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Abstract
Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided nontangentially accessible domain, that is, a set which is quantitatively
open and path-connected. Assume also that Ω satisfies the capacity density condition. Let 𝐿0𝑢 = − div(𝐴0∇𝑢),
𝐿𝑢 = − div(𝐴∇𝑢) be two real (not necessarily symmetric) uniformly elliptic operators in Ω, and write 𝜔𝐿0 , 𝜔𝐿
for the respective associated elliptic measures. We establish the equivalence between the following properties:
(i) 𝜔𝐿 ∈ 𝐴∞(𝜔𝐿0 ), (ii) L is 𝐿𝑝 (𝜔𝐿0 )-solvable for some 𝑝 ∈ (1,∞), (iii) bounded null solutions of L satisfy
Carleson measure estimates with respect to 𝜔𝐿0 , (iv) S < N (i.e., the conical square function is controlled by the
nontangential maximal function) in 𝐿𝑞 (𝜔𝐿0 ) for some (or for all) 𝑞 ∈ (0,∞) for any null solution of L, and (v) L
is BMO(𝜔𝐿0 )-solvable. Moreover, in each of the properties (ii)-(v) it is enough to consider the class of solutions
given by characteristic functions of Borel sets (i.e, 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆) for an arbitrary Borel set 𝑆 ⊂ 𝜕Ω).

Also, we obtain a qualitative analog of the previous equivalences. Namely, we characterize the absolute continuity
of 𝜔𝐿0 with respect to 𝜔𝐿 in terms of some qualitative local 𝐿2 (𝜔𝐿0 ) estimates for the truncated conical square
function for any bounded null solution of L. This is also equivalent to the finiteness 𝜔𝐿0 -almost everywhere of
the truncated conical square function for any bounded null solution of L. As applications, we show that 𝜔𝐿0 is
absolutely continuous with respect to 𝜔𝐿 if the disagreement of the coefficients satisfies some qualitative quadratic
estimate in truncated cones for 𝜔𝐿0 -almost everywhere vertex. Finally, when 𝐿0 is either the transpose of L or its
symmetric part, we obtain the corresponding absolute continuity upon assuming that the antisymmetric part of the
coefficients has some controlled oscillation in truncated cones for 𝜔𝐿0 -almost every vertex.
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1. Introduction

The solvability of the Dirichlet problem (1.1) on rough domains has been of great interest in the last
50 years. Given a domain Ω ⊂ R𝑛+1 and a uniformly elliptic operator L on Ω, it consists on finding a
solution u (satisfying natural conditions in accordance to what is known for the boundary data f ) to the
boundary value problem {

𝐿𝑢 = 0 in Ω,

𝑢 = 𝑓 on 𝜕Ω.
(1.1)

To address this question, one typically investigates the properties of the corresponding elliptic measure
since it is the fundamental tool that enables us to construct solutions of equation (1.1). The techniques
from harmonic analysis and geometric measure theory have allowed us to study the regularity of elliptic
measures and hence understand this subject well. Conversely, the good properties of elliptic measures
allow us to effectively use the machinery from these fields to obtain information about the topology
and the regularity of the domains. These ideas have led to a quite active research at the intersection of
harmonic analysis, partial differential equations and geometric measure theory.

The connection between the geometry of a domain and the absolute continuity properties of its
harmonic measure goes back to the classical result of F. and M. Riesz [50], which showed that, for a
simply connected domain in the plane, the rectifiability of its boundary implies that harmonic measure
is mutually absolutely continuous with respect to the surface measure. After that, considerable attention
has focused on establishing higher-dimensional analogues and the converse of the F. and M. Riesz
theorem. For a planar domain, Bishop and Jones [6] proved that, if only a portion of the boundary
is rectifiable, harmonic measure is absolutely continuous with respect to arclength on that portion. A
counterexample was also constructed to show that the result of [50] may fail in the absence of some
strong connectivity property (like simple connectivity). In dimensions greater than 2, Dahlberg [13]
established a quantitative version of the absolute continuity of harmonic measures with respect to
surface measure on the boundary of a Lipschitz domain. This result was extended to BMO1 domains
by Jerison and Kenig [41] and to chord-arc domains by David and Jerison [17] (see also [5, 31, 36]
for the case of 1-sided chord-arc domains). In this direction, this was culminated in the recent results
of [4] under some optimal background hypothesis (an open set in R𝑛+1 satisfying an interior corkscrew
condition with an n-dimensional Ahlfors–David regular boundary). Indeed, [4] gives a complete picture
of the relationship between the quantitative absolute continuity of harmonic measure with respect to
surface measure (or, equivalently, the solvability of equation (1.1) for singular data; see [29]) and
the rectifiability of the boundary plus some weak local John condition (that is, local accessibility by
nontangential paths to some pieces of the boundary). Another significant extension of the F. and M.
Riesz theorem was obtained in [3], where it was proved that, in any dimension and in the absence
of any connectivity condition, every piece of the boundary with finite surface measure is rectifiable,
provided surface measure is absolutely continuous with respect to harmonic measure on that piece. It is
worth pointing out that all the aforementioned results are restricted to the n-dimensional boundaries of
domains in R𝑛+1. Some analogues have been obtained in [15, 16, 18, 47] on lower-dimensional sets.

On the other hand, the solvability of the Dirichlet problem (1.1) is closely linked with the absolute
continuity properties of elliptic measures. The importance of the quantitative absolute continuity of
the elliptic measure with respect to the surface measure comes from the fact that 𝜔𝐿 ∈ 𝑅𝐻𝑞 (𝜎)
(short for the reverse Hölder class with respect to 𝜎, being 𝜎 the surface measure) is equivalent to the
𝐿𝑞

′ (𝜎)-solvability of the Dirichlet problem (see, e.g., [29]). In 1984, Dahlberg formulated a conjecture
concerning the optimal conditions on a matrix of coefficients guaranteeing that the Dirichlet problem
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(1.1) with 𝐿 𝑝 data for some 𝑝 ∈ (1,∞) is solvable. Kenig and Pipher [44] made the first attempt on
bounded Lipschitz domains and gave an affirmative answer to Dahlberg’s conjecture. More precisely,
they showed that elliptic measure is quantitatively absolutely continuous with respect to surface measure
whenever the gradient of the coefficients satisfies a Carleson measure condition. This was done in
Lipschitz domains but can be naturally extended to chord-arc domains. In some sense, some recent
results have shown that this class of domains is optimal. First, [31, 36, 5] show that, in the case of
the Laplacian and for 1-sided chord-arc domains, the fact that the harmonic measure is quantitatively
absolutely continuous with respect to surface measure (equivalently, the 𝐿𝑝 (𝜎)-Dirichlet problem is
solvable for some finite p) implies that the domains must have exterior corkscrews; hence, they are
chord-arc domains. Indeed, in a first attempt to generalize this to the class of Kenig–Pipher operators,
Hofmann, the third author of the present paper and Toro [34] were able to consider variable coefficients
whose gradient satisfies some 𝐿1-Carleson condition (in turn, stronger than the one in [44]). The general
case, on which the operators are in the optimal Kenig–Pipher-class (that is, the gradient of the coefficients
satisfies an 𝐿2-Carleson condition) has been recently solved by Hofmann et al. [33].

One can also relate the solvability of the Dirichlet problem (1.1), with data in BMO, with the fact that
the elliptic measure belongs to 𝐴∞. This was first shown by Fefferman and Stein [23] for the Laplacian
in R𝑛+1

+ and extended to uniformly elliptic operators in [19] and [51] in the contexts of Lipschitz and
1-sided chord-arc domains, respectively. In the nonconnected case, Hofmann and Le [29] showed that
BMO-solvability implies that the elliptic measure belongs to the class weak-𝐴∞ with respect to surface
measure. Kenig et al. [42], extending [43], proved in the context of bounded Lipschitz domains that
if all bounded solutions satisfy Carleson measure estimates (CME), then the elliptic measure belongs
to the class 𝐴∞ (see also [9] for 1-sided chord-arc domains). An examination of the proofs of [42, 9]
reveals that the Carleson measure conditions are only used for solutions of the form 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆),
𝑋 ∈ Ω, with 𝑆 ⊂ 𝜕Ω being a Borel set. Hence, in those contexts, to show that the elliptic measure is
a Muckenhoupt weight, it suffices to see that all elliptic measure solutions with bounded data satisfy
CME, and this may be simpler than establishing the BMO-solvability as in [19, 51, 29].

In another direction, one can consider perturbations of elliptic operators in rough domains. That is,
one seeks for conditions on the disagreement of two coefficient matrices so that the solvability of the
Dirichlet problem or the quantitative absolute continuity with respect to the surface measure of the
elliptic measure for one elliptic operator could be transferred to the other operator. This problem was
initiated by Fabes, Jerison and Kenig [20] in the case of continuous and symmetric coefficients and
extended by Dahlberg [14] to a more general setting under a vanishing Carleson measure condition.
Soon after, working again in the domain Ω = 𝐵(0, 1) and with symmetric operators, Fefferman [21]
improved Dahlberg’s result by formulating the boundedness of a conical square function, which allows
one to preserve the 𝐴∞ property of elliptic measures but without preserving the reverse Hölder exponent
(see [22, Theorem 2.24]). A major step forward was made by Fefferman, Kenig and Pipher [22] by
giving an optimal Carleson measure perturbation on Lipschitz domains. Additionally, they established
another kind of perturbation to study the quantitative absolute continuity between two elliptic measures.
Beyond the Lipschitz setting, these results were extended to chord-arc domains [48, 49], 1-sided chord-
arc domains [8, 9] and 1-sided nontangentially accessible (NTA) domains satisfying the capacity density
condition (CDC) [2]. It is worth mentioning that the so-called extrapolation of Carleson measure was
utilized in [2, 8]. Nevertheless, a simpler and novel argument was presented in [9] to get the large
constant perturbation. More specifically, the authors use that the 𝐴∞ property of elliptic measures can
be characterized by the fact bounded solutions satisfy CME; see [9, Theorem 1.4], extending the main
result of [42] to the 1-sided chord-arc setting. Also, it is worth mentioning that [2] considers for the first
time perturbation results on sets with bad surface measures.

The goal of this paper is to continue with the line of research initiated in [1, 2]. We work with
Ω ⊂ R𝑛+1, 𝑛 ≥ 2, a 1-sided NTA domain satisfying the CDC. We consider two real (not necessarily
symmetric) uniformly elliptic operators 𝐿0𝑢 = − div(𝐴0∇𝑢) and 𝐿𝑢 = − div(𝐴∇𝑢) in Ω and denote
by 𝜔𝐿0 , 𝜔𝐿 the respective associated elliptic measures. The paper [2] considered the perturbation
theory in this context providing natural conditions on the disagreement of the coefficients so that 𝜔𝐿 is
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quantitatively absolutely continuous with respect to 𝜔𝐿0 (see also [22]). In our first main result, we single
out the latter property and characterize it in terms of the solvability of the Dirichlet problem or some
other properties that certain solutions satisfy. In a nutshell, we show that such condition is equivalent
to the fact that null solutions of L have a good behavior with respect to 𝜔𝐿0 . The precise statement is as
follows:

Theorem 1.1. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) and 𝐿0𝑢 = − div(𝐴0∇𝑢) be real (nonnecessarily symmetric)
elliptic operators. Bearing in mind the notions introduced in Definition 3.3, the following statements are
equivalent:

(a) 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ) (cf. Definition 3.1).
(b) L is 𝐿 𝑝 (𝜔𝐿0 )-solvable for some 𝑝 ∈ (1,∞).
(b)′ L is 𝐿 𝑝 (𝜔𝐿0 )-solvable for characteristic functions for some 𝑝 ∈ (1,∞).
(c) L satisfies CME(𝜔𝐿0 ).
(c)′ L satisfies CME(𝜔𝐿0 ) for characteristic functions.
(d) L satisfies S < N in 𝐿𝑞 (𝜔𝐿0 ) for some (or all) 𝑞 ∈ (0,∞).
(d)′ L satisfies S < N in 𝐿𝑞 (𝜔𝐿0 ) for characteristic functions for some (or all) 𝑞 ∈ (0,∞).
(e) L is BMO(𝜔𝐿0 )-solvable.
(e)′ L is BMO(𝜔𝐿0 )-solvable for characteristic functions.
(f) L is BMO(𝜔𝐿0 )-solvable in the generalized sense.
(f)′ L is BMO(𝜔𝐿0 )-solvable in the generalized sense for characteristic functions.

Furthermore, for any 𝑝 ∈ (1,∞) there hold

(a) 𝑝′ 𝜔𝐿 ∈ 𝑅𝐻𝑝′ (𝜕Ω, 𝜔𝐿0 ) ⇐⇒ (b) 𝑝 𝐿 is 𝐿 𝑝 (𝜔𝐿0 ) − 𝑠𝑜𝑙𝑣𝑎𝑏𝑙𝑒,

(b) 𝑝 𝐿 is 𝐿 𝑝 (𝜔𝐿0 )-solvable =⇒ (b)′𝑝𝐿 is 𝐿 𝑝 (𝜔𝐿0 )-solvable for characteristic functions,

and

(b) 𝑝 𝐿 is 𝐿 𝑝 (𝜔𝐿0 )-solvable =⇒ (b)𝑞 𝐿 is 𝐿𝑞 (𝜔𝐿0 )-solvable for all 𝑞 ≥ 𝑝.

Remark 1.2. Note that in Definition 3.3 the 𝐿 𝑝 (𝜔𝐿0 )-solvability depends on some fixed 𝛼 and N.
However, in the previous result what we prove is that if (a) holds, then (b) is valid for all 𝛼 and N. For
the converse, we see that if (b) holds for some 𝛼 and N, then we get (a). This eventually says that if (b)
holds for some 𝛼 and N, then it also holds for every 𝛼 and N. The same occurs with (d) where now there
is only 𝛼.

As an immediate consequence of Theorem 1.1, if we take 𝐿0 = 𝐿, in which case we clearly have
𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ) (indeed, 𝜔𝐿 ∈ 𝑅𝐻𝑝 (𝜕Ω, 𝜔𝐿0 ) for any 1 < 𝑝 < ∞), then we obtain the following
estimates for the null solutions of L (note that (ii) and (iii) coincide with [1, Theorems 1.3 and 1.5],
respectively):

Corollary 1.3. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) be a real (nonnecessarily symmetric) elliptic operator.
Bearing in mind the notions introduced in Definition 3.3, the following statements hold:

(i) L is 𝐿𝑝 (𝜔𝐿)-solvable and also 𝐿 𝑝 (𝜔𝐿)-solvable for characteristic functions, for all 𝑝 ∈ (1,∞).
(ii) L satisfies CME(𝜔𝐿).

(iii) L satisfies S < N in 𝐿𝑞 (𝜔𝐿) for all 𝑞 ∈ (0,∞).
(iv) L is BMO(𝜔𝐿)-solvable and also BMO(𝜔𝐿)-solvable for characteristic functions.
(v) L is BMO(𝜔𝐿)-solvable and also BMO(𝜔𝐿)-solvable for characteristic functions, in the general-

ized sense.
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Remark 1.4. We would like to emphasize that in (i) the 𝐿𝑝 (𝜔𝐿0 )-solvability holds for all 𝛼 and N, the
same occurs with (iii) which holds for all 𝛼; see Definition 3.3.

Our second application is a direct consequence of [2, Theorems 1.5, 1.10] and Theorem 1.1:

Corollary 1.5. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the
CDC (cf. Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) and 𝐿0𝑢 = − div(𝐴0∇𝑢) be real (nonnecessarily
symmetric) elliptic operators. Define

𝜚(𝐴, 𝐴0) (𝑋) := sup
𝑌 ∈𝐵 (𝑋,𝛿 (𝑋 )/2)

|𝐴(𝑌 ) − 𝐴0(𝑌 ) |, 𝑋 ∈ Ω, (1.2)

and

|||𝜚(𝐴, 𝐴0) ||| := sup
𝐵

sup
𝐵′

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

𝜚(𝐴, 𝐴0) (𝑋)2 𝐺𝐿0 (𝑋Δ , 𝑋)
𝛿(𝑋)2 𝑑𝑋,

where Δ = 𝐵∩Ω, Δ ′ = 𝐵′ ∩Ω, and the sup is taken, respectively, over all balls 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω
and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑐0𝑟/4, and 𝑐0 is the corkscrew
constant. We also define

𝒜𝛼 (𝜚(𝐴, 𝐴0)) (𝑥) :=
(∬

Γ𝛼 (𝑥)

𝜚(𝐴, 𝐴0) (𝑋)2

𝛿(𝑋)𝑛+1 𝑑𝑋

) 1
2

, 𝑥 ∈ 𝜕Ω,

where Γ𝛼 (𝑥) := {𝑋 ∈ Ω : |𝑋 − 𝑥 | ≤ (1 + 𝛼)𝛿(𝑋)}.
If

|||𝜚(𝐴, 𝐴0) ||| < ∞ or 𝒜𝛼 (𝜚(𝐴, 𝐴0)) ∈ 𝐿∞(𝜕Ω, 𝜔𝐿0 ), (1.3)

then all the properties (a)–(f)′ in Theorem 1.1 are satisfied.
Moreover, given 1 < 𝑝 < ∞, there exists 𝜀𝑝 > 0 (depending only on dimension, the 1-sided NTA

and CDC constants, the ellipticity constants of 𝐿0 and L and p) such that if

|||𝜚(𝐴, 𝐴0) ||| ≤ 𝜀𝑝 or ‖𝒜𝛼 (𝜚(𝐴, 𝐴0))‖𝐿∞ (𝜔𝐿0 ) ≤ 𝜀𝑝 ,

then 𝜔𝐿 ∈ 𝑅𝐻𝑝′ (𝜕Ω, 𝜔𝐿0 ), and hence, L is 𝐿𝑞 (𝜔𝐿0 )-solvable for 𝑞 ≥ 𝑝.

Our next goal is to state a qualitative version of Theorem 1.1 in line with [7]. The 𝐴∞ condition will
turn into absolute continuity. The qualitative analog of S < N is going to be that the conical square
function satisfies 𝐿𝑞 estimates in some pieces of the boundary. On the other hand, as seen from the proof
of Theorem 1.1 (see Lemma 4.3 and equation (4.30)), the CME condition, more precisely, the left-hand
side term of equation (3.8) is connected with the local 𝐿2-norm of the conical square function. Thus,
the 𝐿2-estimates for the conical square function are the qualitative version of CME. In turn, all these
are equivalent to the simple fact that the truncated conical square function is finite almost everywhere
with respect to the elliptic measure 𝜔𝐿0 .

Theorem 1.6. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists 𝛼0 > 0 (depending only on the 1-sided NTA and CDC constants)
such that for each fixed 𝛼 ≥ 𝛼0 and for every real (not necessarily symmetric) elliptic operators
𝐿0𝑢 = − div(𝐴0∇𝑢) and 𝐿𝑢 = − div(𝐴∇𝑢) the following statements are equivalent:

(a) 𝜔𝐿0 
 𝜔𝐿 on 𝜕Ω.
(b) 𝜕Ω =

⋃
𝑁 ≥0 𝐹𝑁 , where 𝜔𝐿0 (𝐹0) = 0, for each 𝑁 ≥ 1, 𝐹𝑁 = 𝜕Ω ∩ 𝜕Ω𝑁 for some bounded 1-

sided NTA domain Ω𝑁 ⊂ Ω satisfying the CDC, and S𝛼𝑟 𝑢 ∈ 𝐿𝑞 (𝐹𝑁 , 𝜔𝐿0 ) for every weak solution
𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω) of 𝐿𝑢 = 0 in Ω, for all (or for some) 𝑟 > 0, and for all (or for some)
𝑞 ∈ (0,∞).
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(b)′ 𝜕Ω =
⋃
𝑁 ≥0 𝐹𝑁 , where 𝜔𝐿0 (𝐹0) = 0, for each 𝑁 ≥ 1, 𝐹𝑁 = 𝜕Ω∩ 𝜕Ω𝑁 for some bounded 1-sided

NTA domainΩ𝑁 ⊂ Ω satisfying the CDC, and S𝛼𝑟 𝑢 ∈ 𝐿𝑞 (𝐹𝑁 , 𝜔𝐿0 ), where 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω,
for any arbitrary Borel set 𝑆 ⊂ 𝜕Ω, for all (or for some) 𝑟 > 0 and for all (or for some) 𝑞 ∈ (0,∞).

