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ON THE FOURIER COEFFICIENTS OF
SIEGEL MODULAR FORMS

SIEGFRIED BÖCHERER and WINFRIED KOHNEN

Abstract. One can characterize Siegel cusp forms among Siegel modular

forms by growth properties of their Fourier coefficients. We give a new proof,

which works also for more general types of modular forms. Our main tool is to

study the behavior of a modular form for Z = X + iY when Y −→ 0.

§1. Introduction and statement of result

Spaces of modular forms usually split up into the direct sum of the

subspace generated by Eisenstein series and the subspace of cusp forms,

and the Fourier coefficients of the latter, in general, satisfy much better

bounds than those of the Eisenstein series. It is natural to ask conversely

which bounds one may have to put on the general coefficients of a modular

form to guarantee that it is already cuspidal.

This problem has recently attracted a reasonable amount of attention

(see, for example, [1–3, 8–10, 12]). Specifically, in the papers [1–3], the case

of a Siegel modular form F of integral weight k on a congruence subgroup

Γ of the Siegel modular group Γn := Spn(Z) of degree n was considered.

Recall that if F is cuspidal, then its Fourier coefficients at every cusp of

Γ are supported on positive definite matrixes T and satisfy the so-called

Hecke bound �F (det T )
k
2 . Conversely, in [2], it was shown that if k > 2n,

and if the coefficients of F at one cusp supported on positive definite T

satisfy a bound �F (det T )α, where α < k − n, then F already is a cusp

form. In particular, if k > 2n and those coefficients satisfy the Hecke bound,

then F is cuspidal. More generally, including the case of “small weights”,

say k > n
2 + 1, corresponding statements were proved in [3], for example

with the condition α < k − n relaxed to α < k − n+3
2 , under the additional

hypothesis that Γ is one of the generalized Hecke congruence subgroups

Γn,0(N) of level N . The tools used in [1–3] were quite deep, including in [1, 2]

the theory of L-functions, estimates for Hecke eigenvalues and certain local
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2 S. BÖCHERER AND W. KOHNEN

methods, while in [3], Witt operators and the theory of Fourier–Jacobi

expansions were employed.

The purpose of this paper is to contribute a new idea of proof to the above

subject, which is simple in the sense that it does not use any deeper structure

theorems for the space of modular forms in question. In particular, it is not

difficult to see that our arguments can be modified slightly to work also

in the case of half-integral weight or for Jacobi forms, Hermitian modular

forms or Hilbert–Siegel modular forms. At the same time, we can mildly

improve upon or complement the results given in [1–3].

Our proof to a good part is modeled on some arguments given for n= 1

(i.e. in the case of classical elliptic modular forms) by Miyake [11, pp. 41–42].

They show that an elliptic modular form f of weight k on a subgroup of

finite index of Γ1 is cuspidal, if it satisfies an estimate f(z) =O(y−c) for

y→ 0, uniformly in x (where z = x+ iy, as usual), for some c < k. We show

that these arguments can, in fact, be properly modified to work also in the

case n > 1. Note that from the outset this is not clear at all; for example, for

n > 1, infinitely many degenerate Fourier coefficients occur and have to be

handled appropriately. In the final part of the proof, we also use a “trick”

by projecting down a modular form to its Fourier subseries (again modular)

supported on indices T ≡ T0 (mod p), where T0 is a fixed positive definite

matrix and p is an odd prime, chosen appropriately. We now state our result

in detail.

Theorem. Let Γ⊂ Γn be a congruence subgroup, and let F be a Siegel

modular form of integral weight k > n+ 1 on Γ. Assume that its Fourier

coefficients a(T ) (where T is a positive definite half-integral matrix of size n)

at some cusp of Γ satisfy the bound

(1) a(T )�F (det T )α,

where α < k − n+1
2 . Then, F is a cusp form.

Remarks.

