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The shoreline hazard posed by ocean long waves such as tsunamis and meteotsunamis
critically depends on the fraction of energy transmitted across the shallow near-shore
shelf. In linear setting, bathymetric inhomogeneities of length comparable to the incident
wavelength act as a protective high-pass filter, reflecting long waves and allowing only
shorter waves to pass through. Here, we show that, for weakly nonlinear waves, the
transmitted energy flux fraction can significantly depend on the amplitude of the incoming
wave. The basis of this mechanism is the formation of dispersive shock waves (DSWs),
a salient feature of nonlinear evolution of long water waves, often observed in tidal
bores and tsunami/meteotsunami evolution. Within the framework of the Boussinesq
equations, we show that the DSWs efficiently transfer wave energy into the high
wavenumber band, where reflection is negligible. This is phenomenologically similar to
self-induced transparency in nonlinear optics: small amplitude long waves are reflected
by the bathymetric inhomogeneity, while larger amplitude waves that develop DSWs
blueshift into the transparency regime and pass through. We investigate this mechanism
in a simplified setting that retains only the key processes of DSW disintegration and
reflection, while the effects such as bottom dissipation and breaking are ignored. The
results suggests that the phenomenon is a robust, order-one effect. In contrast, the increased
transmission due to the growth of bound harmonics associated with the steepening of the
wave is weak. The results of the simplified modelling are validated by simulations with
the FUNWAVE-TVD Boussinesq model.

Key words: surface gravity waves, wave scattering, solitary waves

† Email address for correspondence: alex.sheremet@essie.ufl.edu

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 997 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

85
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:alex.sheremet@essie.ufl.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.850&domain=pdf
https://doi.org/10.1017/jfm.2024.850


A. Sheremet, R. Qayyum and V.I. Shrira

1. Introduction

The term self-induced transparency was first introduced in nonlinear optics, where it refers
to a phenomenon occurring due to quantum interference which manifests in allowing
propagation of high intensity light through an otherwise opaque medium (Kocharovskaya
& Khanin 1986). In nonlinear acoustics the term refers to a drop of resonant absorption
for a strong acoustic wave in a fluid with bubbles, since a strong wave decreases the
concentration of bubbles, such a wave can propagate without attenuation (e.g. Naugolnykh
& Ostrovsky 1998). Here, we show that, phenomenologically, somewhat similar behaviour
can occur for long water waves propagating over inhomogeneous bathymetry.

It is known that, in the context of linear long water waves, transmission by a localized
inhomogeneity acts as a high-pass filter, allowing short waves to pass through, while long
waves are strongly reflected (e.g. Meyer 1975, 1979; Mei, Yue & Stiassnie 2005; Ermakov
& Stepanyants 2020). However, if a long wave is weakly nonlinear, a significant share of
its energy can be transferred to shorter wave scales that experience negligible reflection
and cause significant changes in the reflected/transmitted energy ratio.

Long water waves exhibit a powerful scale cascade mechanism: under the combined
effects of nonlinearity and dispersion, such waves tend disintegrate into a train of shorter
pulses. A celebrated example is the occurrence of ‘undular bores’, observed in rivers at
tidal fronts (e.g. Rayleigh 1914; Lamb 1932; Benjamin & Lighthill 1954; Chanson 2011;
and also more recent works by El, Grimshaw & Kamchatnov 2005; El, Grimshaw & Tiong
2012 and reference therein). Undular bore-like wave patterns are a universal feature of the
weakly nonlinear evolution of weakly dispersive waves, with or without inhomogeneity,
encountered a wide variety of physical contests, such as nonlinear optics (e.g. Wan, Jia
& Fleischer 2007; Fatome et al. 2014), flows of Bose–Einstein condensates (Xu et al.
2017), internal waves in the ocean and the atmosphere (Porter & Smyth 2002) and many
others. Their formation and evolution was studied mostly within the Korteweg–de Vries
(KdV) framework (e.g. Karpman 1967, 1975; Whitham 1973; Gurevich & Pitayevsky
1974); see also a recent review by Kamchatnov (2021), although it should be stressed that
the dispersive shock wave (DSW) formation is a generic robust phenomenon which in the
water wave context is in no way linked to any specific bathymetry. The strong gravitation
of DSW studies towards the KdV is primarily due to the KdV integrability, which greatly
facilitates the analysis.

Consider an initially smooth, localized elevation disturbance of the free surface, of
maximum height a and characteristic length L, in water of characteristic depth h0 and
with the nonlinearity and dispersion parameters ε = a/h0 and μ = h2

0/L2, both assumed
small. If initially μ � ε, the perturbation dynamics may be approximately described as
that of a Riemann wave with no dispersion (e.g. Whitham 1973), which evolves toward
a shock wave. As the wave steepens and approaches gradient catastrophe, dispersion
becomes important at the front of the wave, causing it to disintegrate into much shorter
waves for which nonlinearity and dispersion are in balance. In the KdV framework, these
shorter waves evolve toward KdV soliton shapes (e.g. Whitham 1973; Karpman 1975;
El et al. 2005, 2012; Kamchatnov et al. 2012). In different geographical locations and
different physical contexts the DSW phenomenon is known under different names (e.g.
Chanson 2011). For obvious reasons, the general name for this process is ‘dispersive shock
waves’; this term, along with its abbreviation, will be used throughout the paper. Here,
we show that the disintegration of a long water wave into a DSW pattern can transfer
enough energy to short scales to significantly enhance the transmission past a bathymetric
inhomogeneity. Because DSWs form faster for larger amplitude waves, the DSW enhanced
transmission effect is similar to the self-induced transparency in nonlinear optics
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Figure 1. Examples of tsunami and meteotsunami DSWs. (a) Fukushima tsunami (2011) at Kuji Port, Iwate
Prefecture, Japan; frame 1 : 20 min from video posted by Kamaishi Port Office and Ministry of Land,
Infrastructure, Transport and Tourism (MLIT) (2011). The tug boat length is ≈20 m long (visual estimation).
(b) Meteotsunami DSW or solibore recorded in near the 8 m isobath on the Atchafalaya shelf, LA, USA
(Sheremet, Gravois & Shrira 2016).