(c) S𝛼𝑟 𝑢(𝑥) < ∞ for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, for every weak solution 𝑢 ∈ 𝑊1,2
loc (Ω) ∩ 𝐿∞(Ω) of 𝐿𝑢 = 0 in Ω

and for all (or for some) 𝑟 > 0.
(c)′ S𝛼𝑟 𝑢(𝑥) < ∞ for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, where 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, for any arbitrary Borel set

𝑆 ⊂ 𝜕Ω and for all (or for some) 𝑟 > 0.
(d) For every weak solution 𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω) of 𝐿𝑢 = 0 in Ω and for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, there
exists 𝑟𝑥 > 0 such that S𝛼𝑟𝑥𝑢(𝑥) < ∞.

(d)′ For every Borel set 𝑆 ⊂ 𝜕Ω and for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, there exists 𝑟𝑥 > 0 such that S𝛼𝑟𝑥𝑢(𝑥) < ∞,
where 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω.

Our first application of the previous result is a qualitative version of [2, Theorem 1.10]:

Theorem 1.7. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists 𝛼0 > 0 (depending only on the 1-sided NTA and CDC constants) such
that, if the real (not necessarily symmetric) elliptic operators 𝐿0𝑢 = − div(𝐴0∇𝑢) and 𝐿𝑢 = − div(𝐴∇𝑢)
satisfy for some 𝛼 ≥ 𝛼0 and for some 𝑟 > 0∬

Γ𝛼
𝑟 (𝑥)

𝜚(𝐴, 𝐴0) (𝑋)2

𝛿(𝑋)𝑛+1 𝑑𝑋 < ∞, for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, (1.4)

where 𝜚(𝐴, 𝐴0) is as in equation (1.2), then 𝜔𝐿0 
 𝜔𝐿 .

To present another application of Theorem 1.6, we introduce some notation. For any real (not
necessarily symmetric) elliptic operator 𝐿𝑢 = − div(𝐴∇𝑢), we let 𝐿� denote the transpose of L, and let
𝐿sym = 𝐿+𝐿�

2 be the symmetric part of L. These are, respectively, the divergence form elliptic operators
with associated matrices 𝐴� (the transpose of A) and 𝐴sym = 𝐴+𝐴�

2 .

Theorem 1.8. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists 𝛼0 > 0 (depending only on the 1-sided NTA and CDC constants) such
that, if 𝐿𝑢 = − div(𝐴∇𝑢) is a real (not necessarily symmetric) elliptic operator and we assume that
(𝐴 − 𝐴�) ∈ Liploc(Ω) and that for some 𝛼 ≥ 𝛼0 and for some 𝑟 > 0 one has

ℱ𝛼
𝑟 (𝑥; 𝐴) :=

∬
Γ𝛼
𝑟 (𝑥)

| div𝐶 (𝐴 − 𝐴�)(𝑋) |2𝛿(𝑋)1−𝑛𝑑𝑋 < ∞, for 𝜔𝐿-a.e. 𝑥 ∈ 𝜕Ω, (1.5)

where

div𝐶 (𝐴 − 𝐴�)(𝑋) :=
( 𝑛+1∑
𝑖=1

𝜕𝑖 (𝑎𝑖, 𝑗 − 𝑎 𝑗 ,𝑖) (𝑋)
)

1≤ 𝑗≤𝑛+1
, 𝑋 ∈ Ω,

then 𝜔𝐿 
 𝜔𝐿� and 𝜔𝐿 
 𝜔𝐿sym .
Moreover, if

ℱ𝛼
𝑟 (𝑥; 𝐴) < ∞, for 𝜔𝐿-a.e. and𝜔𝐿� -a.e. 𝑥 ∈ 𝜕Ω, (1.6)

then 𝜔𝐿 
 𝜔𝐿� 
 𝜔𝐿 
 𝜔𝐿sym .

The structure of this paper is as follows. Section 2 contains some preliminaries, definitions and tools
that will be used throughout. Also, for convenience of the reader, we gather in Section 3 several facts
concerning elliptic measures and Green functions which can be found in the upcoming [35]. The proof
of Theorem 1.1 is in Section 4. Section 5 is devoted to proving Theorem 1.6. In Section 6, we will
present the proofs of Theorems 1.7 and 1.8 which follow easily from a more general perturbation result
which is interesting in its own right.
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We note that some interesting related work has been carried out while this manuscript was in
preparation due to Feneuil and Poggi [24]. This work can be particularized to our setting and contains
some results which overlap with ours. First, [24, Theorem 1.22] corresponds to (c)′ =⇒ (a) in
Theorem 1.1. It should be mentioned that both arguments use the ideas originated in [42] (see also [43])
which present some problems when extended to the 1-sided NTA setting. Namely, elliptic measure may
not always be a probability, and also it could happen that for a uniformly bounded number of generations
the dyadic children of a given cube may agree with that cube. These two issues have been carefully
addressed in [9, Lemma 3.10] (see Lemma 4.2 with 𝛽 > 0) and although such a result is stated in
the setting of 1-sided CAD it is straightforward to see that it readily adapts to our case. Our proof of
(c)′ =⇒ (a) in Theorem 1.1 follows easily from that lemma. Second, [24, Theorem 1.27] (see also [24,
Corollary 1.33]) shows (d) in Theorem 1.1 with 𝑞 = 2 for a class of perturbations of L. In our setting,
we are showing that (d) follows if (a) holds for any given operator L (whether or not it is a generalized
perturbation of 𝐿0).

2. Preliminaries

2.1. Notation and conventions

◦ We use the letters 𝑐, 𝐶 to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses of the
theorems (which we refer to as the ‘allowable parameters’). We shall also sometimes write 𝑎 � 𝑏
and 𝑎 ≈ 𝑏 to mean, respectively, that 𝑎 ≤ 𝐶𝑏 and 0 < 𝑐 ≤ 𝑎/𝑏 ≤ 𝐶, where the constants c and C
are as above unless explicitly noted to the contrary. Unless otherwise specified, uppercase constants
are greater than 1, and lowercase constants are smaller than 1. In some occasions, it is important to
keep track of the dependence on a given parameter 𝛾; in that case, we write 𝑎 �𝛾 𝑏 or 𝑎 ≈𝛾 𝑏 to
emphasize that the implicit constants in the inequalities depend on 𝛾.

◦ Our ambient space is R𝑛+1, 𝑛 ≥ 2.
◦ Given 𝐸 ⊂ R𝑛+1, we write diam(𝐸) = sup𝑥,𝑦∈𝐸 |𝑥 − 𝑦 | to denote its diameter.
◦ Given an open set Ω ⊂ R𝑛+1, we shall use lowercase letters 𝑥, 𝑦, 𝑧, etc., to denote points on 𝜕Ω, and

capital letters 𝑋,𝑌, 𝑍 , etc., to denote generic points in R𝑛+1 (especially those in R𝑛+1 \ 𝜕Ω).
◦ The open (𝑛+1)-dimensional Euclidean ball of radius r will be denoted 𝐵(𝑥, 𝑟) when the center x lies

on 𝜕Ω or 𝐵(𝑋, 𝑟) when the center 𝑋 ∈ R𝑛+1 \ 𝜕Ω. A surface ball is denoted Δ (𝑥, 𝑟) := 𝐵(𝑥, 𝑟) ∩ 𝜕Ω,
and unless otherwise specified, it is implicitly assumed that 𝑥 ∈ 𝜕Ω.

◦ If 𝜕Ω is bounded, it is always understood (unless otherwise specified) that all surface balls have radii
controlled by the diameter of 𝜕Ω, that is, if Δ = Δ (𝑥, 𝑟), then 𝑟 � diam(𝜕Ω). Note that in this way
Δ = 𝜕Ω if diam(𝜕Ω) < 𝑟 � diam(𝜕Ω).

◦ For 𝑋 ∈ R𝑛+1, we set 𝛿(𝑋) := dist(𝑋, 𝜕Ω).
◦ We let H𝑛 denote the n-dimensional Hausdorff measure.
◦ For a Borel set 𝐴 ⊂ R𝑛+1, we let 1𝐴 denote the usual indicator function of A, i.e., 1𝐴(𝑋) = 1 if 𝑋 ∈ 𝐴,

and 1𝐴(𝑋) = 0 if 𝑋 ∉ 𝐴.
◦ We shall use the letter I (and sometimes J) to denote a closed (𝑛 + 1)-dimensional Euclidean cube

with sides parallel to the coordinate axes, and we let ℓ(𝐼) denote the side length of I. We use Q to
denote dyadic ‘cubes’ on E or 𝜕Ω. The latter exist as a consequence of Lemma 2.8 below.

2.2. Some definitions

Definition 2.1 (Corkscrew condition). Following [41], we say that a domain Ω ⊂ R𝑛+1 satisfies the
Corkscrew condition if for some uniform constant 0 < 𝑐0 < 1, and for every 𝑥 ∈ 𝜕Ω and 0 < 𝑟 <
diam(𝜕Ω), if we write Δ := Δ (𝑥, 𝑟), there is a ball 𝐵(𝑋Δ , 𝑐0𝑟) ⊂ 𝐵(𝑥, 𝑟) ∩ Ω. The point 𝑋Δ ⊂ Ω is
called a Corkscrew point relative to Δ (or, relative to B). We note that we may allow 𝑟 < 𝐶 diam(𝜕Ω)
for any fixed C simply by adjusting the constant 𝑐0.
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Definition 2.2 (Harnack chain condition). Again following [41], we say that Ω satisfies the Harnack
chain condition if there are uniform constants 𝐶1, 𝐶2 > 1 such that for every pair of points 𝑋, 𝑋 ′ ∈ Ω
there is a chain of balls 𝐵1, 𝐵2, . . . , 𝐵𝑁 ⊂ Ω with 𝑁 ≤ 𝐶1 (2 + log+2 Π), where

Π :=
|𝑋 − 𝑋 ′ |

min{𝛿(𝑋), 𝛿(𝑋 ′)} (2.1)

such that 𝑋 ∈ 𝐵1, 𝑋 ′ ∈ 𝐵𝑁 , 𝐵𝑘 ∩ 𝐵𝑘+1 ≠ Ø and for every 1 ≤ 𝑘 ≤ 𝑁

𝐶−1
2 diam(𝐵𝑘 ) ≤ dist(𝐵𝑘 , 𝜕Ω) ≤ 𝐶2 diam(𝐵𝑘 ). (2.2)

The chain of balls is called a Harnack chain.

We note that in the context of the previous definition if Π ≤ 1 we can trivially form the Harnack
chain 𝐵1 = 𝐵(𝑋, 3𝛿(𝑋)/5) and 𝐵2 = 𝐵(𝑋 ′, 3𝛿(𝑋 ′)/5), where equation (2.2) holds with 𝐶2 = 3. Hence,
the Harnack chain condition is nontrivial only when Π > 1.

Definition 2.3 (1-sided NTA and NTA). We say that a domain Ω is a 1-sided NTA domain (1-sided
NTA) if it satisfies both the corkscrew and Harnack chain conditions. Furthermore, we say that Ω is
a NTA domain if it is a 1-sided NTA domain and if, in addition, Ωext := R𝑛+1 \ Ω also satisfies the
corkscrew condition.

Remark 2.4. In the literature, 1-sided NTA domains are also called uniform domains. We remark that
the 1-sided NTA condition is a quantitative form of openness and path connectedness.

Definition 2.5 (Ahlfors regular). We say that a closed set 𝐸 ⊂ R𝑛+1 is n-dimensional Ahlfors regular
(AR for short) if there is some uniform constant 𝐶1 > 1 such that

𝐶−1
1 𝑟𝑛 ≤ H𝑛 (𝐸 ∩ 𝐵(𝑥, 𝑟)) ≤ 𝐶1 𝑟

𝑛, 𝑥 ∈ 𝐸, 0 < 𝑟 < diam(𝐸). (2.3)

Definition 2.6 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a 1-sided NTA
domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with AR boundary.

We next recall the definition of the capacity of a set. Given an open set 𝐷 ⊂ R𝑛+1 (where we recall
that we always assume that 𝑛 ≥ 2) and a compact set 𝐾 ⊂ 𝐷, we define the capacity of K relative to D as

Cap2(𝐾, 𝐷) = inf
{∬

𝐷
|∇𝑣(𝑋) |2𝑑𝑋 : 𝑣 ∈ 𝒞∞

𝑐 (𝐷), 𝑣(𝑥) ≥ 1 in 𝐾

}
.

Definition 2.7 (CDC). An open set Ω is said to satisfy the CDC if there exists a uniform constant 𝑐1 > 0
such that

Cap2 (𝐵(𝑥, 𝑟) \Ω, 𝐵(𝑥, 2𝑟))
Cap2 (𝐵(𝑥, 𝑟), 𝐵(𝑥, 2𝑟))

≥ 𝑐1 (2.4)

for all 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [45]. Using [28, Example
2.12], one has that

Cap2(𝐵(𝑥, 𝑟), 𝐵(𝑥, 2𝑟)) ≈ 𝑟𝑛−1, for all 𝑥 ∈ R𝑛+1 and 𝑟 > 0, (2.5)

and hence, the CDC is a quantitative version of the Wiener regularity, in particular every 𝑥 ∈ 𝜕Ω is
Wiener regular. It is easy to see that the exterior corkscrew condition implies CDC. Also, it was proved
in [51, Section 3] and [30, Lemma 3.27] that a set with Ahlfors regular boundary satisfies the CDC with
constant 𝑐1 depending only on n and the Ahlfors regular constant.
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2.3. Dyadic grids and sawtooths

In this section, we introduce a dyadic grid from [1, Lemma 2.13] along the lines of that obtained in [10]
but using the dyadic structure from [39, 40, 37]:

Lemma 2.8 (Existence and properties of the ‘dyadic grid’, [1, Lemma 2.13]). Let 𝐸 ⊂ R𝑛+1 be a closed
set. Then there exists a constant 𝐶 ≥ 1 depending just on n such that for each 𝑘 ∈ Z there is a collection
of Borel sets (called ‘cubes’)

D𝑘 :=
{
𝑄𝑘𝑗 ⊂ 𝐸 : 𝑗 ∈ 𝔍𝑘

}
,

where 𝔍𝑘 denotes some (possibly finite) index set depending on k satisfying:

(a) 𝐸 =
⋃
𝑗∈𝔍𝑘

𝑄𝑘𝑗 for each 𝑘 ∈ Z.
(b) If 𝑚 ≤ 𝑘 , then either 𝑄𝑘𝑗 ⊂ 𝑄𝑚𝑖 or 𝑄𝑚𝑖 ∩𝑄𝑘𝑗 = Ø.
(c) For each 𝑘 ∈ Z, 𝑗 ∈ 𝔍𝑘 and 𝑚 < 𝑘 , there is a unique 𝑖 ∈ 𝔍𝑚 such that 𝑄𝑘𝑗 ⊂ 𝑄𝑚𝑖 .
(d) For each 𝑘 ∈ Z, 𝑗 ∈ 𝔍𝑘 there is 𝑥𝑘𝑗 ∈ 𝐸 such that

𝐵(𝑥𝑘𝑗 , 𝐶−12−𝑘 ) ∩ 𝐸 ⊂ 𝑄𝑘𝑗 ⊂ 𝐵(𝑥𝑘𝑗 , 𝐶2−𝑘 ) ∩ 𝐸.

In what follows given 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝐸 , we will denote Δ = Δ (𝑥, 𝑟) = 𝐵 ∩ 𝐸 . A few remarks
are in order concerning this lemma. Note that within the same generation (that is, within each D𝑘 ) the
cubes are pairwise disjoint (hence, there are no repetitions). On the other hand, we allow repetitions in
the different generations, that is, we could have that 𝑄 ∈ D𝑘 and 𝑄 ′ ∈ D𝑘−1 agree. Then, although Q
and 𝑄 ′ are the same set, as cubes we understand that they are different. In short, it is then understood
that D is an indexed collection of sets, where repetitions of sets are allowed in the different generations
but not within the same generation. With this in mind, we can give a proper definition of the ‘length’ of
a cube (this concept has no geometric meaning in this context). For every 𝑄 ∈ D𝑘 , we set ℓ(𝑄) = 2−𝑘 ,
which is called the ‘length’ of Q. Note that the ‘length’ is well defined when considered on D, but it is
not well-defined on the family of sets induced by D. It is important to observe that the ‘length’ refers
to the way the cubes are organized in the dyadic grid. It is clear from (𝑑) that diam(𝑄) � ℓ(𝑄). When
𝐸 = 𝜕Ω, with Ω being a 1-sided NTA domain satisfying the CDC condition, the converse holds, hence
diam(𝑄) ≈ ℓ(𝑄); see [1, Remark 2.56]. This means that the ‘length’ is related to the diameter of the
cube.

Let us observe that if E is bounded and 𝑘 ∈ Z is such that diam(𝐸) < 𝐶−12−𝑘 , then there cannot be
two distinct cubes in D𝑘 . Thus, D𝑘 = {𝑄𝑘 } with 𝑄𝑘 = 𝐸 . Therefore, we are going to ignore those 𝑘 ∈ Z
such that 2−𝑘 � diam(𝐸). Hence, we shall denote by D(𝐸) the collection of all relevant 𝑄𝑘𝑗 , i.e.,

D(𝐸) :=
⋃
𝑘

D𝑘 ,

where, if diam(𝐸) is finite, the union runs over those 𝑘 ∈ Z such that 2−𝑘 � diam(𝐸). We write
Ξ = 2𝐶2, with C being the constant in Lemma 2.8, which is purely dimensional. For 𝑄 ∈ D(𝐸), we will
set 𝑘 (𝑄) = 𝑘 if 𝑄 ∈ D𝑘 . Property (𝑑) implies that for each cube 𝑄 ∈ D(𝐸), there exist 𝑥𝑄 ∈ 𝐸 and 𝑟𝑄,
with Ξ−1ℓ(𝑄) ≤ 𝑟𝑄 ≤ ℓ(𝑄) (indeed 𝑟𝑄 = (2𝐶)−1ℓ(𝑄)), such that

Δ (𝑥𝑄, 2𝑟𝑄) ⊂ 𝑄 ⊂ Δ (𝑥𝑄,Ξ𝑟𝑄). (2.6)
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We shall denote these balls and surface balls by

𝐵𝑄 := 𝐵(𝑥𝑄, 𝑟𝑄), Δ𝑄 := Δ (𝑥𝑄, 𝑟𝑄), (2.7)

𝐵𝑄 := 𝐵(𝑥𝑄,Ξ𝑟𝑄), Δ̃𝑄 := Δ (𝑥𝑄,Ξ𝑟𝑄), (2.8)

and we shall refer to the point 𝑥𝑄 as the ‘center’ of Q.
Let 𝑄 ∈ D𝑘 , and consider the family of its dyadic children {𝑄 ′ ∈ D𝑘+1 : 𝑄 ′ ⊂ 𝑄}. Note that for any

two distinct children 𝑄 ′, 𝑄 ′′, one has |𝑥𝑄′ − 𝑥𝑄′′ | ≥ 𝑟𝑄′ = 𝑟𝑄′′ = 𝑟𝑄/2, otherwise 𝑥𝑄′′ ∈ 𝑄 ′′ ∩ Δ𝑄′ ⊂
𝑄 ′′ ∩ 𝑄 ′, contradicting the fact that 𝑄 ′ and 𝑄 ′′ are disjoint. Also, 𝑥𝑄′ , 𝑥𝑄′′ ∈ 𝑄 ⊂ Δ (𝑥𝑄,Ξ𝑟𝑄), hence
by the geometric doubling property we have a purely dimensional bound for the number of such 𝑥𝑄′ ,
and hence, the number of dyadic children of a given dyadic cube is uniformly bounded.