(i) It follows from [7, Theorem 1.6.23] that if k > 2n+ 2, then the

coefficients a(T ) (with T positive definite) of any modular form F of

weight k on Γ satisfy the estimate

a(T )�F (det T )k−
n+1
2 .

Thus, in general, the exponent α in (1) cannot be chosen larger.
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(ii) If n= 1, then the assertion of the Theorem holds with Γ replaced by

an arbitrary Fuchsian subgroup of SL2(R) of the first kind (and so, in

particular, for a subgroup of Γ1 of finite index). This follows easily by

inspecting the arguments given in [11, pp. 41–42].

(iii) We recall that by the well-known “congruence subgroup theorem”,

if n> 2, any subgroup of Γn of finite index already is a congruence

subgroup.

The actual proof of the theorem is given in Section 4. In Section 2, we

prove some preparatory results needed later, while in Section 3 (proposi-

tion), we first give a preliminary version of the theorem. Finally, in Section 5,

we comment on some possible generalizations of our results.

Notations. We denote by Hn the Siegel upper half-space of degree n,

consisting of symmetric complex (n, n)-matrixes with positive imaginary

part. If Z ∈Hn, we write Z =X + iY , with X = <(Z) and Y = =(Z). The

real symplectic group Spn(R) operates on Hn by

g ◦ Z = (AZ +B)(CZ +D)−1

(
g =

(
A B
C D

))
.

If Γ⊂ Γn is a congruence subgroup, we denote by Mk(Γ) (resp. Sk(Γ))

the space of Siegel modular forms (resp. cusp forms) of weight k ∈N with

respect to Γ. We assume that the reader is familiar with the elementary

theory of Siegel modular forms, as for example is contained in [5].

We denote by En (resp. 0n) the unit (resp. zero) matrix of size n. For

matrixes A and B of appropriate sizes we put as usual A[B] :=BtAB.

If Y is a symmetric real matrix, we write Y > 0 (resp. Y > 0) if Y is

positive definite (resp. positive semi-definite). If Y > 0, we denote by Y 1/2

the (uniquely determined) positive definite matrix whose square is Y .

If g ∈ Spn(R), k ∈N, and F :Hn→C is a function, we set

(F |kg)(Z) := det(CZ +D)−kF (g ◦ Z)

(
g =

(
A B
C D

)
, Z ∈Hn

)
.

§2. Some preparatory results

We may assume that Γ = Γn(N) is the principal congruence subgroup of

level N . If F ∈Mk(Γ), then F at each cusp (say “represented” by g ∈ Γ\Γn)

has a Fourier expansion which has the form

(F |kg)(Z) =
∑
T>0

ag(T )e
2πi
N
tr(TZ) (Z ∈Hn).
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4 S. BÖCHERER AND W. KOHNEN

Here, T runs over all positive semi-definite half-integral matrixes of size n.

In particular, taking g = E2n, we have an expansion “at infinity”

(2) F (Z) =
∑
T>0

a(T )e
2πi
N
tr(TZ) (Z ∈Hn).

Since Γ⊂ Γn is a normal subgroup, without loss of generality, to prove the

Theorem we may suppose that the estimate (1) holds “at infinity”; that is,

for the numbers a(T ) in (2). We then have to show that ag(T ) = 0 for all

g ∈ Γ\Γn and for all T > 0 that are not positive definite.

The following Lemma will be especially important to our arguments.

Lemma 1. One can choose representatives g in Γ\Γn such that

g =
(
A B
C D

)
, with det C 6= 0.

Proof. We note that Γ\Γn ' Spn(Z/NZ). Choose a prime p not divid-

ing N . According to the well-known “strong approximation theorem”

(one can also argue here in an ad hoc and elementary way), there exists

g̃ ∈ Γn such that

g̃ ≡ g (modN), g̃ ≡
(

0n −En
En 0n

)
(mod p).