T (min) h (m) L (km) a (m) ε μ σ 2 hc (m)

15 100 28 1 0.01 1.3 × 10−5 794 8.2
5 50 6.6 0.5 0.01 6 × 10−5 176 9.2

Table 1. Characteristic scales of tsunamis and meteotsunamis on the shelf of slope ≈5 × 10−4 (Madsen et al.
2008; Sheremet et al. 2016); T , L and a are the characteristic wave period, length and amplitude scales; ε and
μ are the nonlinearity and dispersion parameters; σ 2 = ε/μ is the Ursell number; h is the depth at wave origin
(shelf edge for tsunamis); hc is the depth at the location of gradient catastrophe estimated ignoring dispersion.

(note that the physical mechanism of the phenomenon differs qualitatively from
the original self-induced transparency in nonlinear optics occurring due to quantum
interference discovered by Kocharovskaya & Khanin (1986)): at a bathymetric
inhomogeneity, a small amplitude long wave experiences strong reflection, while a larger
amplitude one is more likely to form a DSW and to blueshift its power spectrum to the
range of transparency, and thus pass through.

Long water waves in the ocean susceptible to DSW self-induced transparency include,
in particular, tsunamis and meteotsunamis (figure 1). Tsunamis are usually generated in
the deep ocean, primarily by earthquakes or volcanic activity. Due to their characteristic
dimensions (length L ∼ 102 km, amplitude a ∼ 1 m) tsunamis generated in the deep ocean
evolve over the open ocean effectively as linear waves and may develop a DSW only on
the shelf (e.g. Madsen, Fuhrman & Schäffer 2008). In contrast, meteotsunamis are usually
much shorter waves (L ∼ 10 km, a ∼ 0.5 m), typically generated on the continental shelf
by atmospheric perturbations through the Proudman resonance (e.g. Proudman 1929;
Rabinovich & Monserrat 1996, 1998; Monserrat, Vilibić & Rabinovich 2006; Vilibić,
Monserrat & Rabinovich 2014; Pellikka et al. 2022). To give a rough idea of characteristic
scales of DSW formation consider a constant shelf slope of 5 × 10−4, table 1 shows
characteristic parameters for the evolution of a 1 m height tsunami entering the shelf at
100 m depth, and a 0.5 m amplitude meteotsunami generated near the 50 m isobath. In
spite of large difference in scales, estimates of the gradient catastrophe location obtained
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using the nonlinear shallow water equations with no dispersion are similar for tsunamis
and meteotsunamis waves. Note that the DWS disintegration occurs before the gradient
catastrophe. Table 1 suggests that both tsunamis and meteotsunalis develop a DSW
structure on the shallow shelf, before reaching the near-shore slope (typically of the order
of ∼10−2).

The shoreline hazard posed by long waves such as tsunamis and meteotsunamis depends
critically on the processes affecting their propagation from the deep ocean onto the shallow
near-shore shelf. While DSW solitons are a hazard in their own right, as illustrated in
figure 1(a) by the precarious pitch of the tugboat attempting to evade them, the increased
transmission of energy due to the DSW self-induced transparency may play a significant
role in the shoreline impact of the wave and is the focus of our study.

To the best of our knowledge, the DSW self-induced transparency has never been
studied. The main aim of the work is to elucidate its mechanism employing the maximally
simplified setting. The simplest, but still adequate, mathematical model able to capture
the essence of the phenomenon by taking into account weak nonlinearity, weak dispersion
and bathymetry, is the Boussinesq equations (e.g. Peregrine 1967; Dingemans 1997). It is
relatively straightforward to simulate the Boussinesq equations numerically, and there are
available reliable established codes, e.g. FUNWAVE-TVD (Kirby et al. 1998). However,
untangling and accounting for the roles of nonlinearity, dispersion and interaction with
localized bathymetric inhomogeneity poses a significant challenge – even upon restricting
the wave dynamics to one-dimensional, non-breaking regimes of propagation over a
frictionless bottom. Reconstructing the general picture of the phenomenon from numerical
simulations using realistic, comprehensive wave physics is problematic, due to the large
number and range of required parameters.

The main difficulty of the problem is in the apparent necessity of simultaneous handling
of wave nonlinear dynamics and reflection/transmission. To fix the idea, we consider here
an idealized model of bathymetry, which enables us to spatially separate the effects of
nonlinearity and dispersion, on the one hand, and of bathymetry, on the other. This makes
it easier to get a quantitative description of the phenomenon for the chosen bathymetry and,
crucially, to provide an overall qualitative picture. It also helps to clarify the particular
roles of the mechanism’s essential components: DSW formation and reflection. Our
approach is a posteriori validated by comparison with an established numerical model,
FUNWAVE-TVD (Kirby et al. 1998).

In § 2 we provide the mathematical formulation of the problem and discuss the
mathematical and the numerical tools we use. The relevant aspects of the DSW evolution
over even bottom are discussed in § 3. The results of the analysis are presented in § 4 and
briefly summarized in § 6. Section 5 discusses the robustness of the phenomenon and its
modelling with respect the underlying assumptions. The Appendix compares our results
with FUNWAVE-TVD simulations.

2. Formulation of the problem

2.1. Basic equations, assumptions and simplifications
We consider the evolution of weakly nonlinear long waves over bathymetry within
the framework the Boussinesq system of equations (e.g. Peregrine 1967; Whitham
1973; Karpman 1975; Dingemans 1997; Mei et al. 2005). We confine our attention to
non-breaking regimes. There are many asymptotically equivalent formulations of the
Boussinesq equations, however, in the context of this work, the differences between
various versions are immaterial. For simplicity only, we consider a one-dimensional
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geometry. For certainty, we choose

ηt + [(h + η) u]x = 0, ut + gηx + uux = 1
2 h
[
(hu)xx − 1

3 huxx

]
t
, (2.1a,b)

where η(x, t) is the free surface elevation, x is the horizontal coordinate, t is time, u is
the vertically averaged horizontal velocity, h(x) is the bathymetry, g is the gravitational
acceleration and the subscripts x and t denote partial derivatives.