We next introduce the ‘discretized Carleson region’ relative to 𝑄 ∈ D(𝐸),D𝑄 = {𝑄 ′ ∈ D : 𝑄 ′ ⊂ 𝑄}.
Let F = {𝑄𝑖} ⊂ D(𝐸) be a family of pairwise disjoint cubes. The ‘global discretized sawtooth’ relative
to F is the collection of cubes 𝑄 ∈ D(𝐸) that are not contained in any 𝑄𝑖 ∈ F , that is,

DF := D \
⋃
𝑄𝑖 ∈F

D𝑄𝑖 .

For a given 𝑄 ∈ D(𝐸), the ‘local discretized sawtooth’ relative to F is the collection of cubes in D𝑄
that are not contained in any 𝑄𝑖 ∈ F or, equivalently,

DF ,𝑄 := D𝑄 \
⋃
𝑄𝑖 ∈F

D𝑄𝑖 = DF ∩ D𝑄 .

We also allow F to be the empty set in which case DØ = D(𝐸) and DØ,𝑄 = D𝑄.
In the sequel, Ω ⊂ R𝑛+1, 𝑛 ≥ 2, will be a 1-sided NTA domain satisfying the CDC. WriteD = D(𝜕Ω)

for the dyadic grid obtained from Lemma 2.8 with 𝐸 = 𝜕Ω. In [1, Remark 2.56], it is shown that under
the present assumptions one has that diam(Δ) ≈ 𝑟Δ for every surface ball Δ and diam(𝑄) ≈ ℓ(𝑄) for
every 𝑄 ∈ D. Given 𝑄 ∈ D, we define the ‘corkscrew point relative to Q’ as 𝑋𝑄 := 𝑋Δ𝑄 . We note that

𝛿(𝑋𝑄) ≈ dist(𝑋𝑄, 𝑄) ≈ diam(𝑄).

We also introduce the ‘geometric’ Carleson regions and sawtooths. Given 𝑄 ∈ D, we want to define
some associated regions which inherit the good properties of Ω. Let W = W (Ω) denote a collection
of (closed) dyadic Whitney cubes of Ω ⊂ R𝑛+1 so that the cubes in W form a covering of Ω with
nonoverlapping interiors and satisfy

4 diam(𝐼) ≤ dist(4𝐼, 𝜕Ω) ≤ dist(𝐼, 𝜕Ω) ≤ 40 diam(𝐼), ∀𝐼 ∈ W , (2.9)

and

diam(𝐼1) ≈ diam(𝐼2), whenever 𝐼1 and 𝐼2 touch.

Let 𝑋 (𝐼) denote the center of I, let ℓ(𝐼) denote the side length of I and write 𝑘 = 𝑘 𝐼 if ℓ(𝐼) = 2−𝑘 .
Given 0 < 𝜆 < 1 and 𝐼 ∈ W , we write 𝐼∗ = (1 + 𝜆)𝐼 for the ‘fattening’ of I. By taking 𝜆 small

enough, we can arrange matters so that, first, dist(𝐼∗, 𝐽∗) ≈ dist(𝐼, 𝐽) for every 𝐼, 𝐽 ∈ W . Secondly, 𝐼∗
meets 𝐽∗ if and only if 𝜕𝐼 meets 𝜕𝐽 (the fattening thus ensures overlap of 𝐼∗ and 𝐽∗ for any pair 𝐼, 𝐽 ∈ W
whose boundaries touch so that the Harnack chain property then holds locally in 𝐼∗ ∪ 𝐽∗, with constants
depending upon 𝜆.) By picking 𝜆 sufficiently small, say 0 < 𝜆 < 𝜆0, we may also suppose that there is
𝜏 ∈ ( 1

2 , 1) such that for distinct 𝐼, 𝐽 ∈ W , we have that 𝜏𝐽 ∩ 𝐼∗ = Ø. In what follows, we will need to
work with dilations 𝐼∗∗ = (1 + 2𝜆)𝐼 or 𝐼∗∗∗ = (1 + 4𝜆)𝐼, and in order to ensure that the same properties
hold, we further assume that 0 < 𝜆 < 𝜆0/4.
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Given 𝜗 ∈ N, for every cube 𝑄 ∈ D, we set

W𝜗
𝑄 :=

{
𝐼 ∈ W : 2−𝜗ℓ(𝑄) ≤ ℓ(𝐼) ≤ 2𝜗ℓ(𝑄), and dist(𝐼, 𝑄) ≤ 2𝜗ℓ(𝑄)

}
. (2.10)

We will choose 𝜗 ≥ 𝜗0, with 𝜗0 large enough depending on the constants of the corkscrew condition
(cf. Definition 2.1) and in the dyadic cube construction (cf. Lemma 2.8) so that 𝑋𝑄 ∈ 𝐼 for some
𝐼 ∈ W𝜗

𝑄 , and for each dyadic child 𝑄 𝑗 of Q, the respective corkscrew points 𝑋𝑄 𝑗 ∈ 𝐼 𝑗 for some
𝐼 𝑗 ∈ W𝜗

𝑄 . Moreover, we may always find an 𝐼 ∈ W𝜗
𝑄 with the slightly more precise property that

ℓ(𝑄)/2 ≤ ℓ(𝐼) ≤ ℓ(𝑄) and

W𝜗
𝑄1

∩W𝜗
𝑄2

≠ Ø, whenever 1 ≤ ℓ(𝑄2)
ℓ(𝑄1)

≤ 2, and dist(𝑄1, 𝑄2) ≤ 1000ℓ(𝑄2).

For each 𝐼 ∈ W𝜗
𝑄 , we form a Harnack chain from the center 𝑋 (𝐼) to the corkscrew point 𝑋𝑄 and call

it 𝐻 (𝐼). We now let W𝜗,∗
𝑄 denote the collection of all Whitney cubes which meet at least one ball in the

Harnack chain 𝐻 (𝐼) with 𝐼 ∈ W𝜗
𝑄 , that is,

W𝜗,∗
𝑄 := {𝐽 ∈ W : there exists 𝐼 ∈ W𝜗

𝑄 such that 𝐻 (𝐼) ∩ 𝐽 ≠ Ø}.

We also define

𝑈𝜗𝑄 :=
⋃

𝐼 ∈W𝜗,∗
𝑄

(1 + 𝜆)𝐼 =:
⋃

𝐼 ∈W𝜗,∗
𝑄

𝐼∗.

By construction, we then have that

W𝜗
𝑄 ⊂ W𝜗,∗

𝑄 ⊂ W and 𝑋𝑄 ∈ 𝑈𝜗𝑄 , 𝑋𝑄 𝑗 ∈ 𝑈𝜗𝑄 ,

for each child 𝑄 𝑗 of Q. It is also clear that there is a uniform constant 𝑘∗ (depending only on the 1-sided
CAD constants and 𝜗) such that

2−𝑘
∗
ℓ(𝑄) ≤ ℓ(𝐼) ≤ 2𝑘

∗
ℓ(𝑄), ∀ 𝐼 ∈ W𝜗,∗

𝑄 ,

𝑋 (𝐼) →𝑈 𝜗
𝑄

𝑋𝑄, ∀ 𝐼 ∈ W𝜗,∗
𝑄 ,

dist(𝐼, 𝑄) ≤ 2𝑘
∗
ℓ(𝑄), ∀ 𝐼 ∈ W𝜗,∗

𝑄 .

Here, 𝑋 (𝐼) →𝑈 𝜗
𝑄

𝑋𝑄 means that the interior of 𝑈𝜗𝑄 contains all balls in a Harnack chain (in Ω)
connecting 𝑋 (𝐼) to 𝑋𝑄, and moreover, for any point Z contained in any ball in the Harnack chain, we
have dist(𝑍, 𝜕Ω) ≈ dist(𝑍,Ω \ 𝑈𝜗𝑄) with uniform control of implicit constants. The constant 𝑘∗ and
the implicit constants in the condition 𝑋 (𝐼) →𝑈 𝜗

𝑄
𝑋𝑄 depend at most on the allowable parameters on

𝜆 and on 𝜗. Moreover, given 𝐼 ∈ W , we have that 𝐼 ∈ W𝜗,∗
𝑄𝐼

, where 𝑄𝐼 ∈ D satisfies ℓ(𝑄𝐼 ) = ℓ(𝐼) and
contains any fixed 𝑦̂ ∈ 𝜕Ω such that dist(𝐼, 𝜕Ω) = dist(𝐼, 𝑦̂). The reader is referred to [31, 35] for full
details. We note, however, that in [31] the parameter 𝜗 is fixed. Here, we need to allow 𝜗 to depend on
the aperture of the cones, and hence, it is convenient to include the superindex 𝜗.

For a given 𝑄 ∈ D, the ‘Carleson box’ relative to Q is defined by

𝑇 𝜗𝑄 := int
( ⋃
𝑄′ ∈D𝑄

𝑈𝜗𝑄′

)
.
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For a given family F = {𝑄𝑖} ⊂ D of pairwise disjoint cubes and a given 𝑄 ∈ D, we define the ‘local
sawtooth region’ relative to F by

Ω𝜗F ,𝑄 := int
( ⋃
𝑄′ ∈DF ,𝑄

𝑈𝜗𝑄′

)
= int

( ⋃
𝐼 ∈W𝜗

F ,𝑄

𝐼∗
)
, (2.11)

where W𝜗
F ,𝑄 :=

⋃
𝑄′ ∈DF ,𝑄

W𝜗,∗
𝑄′ . Note that in the previous definition we may allow F to be empty in

which case clearly Ω𝜗
Ø,𝑄 = 𝑇 𝜗𝑄 . Similarly, the ‘global sawtooth region’ relative to F is defined as

Ω𝜗F := int
( ⋃
𝑄′ ∈DF

𝑈𝜗𝑄′

)
= int

( ⋃
𝐼 ∈W𝜗

F

𝐼∗
)
, (2.12)

where W𝜗
F :=

⋃
𝑄′ ∈DF W𝜗,∗

𝑄′ . If F is the empty set clearly Ω𝜗Ø = Ω. For a given 𝑄 ∈ D and 𝑥 ∈ 𝜕Ω, let
us introduce the ‘truncated dyadic cone’

Γ𝜗𝑄 (𝑥) :=
⋃

𝑥∈𝑄′ ∈D𝑄

𝑈𝜗𝑄′ ,

where it is understood that Γ𝜗𝑄 (𝑥) = Ø if 𝑥 ∉ 𝑄. Analogously, we can slightly fatten the Whitney boxes
and use 𝐼∗∗ to define new fattened Whitney regions and sawtooth domains. More precisely, for every
𝑄 ∈ D,

𝑇 𝜗,∗𝑄 := int
( ⋃
𝑄′ ∈D𝑄

𝑈𝜗,∗𝑄′

)
, Ω𝜗,∗F ,𝑄 := int

( ⋃
𝑄′ ∈DF ,𝑄

𝑈𝜗,∗𝑄′

)
, Γ𝜗,∗𝑄 (𝑥) :=

⋃
𝑥∈𝑄′ ∈D𝑄0

𝑈𝜗,∗𝑄′ ,

where 𝑈𝜗,∗𝑄 :=
⋃
𝐼 ∈W𝜗,∗

𝑄
𝐼∗∗. Similarly, we can define 𝑇 𝜗,∗∗𝑄 , Ω𝜗,∗∗F ,𝑄, Γ𝜗,∗∗𝑄 (𝑥), and 𝑈𝜗,∗∗𝑄 by using 𝐼∗∗∗

in place of 𝐼∗∗.
To define the ‘Carleson box’, 𝑇 𝜗Δ associated with a surface ball Δ = Δ (𝑥, 𝑟), let 𝑘 (Δ) denote the

unique 𝑘 ∈ Z such that 2−𝑘−1 < 200𝑟 ≤ 2−𝑘 and set

D
Δ :=

{
𝑄 ∈ D𝑘 (Δ) : 𝑄 ∩ 2Δ ≠ Ø

}
. (2.13)

We then define

𝑇 𝜗Δ := int
( ⋃
𝑄∈DΔ

𝑇 𝜗𝑄

)
. (2.14)

We can also consider fattened versions of 𝑇 𝜗Δ given by

𝑇 𝜗,∗Δ := int
( ⋃
𝑄∈DΔ

𝑇 𝜗,∗𝑄

)
, 𝑇 𝜗,∗∗Δ := int

( ⋃
𝑄∈DΔ

𝑇 𝜗,∗∗𝑄

)
.

Following [31, 35], one can easily see that there exist constants 0 < 𝜅1 < 1 and 𝜅0 ≥ 16Ξ (with Ξ
the constant in equation (2.6)), depending only on the allowable parameters and on 𝜗, so that

𝜅1𝐵𝑄 ∩Ω ⊂ 𝑇 𝜗𝑄 ⊂ 𝑇 𝜗,∗𝑄 ⊂ 𝑇 𝜗,∗∗𝑄 ⊂ 𝑇 𝜗,∗∗𝑄 ⊂ 𝜅0𝐵𝑄 ∩Ω =: 1
2 𝐵

∗
𝑄 ∩Ω, (2.15)

5
4 𝐵Δ ∩Ω ⊂ 𝑇 𝜗Δ ⊂ 𝑇 𝜗,∗Δ ⊂ 𝑇 𝜗,∗∗Δ ⊂ 𝑇 𝜗,∗∗Δ ⊂ 𝜅0𝐵Δ ∩Ω =: 1

2 𝐵
∗
Δ ∩Ω, (2.16)
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and also

𝑄 ⊂ 𝜅0𝐵Δ ∩ 𝜕Ω = 1
2 𝐵

∗
Δ ∩ 𝜕Ω =: 1

2Δ
∗, ∀𝑄 ∈ DΔ , (2.17)

where 𝐵𝑄 is defined as in equation (2.7),Δ = Δ (𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω, 0 < 𝑟 < diam(𝜕Ω) and 𝐵Δ = 𝐵(𝑥, 𝑟)
is so that Δ = 𝐵Δ ∩ 𝜕Ω. From our choice of the parameters, one also has that 𝐵∗

𝑄 ⊂ 𝐵∗
𝑄′ whenever

𝑄 ⊂ 𝑄 ′.

Lemma 2.9 [1, Proposition 2.37] and [31, Appendices A.1-A.2]. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-
sided NTA domain satisfying the CDC. For every 𝜗 ≥ 𝜗0, all of its Carleson boxes 𝑇 𝜗𝑄 , 𝑇 𝜗,∗𝑄 , 𝑇 𝜗,∗∗𝑄

and 𝑇 𝜗Δ , 𝑇 𝜗,∗Δ , 𝑇 𝜗,∗∗Δ and sawtooth regions Ω𝜗F ,Ω𝜗,∗F ,Ω𝜗,∗∗F and Ω𝜗F ,𝑄,Ω
𝜗,∗
F ,𝑄,Ω

𝜗,∗∗
F ,𝑄 are 1-sided NTA

domains and satisfy the CDC with uniform implicit constants depending only on dimension, the corre-
sponding constants for Ω, and 𝜗.

Given Q we define the ‘localized dyadic conical square function’

S𝜗𝑄𝑢(𝑥) :=
(∬

Γ𝜗
𝑄
(𝑥)

|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛 𝑑𝑌

) 1
2

, 𝑥 ∈ 𝜕Ω, (2.18)

for every 𝑢 ∈ 𝑊1,2
loc (𝑇

𝜗
𝑄 ). Note that S𝜗𝑄𝑢(𝑥) = 0 for every 𝑥 ∈ 𝜕Ω \𝑄 since Γ𝜗𝑄 (𝑥) = Ø in such case. The

‘localized dyadic nontangential maximal function’ is given by

N 𝜗
𝑄 𝑢(𝑥) := sup

𝑌 ∈Γ𝜗,∗
𝑄

(𝑥)
|𝑢(𝑌 ) |, 𝑥 ∈ 𝜕Ω, (2.19)

for every 𝑢 ∈ 𝒞(𝑇 𝜗,∗𝑄 ), where it is understood that N 𝜗
𝑄 𝑢(𝑥) = 0 for every 𝑥 ∈ 𝜕Ω \𝑄.

Given 𝛼 > 0 and 𝑥 ∈ 𝜕Ω, we introduce the ‘cone with vertex at x and aperture 𝛼’ defined as
Γ𝛼 (𝑥) = {𝑋 ∈ Ω : |𝑋 − 𝑥 | ≤ (1 + 𝛼)𝛿(𝑋)}. One can also introduce the ‘truncated cone’ for every
𝑥 ∈ 𝜕Ω, and 0 < 𝑟 < ∞ we set Γ𝛼𝑟 (𝑥) = 𝐵(𝑥, 𝑟) ∩ Γ𝛼 (𝑥).

The ‘conical square function’ and the ‘nontangential maximal function’ are defined, respectively, as

S𝛼𝑢(𝑥) :=
(∬

Γ𝛼 (𝑥)
|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛 𝑑𝑌

) 1
2

, N 𝛼𝑢(𝑥) := sup
𝑋 ∈Γ𝛼 (𝑥)

|𝑢(𝑋) |, 𝑥 ∈ 𝜕Ω (2.20)

for every 𝑢 ∈ 𝑊1,2
loc (Ω) and 𝑢 ∈ 𝒞(Ω), respectively. Analogously, the ‘truncated conical square function’

and the ‘truncated nontangential maximal function’ are defined, respectively, as

S𝛼𝑟 𝑢(𝑥) :=
(∬

Γ𝛼
𝑟 (𝑥)

|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛 𝑑𝑌

) 1
2

, N 𝛼
𝑟 𝑢(𝑥) := sup

𝑋 ∈Γ𝛼
𝑟 (𝑥)

|𝑢(𝑋) |, (2.21)

where 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < ∞, for every 𝑢 ∈ 𝑊1,2
loc (Ω ∩ 𝐵(𝑥, 𝑟)) and 𝑢 ∈ 𝒞(Ω ∩ 𝐵(𝑥, 𝑟)), respectively.

We would like to note that truncated dyadic cones are never empty. Indeed, in our construction, we
have made sure that 𝑋𝑄 ∈ 𝑈𝜗𝑄 for every 𝑄 ∈ D; hence, for any 𝑄 ∈ D and 𝑥 ∈ 𝑄 one has 𝑋𝑄 ∈ Γ𝜗𝑄 (𝑥).
Moreover, 𝑋𝑄′ ∈ Γ𝜗𝑄 (𝑥) for every 𝑄 ′ ∈ D𝑄 with 𝑄 ′ � 𝑥. For the regular truncated cones, it could happen
that Γ𝛼𝑟 (𝑥) = Ø unless 𝛼 is sufficiently large. Suppose for instance that Ω = {𝑋 = (𝑥1, . . . , 𝑥𝑛+1) ∈
R𝑛+1 : 𝑥1, . . . , 𝑥𝑛+1 > 0} is the first orthant, then Γ𝛼𝑟 (0) = Ø for any 0 < 𝑟 < ∞ if 𝛼 <

√
𝑛 + 1 − 1.

On the other hand, if 𝛼 is sufficiently large, more precisely, if 𝛼 ≥ 𝑐−1
0 − 1, where 𝑐0 is the corkscrew

constant (cf. Definition 2.1), then

𝑋Δ (𝑥,𝑟 ) ∈ Γ𝛼𝑟 (𝑥), ∀ 𝑥 ∈ 𝜕Ω, 0 < 𝑟 < diam(𝜕Ω). (2.22)
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3. Uniformly elliptic operators, elliptic measure and the Green function

Next, we recall several facts concerning elliptic measures and Green functions. To set the stage, let
Ω ⊂ R𝑛+1 be an open set. Throughout, we consider elliptic operators L of the form 𝐿𝑢 = − div(𝐴∇𝑢)
with 𝐴(𝑋) = (𝑎𝑖, 𝑗 (𝑋))𝑛+1

𝑖, 𝑗=1 being a real (nonnecessarily symmetric) matrix such that 𝑎𝑖, 𝑗 ∈ 𝐿∞(Ω),
and there exists Λ ≥ 1 such that the following uniform ellipticity condition holds

Λ−1 |𝜉 |2 ≤ 𝐴(𝑋)𝜉 · 𝜉, |𝐴(𝑋)𝜉 · 𝜂 | ≤ Λ|𝜉 | |𝜂 | (3.1)

for all 𝜉, 𝜂 ∈ R𝑛+1 and for almost every 𝑋 ∈ Ω. We write 𝐿� to denote the transpose of L, or, in other
words, 𝐿�𝑢 = − div(𝐴�∇𝑢) with 𝐴� being the transpose matrix of A.