Then, g̃ and g represent the same class (modN), and det C̃ ≡ 1 (mod p)

(where C̃ denotes the lower left block of g̃). This proves the claim.

Lemma 2. Suppose that g =
(
A B
C D

)
∈ Spn(R) and det C 6= 0. Then, for

all Z =X + iY ∈Hn, we have

=(g ◦ Z) 6 Y −1[C−1].

Proof. This follows by a direct computation. Indeed, as is well-known,

(=(g ◦ Z))−1 = (CZ +D)Y −1(CZ +D)
t
.

Hence, observing that C is invertible and the equation CDt =DCt, we find

(=(g ◦ Z))−1 = C(Z + C−1D)Y −1(Z + C−1D)Ct

= C(iY +R)Y −1(−iY +R)Ct

= C(Y + Y −1[R])Ct,
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where above we have put

R :=X + C−1D.

Hence, we obtain

(3) (=(g ◦ Z))−1 > Y [Ct].

Taking inverses on both sides of (3), the assertion follows. (Observe that

Y1 > Y2 > 0 implies that Y −1
1 6 Y −1

2 , as follows by acting with [Y
−1/2

2 ] and

taking inverses.)

Recall that the series∑
S=St

(det(Z + S))−σ (Z ∈Hn)

(summation over all integral symmetric matrixes of size n) is absolutely

convergent for σ > n (cf., e.g., [13, Hilfssatz 38]).

Lemma 3. Let σ > n and Y0 > 0. Then, for Y 6 Y0, one has

(4)
∑
S=St

|det(iY + S)|−σ�σ,Y0(det Y )−σ.

Proof. We write the sum on the left-hand side of (4) as

(5) (det Y )−σ
∑
S=St

|det(iEn + S[Y −1/2])|−σ.

For Y 6 Y0, one has

(6) |det(iEn + S[Y −1/2])|> |det(iEn + S[Y
−1/2

0 ])|,

as will follow from Lemma 4 below, and the expression on the right-hand

side of (6) equals

(det Y0)−1|det(iY0 + S)|.

Hence, we find that the sum in (5) is bounded from above by

(det Y0)σ
∑
S=St

|det(iY0 + S)|−σ,

and the latter sum is finite. This proves our assertion.
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6 S. BÖCHERER AND W. KOHNEN

Lemma 4. Let Y0 > 0. Then, for all symmetric real matrixes R and

Y 6 Y0, the estimate

(7) |det(iEn +R[Y −1/2])|> |det(iEn +R[Y
−1/2

0 ])|

holds.

Proof. We first get rid of Y0 in (7). For this, we replace R by R[Y 1/2],

and then we have to prove that

|det(iEn +R)|> |det(iEn +R[Y 1/2][Y
−1/2

0 ])|,

for all R=Rt and Y 6 Y0. The right-hand side is equal to

(det Y0)−1|det(iY0 +R[Y 1/2])|= (det Y0)−1(det Y )|det(iY0[Y −1/2] +R)|.

Writing Y for Y0[Y −1/2], we see that the original condition Y 6 Y0 becomes

Y > En and that under the latter condition we have to show that

(8) |det(iEn +R)|> (det Y )−1|det(iY +R)|.

Note that here we can replace Y by Y [U ], where U is orthogonal, and thus

we can assume that Y is diagonal. In a final step, we transform the right-

hand side of (8) to

|det(iEn +R[Y −1/2])|,

replace Y −1/2 by Y and take squares.

Then, we see that we have to prove that

det(En + (R[Y ])2) 6 det(En +R2),

for all R=Rt and all diagonal matrixes Y 6 En. We denote the diagonal

elements of Y by y1, . . . , yn.

