

1
/•\ II \\ k < { A^ll/i M;II * o 4- II A M ; /Ml 2 -I- A^/^ >

+ [A + 4c(Aw — / , u — w)] j ,

w/iere A = [(M\\v - W\\HHQ) + ||Aw - / | |L2( B ))
2 + 4cI.0^^k_1 (S2k_J_1w, yjV>].

PROOF.

a(f - «, u - M) < a(f, u - « ) - ( / , u - M)

a(t; — w, v — u) + a(w, v — u) — ( / , i; — M)

M||l) - w||//4(Q)||t) - w||ff*(8) + ||Aw - / | |

It follows easily that (i) holds.
Also,

c||u — W||T7*(O) < a(u — w, u — w) = a(u — w, v — w) + a(u — w, u — v)

a(u - w, v - w) +(Aw - / , v - u) +

u - w||//*(B) + ||Aw -

(Aw-/, i; - w) + £

Hence (ii) follows.
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4. Self-adjoint problems

Consider the following simple example. Let fi be a smooth bounded subset of
R" and F its boundary. We are interested in the solution of the boundary value
problem:

{(i) -Au + \u = f in 12,

(ii) u = g1 onTj,

M 9̂ " = ^2 onT2,
where T = Tl U T2, Tlt T2 are disjoint. Aubin and Burchard (1971) have obtained
a posteriori error estimates for approximate solutions of (5) by constructing a
boundary value problem conjugate to (5), associating with the splitting -A =
-div(grad). Alternatively, problem (5) can be viewed as the optimization problem:
find u such that

\ f ||grad uf + \\\u\\2dx - [ f-udx- f g2 • uda(x)

is minimized, subject to u = gx on I\.
Each function «, satisfying du/dn = g2 on F2 will give a lower bound for this

minimization problem. Making use of this bound, we can give an a posteriori
estimate for (5) which turns out to be the same as that given by Aubin and
Burchard. When two functions ux, u2, satisfying du/dn = g2 are given, we are
able to derive an alternative estimate, making use of Schwarz's inequality.

We shall follow the notations of Aubin (1972), page 289. V, H and T are real
Hilbert spaces and y e L(V, T) satisfies

( (i) y maps Fonto T,

(ii) V c H, the injection is continuous,

(iii) Ker y = Vo is dense in H.

Let E be another real Hilbert space and P e L(V, E), Q e L(E, E') and
G = QP. The formal operator associated with the bilinear form (Pu, Gv) is
A = G*P where G* = (G\vy e L(E, Fo'). Then, there exists 8 <= L(V, T') such
that Green's formula

(7) (P

holds for all MG F ( A ) = { « G V: Au e H}. We are also given a continuous
projector ax of Tand define a2 = 1 — a:; Tj = OjT; yj = ayy; 5y = oj8;j = 1,2.

Thus, (7) can be written as

(8) (Pu, Gv) = (AM, V) + (S.u, y.v) + (82u, y2v).
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Consider the problem: find u satisfying

f(i) Au + \u=f, X > 0,
(9) | (ii) yxu = tlt

( ( i i i ) S2u = t2,

where/G H, tY G 7\, t2 G T2' are given. Such a solution exists and is unique if,
for instance, Q is ^-elliptic and X > 0. Our problem is given any v, v G V
satisfying yxv = t1, 82v — t2, find upper bounds for

(P(u- v),G(u- v)) + \(u- v,u- v)

a n d

(P(u - v),G(u - u)) + X - 1 | | G * P ( « - f))| |2

w i t h o u t solving (9).

5. Alternative derivation of a posteriori error estimates

In this section we derive the a posteriori error estimates given by Aubin and
Burchard under the additional assumption that Q is self-adjoint.

LEMMA 1. Let Q be self-adjoint. Then

(v^QvJ ~(v2,Qv2) = (v1 - v2,Q(v1 - v2)) + 2(v2,Q(v1 - v2)).

LEMMA 2. Let Q be self-adjoint and positive definite. If u satisfies (9), then v = u
will minimize

J(v) = \{Pv, QPv) + \\(v, v) - ( / , v) - (t2, y2v)

subject toyxv = tv

Furthermore

J(v)-J(u) = %{(P(v - u),QP(v - u)) +\(v-u,o- «)}.