We say that u is a weak solution to 𝐿𝑢 = 0 in Ω provided that 𝑢 ∈ 𝑊1,2
loc (Ω) satisfies∬

Ω
𝐴(𝑋)∇𝑢(𝑋) · ∇𝜙(𝑋)𝑑𝑋 = 0 whenever 𝜙 ∈ 𝒞∞

𝑐 (Ω).

Associated with L, one can construct the elliptic measure {𝜔𝑋𝐿 }𝑋 ∈Ω and the Green function 𝐺𝐿 . For
the latter, the reader is referred to the work of Grüter and Widman [27] in the bounded case, while the
existence of the corresponding elliptic measure is an application of the Riesz representation theorem.
The behavior of𝜔𝐿 and𝐺𝐿 , as well as the relationship between them, depends crucially on the properties
of Ω, and assuming that Ω is a 1-sided NTA domain satisfying CDC, one can follow the program carried
out in [41]. For a comprehensive treatment of the subject and the proofs, we refer the reader to the
forthcoming monograph [35].

If Ω satisfies the CDC, then it follows that all boundary points are Wiener regular, and hence, for a
given 𝑓 ∈ 𝒞𝑐 (𝜕Ω) we can define

𝑢(𝑋) :=
∫
𝜕Ω

𝑓 (𝑧)𝑑𝜔𝑋𝐿 (𝑧), whenever 𝑋 ∈ Ω,

and 𝑢 := 𝑓 on 𝜕Ω, and obtain that 𝑢 ∈ 𝑊1,2
loc (Ω) ∩𝒞(Ω) and 𝐿𝑢 = 0 in the weak sense in Ω. Moreover,

if 𝑓 ∈ Lip(𝜕Ω), then 𝑢 ∈ 𝑊1,2(Ω).
We first define the reverse Hölder class and the 𝐴∞ classes with respect to a fixed elliptic measure in

Ω. One reason we take this approach is that we do not know whether H𝑛 |𝜕Ω is well-defined since we
do not assume any Ahlfors regularity in Theorem 1.1. Hence, we have to develop these notions in terms
of elliptic measures. To this end, let Ω satisfy the CDC, and let 𝐿0 and L be two real (nonnecessarily
symmetric) elliptic operators associated with 𝐿0𝑢 = − div(𝐴0∇𝑢) and 𝐿𝑢 = − div(𝐴∇𝑢), where A and
𝐴0 satisfy equation (3.1). Let 𝜔𝑋𝐿0

and 𝜔𝑋𝐿 be the elliptic measures of Ω associated with the operators
𝐿0 and L, respectively, with pole at 𝑋 ∈ Ω. Note that if we further assume that Ω is connected, then
Harnack’s inequality readily implies that 𝜔𝑋𝐿 
 𝜔𝑌𝐿 on 𝜕Ω for every 𝑋,𝑌 ∈ Ω. Hence, if 𝜔𝑋0

𝐿 
 𝜔𝑌0
𝐿0

on 𝜕Ω for some 𝑋0, 𝑌0 ∈ Ω, then 𝜔𝑋𝐿 
 𝜔𝑌𝐿0
on 𝜕Ω for every 𝑋,𝑌 ∈ Ω, and thus we can simply write

𝜔𝐿 
 𝜔𝐿0 on 𝜕Ω. In the latter case, we will use the notation

ℎ(· ; 𝐿, 𝐿0, 𝑋) =
𝑑𝜔𝑋𝐿
𝑑𝜔𝑋𝐿0

(3.2)

to denote the Radon–Nikodym derivative of 𝜔𝑋𝐿 with respect to 𝜔𝑋𝐿0
, which is a well-defined function

𝜔𝑋𝐿0
-almost everywhere on 𝜕Ω.

Definition 3.1 (Reverse Hölder and 𝐴∞ classes). Fix Δ0 = 𝐵0∩𝜕Ω, where 𝐵0 = 𝐵(𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω
and 0 < 𝑟0 < diam(𝜕Ω). Given 1 < 𝑝 < ∞, we say that 𝜔𝐿 ∈ 𝑅𝐻𝑝 (Δ0, 𝜔𝐿0 ), provided that 𝜔𝐿 
 𝜔𝐿0
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on Δ0, and there exists 𝐶 ≥ 1 such that

(⨏
Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ0 ) 𝑝𝑑𝜔

𝑋Δ0
𝐿0

(𝑦)
) 1

𝑝

≤ 𝐶

⨏
Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ0 )𝑑𝜔

𝑋Δ0
𝐿0

(𝑦) = 𝐶
𝜔
𝑋Δ0
𝐿 (Δ)

𝜔
𝑋Δ0
𝐿0

(Δ)
, (3.3)

for every Δ = 𝐵∩𝜕Ω, where 𝐵 ⊂ 𝐵(𝑥0, 𝑟0), 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω, 0 < 𝑟 < diam(𝜕Ω). The infimum
of the constants C as above is denoted by [𝜔𝐿]𝑅𝐻𝑝 (Δ0 ,𝜔𝐿0 ) .

Similarly, we say that 𝜔𝐿 ∈ 𝑅𝐻𝑝 (𝜕Ω, 𝜔𝐿0) provided that for every Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω
and 0 < 𝑟0 < diam(𝜕Ω) one has 𝜔𝐿 ∈ 𝑅𝐻𝑝 (Δ0, 𝜔𝐿0 ) uniformly on Δ0, that is,

[𝜔𝐿]𝑅𝐻𝑝 (𝜕Ω,𝜔𝐿0 ) := sup
Δ0

[𝜔𝐿]𝑅𝐻𝑝 (Δ0 ,𝜔𝐿0 ) < ∞.

Finally,

𝐴∞(Δ0, 𝜔𝐿0 ) :=
⋃
𝑝>1

𝑅𝐻𝑝 (Δ0, 𝜔𝐿0) and 𝐴∞(𝜕Ω, 𝜔𝐿0 ) :=
⋃
𝑝>1

𝑅𝐻𝑝 (𝜕Ω, 𝜔𝐿0).

Definition 3.2 (BMO). Fix Δ0 = 𝐵0∩𝜕Ω, where 𝐵0 = 𝐵(𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω).
We say that 𝑓 ∈ BMO(Δ0, 𝜔𝐿) provided 𝑓 ∈ 𝐿1

loc(Δ0, 𝜔
𝑋Δ0
𝐿 ) and

‖ 𝑓 ‖BMO(Δ0 ,𝜔𝐿 ) := sup
Δ

inf
𝑐∈R

⨏
Δ
| 𝑓 (𝑥) − 𝑐 | 𝑑𝜔𝑋Δ0

𝐿 (𝑥) < ∞,

where the sup is taken over all surface balls Δ = 𝐵∩𝜕Ω, where 𝐵 ⊂ 𝐵(𝑥0, 𝑟0), 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω,
0 < 𝑟 < diam(𝜕Ω).

Similarly, we say that 𝑓 ∈ BMO(𝜕Ω, 𝜔𝐿) provided that for every Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω and
0 < 𝑟0 < diam(𝜕Ω) one has 𝑓 ∈ BMO(Δ0, 𝜔𝐿) uniformly on Δ0, that is, 𝑓 ∈ 𝐿1

loc(𝜕Ω, 𝜔𝐿) (that is,
‖ 𝑓 1Δ ‖𝐿1 (𝜕Ω,𝜔𝑋

𝐿 ) < ∞ for every surface ball Δ ⊂ 𝜕Ω and for every 𝑋 ∈ Ω—albeit with a constant that
may depend on Δ and X) and satisfies

‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿 ) = sup
Δ0

sup
Δ

inf
𝑐∈R

⨏
Δ
| 𝑓 (𝑥) − 𝑐 | 𝑑𝜔𝑋Δ0

𝐿 (𝑥) < ∞,

where the sups are taken, respectively, over all surface balls Δ0 = 𝐵(𝑥0, 𝑟0) ∩ 𝜕Ω with 𝑥0 ∈ 𝜕Ω and
0 < 𝑟0 < diam(𝜕Ω), and Δ = 𝐵 ∩ 𝜕Ω, 𝐵 = 𝐵(𝑥, 𝑟) ⊂ 𝐵0 with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω).

Definition 3.3 (Solvability, CME, S < N ). Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Def-
inition 2.3) satisfying the CDC (cf. Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) and 𝐿0𝑢 = − div(𝐴0∇𝑢)
be real (nonnecessarily symmetric) elliptic operators.

◦ Given 1 < 𝑝 < ∞, we say that L is 𝐿𝑝 (𝜔𝐿0 )-solvable if for a given 𝛼 > 0 and 𝑁 ≥ 1 there exists
𝐶𝛼,𝑁 ≥ 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of 𝐿0
and L, 𝛼, N and p) such that for every Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω, 0 < 𝑟0 < diam(𝜕Ω), and for
every 𝑓 ∈ 𝒞(𝜕Ω) with supp 𝑓 ⊂ 𝑁Δ0 if one sets

𝑢(𝑋) :=
∫
𝜕Ω

𝑓 (𝑦) 𝑑𝜔𝑋𝐿 (𝑦), 𝑋 ∈ Ω, (3.4)

then

‖N 𝛼
𝑟0 𝑢‖𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
≤ 𝐶𝛼,𝑁 ‖ 𝑓 ‖

𝐿𝑝 (𝑁Δ0 ,𝜔
𝑋Δ0
𝐿0

)
. (3.5)
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◦ We say that L is BMO(𝜔𝐿0 )-solvable if there exists 𝐶 ≥ 1 (depending only on n, the 1-sided NTA
constants, the CDC constant and the ellipticity of 𝐿0 and L) such that for every 𝑓 ∈ 𝒞(𝜕Ω) ∩
𝐿∞(𝜕Ω, 𝜔𝐿0 ) if one takes u as in equation (3.4) and we set 𝑢𝐿,Ω (𝑋) := 𝜔𝑋𝐿 (𝜕Ω), 𝑋 ∈ Ω, then

sup
𝐵

sup
𝐵′

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇(𝑢 − 𝑓Δ ,𝐿0𝑢𝐿,Ω) (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 ≤ 𝐶‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

, (3.6)

where Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω, 𝑓Δ ,𝐿0 =
⨏
Δ

𝑓 𝑑𝜔𝑋Δ
𝐿0

, and the sups are taken, respectively, over

all balls 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and
0 < 𝑟 ′ < 𝑟𝑐0/4, and 𝑐0 is the corkscrew constant.

◦ We say that L is BMO(𝜔𝐿0 )-solvable in the generalized sense (see [29, Section 5]) if there exists
𝐶 ≥ 1 (depending only on n, the 1-sided NTA constants, the CDC constant, and the ellipticity of 𝐿0
and L) such that for every 𝜀 ∈ (0, 1] there exists 𝜚(𝜀) ≥ 0 such that 𝜚(𝜀) −→ 0 as 𝜀 → 0+ in such a
way that for every 𝑓 ∈ 𝒞(𝜕Ω) ∩ 𝐿∞(𝜕Ω, 𝜔𝐿0 ) if one takes u as in equation (3.4), then

sup
𝐵𝜀

sup
𝐵′

1
𝜔
𝑋Δ𝜀

𝐿0
(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ 𝜀 , 𝑋) 𝑑𝑋 ≤ 𝐶
(
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
+ 𝜚(𝜀)‖ 𝑓 ‖2

𝐿∞ (𝜕Ω,𝜔𝐿0 )
)
,

(3.7)

where Δ 𝜀 = 𝐵𝜀 ∩𝜕Ω, Δ ′ = 𝐵′ ∩𝜕Ω, and the sups are taken, respectively, over all balls 𝐵𝜀 = 𝐵(𝑥, 𝜀𝑟)
with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ 𝜀 and 0 < 𝑟 ′ < 𝜀𝑟𝑐0/4, and 𝑐0
is the corkscrew constant.

◦ We say that L satisfies CME(𝜔𝐿0 ) if there exists 𝐶 ≥ 1 (depending only on n, the 1-sided NTA
constants, the CDC constant and the ellipticity of 𝐿0 and L) such that for every 𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω)
satisfying 𝐿𝑢 = 0 in the weak sense in Ω the following estimate holds

sup
𝐵

sup
𝐵′

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 ≤ 𝐶‖𝑢‖2
𝐿∞ (Ω) , (3.8)

where Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω, and the sups are taken, respectively, over all balls 𝐵 = 𝐵(𝑥, 𝑟)
with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4, and 𝑐0 is
the corkscrew constant.

◦ Given 0 < 𝑞 < ∞, we say that L satisfies S < N in 𝐿𝑞 (𝜔𝐿0 ) if, for some given 𝛼 > 0, there exists
𝐶𝛼 ≥ 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of 𝐿0
and L, 𝛼 and q) such that for every Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω, 0 < 𝑟0 < diam(𝜕Ω), and for every
𝑢 ∈ 𝑊1,2

loc (Ω) satisfying 𝐿𝑢 = 0 in the weak sense in Ω the following estimate holds

‖S𝛼𝑟0𝑢‖𝐿𝑞 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
≤ 𝐶𝛼‖N 𝛼

𝑟0 𝑢‖𝐿𝑞 (5Δ0 ,𝜔
𝑋Δ0
𝐿0

)
. (3.9)

◦ We say that any of the previous properties holds for characteristic functions if the corresponding
estimate is valid for all solutions of the form 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, with 𝑆 ⊂ 𝜕Ω being an arbitrary
Borel set (with 𝑆 ⊂ 𝑁Δ0 in the case of 𝐿 𝑝 (𝜔𝐿0 )-solvability.)

Remark 3.4. We would like to observe that, when eitherΩ and 𝜕Ω are both bounded or 𝜕Ω is unbounded,
the elliptic measure is a probability (that is, 𝑢𝐿,Ω (𝑋) = 𝜔𝑋𝐿 (𝜕Ω) ≡ 1 for every 𝑋 ∈ Ω.) Hence, it has
vanishing gradient and one can then remove the term 𝑓Δ ,𝐿0𝑢𝐿,Ω in equation (3.6). This means that the
only case on which subtracting 𝑓Δ ,𝐿0𝑢𝐿,Ω is relevant is that where Ω is unbounded and 𝜕Ω is bounded
(e.g., the complementary of a ball.) As a matter of fact, one must subtract that term or a similar one
for equation (3.6) to hold. To see this, take 𝑓 ≡ 1 ∈ BMO(𝜕Ω, 𝜔𝐿0 ) so that ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) = 0 and
let 𝑢 = 𝑢𝐿,Ω be the associated elliptic measure solution. One can see (cf. [35]) that the function 𝑢𝐿,Ω
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is nonconstant (it decays at infinity), hence 0 < 𝑢𝐿,Ω (𝑋) < 1 for every 𝑋 ∈ Ω and |∇𝑢𝐿,Ω | � 0. This
means that the version of equation (3.6) without the term 𝑓Δ ,𝐿0𝑢𝐿,Ω cannot hold. Moreover, note that in
this case equation (3.6) is trivial: 𝑓Δ ,𝐿0𝑢𝐿,Ω = 𝑢𝐿,Ω and the left-hand side of equation (3.6) vanishes.

Remark 3.5. As just explained in the previous remark, when either Ω and 𝜕Ω are both bounded or 𝜕Ω is
unbounded, the left-hand sides of equations (3.6) and (3.7) are the same. As a result, (e) clearly implies
(f)—and (e)′ implies (f)′—upon taking 𝜚(𝜀) ≡ 0 (we will see in the course of the proof that these two
implications always hold). Much as before, when Ω is unbounded and 𝜕Ω is bounded, equation (3.7)
needs to incorporate the term 𝜚(𝜀)‖ 𝑓 ‖2

𝐿∞ (𝜕Ω,𝜔𝐿0 )
, otherwise it would fail for 𝑢 = 𝑢𝐿,Ω.

Remark 3.6. In equation (3.6), one can replace 𝑓Δ ,𝐿0 by 𝑓Δ′,𝐿0 (see Remark 4.5 below). Also, when Ω
is unbounded and 𝜕Ω bounded, one can subtract a constant that does not depend on Δ nor Δ ′. Namely,
let 𝑋Ω ∈ Ω satisfy 𝛿(𝑋Ω) ≈ diam(𝜕Ω) (say, 𝑋Ω = 𝑋Δ (𝑥0 ,𝑟0) with 𝑥0 ∈ 𝜕Ω and 𝑟0 ≈ diam(𝜕Ω).) Then

in equation (3.6) one can replace 𝑓Δ ,𝐿0 by 𝑓𝜕Ω,𝐿0 =
⨏
𝜕Ω

𝑓 𝑑𝜔𝑋Ω
𝐿0

; see Remark 4.5.

The following lemmas state some properties of Green functions and elliptic measures. Proofs may
be found in the forthcoming monograph [35]. See also [27] for the properties of the Green function in
bounded domains.

Lemma 3.7. Suppose that Ω ⊂ R𝑛+1, 𝑛 ≥ 2, is an open set satisfying the CDC. Given a real (nonnec-
essarily symmetric) elliptic operator 𝐿 = − div(𝐴∇), there exist 𝐶 > 1 (depending only on dimension
and on the ellipticity constant of L) and 𝑐𝜃 > 0 (depending on the above parameters and on 𝜃 ∈ (0, 1))
such that 𝐺𝐿 , the Green function associated with L, satisfies

𝐺𝐿 (𝑋,𝑌 ) ≤ 𝐶 |𝑋 − 𝑌 |1−𝑛; (3.10)

𝑐𝜃 |𝑋 − 𝑌 |1−𝑛 ≤ 𝐺𝐿 (𝑋,𝑌 ), if |𝑋 − 𝑌 | ≤ 𝜃𝛿(𝑋), 𝜃 ∈ (0, 1); (3.11)

𝐺𝐿 (·, 𝑌 ) ∈ 𝒞
(
Ω \ {𝑌 }

)
and 𝐺𝐿 (·, 𝑌 ) |𝜕Ω ≡ 0 ∀𝑌 ∈ Ω; (3.12)

𝐺𝐿 (𝑋,𝑌 ) ≥ 0, ∀𝑋,𝑌 ∈ Ω, 𝑋 ≠ 𝑌 ; (3.13)

𝐺𝐿 (𝑋,𝑌 ) = 𝐺𝐿� (𝑌, 𝑋), ∀𝑋,𝑌 ∈ Ω, 𝑋 ≠ 𝑌 . (3.14)

Moreover, 𝐺𝐿 (·, 𝑌 ) ∈ 𝑊1,2
loc (Ω \ {𝑌 }) for any 𝑌 ∈ Ω and satisfies 𝐿𝐺𝐿 (·, 𝑌 ) = 𝛿𝑌 in the sense of

distributions, that is,∬
Ω
𝐴(𝑋)∇𝑋𝐺𝐿 (𝑋,𝑌 ) · ∇𝜑(𝑋) 𝑑𝑋 = 𝜑(𝑌 ), ∀ 𝜑 ∈ 𝒞∞

𝑐 (Ω). (3.15)

In particular, 𝐺𝐿 (·, 𝑌 ) is a weak solution to 𝐿𝐺𝐿 (·, 𝑌 ) = 0 in the open set Ω \ {𝑌 }.
Finally, the following Riesz formula holds:∬

Ω
𝐴�(𝑋)∇𝑋𝐺𝐿� (𝑋,𝑌 ) · ∇𝜑(𝑋) 𝑑𝑋 = 𝜑(𝑌 ) −

∫
𝜕Ω

𝜑 𝑑𝜔𝑌𝐿 , for a.e. 𝑌 ∈ Ω,

for every 𝜑 ∈ 𝒞∞
𝑐 (R𝑛+1).