Since the determinant is linear in columns, for any (n, n)-matrix C we

have the equation

det(En + C) =

n∑
ν=0

∑
16i1<···<iν6n

det Ci1...iν ,

where Ci1...iν is the (n, n)-matrix that arises from C by replacing the

columns with indices i1, . . . , iν by the corresponding standard unit column

vectors ei1 , . . . , eiν . Note that the cases ν = 0 (resp. ν = n) correspond to

det C (resp. 1).
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We apply this with C :=R[Y ]2. We put A := Y 2[R]. Then, R[Y ]2 =A[Y ],

and we find

det(En +R[Y ]2) =

n∑
ν=0

∑
16i1<···<iν6n

detA[Y ]i1...iν .

From the Laplace expansion principle, we obtain

detA[Y ]i1...iν = det(yiyjaij)∗,

where the lower star in the notation means that double indices ij with

i= i1, . . . , iν and any j, or with j = i1, . . . , iν and any i have to be omitted.

It follows that

det(yiyjaij)∗ =

 ∏
i 6=i1,...,iν

y2
i

 det(aij)∗

6 det(aij)∗,

since by assumption yi 6 1 for all i. (Note that A, and hence also (aij)∗, is

positive semi-definite.)

We now calculate backwards, that is with Y replaced by En in A[Y ], and

then we see that

det(En +R[Y ]2) 6 det(En + Y 2[R]).

However, since Y 2 6 En, we have Y 2[R] 6 E[R] =R2, and therefore we

conclude that

det(En +R[Y ]2) 6 det(En +R2).

This proves what we wanted.

Remark. Using the bound det(En +R) > 1 + tr(R), for any R> 0, one

can also estimate the sum in (4) (up to a constant depending only on Y0)

against the product of (det Y )−σ times the Epstein zeta function of the

quadratic form Zn(n+1)/2→ Z, x 7→ xtx in n(n+1)
2 variables, evaluated at

σ/2. However, in this approach, because of convergence reasons, one has

to suppose that σ > n(n+1)
2 (instead of σ > n in the above proof). Checking

the further arguments, one finds that this leads to the stronger hypothesis

k > n(n+1)
2 in the theorem.
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Lemma 5. Let R be a fixed symmetric real matrix of size n. Then, the

following assertions hold.

(i) For any Z =X + iY ∈Hn, one has

|det(Z +R)|> det Y.

(ii) For any Z =X + iY ∈Hn such that Y > Y0 > 0 and X has bounded

components, one has

|det(Z +R)| � det Y.

Proof.

(i) We may incorporate R into X. Then, the assertion is equivalent to

saying that

det(AAt + En) > 1,

where A :=X[Y −1/2]. However, this is clear since AAt > 0.

(ii) We proceed in a similar way as in (i). Diagonalizing as usual with

orthogonal matrixes, we observe that Y > Y0 > cEn (where c > 0)

implies that the eigenvalues of Y −1 (and hence of Y −1/2) are bounded

from above; hence, Y −1/2 has bounded components. Hence, under our

hypothesis on X, the same is true for A=X[Y −1/2], and it follows that

det(AAt + En)� 1.

§3. A preliminary version of the theorem

We now prove the theorem first under the additional hypothesis that the

Fourier expansion (2) of F is supported on matrixes T > 0 only. (On the

other hand, we need only the slightly weaker assumption k > n here.) More

precisely, we have the following.

Proposition. Assume that k > n. Let F ∈Mk(Γn(N)), suppose that

the Fourier expansion (2) of F is supported on T > 0 and that

a(T )�F (det T )α,

where α < k − n+1
2 . Then, F is in Sk(Γn(N)).

Proof. Our assumptions imply that

(9) |F (Z)| �F

∑
T>0

(det T )αe−
2π
N
tr(TY ) (Z ∈Hn).
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Let us recall the generalized Lipschitz formula (cf., e.g., [13, Hilfssatz 38]),

which says that

(10)
∑
S=St

(det(Z + S))−σ = Cn
e−πinσ/2

γn(σ)

∑
T>0

(det T )σ−
n+1
2 e2πitr(TZ).