The Boussinesq equations (2.1a,b) describe both left- and right-propagating waves,
as well as their interactions, and therefore provide a full description of wave scattering
by inhomogeneities of topography. Often physics allows for considering only left- or
right-propagating waves alone, then all the variety of formulations of the Boussinesq
equations can be simplified to the same KdV equation with variable coefficients (e.g.
Ostrovsky & Pelinovsky 1975)

ηt ±
√

gh
(

1 + 3η

2h

)
ηx + h

6g
ηxxx +

√
gh

4h
hxη = 0. (2.2)

Since the aim of the work is to elucidate the mechanism of the DSW self-induced
transparency in the simplest possible setting, we choose a strongly idealized model of
bathymetry which will allow us to use the KdV equation for a considerable part of the
domain. This simplification is ostensibly inapplicable when the reflection is not negligible,
not only because the reflection implies bidirectional propagation, but also because the
outcome of wave evolution propagating in any direction may be modified by the weak
interaction with the counter-propagating waves. To validate the use of the adopted KdV
reduction we use a well-established numerical model, FUNWAVE-TVD (Wei et al. 1995;
Kirby et al. 1998; Shi et al. 2016) in the Appendix.

Because this is the first study of the long wave DSW self-induced transparency with
the prime aim of understanding the nature of the process, we focus on the two key
components of the mechanism: weak nonlinearity and reflection. This implies neglecting
all other processes likely to occur at the near shore, such as wave breaking, wave–current
interaction, bottom friction and others. We also leave aside three-dimensional aspects of
the wave dynamics, which are not essential for fixing the idea.

Even in the basic Boussinesq representations in the strictly two-dimensional setting
(2.1a,b) the interplay of nonlinearity, dispersion and inhomogeneity in the wave evolution
is usually too complex to be described analytically. Even with numerical models, it is
not straightforward to deconstruct it into its basic mechanisms. The KdV equation has
provided much of the analytical understanding of the DSW process (e.g. Whitham 1973;
Gurevich & Pitayevsky 1974; Karpman 1975; El et al. 2005, 2012; El & Hoefer 2016;
Kamchatnov 2021).

2.2. Bathymetry model: the decoupling hypothesis
Remarkably, separating reflection from nonlinearity is a plausible approximation in many
real conditions. The basis for this is the observation that ocean topography is often
characterized by significant bathymetric inhomogeneity separated by relatively flat areas.
For example, the continental slope separating the abyssal plane and the shelf; the pattern
repeats itself for smaller scales closer to the shoreline. For brevity only, we refer to the flat
areas as ‘shelves’, and the inhomogeneity as ‘slopes’, irrespective of the scales.

For oceanic long waves we consider, the bottom slopes are typically steep in the
following sense: for example, for the meteotsunami scales given in table 1, a near-shore
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Figure 2. (a) Schematics of simplified reflection/transmission problem for a weakly nonlinear positive
perturbation. The perturbation propagates over a shelf of constant depth h1. The slope from h2 to h1 is assumed
to be steep in the sense that the interaction between incoming and reflected waves may be neglected. The
problem reduces to the well-understood KdV evolution of a DSW over a flat bottom, with the reflected wave
computed in postprocessing, and may be computed for any DSW evolution stage. (b) Bathymetry settings
for reflection/transmission coefficients, reproduced from Ermakov & Stepanyants (2020). The direction of the
depth variation is irrelevant.

slope of 0.01 corresponds to the commonly used ‘mild slope parameter’ of order one (Mei
et al. 2005). Over such a steep slope, wave evolution is fast compared with the time scale of
nonlinearity, the nonlinear interaction between the incoming and reflected waves to leading
order is negligible and wave reflection then is approximately linear. If in addition the long
wave is localized, the counterpropagating waves are passing through each other too quickly
for nonlinear effects to accumulate. Thus, there are situations where the reflected wave can
be effectively decoupled from the nonlinear evolution of the incoming wave.

With this observation, the DSW reflection problem greatly simplifies. Rather than
considering a Boussinesq system for waves propagating in two opposite directions, we
can solve instead a unidirectional KdV initial value problem. The reflected wave may now
be computed ‘offline’, as a postprocessing result, using existing linear reflection models
(e.g. Ermakov & Stepanyants 2020). The validity of this simplifying assumption may be
verified using the FUNWAVE-TVD numerical model (see the Appendix). To eliminate
entanglement of DSW evolution and shoaling effects, we choose a particular profile of
the bathymetry: a shelf of constant depth h2 extending for an arbitrary distance towards
a slope that transitions to another shallow shelf of constant depth h1; for certainty, for
now let h1 < h2 (figure 2a). Because the reflection process is not directly related to DSW
evolution, the toe of the slope may be placed at any location on the shelf h1, and the
reflected wave may be computed at any stage of the DSW evolution.

2.3. Reflection and transmission at a constant slope
By virtue of negligible reflection for linear waves in the WKB (Wentzel–Kramers–
Brillouin) asymptotic regime, it has long been known that, for linear waves, a bathymetric
inhomogeneity acts as a high-pass filter, therefore, in this section we confine our
discussion to reflection and transmission of longer wave components. In the linear
settings, this is equivalent to reducing the linearized Boussinesq system to the classical
non-dispersive linear shallow water equations. A comprehensive discussion of linear
reflection of non-dispersive waves by several analytic slope shapes is given in Ermakov &
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Self-induced transparency of long waves over bathymetry

Stepanyants (2020) (see also references therein). Here, we just provide a brief overview of
reflection by a constant slope, but the results are of general applicability.