Remark 3.8. If we also assume that Ω is bounded, following [35] we know that the Green function 𝐺𝐿
coincides with the one constructed in [27]. Consequently, for each𝑌 ∈ Ω and 0 < 𝑟 < 𝛿(𝑌 ), there holds

𝐺𝐿 (·, 𝑌 ) ∈ 𝑊1,2 (Ω \ 𝐵(𝑌, 𝑟)) ∩𝑊1,1
0 (Ω). (3.16)
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Moreover, for every 𝜑 ∈ 𝒞∞
𝑐 (Ω) such that 0 ≤ 𝜑 ≤ 1 and 𝜑 ≡ 1 in 𝐵(𝑌, 𝑟) with 0 < 𝑟 < 𝛿(𝑌 ), we have

that

(1 − 𝜑)𝐺𝐿 (·, 𝑌 ) ∈ 𝑊1,2
0 (Ω). (3.17)

The following result lists a number of properties which will be used throughout the paper:

Lemma 3.9. Suppose that Ω ⊂ R𝑛+1, 𝑛 ≥ 2, is a 1-sided NTA domain satisfying the CDC. Let
𝐿0 = − div(𝐴0∇) and 𝐿 = − div(𝐴∇) be two real (nonnecessarily symmetric) elliptic operators. There
exist 𝐶1 ≥ 1, 𝜌 ∈ (0, 1) (depending only on dimension, the 1-sided NTA constants, the CDC constant
and the ellipticity of L) and 𝐶2 ≥ 1 (depending on the same parameters and on the ellipticity of 𝐿0)
such that for every 𝐵0 = 𝐵(𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω, 0 < 𝑟0 < diam(𝜕Ω) and Δ0 = 𝐵0 ∩ 𝜕Ω we have the
following properties:

(a) 𝜔𝑌𝐿 (Δ0) ≥ 𝐶−1
1 for every 𝑌 ∈ 𝐶−1

1 𝐵0 ∩Ω and 𝜔
𝑋Δ0
𝐿 (Δ0) ≥ 𝐶−1

1 .
(b) If 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω andΔ = 𝐵∩𝜕Ω is such that 2𝐵 ⊂ 𝐵0, then for all 𝑋 ∈ Ω\𝐵0 we have that

1
𝐶1

𝜔𝑋𝐿 (Δ) ≤ 𝑟𝑛−1𝐺𝐿 (𝑋, 𝑋Δ ) ≤ 𝐶1𝜔
𝑋
𝐿 (Δ).

(c) If 𝑋 ∈ Ω \ 4𝐵0, then

𝜔𝑋𝐿 (2Δ0) ≤ 𝐶1𝜔
𝑋
𝐿 (Δ0).

(d) If 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω and Δ := 𝐵 ∩ 𝜕Ω is such that 𝐵 ⊂ 𝐵0, then for every 𝑋 ∈ Ω \ 2𝜅0𝐵0
with 𝜅0 as in equation (2.16), we have that

1
𝐶1

𝜔
𝑋Δ0
𝐿 (Δ) ≤

𝜔𝑋𝐿 (Δ)
𝜔𝑋𝐿 (Δ0)

≤ 𝐶1𝜔
𝑋Δ0
𝐿 (Δ).

As a consequence,

1
𝐶 1

1
𝜔𝑋𝐿 (Δ0)

≤
𝑑𝜔

𝑋Δ0
𝐿

𝑑𝜔𝑋𝐿
(𝑦) ≤ 𝐶1

1
𝜔𝑋𝐿 (Δ0)

, for 𝜔𝑋𝐿 -a.e. 𝑦 ∈ Δ0.

(e) For every 𝑋 ∈ 𝐵0 ∩Ω and for any 𝑗 ≥ 1

𝑑𝜔𝑋𝐿

𝑑𝜔
𝑋2 𝑗Δ0
𝐿

(𝑦) ≤ 𝐶1

(
𝛿(𝑋)
2 𝑗 𝑟0

)𝜌
, for 𝜔𝑋𝐿 -a.e. 𝑦 ∈ 𝜕Ω \ 2 𝑗 Δ0.

(f) If 0 ≤ 𝑢 ∈ 𝑊1,2
loc (𝐵0 ∩ Ω) ∩𝒞(𝐵0 ∩Ω) satisfies 𝐿𝑢 = 0 in the weak-sense in 𝐵0 ∩ Ω and 𝑢 ≡ 0 in

Δ0 then

𝑢(𝑋) ≤ 𝐶1

( 𝛿(𝑋)
𝑟0

)𝜌
𝑢(𝑋Δ0 ), for 𝑋 ∈ 1

2 𝐵0 ∩Ω.

Remark 3.10. We note that from (𝑑) in the previous result and Harnack’s inequality one can easily see
that given 𝑄,𝑄 ′, 𝑄 ′′ ∈ D(𝜕Ω)

𝜔
𝑋𝑄′′

𝐿 (𝑄)

𝜔
𝑋𝑄′′

𝐿 (𝑄 ′)
≈ 𝜔

𝑋𝑄′

𝐿 (𝑄), whenever 𝑄 ⊂ 𝑄 ′ ⊂ 𝑄 ′′. (3.18)
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Also, (𝑑), Harnack’s inequality and equation (2.6) give

𝑑𝜔
𝑋𝑄′

𝐿

𝑑𝜔
𝑋𝑄′′

𝐿

(𝑦) ≈ 1

𝜔
𝑋𝑄′′

𝐿 (𝑄 ′)
, for 𝜔𝑋𝑄′′

𝐿 -a.e. 𝑦 ∈ 𝑄 ′, whenever 𝑄 ′ ⊂ 𝑄 ′′. (3.19)

Observe that since 𝜔
𝑋𝑄′′

𝐿 
 𝜔
𝑋𝑄′

𝐿 we can easily get an analogous inequality for the reciprocal of the
Radon–Nikodym derivative.
Remark 3.11. It is not hard to see that if 𝜔𝐿 
 𝜔𝐿0 , then Lemma 3.9 gives the following:

𝜔𝐿 ∈ 𝑅𝐻𝑝 (𝜕Ω, 𝜔𝐿0 ) ⇐⇒ sup
𝑥∈𝜕Ω,0<𝑟<diam(𝜕Ω)

‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ (𝑥,𝑟 ) )‖
𝐿𝑝 (Δ (𝑥,𝑟 ) ,𝜔

𝑋Δ (𝑥,𝑟 )
𝐿0

)
< ∞. (3.20)

The left-to-right implication follows at once from equation (3.3) by taking 𝐵 = 𝐵0 (hence, Δ = Δ0) and
Lemma 3.9 part (𝑎). For the converse, fix 𝐵0 = 𝐵(𝑥0, 𝑟0) and 𝐵 = 𝐵(𝑥, 𝑟) with 𝐵 ⊂ 𝐵0, 𝑥0, 𝑥 ∈ 𝜕Ω and
0 < 𝑟0, 𝑟 < diam(𝜕Ω). Write Δ0 = 𝐵0 ∩ 𝜕Ω and Δ = 𝐵∩ 𝜕Ω. If 𝑟 ≈ 𝑟0, we have by Lemma 3.9 part (𝑎),(⨏

Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ0 ) 𝑝𝑑𝜔

𝑋Δ0
𝐿0

(𝑦)
) 1

𝑝

� ‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ0 )‖𝐿𝑝 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)

≈ ‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ0 )‖𝐿𝑝 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)

𝜔
𝑋Δ0
𝐿 (Δ)

𝜔
𝑋Δ0
𝐿0

(Δ)
.

On the other hand, if 𝑟 
 𝑟0, we have by Lemma 3.9 part (𝑑) and the fact that 𝜔𝐿 
 𝜔𝐿0 that

ℎ(· ; 𝐿, 𝐿0, 𝑋Δ0) =
𝑑𝜔

𝑋Δ0
𝐿

𝑑𝜔
𝑋Δ0
𝐿0

=
𝑑𝜔

𝑋Δ0
𝐿

𝑑𝜔𝑋Δ
𝐿

𝑑𝜔𝑋Δ
𝐿

𝑑𝜔𝑋Δ
𝐿0

𝑑𝜔𝑋Δ
𝐿0

𝑑𝜔
𝑋Δ0
𝐿0

≈ ℎ(· ; 𝐿, 𝐿0, 𝑋Δ )
𝜔
𝑋Δ0
𝐿 (Δ)

𝜔
𝑋Δ0
𝐿0

(Δ)
, 𝜔𝐿0 -a.e. in Δ .

This and Lemma 3.9 part (𝑑) give(⨏
Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ0) 𝑝𝑑𝜔

𝑋Δ0
𝐿0

(𝑦)
) 1

𝑝

≈ ‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ0)‖𝐿𝑝 (Δ ,𝜔𝑋Δ
𝐿0

)

≈ ‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ )‖𝐿𝑝 (Δ ,𝜔𝑋Δ
𝐿0

)
𝜔
𝑋Δ0
𝐿 (Δ)

𝜔
𝑋Δ0
𝐿0

(Δ)
.

Thus, equation (3.3) holds and the right-to-left implication holds.
Remark 3.12. It is not difficult to see that under the assumptions of Lemma 3.9 one has

‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿 ) ≈ sup
Δ⊂𝜕Ω

inf
𝑐∈R

⨏
Δ
| 𝑓 (𝑥) − 𝑐 | 𝑑𝜔𝑋Δ

𝐿 (𝑥),

where the sup is taken over all surface balls Δ = 𝐵(𝑥, 𝑟) ∩ 𝜕Ω with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω).
Thus, we could have taken this as the definition of 𝑓 ∈ BMO(𝜕Ω, 𝜔𝐿).
Remark 3.13. Under the assumptions of Lemma 3.9, for every Δ0 as above if 𝑓 ∈ BMO(Δ0, 𝜔𝐿),
then John–Nirenberg’s inequality holds locally in Δ0 and the implicit constants depend on the doubling
property of𝜔𝑋Δ0

𝐿 in 2Δ0. Thus, if one further assumes that 𝑓 ∈ BMO(𝜕Ω, 𝜔𝐿), then for every 1 < 𝑞 < ∞
there holds

‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿 ) ≈ sup
Δ0

sup
Δ

inf
𝑐∈R

(⨏
Δ
| 𝑓 (𝑥) − 𝑐 |𝑞 𝑑𝜔𝑋Δ0

𝐿 (𝑥)
) 1

𝑞
< ∞, (3.21)
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where the sups are taken, respectively, over all surface balls Δ0 = 𝐵(𝑥0, 𝑟0) ∩ 𝜕Ω with 𝑥0 ∈ 𝜕Ω and
0 < 𝑟0 < diam(𝜕Ω), and Δ = 𝐵 ∩ 𝜕Ω, 𝐵 = 𝐵(𝑥, 𝑟) ⊂ 𝐵0 with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω). Note
that the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC constant,
the ellipticity of L and q.

4. Proof of Theorem 1.1

We first observe that if the equivalence (a) 𝑝′ ⇐⇒ (b) 𝑝 holds for each 𝑝 ∈ (1,∞), then (a) ⇐⇒ (b).
Also, since Jensen’s inequality readily gives that 𝜔𝐿 ∈ 𝑅𝐻𝑝′ (𝜕Ω, 𝜔𝐿0 ) implies 𝜔𝐿 ∈ 𝑅𝐻𝑞′ (𝜕Ω, 𝜔𝐿0 )
for all 𝑞 ≥ 𝑝, the equivalence (a) 𝑝′ ⇐⇒ (b) 𝑝 yields (b) 𝑝 =⇒ (b)𝑞 for all 𝑞 ≥ 𝑝. Finally, (b) 𝑝 =⇒ (b)′𝑝
clearly implies (b) =⇒ (b)′. With all these in mind, we will follow the scheme

(a) 𝑝′ ⇐⇒ (b) 𝑝 =⇒ (b)′𝑝 , (b)′ =⇒ (a), (a) =⇒ (d) =⇒ (d)′ =⇒ (a),

(c) =⇒ (c)′, (e) =⇒ (f) =⇒ (c)′, (e)′ =⇒ (f)′ =⇒ (c)′ =⇒ (a),

(a) =⇒ (c), (a) =⇒ (e), (a) =⇒ (e)′.

Before proving all these implications we present some auxiliary results:

Lemma 4.1. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) and 𝐿0𝑢 = − div(𝐴0∇𝑢) be real (nonnecessarily symmetric)
elliptic operators. There exists 𝜌 ∈ (0, 1) (depending only on dimension, the 1-sided NTA constants,
the CDC constant and the ellipticity of L) and 𝐶1 ≥ 1 (depending on the same parameters and on the
ellipticity of 𝐿0) such that the following holds: If Δ = 𝐵 ∩ 𝜕Ω and Δ ′ = 𝐵′ ∩ 𝜕Ω, where 𝐵 = 𝐵(𝑥, 𝑟)
with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4, where 𝑐0 is
the corkscrew constant, and 𝑢𝐿,Ω (𝑋) := 𝜔𝑋𝐿 (𝜕Ω), 𝑋 ∈ Ω, then

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑢𝐿,Ω (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 ≤ 𝐶1

( 𝑟 ′

diam(𝜕Ω)

)2𝜌
. (4.1)

Proof. Fix 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω) and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and
0 < 𝑟 ′ < 𝑟𝑐0/4. Let Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω.

We note that when either 𝜕Ω is unbounded or 𝜕Ω and Ω are both bounded then the elliptic measure
is a probability; hence, 𝑢𝐿,Ω ≡ 1 and the desired estimate is trivial. This means that we may assume
that 𝜕Ω is bounded and Ω is unbounded (e.g., the complement of a closed ball). In that scenario, 𝑢𝐿,Ω
decays at ∞, 0 < 𝑢𝐿,Ω < 1 in Ω, and 𝑢𝐿,Ω |𝜕Ω ≡ 1. Define 𝑣 := 1 − 𝑢𝐿,Ω, and note that our assumptions
guarantee that 𝑣 ∈ 𝑊1,2

loc (Ω) ∩𝒞(Ω) with 0 ≤ 𝑣 ≤ 1 and 𝑣 |𝜕Ω ≡ 0. By Lemma 3.9 part ( 𝑓 ) applied in
𝐵(𝑥 ′, diam(𝜕Ω)/2) we have

0 ≤ 𝑣(𝑋) �
( 𝛿(𝑋)
diam(𝜕Ω)

)𝜌
𝑣(𝑋Δ (𝑥′,diam(𝜕Ω)/2) ) ≤

( 𝛿(𝑋)
diam(𝜕Ω)

)𝜌
, 𝑋 ∈ 𝐵′ ∩Ω.

Set W𝐵′ := {𝐼 ∈ W : 𝐼 ∩ 𝐵′ ≠ Ø}, and pick 𝑍𝐼 ,𝐵′ ∈ 𝐼 ∩ 𝐵′ for 𝐼 ∈ W𝐵′ . Caccioppoli’s and Harnack’s
inequalities and the previous estimate yield∬

𝐼
|∇𝑣(𝑋) |2𝑑𝑋 � ℓ(𝐼)−2

∬
𝐼 ∗

𝑣(𝑋)2𝑑𝑋 � ℓ(𝐼)𝑛−1𝑣(𝑍𝐼 ,𝐵′ )2 � ℓ(𝐼)𝑛−1
( ℓ(𝐼)
diam(𝜕Ω)

)2𝜌
.
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Thus, Lemma 3.9 gives∬
𝐵′∩Ω

|∇𝑣(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 �
∑
𝐼 ∈W𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )ℓ(𝐼)1−𝑛
∬
𝐼
|∇𝑣(𝑋) |2 𝑑𝑋

�
∑
𝐼 ∈W𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
( ℓ(𝐼)
diam(𝜕Ω)

)2𝜌

�
∑

𝑘:2−𝑘�𝑟 ′

( 2−𝑘

diam(𝜕Ω)

)2𝜌 ∑
𝐼 ∈W𝐵′ :ℓ (𝐼 )=2−𝑘

𝜔𝑋Δ
𝐿0

(𝑄𝐼 ),

where 𝑄𝐼 ∈ D(𝜕Ω) is so that ℓ(𝑄𝐼 ) = ℓ(𝐼) and contains 𝑦̂𝐼 ∈ 𝜕Ω such that dist(𝐼, 𝜕Ω) = dist( 𝑦̂𝐼 , 𝐼). It
is easy to see that if 2−𝑘 � 𝑟 , then the family {𝑄𝐼 }𝐼 ∈W𝐵′ ,ℓ (𝐼 )=2−𝑘 has bounded overlap uniformly on k
and also that 𝑄𝐼 ⊂ 𝐶Δ ′ for every 𝐼 ∈ W𝐵′ , where C is some harmless dimensional constant. Hence,∬

𝐵′∩Ω
|∇𝑣(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 �

∑
𝑘:2−𝑘�𝑟 ′

( 2−𝑘

diam(𝜕Ω)

)2𝜌
𝜔𝑋Δ
𝐿0

(𝐶 Δ ′) �
( 𝑟 ′

diam(𝜕Ω)

)2𝜌
𝜔𝑋Δ
𝐿0

(Δ ′).

This gives the desired estimate. �

Given 𝑄0 ∈ D(𝜕Ω), 𝜗 ∈ N, for every 𝜂 ∈ (0, 1), we define the modified nontangential cone

Γ𝜗𝑄0 ,𝜂
(𝑥) :=

⋃
𝑄∈D𝑄0
𝑄�𝑥

𝑈𝜗
𝑄,𝜂3 , 𝑈𝜗

𝑄,𝜂3 :=
⋃
𝑄′ ∈D𝑄

ℓ (𝑄′)>𝜂3ℓ (𝑄)

𝑈𝜗𝑄′ . (4.2)

It is not hard to see that the sets {𝑈𝜗
𝑄,𝜂3 }𝑄∈D𝑄0

have bounded overlap with constant depending on 𝜂.
The following result was obtained in [9, Lemma 3.10] (for 𝛽 > 0) and in [7, Lemma 3.30] (for 𝛽 = 0),

both in the context of 1-sided CAD, extending [43, Lemma 2.6] and [42, Lemma 2.3]. It is not hard to
see that the proof works with no changes in our setting:

Lemma 4.2. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) be a real (nonnecessarily symmetric) elliptic operator. There
exist 0 < 𝜂 
 1 (depending only on the dimension, the 1-sided NTA constants, the CDC constant, and
the ellipticity of L), and 𝛽0 ∈ (0, 1), 𝐶𝜂 ≥ 1 both depending on the same parameters and additionally
on 𝜂 such that, for every 𝑄0 ∈ D(𝜕Ω), for every 0 < 𝛽 < 𝛽0 and for every Borel set 𝐹 ⊂ 𝑄0

satisfying 𝜔
𝑋𝑄0
𝐿 (𝐹) ≤ 𝛽𝜔

𝑋𝑄0
𝐿 (𝑄0), there exists a Borel set 𝑆 ⊂ 𝑄0 such that the bounded weak solution

𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, satisfies

S𝜗𝑄0 ,𝜂
𝑢(𝑥) :=

(∬
Γ𝜗
𝑄0 ,𝜂

(𝑥)
|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛 𝑑𝑌

) 1
2

≥ 𝐶−1
𝜂

(
log(𝛽−1)

) 1
2 , ∀ 𝑥 ∈ 𝐹. (4.3)

Furthermore, in the case 𝛽 = 0, that is, when 𝜔
𝑋𝑄0
𝐿 (𝐹) = 0, there exists a Borel set 𝑆 ⊂ 𝑄0 such that

the bounded weak solution 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, satisfies

S𝜗𝑄0 ,𝜂
𝑢(𝑥) = ∞, ∀ 𝑥 ∈ 𝐹. (4.4)

Lemma 4.3. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let 𝐿𝑢 = − div(𝐴∇𝑢) and 𝐿0𝑢 = − div(𝐴0∇𝑢) be real (nonnecessarily symmetric)
elliptic operators. There exists 𝐶 ≥ 1 (depending only on the dimension, the 1-sided NTA constants,
the CDC constant and the ellipticity of L and 𝐿0) such that the following holds. Given 𝐵 = 𝐵(𝑥, 𝑟) with
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𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4, let Δ = 𝐵 ∩ 𝜕Ω,
Δ ′ = 𝐵′ ∩ 𝜕Ω, for every 𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω) satisfying 𝐿𝑢 = 0 in the weak sense in Ω, we have

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

≤ 𝐶

∫
2Δ′

S𝐶𝛼2𝑟 ′ 𝑢(𝑦)
2 𝑑𝜔

𝑋2Δ′
𝐿0

(𝑦) + 𝐶 sup{|𝑢(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2.