Here, Z ∈Hn, σ > n and

Cn := (2
√
π)−

n(n−1)
2 , γn(σ) := (2π)−nσ

n−1∏
ν=0

Γ
(
σ − ν

2

)
.

We apply (10) with Z = i 1
N Y and σ = α+ n+1

2 . Note that we may suppose

that α > n−1
2 in (1) (and so σ > n). Indeed, if α6 n−1

2 , then

α6
n− 1

2
< k − n+ 1

2

(since k > n by hypothesis), and we may replace α in (1) by some α′ with

n− 1

2
< α′ < k − n+ 1

2
,

and continue the argument with α′ instead of α.

From (9) and Lemma 3 applied with σ = α+ n+1
2 , we now find that

(11) |F (Z)| �Y0 (det Y )−(α+n+1
2 ) (Z ∈Hn, Y 6 Y0),

for any fixed Y0 > 0.

The Fourier coefficients ag(T ) have the usual expression,

(12) ag(T ) =

∫
X (mod En)

F (g ◦ Z) det(CZ +D)−ke−
2πi
N
tr(TZ) dX,

valid for any fixed Y > 0, where g =
(
A B
C D

)
.

By Lemma 1, we may suppose that C is invertible. Then, by Lemma 2,

it follows that

=(g ◦ Z) 6 Y −1[C−1].

In the following few lines, we always tacitly suppose that Y > Y0 > 0.

Given this condition, we deduce that

=(g ◦ Z) 6 Y ∗0 := Y −1
0 [C−1].
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Therefore, by (11), we find that

|F (g ◦ Z)| �Y0 (det =(g ◦ Z))−(α+n+1
2 ).

Inserting the latter inequality into (12), we obtain

(13)

ag(T )�Y0

∫
X (mod En)

(det =(g ◦ Z))−(α+n+1
2

)|det(CZ +D)|−ke
2π
N
tr(TY ) dX.

From Lemma 5(i) applied with R= C−1D, we find that

(14) |det(CZ +D)| � det Y.

Moreover, under the additional condition that the components of X are

bounded, we have

det =(g ◦ Z) = (det C)−2(det Y )|det(Z + C−1D)|−2

� (det Y )−1

(where in the last line we use Lemma 5(ii) with R= C−1D), and hence

(15) (det =(g ◦ Z))−1� det Y.

Inserting (14) and (15) into (13), we find that

(16) ag(T )�Y0 (det Y )α+n+1
2
−ke

2π
N
tr(TY ).

The last inequality holds for any Y > Y0 > 0.

Now, let us suppose that T is degenerate. We choose a unimodular matrix

U such that

T [U t] =

(
T1 0
0 0

)
,

with T1 of size 0 6 r < n and T1 invertible. Note that

tr(TY ) = tr

((
T1 0
0 0

)
Y [U−1]

)
,

and choose Y > 0 in such a way that

Y [U−1] =

(
D1 0
0 D4

)
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is a diagonal matrix with D1 = Er and D4 = yEn−r, with y > 0. Then,

clearly,

Y =

(
D1 0
0 D4

)
[U ]

> Y0 := En[U ],

for y > 1. Moreover,

tr(TY ) = tr(T1D1) = tr(T1)

is constant. Since

det Y = yn−r,

letting y→∞ we obtain from (16) that ag(T ) = 0, provided that α+ n+1
2 −

k < 0. Hence, F is cuspidal, as claimed. This proves the proposition.

§4. Proof of theorem

We now remove the additional hypothesis made in the proposition in

Section 3.

If F and G are in Mk(Γn(N)), and at least one of them is a cusp form,

we denote by

〈F, G〉=
1

[Γn : Γn(N)]

∫
Γn(N)\Hn

F (Z)G(Z)(det Y )k dω(
Z =X + iY, dw =

dXdY

(det Y )n+1

)
the normalized Petersson bracket of F and G. Note that the value 〈F, G〉 is

independent of the level of which F and G are considered to be modular,

and that 〈, 〉 defines a scalar product on Sk(Γn(N)).