In the framework of the linearized shallow water equations in the standard notation,
where u and η are particle velocity and free surface elevation, x and t are the horizontal
coordinate and time, while h(x) and g are the local depth and acceleration due to gravity

ηt + uxh + uhx = 0, ut + gηx = 0. (2.3a,b)
The solution for a bathymetry consisting of two shelves of h1 and h2 separated by a
constant slope α = (h2 − h1)/L12 (figure 2b) may be sought as a Fourier summation of
monochromatic time solutions. For a single harmonic of frequency ω, (2.3a,b) reduce
over the slope to the Bessel equation with the known general solution

η = αL12
i

�

[
AJ0

(
2�

√
ξ
)

+ BY0

(
2�

√
ξ
)]

ei�τ . (2.4)

u = L12

T12

1
�

√
ξ

[
AJ1

(
2�

√
ξ
)

+ BY1

(
2�

√
ξ
)]

ei�τ , (2.5)

where Jn and Yn are the Bessel functions of the first and second kinds, A, B are arbitrary
constants and variables x = L12ξ , h = h1 − αL12ξ and the angular frequency � = ωT12,
are scaled using the length of the slope L12 and the slope time scale

T12 =
√

L12

αg
. (2.6)

The complete solution is obtained by matching the solution (2.4)–(2.5) at the slope
toe/top x1,2 with monochromatic waves propagating in both directions of the two shelves.
This yields reflection and transmission coefficients

R↑ = z∗
J1z∗

Y2 − z∗
J2z∗

Y1
z∗

J1zY2 − zJ2z∗
Y1

; T↑ = z∗
J1zY1 − zJ1z∗

Y1
z∗

J1zY2 − zJ2z∗
Y1

, (2.7a,b)

R↓ = zJ1zY2 − zJ2zY1

z∗
J1zY2 − zJ2z∗

Y1
; T↓ = z∗

J2zY2 − zJ2z∗
Y2

z∗
J1zY2 − zJ2z∗

Y1
, (2.8a,b)

for waves propagating upslope (↑), and downslope (↑), where

zJn = J0

(
2�

√
ξn

)
+ iJ1

(
2�

√
ξn

)
; zYn = Y0

(
2�

√
ξn

)
+ iY1

(
2�

√
ξn

)
,

(2.9a,b)
and the asterisk denotes complex conjugation.

The reflected waves are found by using expressions (2.7a,b)–(2.8a,b) and the Fourier
transform of the incoming wave

ϕR(t) =
∫ ∞

−∞
R( f )ϕ̂( f ) exp(2πift) df , where ϕ̂( f ) =

∫ ∞

−∞
ϕ(t) exp(−2πift) dt,

(2.10)
where the subscript R denotes the reflected wave. For the transmitted component one has
to replace R with T and the subscript R with the subscript T . The reflected and transmitted
fractions of the incoming energy flux are given by the expressions

FR =
∫ ∞

−∞
1
2

∣∣ϕ̂R( f )
∣∣2 df and FT =

√
h1

h2

∫ ∞

−∞
1
2

∣∣ϕ̂T( f )
∣∣2 df , (2.11a,b)

valid both for the upslope and downslope propagation.
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Figure 3. Reflected and transmitted fractions of energy flux for monochromatic wave by a constant slope for
h2/h1 = 50 (log scale; see also figure 2b). The reflected fraction is below 10 % for all frequencies greater
than 0.4 T−1

12 (2.6). The reflection coefficient decays roughly as f −2 outside the red box, where f is the scaled
frequency.

The absolute values of the coefficients do not depend on the direction of propagation:
|R↑| = |R↓| and |T↑| = |T↓|. The reflection and transmission coefficients given by
(2.7a,b) satisfy the conservation of energy, in the sense that the energy flux of the
incoming wave is equal to the sum of the energy fluxes of the reflected and transmitted
waves, |R|2 + |T |2√h1/h2 = 1 (direction subscript omitted). In this relation, |R|2 may
be interpreted as the fraction of the energy flux reflected by the slope, and |T |2√h1/h2
represents the fraction of the incoming energy flux transmitted past the slope. Figure 3
shows the reflected and transmitted energy flux fractions for h2/h1 = 50; downslope and
upslope energy flux fractions have identical frequency distributions for the same ratio
of depths. In the long wave limit, the reflection and transmission coefficients take the
well-known forms (Mei et al. 2005; constant gain, no phase shift)

R(0) ∼
√

ξ2 − √
ξ1√

ξ1 + √
ξ2

, T (0) ∼ 2
√

ξ2√
ξ1 + √

ξ2
. (2.12a,b)

The reflected energy fraction falls below 10 % for the frequencies exceeding 0.4 T−1
12

(outside the red box in figure 3). Figure 3 illustrates the statement that reflection and
transmission processes may be described as dual linear low- and high-pass filters, with the
spectral response given by (2.7a,b)–(2.8a,b). This is consistent with our consideration of
reflection within the framework of the shallow water equation, neglecting high frequency
dispersion.

3. Dispersive shock wave formation and evolution over constant depth

As discussed in § 2.2, here, we are concerned with the evolution of localized perturbations
over a flat shelf prior to encountering the bathymetric inhomogeneity. As we argued above,
at this stage of wave evolution it is legitimate to confine our consideration to unidirectional
propagation. Then all versions of the Boussinesq system can be reduced to a single KdV
equation. Recasting this KdV equation in non-dimensional ‘signalling’ coordinates (e.g.
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Karpman 1975; Osborne 1975; Caputo & Stepanyants 2003)

ϕξ + ϕϕτ + 1
σ 2 ϕτττ = 0, (3.1)

gives an initial value problem with initial condition

ϕ(0, τ ) = ϕ0(τ ); ϕ(ξ > 0, 0) = 0, (3.2a,b)

where the space and time variables x = a
T ξ and t = Tτ are scaled using the characteristic

time scale T of the initial perturbation, the parameter σ 2 = ε/μ is the Ursell number and
ε = a/h and μ = h2/L2, with L = 3cT and c = √

gh. Equation (3.1) is known to have an
infinite number of conserved quantities (e.g. Miura, Gardner & Kruskal 1968; Whitham
1973; Karpman 1975) of the form

Qm =
∫ ∞

−∞
qm(η) dx, m = 1, 2, . . . (3.3)

where qm are polynomials of order m in q and may contain its spatial derivatives.
Depending on the meaning of the function ϕ, the lowest orders q1 = ϕ, q2 = ϕ2/2 may
be interpreted as the densities of mass and momentum (e.g. Drazin & Johnson 1989), or
momentum and energy (e.g. Dingemans 1997). We chose here the latter interpretation.
Note, however, that q2 is used here only to evaluate the distribution over the DSW
disintegration products; the exact relationship between these quantities and the actual form
of water wave momentum and energy (e.g. Ablowitz & Segur 1979) is not important for
this study.