Proof. Fix B, 𝐵′, Δ , Δ ′ and u as in the statement. Define W𝐵′ := {𝐼 ∈ W : 𝐼 ∩ 𝐵′ ≠ Ø} and W𝑀
𝐵′ :=

{𝐼 ∈ W𝐵′ : ℓ(𝐼) < 𝑟 ′/𝑀} for 𝑀 ≥ 1 large enough to be taken. For each 𝐼 ∈ W𝐵′ , pick 𝑍𝐼 ∈ 𝐼 ∩ 𝐵′ and
𝑄𝐼 ∈ D(𝜕Ω) so that ℓ(𝑄𝐼 ) = ℓ(𝐼) and contains 𝑦̂𝐼 ∈ 𝜕Ω such that dist(𝐼, 𝜕Ω) = dist( 𝑦̂𝐼 , 𝐼). If 𝑧 ∈ 𝑄𝐼
and 𝐼 ∈ W𝑀

𝐵′ , then

|𝑧 − 𝑥 ′ | ≤ |𝑧 − 𝑦̂𝐼 | + dist( 𝑦̂𝐼 , 𝐼) + diam(𝐼) + |𝑍𝐼 − 𝑥 ′ | ≤ 𝐶𝑛ℓ(𝐼) + 𝑟 ′ < (1 + 𝐶𝑛/𝑀)𝑟 ′ < 2𝑟 ′,

provided 𝑀 > 𝐶𝑛. Hence, 𝑄𝐼 ⊂ 2Δ ′ for every 𝐼 ∈ W𝑀
𝐵′ . Write F for the collection of maximal cubes

in {𝑄𝐼 }𝐼 ∈W𝑀
𝐵′

, with respect to the inclusion (maximal cubes exist since 𝑄𝐼 ⊂ 2Δ ′ for every 𝐼 ∈ W𝑀
𝐵′ .)

Hence, 𝑄𝐼 ⊂ 𝑄 for some 𝑄 ∈ F . Let 𝜗 = 𝜗0 and by construction 𝐼 ∈ W𝜗
𝑄𝐼

⊂ W𝜗,∗
𝑄𝐼

(see Section 2.3.)
Hence, for every 𝑦 ∈ 𝑄 ∈ F⋃

𝐼 ∈W𝑀
𝐵′ :𝑦∈𝑄𝐼 ∈D𝑄

𝐼 ⊂
⋃

𝐼 ∈W𝑀
𝐵′ :𝑦∈𝑄𝐼 ∈D𝑄

𝑈𝜗𝑄𝐼
⊂

⋃
𝑦∈𝑄′ ∈D𝑄

𝑈𝜗𝑄′ = Γ𝜗𝑄 (𝑦).

This gives

Σ1 : =
∑
𝐼 ∈W𝑀

𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
∬
𝐼
|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋

=
∑
𝑄∈F

∑
𝐼 ∈W𝑀

𝐵′ :𝑄𝐼 ∈D𝑄

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
∬
𝐼
|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋

=
∑
𝑄∈F

∫
𝑄

∑
𝐼 ∈W𝑀

𝐵′ :𝑦∈𝑄𝐼 ∈D𝑄

∬
𝐼
|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋 𝑑𝜔𝑋Δ

𝐿0
(𝑦)

≤
∑
𝑄∈F

∫
𝑄

∬
Γ𝜗
𝑄
(𝑦)

|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋𝑑𝜔𝑋Δ
𝐿0

(𝑦)

=
∑
𝑄∈F

∫
𝑄
S𝜗𝑄𝑢(𝑦)2 𝑑𝜔𝑋Δ

𝐿0
(𝑦).

To continue, let 𝑦 ∈ 𝑄 ∈ F and 𝑋 ∈ Γ𝜗𝑄 (𝑦). Then 𝑋 ∈ 𝐼∗ with 𝐼 ∈ W𝜗,∗
𝑄′ and 𝑦 ∈ 𝑄 ′ ∈ D𝑄. Thus,

|𝑋 − 𝑦 | ≤ diam(𝐼∗) + dist(𝐼, 𝑄 ′) + diam(𝑄 ′) �𝜗 ℓ(𝐼) ≈ 𝛿(𝑋) � 𝑟 ′/𝑀,

where we have used equation (2.15), and the last estimate holds since ℓ(𝐼) < 𝑟 ′/𝑀 for every 𝐼 ∈ W𝑀
𝐵′ .

This shows that taking M large enough 𝑋 ∈ Γ𝛼
′

2𝑟 ′ (𝑦) for some 𝛼′ = 𝛼′(𝜗). Note also that 2𝑟 ′ < 𝑟𝑐0/2 <
diam(𝜕Ω), and we can now conclude that

Σ1 �
∑
𝑄∈F

∫
𝑄
S𝛼′2𝑟 ′𝑢(𝑦)

2 𝑑𝜔𝑋Δ
𝐿0

(𝑦) �
∫

2Δ′
S𝛼′2𝑟 ′𝑢(𝑦)

2 𝑑𝜔𝑋Δ
𝐿0

(𝑦) ≈ 𝜔𝑋Δ
𝐿0

(Δ ′)
∫

2Δ′
S𝛼′2𝑟 ′𝑢(𝑦)

2 𝑑𝜔
𝑋2Δ′
𝐿0

(𝑦),

where we have used Lemma 3.9.
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Now, we note that for each 𝐼 ∈ W𝐵′ \W𝑀
𝐵′ we have ℓ(𝑄𝐼 ) = ℓ(𝐼) ≈𝑀 𝑟 ′; hence, for every 𝑌 ∈ 𝐼∗

we have

𝑟 ′ �𝑀 𝛿(𝑌 ) ≤ |𝑌 − 𝑍𝐼 | + 𝛿(𝑍𝐼 ) ≤ diam(𝐼∗) + 𝛿(𝑍𝐼 ) < dist(𝐼, 𝜕Ω) + 𝛿(𝑍𝐼 ) ≤ 2 𝛿(𝑍𝐼 ) ≤ 2|𝑍𝐼 − 𝑥 ′ | < 2𝑟 ′.

Also,

| 𝑦̂𝐼 − 𝑥 ′ | + dist( 𝑦̂𝐼 , 𝐼) + diam(𝐼) + |𝑍𝐼 − 𝑥 ′ | � dist(𝐼, 𝜕Ω) + |𝑍𝐼 − 𝑥 ′ | ≤ 2|𝑍𝐼 − 𝑥 ′ | < 2𝑟 ′.

Thus, Lemma 3.9 implies that 𝜔𝑋Δ
𝐿0

(𝑄𝐼 ) ≈𝑀 𝜔𝑋Δ
𝐿0

(Δ ′). As a consequence of this, we get

Σ2 : =
∑

𝐼 ∈W𝐵′ \W𝑀
𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
∬
𝐼
|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋

� 𝜔𝑋Δ
𝐿0

(Δ ′)
∑

𝐼 ∈W𝐵′ \W𝑀
𝐵′

ℓ(𝐼)1−𝑛
∬
𝐼
|∇𝑢(𝑋) |2𝑑𝑋

� 𝜔𝑋Δ
𝐿0

(Δ ′)
∑

𝐼 ∈W𝐵′ \W𝑀
𝐵′

ℓ(𝐼)−𝑛−1
∬
𝐼 ∗
|𝑢(𝑋) |2 𝑑𝑋

� 𝜔𝑋Δ
𝐿0

(Δ ′) #(W𝐵′ \W𝑀
𝐵′ ) sup{|𝑢(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2

�𝑀 𝜔𝑋Δ
𝐿0

(Δ ′) sup{|𝑢(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2,

where we have used that W𝐵′ \W𝑀
𝐵′ has bounded cardinality depending on n and M.

To complete the proof, we use Lemma 3.9 and the estimates proved for Σ1 and Σ2:∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 ≤
∑
𝐼 ∈W𝐵′

∬
𝐼
|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

≈
∑
𝐼 ∈W𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
∬
𝐼
|∇𝑢(𝑋) |2 𝛿(𝑋)1−𝑛𝑑𝑋

= Σ1 + Σ2

� 𝜔𝑋Δ
𝐿0

(Δ ′)
( ∫

2Δ′
S𝛼′2𝑟 ′𝑢(𝑦)

2 𝑑𝜔
𝑋2Δ′
𝐿0

(𝑦) + sup{|𝑢(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2
)
.

This completes the proof. �

For the following result, we need to introduce some notation:

A𝛼
𝑟 𝐹 (𝑥) :=

(∬
Γ𝛼
𝑟 (𝑥)

|𝐹 (𝑌 ) |2 𝑑𝑌

) 1
2

, 𝑥 ∈ 𝜕Ω, 0 < 𝑟 < ∞, 𝛼 > 0,

for any 𝐹 ∈ 𝐿2
loc(Ω ∩ 𝐵(𝑥, 𝑟)).

Lemma 4.4. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7), and let 𝐿0𝑢 = − div(𝐴0∇𝑢) be a real (nonnecessarily symmetric) elliptic operator.
Given 0 < 𝑞 < ∞, 0 < 𝛼, 𝛼′ < ∞, there exists 𝐶 ≥ 1 (depending only on dimension, the 1-sided NTA
constants, the CDC constant, the ellipticity of 𝐿0, q, 𝛼 and 𝛼′) such that the following holds. Given
𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), let Δ = 𝐵 ∩ 𝜕Ω, for every 𝐹 ∈ 𝐿2

loc(Ω) there holds

‖A𝛼
𝑟 𝐹‖𝐿𝑞 (Δ ,𝜔𝑋Δ

𝐿0
) ≤ 𝐶‖A𝛼′

3𝑟𝐹‖𝐿𝑞 (3Δ ,𝜔𝑋3Δ
𝐿0

) , 𝐹 ∈ 𝐿2
loc (Ω ∩ 6𝐵), (4.5)
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and

‖N 𝛼
𝑟 𝐹‖

𝐿𝑞 (Δ ,𝜔𝑋Δ
𝐿0

) ≤ 𝐶‖N 𝛼′

4𝑟 𝐹‖𝐿𝑞 (4Δ ,𝜔𝑋4Δ
𝐿0

) , 𝐹 ∈ 𝒞(Ω ∩ 8𝐵). (4.6)

Proof. We start with equation (4.5) and borrow some ideas from [46, Proposition 3.2]. We may assume
that 𝛼 > 𝛼′, otherwise the desired estimate follows trivially. Let 𝑣 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ). By the classical
theory of weights (cf. [11, 25]), we can find 𝑝 ∈ (1,∞) such for every Δ as in the statement we have

𝐶0 := sup
Δ

[𝑣]𝐴𝑝 (Δ ,𝜔𝐿0 ) := sup
Δ

sup
Δ′

(⨏
Δ′

𝑣(𝑥) 𝑑𝜔𝑋Δ
𝐿0

(𝑥)
) (⨏

Δ′
𝑣(𝑥)1−𝑝′ 𝑑𝜔𝑋Δ

𝐿0
(𝑥)

) 𝑝−1
< ∞,

where the sups are taken over all Δ ′ = 𝐵′ ∩ 𝜕Ω with 𝐵′ ⊂ 5𝐵, 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′), 𝑥 ′ ∈ 𝜕Ω, 0 < 𝑟 ′ <
diam(𝜕Ω) and where 𝐶0 depends on [𝑣]𝐴∞ (𝜕Ω,𝜔𝐿0 ) . Note that for any such Δ ′ and for any Borel set
𝐹 ⊂ Δ ′ we have, by Hölder’s inequality,

( 𝜔𝑋Δ
𝐿0

(𝐹)

𝜔𝑋Δ
𝐿0

(Δ ′)

) 𝑝
=
(⨏

Δ′
1𝐹 𝑑𝜔𝑋Δ

𝐿0

) 𝑝
=
(⨏

Δ′
1𝐹 𝑣

1
𝑝 𝑣−

1
𝑝 𝑑𝜔𝑋Δ

𝐿0

) 𝑝
≤

(⨏
Δ′

1𝐹 𝑣 𝑑𝜔𝑋Δ
𝐿0

) (⨏
Δ′

𝑣1−𝑝′𝑑𝜔𝑋Δ
𝐿0

) 𝑝−1

≤ 𝐶0

(⨏
Δ′

1𝐹 𝑣 𝑑𝜔𝑋Δ
𝐿0

) (⨏
Δ′

𝑣 𝑑𝜔𝑋Δ
𝐿0

)−1
= 𝐶0

∫
𝐹
𝑣 𝑑𝜔𝑋Δ

𝐿0∫
Δ′ 𝑣 𝑑𝜔𝑋Δ

𝐿0

. (4.7)

Let 𝑦 ∈ Δ and 𝑋 ∈ Γ𝛼𝑟 (𝑦), and pick 𝑥̂ so that |𝑋 − 𝑥̂ | = 𝛿(𝑋). Then one can easily see that

𝑋 ∈ 2𝐵, 𝛿(𝑋) < 𝑟, 𝑦 ∈ Δ
(
𝑥̂, min{(3 + 𝛼)𝛿(𝑋), 2𝑟}

)
=: Δ̃ , 𝐵 := 𝐵

(
𝑥̂, min{(3 + 𝛼)𝛿(𝑋), 2𝑟}

)
⊂ 5𝐵.

Then, by equation (4.7) and Lemma 3.9, we get

∫
Δ̃
𝑣 𝑑𝜔𝑋Δ

𝐿0
≤ 𝐶0

(𝜔𝑋Δ
𝐿0

(Δ̃)

𝜔𝑋Δ
𝐿0

(Δ̂)

) 𝑝 ∫
Δ̂
𝑣 𝑑𝜔𝑋Δ

𝐿0
�𝛼,𝛼′, 𝑝 𝐶0

∫
Δ̂
𝑣 𝑑𝜔𝑋Δ

𝐿0
,

where Δ̂ := Δ (𝑥̂, min{𝛼′, 1}𝛿(𝑋)). Moreover, if 𝑋 ∈ 2𝐵 with 𝛿(𝑋) < 𝑟 and 𝑦 ∈ Δ̂ , one can easily show
that

|𝑦 − 𝑥 | < 3𝑟, |𝑋 − 𝑦 | ≤ min{1 + 𝛼′, 2}𝛿(𝑋).

If we now combine the previous estimates, then we conclude that

‖A𝛼
𝑟 𝐹‖2

𝐿2 (Δ ,𝑣 𝑑𝜔𝑋Δ
𝐿0

)
=
∫
Δ

∬
Γ𝛼
𝑟 (𝑦)

|𝐹 (𝑋) |2 𝑑𝑋 𝑣(𝑦) 𝑑𝜔𝑋Δ
𝐿0

(𝑦)

≤
∬

2𝐵∩{𝛿 (𝑋 )<𝑟 }
|𝐹 (𝑋) |2

( ∫
Δ̃
𝑣(𝑦) 𝑑𝜔𝑋Δ

𝐿0
(𝑦)

)
𝑑𝑋

�𝛼,𝛼′, 𝑝 𝐶0

∬
2𝐵∩{𝛿 (𝑋 )<𝑟 }

|𝐹 (𝑋) |2
( ∫

Δ̂
𝑣(𝑦) 𝑑𝜔𝑋Δ

𝐿0
(𝑦)

)
𝑑𝑋

≤ 𝐶0

∫
3Δ

∬
Γ𝛼′

3𝑟 (𝑦)
|𝐹 (𝑋) |2 𝑑𝑋 𝑣(𝑦) 𝑑𝜔𝑋Δ

𝐿0
(𝑦)

= 𝐶0‖A𝛼′

3𝑟𝐹‖
2
𝐿2 (3Δ ,𝑣 𝑑𝜔𝑋Δ

𝐿0
)
.
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We can now extrapolate (locally in 3Δ) as in [12, Corollary 3.15] to conclude that

‖A𝛼
𝑟 𝐹‖𝐿𝑞 (Δ ,𝑣 𝑑𝜔𝑋Δ

𝐿0
) �𝛼,𝛼′,𝑞 ‖A𝛼′

3𝑟𝐹‖𝐿1 (3Δ ,𝑣 𝑑𝜔𝑋Δ
𝐿0

) .

The desired estimate follows at once by taking 𝑣 ≡ 1 which clearly belongs to 𝐴∞(𝜕Ω, 𝜔𝐿0 ).
Let us next consider equation (4.6). First, introduce

MΔ
𝜔𝐿0

ℎ(𝑧) := sup
0<𝑠≤3𝑟

⨏
Δ (𝑧,𝑠)

|ℎ| 𝑑𝜔𝑋Δ
𝐿0

= sup
0<𝑠≤3𝑟

⨏
Δ (𝑧,𝑠)

|ℎ|14Δ 𝑑𝜔𝑋Δ
𝐿0

, 𝑧 ∈ Δ .

We proceed as in [38, Proposition 2.2] and write for any 𝜆 > 0 and 𝛽 > 0

𝐸 (𝛽, 𝑟, 𝜆) := {𝑦 ∈ 𝜕Ω : N 𝛽
𝑟 𝐹 (𝑦) > 𝜆}.

Let 𝑦 ∈ 𝐸 (𝛼, 𝑟, 𝜆) ∩Δ . Hence, there is 𝑋 ∈ Γ𝛼𝑟 (𝑦) with |𝐹 (𝑋) | > 𝜆. Pick 𝑥̂ ∈ 𝜕Ω so that |𝑋− 𝑥̂ | = 𝛿(𝑋).
Note that

Δ̂ = Δ (𝑥̂, min{1, 𝛼′}𝛿(𝑋)) ⊂ Δ̌ := Δ (𝑦, min{(2 + 𝛼 + 𝛼′)𝛿(𝑋), 3𝑟}) and Δ̂ ⊂ 2Δ .

One can easily see that if 𝑧 ∈ Δ̂ , then 𝑋 ∈ Γ𝛼
′

3𝑟 (𝑧). Hence,

Δ̂ ⊂ 𝐸 (𝛼′, 3𝑟, 𝜆) ∩ Δ̌

and

MΔ
𝜔𝐿0

1𝐸 (𝛼′,3𝑟 ,𝜆) (𝑦) ≥
𝜔𝑋Δ
𝐿0

(𝐸 (𝛼′, 3𝑟, 𝜆) ∩ Δ̌)

𝜔𝑋Δ
𝐿0

(Δ̌)
≥

𝜔𝑋Δ
𝐿0

(Δ̂)

𝜔𝑋Δ
𝐿0

(Δ̌)
> 𝛾 = 𝛾𝛼,𝛼′ ,

where in the last estimate we have used that

𝜔𝑋Δ
𝐿0

(Δ̌) ≤ 𝜔𝑋Δ
𝐿0

(Δ (𝑥̂, min{(4 + 2𝛼 + 𝛼′)𝛿(𝑋), 5𝑟})) �𝛼,𝛼′ 𝜔𝑋Δ
𝐿0

(Δ̂).

We have then shown that

𝐸 (𝛼, 𝑟, 𝜆) ∩ Δ ⊂ {𝑦 ∈ Δ : MΔ
𝜔𝐿0

1𝐸 (𝛼′,3𝑟 ,𝜆) (𝑦) > 𝛾},

and by the Hardy–Littlewood maximal inequality, we get

𝜔𝑋Δ
𝐿0

(𝐸 (𝛼, 𝑟, 𝜆) ∩ Δ) ≤ 𝜔𝑋Δ
𝐿0

({𝑦 ∈ Δ : MΔ
𝜔𝐿0

1𝐸 (𝛼′,3𝑟 ,𝜆) (𝑦) > 𝛾})

� 𝜔𝑋Δ
𝐿0

(𝐸 (𝛼′, 3𝑟, 𝜆) ∩ 4Δ) � 𝜔𝑋4Δ
𝐿0

(𝐸 (𝛼′, 4𝑟, 𝜆) ∩ 4Δ).