Let

F (Z) =
∑
T>0

a(T )e
2πi
N
tr(TZ) (Z ∈Hn)

be in Mk(Γn(N)). Let T0 > 0, and let p be an odd prime. (The choice of p

being odd is only for notational convenience.) Then, we define

(17) FT0,p(Z) :=
∑

T>0,T≡T0 (mod p)

a(T )e
2πi
N
tr(TZ) (Z ∈Hn).
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12 S. BÖCHERER AND W. KOHNEN

Lemma 6.

(i) One has FT0,p ∈Mk(Γn(Np2)).

(ii) If 〈F, G〉= 0 for all G ∈ Sk(Γn(N)), then 〈FT0,p, G〉= 0 for all

G ∈ Sk(Γn(Np2)).

Proof. This is proved in a standard way. For any symmetric real matrix

S, let us put

γn,S :=

(
En S
0n En

)
.

(i) The usual orthogonality relations for roots of unity show that

FT0,p(Z) = p−
n(n+1)

2

∑
S=St (mod p)

e−2πitr(T0S/p)F |kγn,NS/p,

where the sum extends over all integral symmetric matrixes S (mod p). Since

F is modular with respect to Γn(N), each summand on the right-hand side

is modular with respect to Γn(Np2), as is easily checked. Hence, we deduce

that FT0,p is in Mk(Γn(Np2)).

(ii) Let G ∈ Sk(Γn(Np2)). Then, the usual formalism of the Petersson

bracket shows that

p
n(n+1)

2 〈FT0,p, G〉 =
∑

S=St (mod p)

e−2πitr(T0S/p)〈F |kγn,NS/p, G〉

=
∑

S=St (mod p)

e−2πitr(T0S/p)〈F, G|kγn,−NS/p〉.

Note that G|kγn,−NS/p is modular with respect to Γn(Np4) (cf. (i)). Thus,

we obtain

p
n(n+1)

2 〈FT0,p, G〉=
∑

S=St (mod p)

e−2πitr(T0S/p)〈F, trNNp4(G|kγn,−NS/p)〉,(18)

where

trNNp4 :Mk(Γn(Np4))→Mk(Γn(N)),

H 7→ 1

[Γn(N) : Γn(Np4)]

∑
L∈Γn(Np4)\Γn(N)

H|kL
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is the usual trace map (adjoint to the inclusion map on subspaces of cusp

forms). Since with H also trNNp4(H) is cuspidal, our hypothesis implies that

the right-hand side of (18) is zero, as was to be shown.

We now prove the Theorem. By elementary linear algebra, there is a

decomposition

(19) Mk(Γn(N)) = Ck(Γn(N))⊕ Sk(Γn(N)),

where

Ck(Γn(N)) := {F ∈Mk(Γn(N))|〈F, G〉= 0 ∀G ∈ Sk(Γn(N))}.

Let F ∈Mk(Γn(N)), and suppose that (1) holds. We may assume that
k
2 6 α. Otherwise, α < k

2 , and then the bound (1) would imply that also

a(T )� (det T )k/2, and we can finish the argument with α replaced by

α′ = k
2 . Note that k

2 < k − n+1
2 since k > n+ 1 by hypothesis.