The equation is exactly solvable by the inverse scattering transform technique (e.g.
Whitham 1973; Karpman 1975; Ablowitz & Segur 1981) and other methods. Solitons
of the form ϕ ∝ sech2 play a fundamental role in the solution of the Cauchy problem:
solitons emerge as the large-time asymptotics of any initially localized perturbation of
positive polarity. Equation (3.1) is scaled in such a way that the scale of a soliton of
(3.1) corresponds to σ 2

s = 12. If
∫∞
−∞ ϕ0(τ ) dτ ≥ 0, the initial pulse disintegrates into

a number of solitons and a dispersive tail. If the disturbance ϕ0 is such that, σ 2 � σ 2
s ,

then, initially, the wave evolves as a Riemann simple wave without dispersion: the front
steepens, then a shock wave begins to form. However, as the wave front approaches the
gradient catastrophe, at the front of the wave dispersion becomes important, causing the
wave to disintegrate into wave groups that eventually transform into solitons, that is, the
DSW is formed. For the self-induced transparency phenomenon, of most interest are the
cases with large σ that can generate N � 1 solitons, where

N ≈ σ

π
√

6

∫
ϕ(ξ)>0

√
ϕ(ξ) dξ. (3.4)

Note that an arbitrary small perturbation will always generate at least one soliton if∫∞
−∞ ϕ0(τ ) dτ > 0 and, crucially, if the evolution domain is large enough.
These theoretical results are valid for infinite time and infinite extent of the horizontal

segment, which is often far from realistic situations. Nevertheless, these results enable us
to get important a priori bounds on reflected and transmitted energy, which we will briefly
discuss in § 5.
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For an initial disturbance (3.2a,b) of the form

ϕ0(τ ) = a sech2 τ − τ0

T
, (3.5)

the analytical solution for large time is known (e.g. Karpman 1967, 1975). It does not
include any dispersive wave residual, and the number and amplitude of the solitons
produced are

an

a
= 3

σ 2

[
1 +

√
1 + 2

3
σ 2 − 2n

]2

, with n = 1, 2, . . . , N <
1
2

(
1 +

√
1 + 2

3
σ 2

)
.

(3.6)

The nth soliton in the sequence carries the values of the mth conservation integral Qm,n as
follows:

Qm,n =
√

12
σ 2

2m [(m − 1)!]2

2m − 1
a(2m−1)/2

n . (3.7)

These results will be used below for a priori estimates from above for the outcome of the
DSW evolution and transmission.

4. Reflection of a DSW at a constant slope

4.1. Simulations
The asymptotic state of the disintegration of a DSW is well understood (e.g. Whitham
1973; Gurevich & Pitayevsky 1974; Karpman 1975; Caputo & Stepanyants 2003; El et al.
2005, 2012; Kamchatnov et al. 2012; Kamchatnov 2021). However, the reflection by an
inhomogeneity can occur during transient states of the DSW disintegration, well before the
wave reaches its asymptotic state. At present, numerical simulations are the only approach
available for investigating this problem.

The KdV equation (3.1) is integrated for initial conditions of the form given in (3.5)
using a symmetric split step method that combines the time Fourier transform with a
fourth-order Runge–Kutta integration of the nonlinear term (Sheremet et al. 2016). In all
simulations presented here, the relative error for the energy flux was <10−7.

The reflected and transmitted waves are calculated using the linear model discussed in
§ 2.3 for the toe of the slope located at positions ranging from the position of the initial
perturbation to the full extent of the integration domain. This provides an estimate of the
DSW reflection process at all simulated evolution stages.

The effect of the DSW disintegration on reflection is determined primarily by two time
scales: the reflection time scale T12 (specified by (2.6)) and the characteristic time scale T
of the wave itself. The frequency band allowed by the reflection and transmission filters
(2.7a,b)–(2.8a,b) depends on the relation between these two time scales. For sufficiently
gentle or too steep slopes α, i.e. T � T12 or T � T12, the contribution of the DSW to
transmission is small, because the initial perturbation is either almost entirely transmitted
or nearly entirely reflected. Therefore, the maximum effect of the DSW on transmission
occurs for the waves of time scales comparable to the reflection time scale, i.e. T ∼ T12.

As a reference example in the meteotsunami context, consider an initial positive
perturbation of the form given in (3.5) of L ≈ 3.3 km width and time scale T = 150 s,
starting its propagation either towards the shoreline or in the opposite direction at a shelf of
depth h = 50 m, which implies μ = 2.5 × 10−5. A wave height of a = 1 m corresponds
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Figure 4. Dependence of the reflected fraction of energy flux for a monochromatic wave on the slope (see
figure 2a). The reflection coefficient is plotted as a function of the time scale (inverse period) of the wave.
A comparison with figure 3 suggests that T ≈ T12 for slope α = 0.015.

to ε = 0.02, and σ 2 = 795, In the absence of dispersion, such a wave would reach the
gradient catastrophe point after propagating over a distance of ≈40 L, or ≈134 km; by
virtue of (3.6), its disintegration can produce at most 12 solitons. The reflected and
transmitted components are calculated below for an upslope transition from 50 to 1 m
depth (similar to the reflection at an inner shelf and beach), and a downslope transition
from 50 to 1000 m. The 1 m and 1000 m depths only determine the values of the long
wave coefficients ((2.11a,b); i.e. the scale of the R( f ) function), but otherwise have no
effect on the shape of the reflected and transmitted waves.

Figure 4 shows the reflected fraction of the energy flux for different upslope values.
Downslope reflection has a similar dependence on the slope (not shown). The maximum
effect of the DSW disintegration on reflection occurs for slopes 0.01≤ α ≤ 0.02 for
upslope propagation, and for 0.05≤ α ≤ 0.1 for downslope propagation.