This readily implies equation (4.6). �

4.1. Proof of (a) 𝑝′ =⇒ (b) 𝑝
Fix 𝛼 > 0 and 𝑁 ≥ 1. Take Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω), and fix
𝑓 ∈ 𝒞(𝜕Ω) with supp 𝑓 ⊂ 𝑁Δ0. We may assume that 𝑁𝑟0 < 4 diam(𝜕Ω); otherwise, 𝜕Ω is bounded
and 4 diam(𝜕Ω)/𝑁 ≤ 𝑟0 < diam(𝜕Ω) and we can work with 𝑁 ′ = 2 diam(𝜕Ω)/𝑟0 ∈ (2, 𝑁/2] and
𝑁 ′Δ0 = 𝜕Ω.

Let u be the associated elliptic measure L-solution as in equation (3.4). Assume𝜔𝐿 ∈ 𝑅𝐻𝑝′ (𝜕Ω, 𝜔𝐿0 ),
and our goal is to obtain that equation (3.5) holds. By Gehring’s lemma [26] (see also [11]), there exists
𝑠 > 1 such that 𝜔𝐿 ∈ 𝑅𝐻𝑝′𝑠 (𝜕Ω, 𝜔𝐿0 ).
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Introduce the family of pairwise disjoint cubes

FΔ0 := {𝑄 ∈ D(𝜕Ω) : (𝑁 + 3Ξ)𝑟0 < ℓ(𝑄) ≤ 2(𝑁 + 3Ξ)𝑟0, 𝑄 ∩ 3ΞΔ0 ≠ Ø}.

Take 𝑥 ∈ Δ0 and 𝑋 ∈ Γ𝛼𝑟0 (𝑥). Let 𝐼𝑋 ∈ W be such that 𝑋 ∈ 𝐼𝑋 . Take 𝑦𝑋 ∈ 𝜕Ω such that dist(𝐼𝑋 , 𝜕Ω) =
dist(𝐼𝑋 , 𝑦𝑋 ), and let 𝑄𝑋 ∈ D be the unique dyadic cube satisfying ℓ(𝑄𝑋 ) = ℓ(𝐼𝑋 ) and 𝑦𝑋 ∈ 𝑄𝑋 .
By construction (see Section 2.3), 𝐼𝑋 ∈ W𝜗,∗

𝑄𝑋
and thus 𝐼∗ ⊂ Γ𝑄𝑋 (𝑦𝑋 ). Thus, by the properties of the

Whitney cubes

𝛿(𝑋) ≤ |𝑋 − 𝑦𝑋 | ≤ diam(𝐼𝑋 ) + dist(𝐼𝑋 , 𝑦𝑋 ) ≤
5
4

dist(𝐼𝑋 , 𝜕Ω) ≤
5
4
𝛿(𝑋)

and

4ℓ(𝑄𝑋 ) = 4ℓ(𝐼𝑋 ) ≤ dist(𝐼𝑋 , 𝜕Ω) ≤ 𝛿(𝑋) ≤ 5
4

dist(𝐼𝑋 , 𝜕Ω) ≤ 50
√
𝑛 + 1ℓ(𝐼𝑋 ) = 50

√
𝑛 + 1ℓ(𝑄𝑋 ).

These and the fact that 𝑋 ∈ Γ𝛼𝑟0 (𝑥) give

ℓ(𝑄𝑋 ) <
1
4
𝛿(𝑋) ≤ 1

4
|𝑋 − 𝑥 | < 1

4
𝑟0.

Also, for every 𝑧 ∈ 𝑄𝑋

|𝑧 − 𝑥0 | ≤ |𝑧 − 𝑦𝑋 | + |𝑦𝑋 − 𝑋 | + |𝑋 − 𝑥 | + |𝑥 − 𝑥0 | < 2Ξℓ(𝑄𝑋 ) +
9
4
|𝑋 − 𝑥 | + 𝑟0 < (Ξ + 4) 𝑟0 ≤ 3Ξ𝑟0,

since Ξ ≥ 2, and

|𝑧 − 𝑥 | ≤ |𝑧 − 𝑦𝑋 | + |𝑦𝑋 − 𝑋 | + |𝑋 − 𝑥 | < 2Ξℓ(𝑄𝑋 ) + (3 + 𝛼)𝛿(𝑋) < (2Ξ + 𝛼)𝛿(𝑋) =: 𝐶𝛼𝛿(𝑋)

since 𝑋 ∈ Γ𝛼𝑟0 (𝑥). Thus, 𝑄𝑋 ⊂ 3ΞΔ0 ∩ Δ (𝑥, 𝐶𝛼𝛿(𝑋)) and there exists a unique 𝑄𝑋 ∈ FΔ0 such that
𝑄𝑋 � 𝑄𝑋 . In particular, 𝑋 ∈ 𝐼𝑋 ⊂ 𝑈𝑄𝑋 ⊂ Γ𝑄𝑋

(𝑦) for all 𝑦 ∈ 𝑄𝑋 and

|𝑢(𝑋) | ≤ N𝑄𝑋
𝑢(𝑦), for all 𝑦 ∈ 𝑄𝑋 .

Taking the average over 𝑄𝑋 with respect to 𝜔
𝑋Δ0
𝐿0

, we arrive at

|𝑢(𝑋) | ≤
⨏
𝑄𝑋

N𝑄𝑋
𝑢(𝑦) 𝑑𝜔𝑋Δ0

𝐿0
(𝑦) ≤

⨏
𝑄𝑋

sup
𝑄∈FΔ0

N𝑄𝑢(𝑦) 𝑑𝜔
𝑋Δ0
𝐿0

(𝑦)

�𝛼

⨏
Δ (𝑥,𝐶𝛼 𝛿 (𝑋 ))

sup
𝑄∈FΔ0

N𝑄𝑢(𝑦) 𝑑𝜔
𝑋Δ0
𝐿0

(𝑦) ≤ sup
0<𝑟 ≤𝐶𝛼𝑟0

⨏
Δ (𝑥,𝑟 )

sup
𝑄∈FΔ0

N𝑄𝑢(𝑦) 𝑑𝜔
𝑋Δ0
𝐿0

(𝑦),

where in the last inequality we have used that 𝛿(𝑋) ≤ |𝑋 − 𝑥 | < 𝑟0 since Γ𝛼𝑟0 (𝑥) ⊂ 𝐵(𝑥, 𝑟0). Taking now
the supremum over all 𝑋 ∈ Γ𝛼𝑟0 (𝑥), we arrive at

N 𝛼
𝑟0 𝑢(𝑥) �𝛼 sup

0<𝑟 ≤𝐶𝛼𝑟0

⨏
Δ (𝑥,𝑟 )

sup
𝑄∈FΔ0

N𝑄𝑢(𝑦) 𝑑𝜔
𝑋Δ0
𝐿0

(𝑦), for all 𝑥 ∈ Δ0.

Applying the Hardy–Littlewood maximal inequality and the fact that the setFΔ0 has bounded cardinality,
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we have

‖N 𝛼
𝑟0 𝑢‖𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
�𝛼

����� sup
0<𝑟 ≤𝐶𝛼𝑟0

⨏
Δ ( ·,𝑟 )

sup
𝑄∈FΔ0

N𝑄𝑢(𝑦) 𝑑𝜔
𝑋Δ0
𝐿0

(𝑦)

�����
𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)

�
��� sup
𝑄∈FΔ0

N𝑄𝑢
���
𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
� sup
𝑄∈FΔ0

‖N𝑄𝑢‖
𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
≈𝑁 sup

𝑄∈FΔ0

‖N𝑄𝑢‖
𝐿𝑝 (𝑄,𝜔

𝑋Δ0
𝐿0

)
, (4.8)

where we have used that for every 𝑄 ∈ FΔ0 we have supp(N𝑄𝑢) ⊂ 𝑄.
Let us also observe that for every 𝑄 ∈ FΔ0 we can pick 𝑦𝑄 ∈ 𝑄∩3ΞΔ0 so that if 𝑧 ∈ 𝑁Δ0 there holds

|𝑧 − 𝑥𝑄 | ≤ |𝑧 − 𝑥0 | + |𝑥0 − 𝑦𝑄 | + |𝑦𝑄 − 𝑥𝑄 | ≤ (𝑁 + 3Ξ)𝑟0 + Ξ𝑟𝑄 < 2Ξ𝑟𝑄 .

That is, 𝑁Δ0 ⊂ 2Δ̃𝑄, and we are now ready to invoke [1, Proposition 2.57] to see that

N𝑄𝑢(𝑥) � sup
Δ�𝑥

0<𝑟Δ<4Ξ𝑟𝑄

⨏
Δ
| 𝑓 (𝑦) | 𝑑𝜔𝑋𝑄

𝐿 (𝑦), 𝑥 ∈ 𝑄. (4.9)

To continue let 𝑥 ∈ 𝑄 ∈ FΔ0 , and let Δ be a surface ball such that 𝑥 ∈ Δ and 0 < 𝑟Δ < 4Ξ𝑟𝑄. In
particular, Δ ⊂ 𝐶𝑁Δ0 = Δ̃0 and 𝑄 ⊂ Δ̃0. Note that 𝜔𝑋Δ0

𝐿0
≈𝑁 𝜔

𝑋Δ̃0
𝐿0

by Harnack’s inequality and the
fact that 𝛿(𝑋Δ0 ) ≈ 𝑟0, 𝛿(𝑋Δ̃0

) ≈𝑁 𝑟0 and |𝑋Δ0 − 𝑋Δ̃0
| �𝑁 𝑟0.

Recall that 𝜔𝐿 ∈ 𝑅𝐻𝑝′𝑠 (𝜕Ω, 𝜔𝐿0 ) implies 𝜔𝐿 ∈ 𝑅𝐻𝑝′𝑠 (Δ̃0, 𝜔
𝑋Δ̃0
𝐿0

) (uniformly). Therefore, using
Hölder’s inequality and recalling that ℎ(·; 𝐿, 𝐿0, 𝑋) denotes the Radon–Nikodym derivative of 𝜔𝑋𝐿 with
respect to 𝜔𝑋𝐿0

, we get

⨏
Δ
| 𝑓 (𝑦) | 𝑑𝜔𝑋Δ0

𝐿 (𝑦) ≈𝑁
𝜔
𝑋Δ̃0
𝐿0

(Δ)

𝜔
𝑋Δ̃0
𝐿 (Δ)

⨏
Δ
| 𝑓 (𝑦) |ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ̃0

) 𝑑𝜔
𝑋Δ̃0
𝐿0

(𝑦)

≤
𝜔
𝑋Δ̃0
𝐿0

(Δ)

𝜔
𝑋Δ̃0
𝐿 (Δ)

(⨏
Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ̃0

) 𝑝′𝑠 𝑑𝜔
𝑋Δ̃0
𝐿0

(𝑦)
) 1

𝑝′𝑠
(⨏

Δ
| 𝑓 (𝑦) | (𝑝′𝑠)′ 𝑑𝜔

𝑋Δ̃0
𝐿0

(𝑦)
) 1

(𝑝′𝑠)′

�
𝜔
𝑋Δ̃0
𝐿0

(Δ)

𝜔
𝑋Δ̃0
𝐿 (Δ)

⨏
Δ
ℎ(𝑦; 𝐿, 𝐿0, 𝑋Δ̃0

) 𝑑𝜔
𝑋Δ̃0
𝐿0

(𝑦)
(⨏

Δ
| 𝑓 (𝑦) | (𝑝′𝑠)′ 𝑑𝜔

𝑋Δ̃0
𝐿0

(𝑦)
) 1

(𝑝′𝑠)′

=

(⨏
Δ
| 𝑓 (𝑦) | (𝑝′𝑠)′ 𝑑𝜔

𝑋Δ̃0
𝐿0

(𝑦)
) 1

(𝑝′𝑠)′

.

This, equation (4.9) and equation (4.8) yield

‖N 𝛼
𝑟0 𝑢‖

𝑝

𝐿𝑝 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
�𝛼,𝑁 sup

𝑄∈FΔ0

∫
Δ̃0

(
sup
Δ�𝑥

0<𝑟Δ<4Ξ𝑟𝑄

⨏
Δ
| 𝑓 (𝑦) | (𝑝′𝑠)′ 𝑑𝜔𝑋Δ0

𝐿0
(𝑦)

) 𝑝
(𝑝′𝑠)′

𝑑𝜔
𝑋Δ̃0
𝐿0

(𝑥)

�
∫
Δ̃0

| 𝑓 (𝑥) |𝑝𝑑𝜔
𝑋Δ̃0
𝐿0

(𝑥) ≈𝑁 ‖ 𝑓 ‖ 𝑝
𝐿𝑝 (𝑁Δ0 ,𝜔

𝑋Δ0
𝐿0

)
,

where we have used the boundedness of the local Hardy–Littlewood maximal function in the second
term on 𝐿

𝑝
(𝑝′𝑠)′ (Δ̃0, 𝜔

𝑋Δ̃0
𝐿0

), which follows from 𝑝 > (𝑝′𝑠)′ and the fact that 𝜔
𝑋Δ̃0
𝐿0

is doubling in 10Δ̃0.
This completes the proof of (b) 𝑝 . �
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4.2. Proof of (b) 𝑝 =⇒ (a) 𝑝′

Fix 𝑝 ∈ (1,∞), and assume that L is 𝐿 𝑝 (𝜔𝐿0 )-solvable. That is, for some fixed 𝛼0 and some 𝑁 ≥ 1, there
exists 𝐶𝛼0 ,𝑁 ≥ 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of
𝐿0 and L, 𝛼0, N and p) such that equation (3.5) holds for u as in equation (3.4) for any 𝑓 ∈ 𝒞(𝜕Ω) with
supp 𝑓 ⊂ 𝑁Δ0. From this and equation (4.6), we conclude that we can assume that 𝛼 ≥ 𝑐−1

0 − 1, where
𝑐0 is the corkscrew constant (cf. Definition 2.1), and we have

‖N 𝛼
𝑟0 𝑢‖𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
�𝛼,𝛼0 ‖N 𝛼0

4𝑟0𝑢‖𝐿𝑝 (4Δ0 ,𝜔
𝑋4Δ0
𝐿0

)
≤ 𝐶𝛼0 ,𝑁 ‖ 𝑓 ‖𝐿𝑝 (𝑁Δ0 ,𝜔

𝑋Δ0
𝐿0

)
, (4.10)

for u as in equation (3.4) with 𝑓 ∈ 𝒞(𝜕Ω) with supp 𝑓 ⊂ 𝑁Δ0 and for any Δ0 = Δ (𝑥0, 𝑟0), 𝑥0 ∈ 𝜕Ω
and 0 < 𝑟0 < diam(𝜕Ω)/4. It is routine to see this estimate also holds with 𝑟0 ≈ diam(𝜕Ω). Indeed,
by splitting f into its positive and negative parts we may assume that 𝑓 ≥ 0. In that case, if 𝑥 ∈ 𝜕Ω
and 𝑋 ∈ Γ𝛼𝑟0 (𝑥) \ Γ

𝛼
diam(𝜕Ω)/5(𝑥), we have that 𝛿(𝑋) ≈ diam(𝜕Ω), and by equation (2.22), one has that

𝑋 ′ := 𝑋Δ (𝑥,diam(𝜕Ω)/5) ∈ Γ𝛼diam(𝜕Ω)/5(𝑥). Harnack’s inequality implies then that 𝑢(𝑋) ≈ 𝑢(𝑋 ′), and this
shows that N 𝛼

𝑟0 𝑢(𝑥) � N 𝛼
diam(𝜕Ω)/5𝑢(𝑥). Further details are left to the interested reader.

We claim that, for every Δ0 = Δ (𝑥0, 𝑟0), 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω), and for every 𝑓 ∈ 𝒞(𝜕Ω)
with supp 𝑓 ⊂ 𝑁Δ0 ��� ∫

Δ0

𝑓 (𝑦) 𝑑𝜔𝑋Δ0
𝐿 (𝑦)

��� �𝛼,𝑁 ‖ 𝑓 ‖
𝐿𝑝 (𝑁Δ0 ,𝜔

𝑋Δ0
𝐿0

)
. (4.11)

To see this, let u be the L-solution with datum | 𝑓 | (see equation (3.4)). Write 𝑋0 := 𝑋Δ0 and 𝑋0 :=
𝑋(2+𝛼)−1Δ0 . Note that 𝛿(𝑋0) ≈ 𝑟0, 𝛿(𝑋0) ≈𝛼 𝑟0, and |𝑋0 − 𝑋0 | < 2 𝑟0. Hence, Harnack’s inequality
yields 𝑢(𝑋0) ≈𝛼 𝑢(𝑋0). The choice of 𝛼 guarantees that 𝑋0 ∈ Γ𝛼(2+𝛼)−1𝑟0

(𝑥0) ⊂ Γ𝛼𝑟0 (𝑥0); see equation
(2.22). Let 𝑥̃0 ∈ 𝜕Ω so that 𝛿(𝑋0) = |𝑋0 − 𝑥̃0 |. Clearly, for every 𝑧 ∈ Δ (𝑥̃0, 𝛼𝛿(𝑋0)),

|𝑋0 − 𝑧 | ≤ |𝑋0 − 𝑥̃0 | + |𝑥̃0 − 𝑧 | < (1 + 𝛼)𝛿(𝑋0) ≤
1 + 𝛼

2 + 𝛼
𝑟0 < 𝑟0,

thus 𝑋0 ∈ Γ𝛼𝑟0 (𝑧) and

N 𝛼
𝑟0 𝑢(𝑧) ≥ 𝑢(𝑋0) ≈𝛼 𝑢(𝑋0), for every 𝑧 ∈ Δ (𝑥̃0, 𝛼𝛿(𝑋0)).

Note also that if 𝑧 ∈ Δ (𝑥̃0, 𝛼𝛿(𝑋0)), then

|𝑧 − 𝑥0 | ≤ |𝑧 − 𝑥̃0 | + |𝑥̃0 − 𝑋0 | + |𝑋0 − 𝑥0 | < (𝛼 + 1)𝛿(𝑋0) + |𝑋0 − 𝑥0 | ≤ (𝛼 + 2) |𝑋0 − 𝑥0 | ≤ 𝑟0,

hence Δ (𝑥̃0, 𝛼𝛿(𝑋0)) ⊂ Δ0. Additionally, if 𝑧 ∈ Δ0, then

|𝑧 − 𝑥̃0 | ≤ |𝑧 − 𝑥0 | + |𝑥0 − 𝑋0 | + |𝑋0 − 𝑥̃0 | < 𝑟0 + |𝑥0 − 𝑋0 | + 𝛿(𝑋0) ≤ 𝑟0 + 2|𝑥0 − 𝑋0 | ≤
(
1 + 2

2 + 𝛼

)
𝑟0 ≤ 2𝑟0,

and this shows that Δ0 ⊂ Δ (𝑥̃0, 2𝑟0). This together with Lemma 3.9 gives

1 � 𝜔𝑋0
𝐿0
(Δ0) ≤ 𝜔𝑋0

𝐿0
(Δ (𝑥̃0, 2𝑟0)) �𝛼 𝜔𝑋0

𝐿0
(Δ (𝑥̃0, 𝛼 𝑐0 𝑟0/(2 + 𝛼))) ≤ 𝜔𝑋0

𝐿0
(Δ (𝑥̃0, 𝛼𝛿(𝑋0)))

and the previous estimates readily give equation (4.11):��� ∫
Δ0

𝑓 (𝑦) 𝑑𝜔𝑋Δ0
𝐿 (𝑦)

��� ≤ 𝑢(𝑋0) �𝛼 𝑢(𝑋0)𝜔𝑋0
𝐿0
(Δ (𝑥̃0, 𝛼𝛿(𝑋0)))

1
𝑝

≤ ‖N 𝛼
𝑟0 𝑢‖𝐿𝑝 (Δ0 ,𝜔

𝑋0
𝐿0

) �𝛼,𝑁 ‖ 𝑓 ‖
𝐿𝑝 (𝑁Δ0 ,𝜔

𝑋0
𝐿0

) .
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To proceed, we fix Δ0 = Δ (𝑥0, 𝑟0), 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω)/2. Let 𝐹 ⊂ Δ0 be a Borel set.
Since 𝜔

𝑋2Δ0
𝐿0

and 𝜔
𝑋2Δ0
𝐿 are Borel regular, for each 𝜀 > 0, there exist a compact set K and an open set U

such that 𝐾 ⊂ 𝐹 ⊂ 𝑈 ⊂ 2Δ0 and

𝜔
𝑋2Δ0
𝐿0

(𝑈 \ 𝐾) + 𝜔
𝑋2Δ0
𝐿 (𝑈\𝐾) < 𝜀. (4.12)

Using Urysohn’s lemma, we can construct 𝑓𝐹 ∈ 𝒞𝑐 (𝜕Ω) such that 1𝐾 ≤ 𝑓𝐹 ≤ 1𝑈 . Then, by equation
(4.11) (applied with 2Δ0) and equation (4.12) yield

𝜔
𝑋2Δ0
𝐿 (𝐹) < 𝜀 + 𝜔

𝑋2Δ0
𝐿 (𝐾) ≤ 𝜀 +

∫
𝜕Ω

𝑓𝐹 (𝑧) 𝑑𝜔
𝑋2Δ0
𝐿 (𝑧)

≤ 𝜀 + 𝐶𝛼,𝑁 ‖ 𝑓𝐹 ‖
𝐿𝑝 (Δ0 ,𝜔

𝑋2Δ0
𝐿0

)
� 𝜀 + 𝐶𝛼,𝑁𝜔

𝑋2Δ0
𝐿0

(𝑈)
1
𝑝 < 𝜀 + 𝐶𝛼,𝑁 (𝜔

𝑋2Δ0
𝐿0

(𝐹) + 𝜀)
1
𝑝 .