We write F = F1 + F2, with F1 ∈ Ck(Γn(N)) and F2 ∈ Sk(Γn(N)) accord-

ing to (19). By the assumption k
2 6 α, and since the Fourier coefficients

of cusp forms satisfy the bound � (det T )k/2, the T th Fourier coefficients

b(T ) (T > 0) of F1 = F − F2 satisfy (1). Suppose that there exists T0 > 0

with b(T0) 6= 0. Let p be an odd prime not dividing det(2T0). Then, the

function (F1)T0,p defined by (17) is in Mk(Γn(Np2)), by Lemma 6(i), and

has Fourier coefficients supported on positive definite matrixes which again

satisfy (1) by definition (17). Therefore, by the proposition, (F1)T0,p is a

cusp form. At the same time, by Lemma 6(ii),

〈(F1)T0,p, G〉= 0,

for all G ∈ Sk(Γn(Np2)). Hence, we conclude that (F1)T0,p = 0. In partic-

ular, b(T0) = 0, a contradiction. Therefore, the Fourier expansion of F1 is

supported on degenerate matrixes; that is, F1 is a singular modular form

and we necessarily must have k < n
2 unless F1 = 0 (see, for example, [5]).

However, k > n+ 1 by assumption, and so we finally conclude that F = F2

is cuspidal.

This proves the theorem.

§5. Generalizations

Our method seems to be rather robust and very flexible. We essentially

only need growth properties of the modular form F (Z) in question when

det Y → 0 (in an appropriate way). These, in turn, rely on the generalized
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Lipschitz formula. In particular, essentially no arithmetic is involved, and

therefore issues like class numbers should play no role in generalizations.

We now briefly comment on cases of interest.

(i) Nonintegral weights. There should be no problem at all for nonintegral

weights (including not only the half-integral weight case, but also more

general rational weights for the group GL(2)).

(ii) Orthogonal modular forms. Modular forms on SO(2, n) can be treated

in a similar was as here. Note that SO(2, 3) is isogenous to Sp(2).

(iii) Jacobi forms. There is no real new issue here, also for Jacobi forms

of higher degree. (For the basic theory we refer to [4, 14].) One uses theta

expansions and observes that the coefficients in these theta expansions give

vectors of modular forms associated with a (projective) representation of

finite co-kernel. In other words, we consider ordinary (Siegel) modular forms

of lower degree, lower (possibly half-integral) weight and higher level. We

note that the case of classical Jacobi forms was first treated in [9], using

quite a different method.

(iv) Hermitian modular forms. The only new point here is the class number

of the imaginary quadratic field in question. We just point out that in

Section 4 it is not really necessary to use an integral matrix to transform

a (symmetric or Hermitian) matrix into the form
(∗ 0

0 0

)
; one can do this as

well with a matrix whose coefficients are in the field in question.

(v) Hilbert (–Siegel) modular forms. Our setting allows a straightforward

application to the Hilbert modular case. It suffices to look at imaginary parts

of type (y, . . . , y) ∈Rn
+ in the variables of such a form and let y→ 0. Here,

n is the degree of the totally real number field in question. An extension to

Hilbert–Siegel modular forms is also immediate. We mention that the case

of Hilbert modular forms (using different techniques) in an adelic setting

was previously treated in [10].

(vi) Vector-valued modular forms. For a finite dimensional complex vector

space V and a polynomial representation ρ :GL(n,C)→GL(V ), one can

consider V -valued Siegel modular forms with respect to the automorphy

factor ρ. The Hecke bound for cusp forms F can then be stated as

‖ρ(T−1/2)aF (T )‖6 C (T > 0)

for some constant C > 0 (see [6]), where ‖ ‖ is the norm on V which comes

from a scalar product on V , such that the group U(n,C) acts unitarily and
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(aF (T )) ∈ V is the vector of Fourier coefficients of F . We may decompose

ρ as ρ0 ⊗ detk with the largest positive integer k such that ρ0 is still

a polynomial representation. Then, we may call k the weight of ρ. The

estimate above then reads

‖ρ0(T−1/2)aF (T )‖6 C det(T )k/2.

It is not immediately clear how to deduce from this an estimate for the

behavior of F when det Y goes to zero, information that seems to be

necessary to get started at all with our approach. Moreover, an appropriate

substitute for the Lipschitz formula seems to be missing.

Note, however, that the approach via Hecke operators chosen in [2] leads

to some positive results in this setting.
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