PROOF. Let u satisfy (9) and yxv = tx; then we V( A). In view of Lemma 1 and
Green's formula
J{v) -J(u) = 2-{(P(v - u),QP(v - « ) ) +X(v- u,v- u)}

+ (Pu,QP(v - « ) ) +X(u,v - u) - ( / , « - u) - (t2,y2(v - M ) >

= \{P{v - u), QP(v - « ) ) + %X(v-u,v- u)>0.

LEMMA 3. Ify^v = tv S2v = /2,i5e ^(A), thenJ(v) > J^v), where

Jx{v) = (S.v, tl) - \{Pv, GO) -(2Xyl\\f- G*Pvf.
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Furthermore

J(v) -Jx(6) = \{(P(v - v),G(v - v)) + X-'WXv + G*Pv-f\\2}.

PROOF.

^[(Pv, Gv) + (Pv, Gv) + X(v, v) + X-'Wf- G*Pv\\2\

= \{(P(v - v),G(v - v)) + X-l\\Xv + G*Pv -ff)

+ (Pv,Gv)+(f- G*Pv,v)

(v - v), G(v - v)) + X-l\\Xv + G*Pv -ff}

Hence J(v)-J1(v)= U(p(v ~ v),G(v - v)) + X^WXv + G*Pv -f\\2} > 0.

Setting v = u in Lemma 3, we have

(10) J(u) - Mv) = \(P(u - v), G(u - v)) + ±X-l\\G*P(u - v)\\2.

THEOREM 2. Suppose v,ve Vsatisfy yxv = tv 82v = t2, v G V( A). Then

(P(u - v), G(u - v)) + X(u - v, u - v)

< {P(v - v), G(v - v)) + X^WXv + G*Pv - f\\2,

(P(u - v),G(u - v)) + X-l\\G*P(u - v)\\2

< (P{v - 0), G(v - v)) + X-x\\Xv + G*Pv - ff.

PROOF. Since J(v) - J(u) < J(v) - J^v) and/(w) - J^v) < J(v) - J^v), the
results follow from Lemma 3 and Lemma 2.

6. An alternative estimate

In this section, we shall derive another error estimate for v under the assump-
tion that we are given two functions satisfying 82v = t2,by completing the square
for Jx(v) and then applying Schwarz's inequality. Note that if we fix r e V(A)
satisfying 82r = t2, it follows from Lemma 3 that

(11) J(v) -±{P(v- r),G(v- r) + X'^Xv + G*Pr - ff) = constant

(independent of v).
Hence any solution to (11) will minimize J2(v) — 2{(P(V ~~ r)i G(v — r)) +

X"1!^^ + G*Pr — / | | 2 } . Now we give a lower bound for J2(v).
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LEMMA 4. Suppose 0 satisfies 82v = t2, v e V( A). Then

J2(v) >(1/2IC){<^ ~ r),h ~ YxO - X~\G*P(v - r), Xr + G*Pr - f))\

where K = (P(0 - r), G(v - r)) + \-l\\G*P(v - r)\\2.

P R O O F . S i n c e

(P(v- / • ) , G ( « ; - / - ) ) + X - 1 ( - G * / ) ( t ) - r),Xv + G*Pr - f)

= (8,(0 - r), t, - Yl/-> - A-H^Pie - r), \r + G*Pr - / ) ,

the inequality then follows from Schwarz's inequality.

THEOREM 3. Suppose v, v, r e V satisfy yxv = tx, 8xv = 8yr = t2, v, r e V{A).
Then

(P(u- v),G(u- v))+\(u- v,u- v)

< (P(v - r),G(v - r)) + X-'WXv + G*Pr-ff

-H(Si(° ~ ' ) , 'i - 7ir> - \-l(G*P(v - r), Xr + G*Pr - fjf.

PROOF. Denote the bound in Lemma 4 by b(v). Then J(v) — J(u) = J2(v) —
J2(u) < J2(v) - b(v).

The result then follows from Lemma 2.

One can easily show that the estimate given in Theorem 3 is related to that
given in Theorem 2. Indeed, the difference of the two estimates is
2{(J(v) - J.iv)) - (J2(v) - b(v))} = 2{(/1(r) - J.iv)) + b(v)}. But

Mr) - MO) = H(P(0 ~ r), G(v - r)) + \-l\\G*P(D - r)\\2}

+ X-1(G*P(v - r), G*Pr + Xr - f) - (8,(0 - r), tx - Y lr>.