4.2. Simulation results
The results of the simulations are presented below for two reference waves of initial
amplitude 0.5 m and 1.0 m, corresponding to σ 2 = 397 and σ 2 = 795, respectively. The
simulations were carried out assuming the slope value α ≈ 0.015 for upslope propagation
(blue line in figure 4), which is a rather typical value for the USA Atlantic inner shelf. For
downslope propagation we set the slope α = 0.07.

The energy transfer away from the strong reflection spectral band (indicated by
red rectangle, figures 3 and 4), which is the basis of the self-induced transparency
phenomenon, may be caused not just by the DSW formation and evolution, but also by
simple nonlinear steepening of the initial perturbation. Before shifting our attention to the
DSW reflection, we examine briefly the effect of nonlinear steepening. The non-dispersive
evolution of the initial perturbation (3.5) is shown in figure 5 for σ 2 = 397 (reference
wave initial amplitude a = 0.5 m). The wave evolves as a Riemann simple wave (e.g.
Whitham 1973): the height is constant, the front steepens and eventually becomes vertical
(‘gradient catastrophe’) at approximately 80 L (266 km for the reference wave) from the
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Figure 5. Reflection/transmission at different stages of the non-dispersive evolution of a perturbation with
σ 2 = 397 (reference wave amplitude a = 0.5 m). (a–c) Free surface elevation for the incoming (a,d),
transmitted (b,e) and reflected (c, f ) waves. (d–f ) Modal variance normalized by the maximum value. Lines
represent wave shapes produced if the slope toe were positioned at the location indicated. The red box indicates
the spectral band subjected to strong reflection. The reflected energy flux fraction outside the red box in the
lower panels is <10 %. Dashed lines in panel (d) plot the frequency dependence of the modal variance for the
Fourier series of a step function ( f −2), and triangle wave ( f −4).

initial location. The heights of the reflected and transmitted waves are, respectively, 0.58
and 2.38 (the latter accounts for shoaling). Bound Fourier components appear in the energy
flux spectra at frequencies outside the strong reflection band indicated by red boxes in
figures 5(d)–5( f ). For these modes, the fraction of the transmitted energy flux increases
significantly. Still, the variance of these bound modes is bounded from above by an f −2

decay (where f is the frequency in T−1 units) characteristic of square pulse variance
spectrum. The effect of the Riemann steepening manifests as a limited increase, up to
≈3.5 %, in the transmitted flux fraction.

In contrast, the formation and disintegration of DSW structures have a much stronger
effect on energy flux reflection and transmission at the slope. We illustrate these effects
for the Ursell numbers σ 2 = 397 and σ 2 = 795; for the reference wave, these values
correspond to amplitudes a = 0.5 m and a = 1.0 m, and nonlinearity parameters ε = 0.01
and ε = 0.02; the dispersion parameter is the same for both waves, μ = 2.5 × 10−5.
Based on (3.6) the maximum number of solitons which might be produced by the DSW
disintegration is 8 and 12, respectively.

The simulations shown in figures 6–8 illustrate the importance of the intermediate stages
of the DSW evolution. In both cases the initial perturbation evolves as a non-dispersive
Riemann wave for approximately 30 L (100 km for the reference wave) for σ 2 = 795,
and approximately twice this distance for σ 2 = 397. At approximately this point, solitons
emerge ordered by their height, the tallest ones move faster. Despite the long integration
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Figure 6. Evolution of perturbation with σ 2 = 397 (reference wave amplitude 0.5 m). (a,d,g) Incoming wave;
(b,e,h) transmitted wave; (c, f,i) reflected wave. (a–c) Upslope propagation, from 50 m to 1 m. (d–f ) Downslope
propagation from 50 m to 1000 m. (g–i) Modal variance normalized by the maximum value. The red box (g–i)
indicates the spectral band subjected to strong reflection; the energy flux fraction outside the red box is <5 %.
Time and space units are scaled by the characteristic scales T and L of the initial perturbation.

domain, the complete disintegration predicted by the theory does not occur, much larger
times are required. For the σ 2 = 397 case only 4 solitons can be distinguished as truly
separated, with perhaps two more beginning to form toward the end of the domain
(figure 6a). Similarly, only 6 out of the expected 12 solitons may be confidently identified
for the σ 2 = 795 case (figure 7a).

The DSW is most effective in transferring energy away from the strong reflection
band (figures 6–7g–i). As soon as solitons form they dominate the transmitted variance
(variance outside the red box increases substantially, figures 6–7, panel h). Note that the
shifting variance lobes are an artefact of the Fourier transform of the entire time series,
which converts soliton separation into phase modulation. The modulation disappears
if solitons are considered considered in isolation (figure 8d–f ), however, because the
disintegration is incomplete, only well-separated leading solitons can be confidently
identified (figure 8a–c). Figure 9 compares the solitons identified in the solution after
propagating for 600 L (reference wave, 2000 km), with the asymptotic solution ((3.6);
Karpman 1967, 1975). While taller solitons are practically identical to the analytic form
(also a validation of the numerical integration), lower solitons are not fully formed yet.

Because the first emerging solitons are taller and narrower, they are more effective in
transferring energy to higher wavenumbers and high transmission rates; lagging solitons
may have widths comparable to that of the initial perturbation and, therefore, experience
a similarly strong reflection. Under the adopted idealization of flat bottom for the DSW
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Figure 7. Same as in figure 6 but for a wave with σ 2 = 795 (reference wave amplitude 1.0 m).

evolution, the amplitudes and widths of the solitons eventually emerging out of any given
initial perturbations can be easily found by employing the inverse scattering transform; for
example, the amplitudes and hence widths of the solitons emerging out of sech-squared
initial elevation (3.5) are given by explicit formulae (3.6).

However, to find out how many solitons would form for a given initial perturbation and
distance to the toe of the slope one has to resort to numerical simulation. While the nature
of the reflection process makes the slope opaque to long waves, the DSW disintegration
breaks down the initial perturbation into ‘particles’ (solitons) carrying ‘quanta’ of energy
flux (3.7). Smaller (narrower) particles carry larger quanta and have larger transmission
rates. The slope can be transparent at least for some of the ‘particles’ resulting from the
DSW disintegration.