Hence, the difference of the two estimates is

\(P(0 - r),G(0 - r)) +X-'\\G*P(0 - r)f\l

X {(P(v - r), G(0 - r)) + X-i\\G*P(0 - r)f

+ X'l(G*P(v - r), G*Pr + Xr - f) - (S^v - r), tx - Ylr> } '

= [p(0-r),G(0-r)+X-i\\G*P(v-r)\\2]-1

x{(P(0 - r),G(0 - r)) + X-\G*P(0 - r),G*P0 + Xr - f)

-(8l(0-r),tl-ylr)}2>0.
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Now suppose we know two solutions of y^v = tv We may proceed in an
analogous way to obtain an estimate for v satisfying S2v = t2. Fix s e F(A)
satisfying yxs = tv If we set

J3(v) = \((P(s - v),G(s - v)) + X~l\\Xs + G*Pv-ff),

then

Jx(v) + J3(i>) = J(s) = constant (independent of v).

We also have

(P(s - v), G(s - v)) + X-^Xs + G*Pv - f, X(s - v))
= (G*Ps + Xs -f,s - v) +(S2s - t2,y2(s - v)).

Then by Schwarz's inequality,

J3(u) >^y((G*Ps + Xs -f,s - v) +(82s- t2,y2(s- v)))\

where Y = (P(s - v), G(s - v)) + X(s - v, s - u).
It follows that

(P(u - v),G(u - 0)) + X-i\\G*P(u - v)\\2 = 2(J(u) - J^v))

< (P(s - 6), G(s - i))) + X^WXs + G*Pv - ff

- H(G*Ps + Xs-f,s-v)+ (82s - t2, y2(s - v)))2.

Further, it can be easily shown that the difference between this estimate and that
given in Theorem 2 is

[P(s - v),G(s - v) +X(s - v,s - v)]'1

x(P(s - v),G(s - v)) + X(s - v,s - v)

- ((G*Ps + Xs-f,s-v)-(82s- t2, y2(s - v))f > 0.

7. Example

We now apply the results of the previous section to obtain a posteriori error
estimates for approximate solutions of self-adjoint boundary value problems of a
differential operator of order 2k.

Again we follow the notations of Aubin (1972), as described in Section 2 with
the additional assumption that apq{x) = aqp(x).
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Suppose we are given the following data:

(n)gj e Hk-J-l/\Y), 0 <j<p- 1,1 < p < k,
(iii) A, e Hk-J-1/2(T), k<j<2k-p-\.
We consider the problem: find u that satisfies

/(i) Au + Xu=f, X > 0,

(12) | ( i i ) Y,-« = gy, 0 < y < / » - l ,

((iii) SyM = /iy , k <j ^2k - p - 1.

Results of the previous sections can be applied to obtain

T H E O R E M 5. Suppose u is a solution of (12), v e Hk(&) satisfies yjV = gJt

0 ^j ^ p - I and v, r G # * ( & , A ) 5a/wj^ 5yi5 = 8yr = Ay, A: < 7 < Ik - p - 1.

<3(M - 0 , u - v) + X(u — v,u — v)L2(a)

<a(v- r,v - r) + X'^Xv + Ar - f\\2
L^

-X 1 (A(u - r), Xr + Ar — f)L; (Q)

where Z = a(v - r, v - r) + X"1||A(u - /-)| | |2(a).
If s e / / ^ (n , A), t; G i/*(£2) ^arw^ y7-5 = yjV = g7, 0 <y < p - 1, a«c/ if ij
k(Q, A) .M/M/F Ŝ u = hpk <j < 2k - p - 1,

a ( « - 0, K - 6) + ^ " ^ ^ ( M - y)|U2(B)

< a(s - v, s - v) + X^\\Xs + Av - f\\2
L\Q)

- — I (As + Xs - f,s - v)L\Q)

.2

j s - hJty2k_J_l(s - «))w*->-i/2(r)

-p-l

where W = a ( j — 0, s — 0) + X(i — i;, 5 — f )^2(n)-

REMARK. In Theorem 5, we have given a bound for a(u — v, u — v) only. To
obtain a bound for \\u - v\\2

Hk(il) we must assume that a(u, v) is elliptic and hence
that there exists a constant M such that M\\u — v\\2 < a(u — v, u — v).
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