The strength of the self-induced transparency effect is primarily controlled by the
magnitude of the Ursell number σ 2. The nonlinearity, as quantified by σ 2, affects the
process in several ways:

(i) the DSW disintegration occurs earlier for larger σ 2 (compare figures 6–7a–c);
(ii) the number of emerging solitons increases for larger σ 2 ((3.6); figures 6–7);

(iii) the height of resulting solitons increases (3.6), which means that the energy carried
by each soliton increases (3.7), and the emerging solitons are narrower (figure 9).

(iv) Overall, energy flux transmission increases. Figure 10 shows the evolution of the
transmitted fraction of the total incoming energy flux for 8 × 101 ≤ σ 2 ≤ 1.2 × 102

(reference wave: 0.1 ≤ a ≤ 1.5 m) for a distance of propagation of ≈450 L
(reference wave, ≈2000 km). The transmitted fraction of total energy flux
monotonically increases with σ 2 and the degree of soliton separation. Over a flat
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end of the integration domain 600 L (2000 km for the reference wave). Panel columns: incoming, transmitted
and reflected waves. (a–c) Free surface elevation. (d–f ) Modal variance. The reflected energy flux fraction
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bottom the process approaches saturation as the solitons approach the asymptotic
state, but the distances required are not realistic. As noted before, the simple wave
deformation prior to the gradient catastrophe accounts for only an approximately
3 % increase in transmission efficiency. For realistic bathymetries, only the first few
solitons are likely to get fully separated. Hence reliance upon IST formulae might
considerably overestimate the transmission.

5. Discussion

Here, we briefly discuss the sensitivity of the general picture to the underlying assumptions
and approximations we adopted.

A key element of the broad picture is the high-pass filter behaviour of linear scattering by
a localized inhomogeneity. Although analytical results supporting the high-pass filter role
of bathymetry inhomogeneity exist only in the linear setting for a few geometrically simple
inhomogeneity models (Meyer 1975, 1979; Mei et al. 2005; Ermakov & Stepanyants
2020), the behaviour of smaller scale harmonics can always be described using the
WKB approximation, which suggests that this behaviour is universal within the linear
theory framework, and may be extended to the weakly nonlinear waves. Indeed, for the
bathymetry profile with an inhomogeneity of scale Λ (e.g. L12 in figure 2b), estimating the
‘nonlinearity length’ as the distance to ‘gradient catastrophe’ yields L/ε. The assumption
that Λ � L/ε allows for neglecting, in the first order, the effect of the nonlinearity on
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the slope. This regime is applicable to a wide range of realistic situations. When this
assumption is not valid, the self-induced transparency phenomenon does not disappear,
it just becomes more complex and exhibits a new dynamics. For example, for high
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enough initial nonlinearity, pulses resulting from the ‘primary’ DSW disintegration could
develop ‘secondary’ DSWs, further enhancing the phenomenon; or could become strongly
nonlinear and break. In fact, a number of interesting scenarios may be imagined which
merit dedicated studies. For example, if adiabatic evolution of the DSW solitons is
plausible, the nonlinear Green’s law (shoaling soliton’s amplitude growing inversely
proportional to local depth) could be applied. Moreover, although ignored here for the sake
of simplicity, wave breaking deserves a dedicated investigation. While there is a wide range
of non-breaking regimes of evolution, delineating breaking and non-breaking regimes in
the parameter space goes beyond the scope of this work. Here, we just note that breaking
obviously weakens the self-induced transparency effects.

Replacing the flat segments in out model bathymetry with mild sloping segments
should ensure negligible reflection, and could enhance the DSW transfer of energy into
smaller scales. The essence of the DSW self-induced transparency phenomenon will
be preserved, but the governing equation will switch from the KdV form used here
to a variable coefficient KdV. Qualitatively, for shoaling waves the number of solitons
produced increases while their scale decreases, which has the effect that the transmitted
fraction of the energy flux increases steadily instead of saturating as for the flat bathymetry
case. We stress that, if reflection over the mildly sloping segment remains negligible,
whatever is the bathymetry profile, the wave dynamic up to the reflecting part of the
bathymetry could be studied using the variable coefficient KdV equation without much
additional numerical effort.

These arguments suggest that the key elements of the mechanism, the inhomogeneity
high-pass filter and DSW disintegration, are robust and not sensitive to tweaking either
the model or topography. Moreover, even if we take into consideration the factors and
effects a priori neglected, such as the three-dimensional bathymetry and wave fields,
bottom friction and interaction with the atmosphere, we do not see a candidate mechanism
potentially able to destroy the phenomenon.

Although the calculations presented in the paper demonstrate the relevance of
the self-induced transparency for long ocean waves, the model is too simplified for
realistic tsunami/meteotsunami applications. Although we argued that the phenomenon
is universal, we stress that its manifestation is specific for each bathymetry. Quantifying
the DSW disintegration for any given conditions requires extensive direct integration
of the Boussinesq equations for the specific bathymetry and a range of parameters
of incoming waves. For long ocean waves, numerical models are readily accessible
(e.g. FUNWAVE-TVD Shi et al. (2016), tested and validated over many years), but this
task goes beyond the scope of present work.

We conclude this discussion by noting that the elements of the self-induced transparency
mechanism are robust, universal physical processes, which implies that the phenomenon
itself is universal and robust. The Boussinesq-type equations with inhomogeneity play
a fundamental role in many physical contexts, such as e.g. long internal gravity waves
(e.g. Grimshaw et al. 1998), plasmas (Karpman 1975) and nonlinear waves in solids
(Khusnutdinova, Gavrilyuk & Ostrovsky 2023). Scattering by localized homogeneities is
also a universal phenomenon, and its high-pass filter behaviour is well documented in the
framework of linear theory (e.g. Felsen & Marcuwitz 1994; Lekner 2016).

While DSW structures associated with tsunami/meteotsunami waves provided a major
motivation for this study, it should be noted that they are rare occurrences in comparison
with the daily occurring internal tide DSWs formed by propagation on the continental
shelf (e.g. Vlasenko, Stashchuk & Hutter 2005). Predicting the amount of energy brought
into the shelf area by each tidal cycle is important for estimating shelf ‘ventilation’ and
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its impact on shelf biological processes. The dynamics of long internal waves on the
shelf is governed by the same Boussinesq equations modified to account for the Earth’s
rotation with the stratification profiles incorporated into the coefficients (e.g. Grimshaw
et al. 1998).

Furthermore, we expect the DSW self-induced transparency mechanism to be far more
general than the Boussinesq-type equations with inhomogeneity and to be applicable to a
wide class of weakly dispersive systems. In particular, we have not touched on possible
effects due to higher-order nonlinear terms; the conclusions we arrived at are expected to
stand for the Euler equations without any simplifications. These expectations remain to be
properly developed and verified.

6. Conclusion

The main result of this study is introducing and elucidating the long wave DSW
self-induced transparency as a mechanism affecting the reflection/transmission of the wave
at a bathymetric inhomogeneity. The idealized bathymetric profile used here allows for
separating the effects of nonlinearity and dispersion from those of the reflection at a
bathymetric inhomogeneity which, in turn, elucidates their roles in the phenomenon of
long wave self-induced transparency. Although the quantitative analysis presented here is
limited to this idealized bathymetry, its results outline a general picture of the phenomenon
and allows for qualitative predictions for other bathymetry profiles. Thus, we conclude that
the DSW self-induced transparency is a universal phenomenon. However, its manifestation
in realistic conditions is expected to depend strongly on the specific bathymetry and initial
wave parameters. For these applications, quantitative predictions may be obtained only
using numerical simulation using numerical models of matching complexity.

Within the wide range of parameters we examined, the DSW disintegration is shown
to be effective in transferring energy flux across the scale boundary that separates the
high and low reflection domains in the parameter space. As a result, the self-induced
transparency can be an order-one effect: reflection can drop from order one to nearly
zero. The mechanism works both for up- and downslope bathymetric inhomogeneities. The
generation of bound harmonics, dominant for non-dispersive waves, has a much weaker
effect, up to 3.5 %, on reflection/transmission.
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Appendix. Numerical testing of the decoupling hypothesis

A fundamental hypothesis we employed in this study is that, if the sloping transition
between two shelves is steep enough and the incoming perturbation is localized, the
evolution of the incoming and reflected waves is effectively decoupled. To leading order,
the nonlinear interaction between the incoming and reflected waves may be neglected,
and wave reflection in the chosen regime is approximately linear. This assumption greatly
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Figure 11. Comparison between FUNWAVE-TVD and currently adopted KdV/linear reflection mode for the
reference wave with an amplitude of 0.8 m, σ 2 = 636. (a–d) Incoming DSW structure at the slope toe. (e–h)
Reflected wave. To avoid the breaking regime, the shallow shelf is set here at h2 = 10 m.

simplifies the problem by reducing the problem of dealing with counter-propagating waves
(e.g. Boussinesq equation) to the two independent parts: unidirectional propagation (KdV
equation) for the incoming wave, and an ‘offline’ linear calculation of reflected and
transmitted waves. We stress that the hypothesis is needed only for the simplification of
the consideration.

The nonlinear interaction between two counter-propagating pulses was thoroughly
studied by Khusnutdinova & Moore (2012) and Khusnutdinova, Moore & Pelinovsky
(2014) from a different perspective. We are not aware of dedicated studies of the nonlinear
interaction of two counter-propagating waves in the Boussinesq-type equations with
inhomogeneity, but have every reason to expect that the same logic as in the homogeneous
case should be applicable. This assumption could be verified by direct integration of the
Boussinesq equations. Here, we test the plausibility of this hypothesis by comparing the
simple KdV/linear reflection representation used in this study with numerical results of a
numerical Boussinesq model. To this end we use the FUNWAVE-TVD model, which is
the official shallow water model of the US Army Corps of Engineers, and has a long list
of well-tested capabilities (Kirby et al. 1998; Shi et al. 2012a; Shi, Kirby & Tehranirad
2012b; Kirby et al. 2013; Malej, Smith & Salgado-Dominguez 2015; Kirby 2016; Shi et al.
2016, 2018).
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Before attempting such a comparison, however, some precautions have to be made. The
KdV/linear reflection representation adopted here was formulated to retain the minimal set
of processes essential to the self-induced transparency phenomenon: balanced nonlinearity
and dispersion, and reflection. All other processes were purposely ignored. In contrast,
FUNWAVE-TVD is a numerical framework built for the opposite goal – to include all the
processes relevant for shallow water wave evolution. Bringing the two models to some
level of capability parity would require either adding extra physics to our simple model,
or stripping FUNWAVE-TVD of some of its capabilities. Neither proposition fits into the
scope of this study. The only alternative is to reformulate the problem in a way that may
be simulated in FUNWAVE-TVD by engaging a minimal subset of physics.

For the comparison, we use the settings of the chosen reference wave: an initial positive
perturbation of the sech-squared form (3.5) with amplitude 0.8 m, width L ≈ 3.3 km and
time scale T = 150 s (σ 2 = 636), propagating over a shelf of h2 = 50 m depth toward
a slope of 0.015. To avoid engaging FUNWAVE-TVD wave breaking modules over the
slope, the shallow shelf was set at h1 = 10 m. The propagation on the 50 m depth shelf
was simulated for 1000 km at a 20 m grid step, and then the output was used as a hot start
for a secondary higher resolution (0.75 m grid step) run over the slope.

Figure 11 compares the FUNWAVE-TVD results with the KdV/reflection model used
here for the propagation distances of 320, 440, 560, 1040 km. The results agree well in
both shape and magnitude of the reflected wave, considering that the FUNWAVE-TVD
runs exhibit a significant energy loss: 0.02, 0.06, 0.09 and 0.2 for the four distances,
respectively. This suggests that the decoupling hypothesis works well in the highly
idealized framework of the KdV/linear reflection model.
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