Letting 𝜀 → 0+, we obtain that 𝜔
𝑋2Δ0
𝐿 (𝐹) �𝛼,𝑁 𝜔

𝑋2Δ0
𝐿0

(𝐹)
1
𝑝 . Hence, 𝜔

𝑋2Δ0
𝐿 
 𝜔

𝑋2Δ0
𝐿0

in Δ0. By
Harnack’s inequality and the fact that we can cover 𝜕Ω with surface balls like Δ0 we conclude that
𝜔𝐿 
 𝜔𝐿0 in 𝜕Ω. We can write ℎ(·; 𝐿, 𝐿0, 𝑋) =

𝑑𝜔𝑋
𝐿

𝑑𝜔𝑋
𝐿0

∈ 𝐿1
loc(𝜕Ω, 𝜔𝑋𝐿0

) which is well-defined 𝜔𝑋𝐿0
-a.e.

in 𝜕Ω. Thus, for every 𝑓 ∈ 𝒞(𝜕Ω) with supp 𝑓 ⊂ 2Δ0, we obtain from equation (4.11)��� ∫
2Δ0

𝑓 (𝑦) ℎ(𝑦; 𝐿, 𝐿0, 𝑋2Δ0 ) 𝑑𝜔
𝑋2Δ0
𝐿0

(𝑦)
��� = ��� ∫

2Δ0

𝑓 (𝑦) 𝑑𝜔𝑋2Δ0
𝐿 (𝑦)

��� �𝛼,𝑁 ‖ 𝑓 ‖
𝐿𝑝 (2Δ0 ,𝜔

𝑋2Δ0
𝐿0

)
.

Using the ideas in [2, Lemma 3.23] and with the help of [2, Lemma 3.14], we can then conclude that

‖ℎ(· ; 𝐿, 𝐿0, 𝑋2Δ0)‖𝐿𝑝′ (Δ0 ,𝜔
𝑋2Δ0
𝐿0

)
�𝛼,𝑁 1.

This, Harnack’s inequality and the fact that Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω)/2
arbitrary easily yield that

‖ℎ(· ; 𝐿, 𝐿0, 𝑋Δ (𝑥,𝑟 ) )‖
𝐿𝑝′ (Δ (𝑥,𝑟 ) ,𝜔

𝑋Δ (𝑥,𝑟 )
𝐿0

)
�𝛼,𝑁 1, for every 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω).

This and Remark 3.11 readily imply that 𝜔𝐿 ∈ 𝑅𝐻𝑝′ (𝜕Ω, 𝜔𝐿0), and the proof is complete. �

4.3. Proof of (b) 𝑝 =⇒ (b)′𝑝
Assume that L is 𝐿 𝑝 (𝜔𝐿0 )-solvable with 𝑝 ∈ (1,∞). Fix 𝛼 > 0, 𝑁 ≥ 1, a surface ball Δ0 and a Borel
set 𝑆 ⊂ 𝑁Δ0. Take an arbitrary 𝜀 > 0, and since 𝜔

𝑋Δ0
𝐿0

and 𝜔
𝑋Δ0
𝐿 are Borel regular, we can find a closed

set F and an open set U such that 𝐹 ⊂ 𝑆 ⊂ 𝑈 ⊂ (𝑁 + 1)Δ0 and

𝜔
𝑋Δ0
𝐿0

(𝑈 \ 𝐹) + 𝜔
𝑋Δ0
𝐿 (𝑈 \ 𝐹) < 𝜀.

Using Urysohn’s lemma, we can then construct 𝑓 ∈ 𝒞𝑐 (𝜕Ω) such that 1𝑆 ≤ 𝑓 ≤ 1𝑈 . Set

𝑢(𝑋) := 𝜔𝑋𝐿 (𝑆), 𝑣(𝑋) :=
∫
𝜕Ω

𝑓 (𝑦) 𝑑𝜔𝑋𝐿 (𝑦), 𝑋 ∈ Ω.

For every 𝑀 ≥ 𝑐−1
0 , define the truncated cone and truncated nontangential maximal function

Γ𝛼𝑟0 ,𝑀 (𝑥) := Γ𝛼𝑟0 (𝑥) ∩ {𝑋 ∈ Ω : 𝛿(𝑋) ≥ 𝑟0/𝑀}, N 𝛼
𝑟0 ,𝑀

𝑢(𝑥) := sup
𝑋 ∈Γ𝛼

𝑟0 ,𝑀
(𝑥)

|𝑢(𝑋) |, 𝑥 ∈ 𝜕Ω.
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Note that if 𝑥 ∈ Δ0 and 𝑋 ∈ Γ𝛼𝑟0 ,𝑀 (𝑥), then 𝑟0/𝑀 ≤ 𝛿(𝑋) ≤ 𝑟0, 𝑐0 𝑟0 ≤ 𝛿(𝑋Δ0 ) ≤ 𝑟0 and |𝑋−𝑋Δ0 | < 2𝑟0.
Hence, by the Harnack chain condition and Harnack’s inequality, there is a constant 𝐶𝑀 depending on
M such that

𝜔𝑋𝐿 (𝑈 \ 𝐹) ≤ 𝐶𝑀 𝜔
𝑋Δ0
𝐿 (𝑈 \ 𝐹) ≤ 𝐶𝑀 𝜀,

and

0 ≤ 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆) ≤ 𝐶𝑀 𝜀 + 𝜔𝑋𝐿 (𝐹) ≤ 𝐶𝑀 𝜀 +
∫
𝜕Ω

𝑓 (𝑦) 𝑑𝜔𝑋𝐿 (𝑦) = 𝐶𝑀 𝜀 + 𝑣(𝑋).

Thus

N 𝛼
𝑟0 ,𝑀

𝑢(𝑥) ≤ 𝐶𝑀 𝜀 +N 𝛼
𝑟0 𝑣(𝑥), ∀ 𝑥 ∈ Δ0.

Note that our assumption is that 𝐿 𝑝 (𝜔𝐿0 )-solvability holds with the fixed parameters 𝛼 > 0 and 𝑁 ≥ 1,
but since we already know that (a) ⇐⇒ (b), it follows that the 𝐿𝑝 (𝜔𝐿0 )-solvability holds with 𝛼 > 0
and 𝑁 + 1. Thus, the fact that 𝑓 ∈ 𝒞𝑐 (𝜕Ω) with supp 𝑓 ⊂ 𝑈 ⊂ (𝑁 + 1)Δ0 gives

‖N 𝛼
𝑟0 ,𝑀

𝑢‖
𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
≤ 𝐶𝑀 𝜀 𝜔

𝑋Δ0
𝐿0

(Δ0)
1
𝑝 + ‖N 𝛼

𝑟0 𝑣‖𝐿𝑝 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
≤ 𝐶𝑀 𝜀 + 𝐶𝛼,𝑁 ‖ 𝑓 ‖

𝐿𝑝 ( (𝑁+1)Δ0 ,𝜔
𝑋Δ0
𝐿0

)

≤𝐶𝑀 𝜀 + 𝐶𝛼,𝑁𝜔
𝑋Δ0
𝐿0

(𝑈)
1
𝑝 < 𝐶𝑀 𝜀 + 𝐶𝛼,𝑁 (𝜔

𝑋Δ0
𝐿0

(𝑆) + 𝜀)
1
𝑝 = 𝐶𝑀 𝜀 + 𝐶𝛼,𝑁

(
‖1𝑆 ‖ 𝑝

𝐿𝑝 (𝑁Δ0 ,𝜔
𝑋Δ0
𝐿0

)
+ 𝜀)

1
𝑝 .

We let 𝜀 → 0+ and obtain ‖N 𝛼
𝑟0 ,𝑀

𝑢‖
𝐿𝑝 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
≤ 𝐶𝛼,𝑁 ‖1𝑆 ‖

𝐿𝑝 (𝑁Δ0 ,𝜔
𝑋Δ0
𝐿0

)
. Since N 𝛼

𝑟0 ,𝑀
𝑢(𝑥) ↗

N 𝛼
𝑟0 𝑢(𝑥) for every 𝑥 ∈ 𝜕Ω as 𝑀 → ∞, we conclude the desired estimate by simply applying the

monotone convergence theorem. �

4.4. Proof of (b)′ =⇒ (a)

Fix 𝑝 ∈ (1,∞), and assume that L is 𝐿 𝑝 (𝜔𝐿0 )-solvable for characteristic functions. That is for some
𝛼 > 0 and some 𝑁 ≥ 1 there exists 𝐶𝛼,𝑁 ≥ 1 (depending only on n, the 1-sided NTA constants, the
CDC constant, the ellipticity of 𝐿0 and L, 𝛼, N and p) such that equation (3.5) holds for u as in equation
(3.4) for any 𝑓 = 1𝑆 with S being a Borel set 𝑆 ⊂ 𝑁Δ0.

Take an arbitrary Δ0 = Δ (𝑥0, 𝑟0), 𝑥0 ∈ 𝜕Ω and 0 < 𝑟0 < diam(𝜕Ω). We follow the proof of
(b) 𝑝 =⇒ (a) 𝑝′ and observe that the same argument we used to obtain equation (4.11) easily gives,
taking 𝑓 = 1𝑆 with S being a Borel set 𝑆 ⊂ 𝑁Δ0, that

𝜔
𝑋Δ0
𝐿 (𝑆) =

∫
Δ0

1𝑆 (𝑦) 𝑑𝜔
𝑋Δ0
𝐿 (𝑦) �𝛼,𝑁 ‖1𝑆 ‖

𝐿𝑝 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
= 𝜔

𝑋Δ0
𝐿0

(𝑆)
1
𝑝 . (4.13)

This readily implies that 𝜔𝑋Δ0
𝐿 
 𝜔

𝑋Δ0
𝐿0

in Δ0, and since Δ0 is arbitrary, we conclude that 𝜔𝐿 
 𝜔𝐿0 in
𝜕Ω. To proceed, fix 𝐵0 = 𝐵(𝑥0, 𝑟0) and 𝐵 = 𝐵(𝑥, 𝑟) with 𝐵 ⊂ 𝐵0, 𝑥0, 𝑥 ∈ 𝜕Ω and 0 < 𝑟0, 𝑟 < diam(𝜕Ω).
Write Δ0 = 𝐵0 ∩ 𝜕Ω and Δ = 𝐵 ∩ 𝜕Ω. Let 𝑆 ⊂ Δ be an arbitrary Borel set. If 𝑟 ≈ 𝑟0, we have by
Harnack’s inequality and Lemma 3.9 part (𝑎)

𝜔
𝑋Δ0
𝐿 (𝑆)

𝜔
𝑋Δ0
𝐿 (Δ)

≈
𝜔𝑋Δ
𝐿 (𝑆)

𝜔𝑋Δ
𝐿 (Δ)

≈ 𝜔𝑋Δ
𝐿 (𝑆) �𝛼,𝑁 𝜔𝑋Δ

𝐿0
(𝑆)

1
𝑝 ≈

( 𝜔𝑋Δ
𝐿0

(𝑆)

𝜔𝑋Δ
𝐿0

(Δ)

) 1
𝑝 ≈

( 𝜔𝑋Δ0
𝐿0

(𝑆)

𝜔
𝑋Δ0
𝐿0

(Δ)

) 1
𝑝
,
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where in the third estimate we have used equation (4.13) with Δ in place of Δ0. On the other hand, if
𝑟 
 𝑟0 we have by Lemma 3.9 part (𝑑) that 𝜔𝐿 
 𝜔𝐿0 with

𝜔
𝑋Δ0
𝐿 (𝑆)

𝜔
𝑋Δ0
𝐿 (Δ)

≈ 𝜔𝑋Δ
𝐿 (𝑆) �𝛼,𝑁 𝜔𝑋Δ

𝐿0
(𝑆)

1
𝑝 ≈

( 𝜔𝑋Δ0
𝐿0

(𝑆)

𝜔
𝑋Δ0
𝐿0

(Δ)

) 1
𝑝
,

where again we have used equation (4.13) with Δ in place of Δ0 in the middle estimate. In short, we
have proved that

𝜔
𝑋Δ0
𝐿 (𝑆)

𝜔
𝑋Δ0
𝐿 (Δ)

�𝛼,𝑁
( 𝜔𝑋Δ0

𝐿0
(𝑆)

𝜔
𝑋Δ0
𝐿0

(Δ)

) 1
𝑝
, for any Borel set 𝑆 ⊂ Δ .

Using the fact that the implicit constants do not depend on Δ (nor on Δ0) and Lemma 3.9 part (𝑐), this
readily implies that 𝜔𝑋Δ0

𝐿 ∈ 𝑅𝐻𝑞 (Δ0, 𝜔
𝑋Δ0
𝐿0

) for some 𝑞 ∈ (1,∞), where q and the implicit constants do
not depend on Δ0, see [11, 25]. Hence, we readily conclude that 𝜔𝐿 ∈ 𝑅𝐻𝑞 (𝜕Ω, 𝜔𝐿0 ) (see Definition
3.1). This completes the proof of the present implication. �

4.5. Proof of (a) =⇒ (d)

Assume that 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0). By the classical theory of weights (cf. [11, 25]) and Lemma 3.9 part
(𝑐), it is not hard to see that 𝜔𝐿0 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿), hence 𝜔𝐿0 ∈ 𝑅𝐻𝑝 (𝜕Ω, 𝜔𝐿) for some 1 < 𝑝 < ∞. In
particular for every 𝑄0 ∈ D(𝜕Ω) and 𝑄 ∈ D𝑄0 , by Lemma 3.9 part (𝑐) we have

(⨏
𝑄
ℎ(𝑦; 𝐿0, 𝐿, 𝑋𝑄0) 𝑝𝑑𝜔

𝑋𝑄0
𝐿 (𝑦)

) 1
𝑝

≤ 𝐶

⨏
𝑄
ℎ(𝑦; 𝐿0, 𝐿, 𝑋𝑄0 )𝑑𝜔

𝑋𝑄0
𝐿 (𝑦) = 𝐶

𝜔
𝑋𝑄0
𝐿0

(𝑄)

𝜔
𝑋𝑄0
𝐿 (𝑄)

.

Thus, for 𝐹 ⊂ 𝑄 we obtain, by Hölder’s inequality,

𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄)
=
⨏
𝑄

1𝐹 (𝑦)𝑑𝜔
𝑋𝑄0
𝐿0

(𝑦) =
𝜔
𝑋𝑄0
𝐿 (𝑄)

𝜔
𝑋𝑄0
𝐿0

(𝑄)

⨏
𝑄

1𝐹 (𝑦)ℎ(𝑦; 𝐿0, 𝐿, 𝑋𝑄0)𝑑𝜔
𝑋𝑄0
𝐿 (𝑦)

≤
𝜔
𝑋𝑄0
𝐿 (𝑄)

𝜔
𝑋𝑄0
𝐿0

(𝑄)

(⨏
𝑄
ℎ(𝑦; 𝐿0, 𝐿, 𝑋𝑄0) 𝑝𝑑𝜔

𝑋𝑄0
𝐿 (𝑦)

) 1
𝑝
(𝜔𝑋𝑄0

𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄)

) 1
𝑝′
�

(𝜔𝑋𝑄0
𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄)

) 1
𝑝′
. (4.14)

To continue, we need a dyadic version of equation (3.9): for every 𝑄0 ∈ D(𝜕Ω), and for every 𝜗 ≥ 𝜗0,
we claim that

‖S𝜗𝑄0
𝑢‖
𝐿𝑞 (𝑄0 ,𝜔

𝑋𝑄0
𝐿0

)
≤ 𝐶𝜗 ‖N 𝜗

𝑄0
𝑢‖
𝐿𝑞 (𝑄0 ,𝜔

𝑋𝑄0
𝐿0

)
, 0 < 𝑞 < ∞. (4.15)

This estimate can be proved following the argument in [1, Section 4.2] with the following changes.
Recall [1, (4.5)] (here we note that in [1, Section 4.2] our parameter 𝜗 is implicit)

𝜔
𝑋𝑄0
𝐿

({
𝑥 ∈ 𝑄 𝑗 : S𝜗,𝑘0

𝑄 𝑗
𝑢(𝑥) > 𝛽 𝜆, N 𝜗

𝑄0
𝑢(𝑥) ≤ 𝛾 𝜆

})
�

( 𝛾
𝛽

) 𝜃
𝜔
𝑋𝑄0
𝐿 (𝑄 𝑗 ), (4.16)
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where 𝜆, 𝛽, 𝛾, 𝜃 > 0, 𝑄 𝑗 is some dyadic cube (see [1, Section 4.2]), S𝜗,𝑘0
𝑄 𝑗

𝑢 is a truncated localized
dyadic conical square function with respect to the cones

Γ𝜗,𝑘0
𝑄 𝑗

(𝑥) :=
⋃

𝑥∈𝑄′ ∈D𝑄

ℓ (𝑄′) ≥2−𝑘0 ℓ (𝑄0)

𝑈𝜗𝑄′

and 𝑘0 is large enough (eventually 𝑘0 → ∞). It should be noted that the implicit constant in the
inequality equation (4.16) does not depend on 𝑘0. Combining equation (4.16) with equation (4.14), we
easily arrive at

𝜔
𝑋𝑄0
𝐿0

({
𝑥 ∈ 𝑄 𝑗 : S𝜗,𝑘0

𝑄 𝑗
𝑢(𝑥) > 𝛽 𝜆, N 𝜗

𝑄0
𝑢(𝑥) ≤ 𝛾 𝜆

})
�

( 𝛾
𝛽

) 𝜃
𝑝′

𝜔
𝑋𝑄0
𝐿0

(𝑄 𝑗 ). (4.17)

From this, we can derive [1, (4.3)] with 𝜔
𝑋𝑄0
𝐿0

in place of 𝜔𝑋𝑄0
𝐿 and a typical good-𝜆 argument much as

in [1, Section 4.2] readily leads to equation (4.15).
With equation (4.15) at our disposal, we can then proceed to obtain equation (3.9). FixΔ0 = Δ (𝑥0, 𝑟0)

with 𝑥0 ∈ 𝜕Ω, 0 < 𝑟0 < diam(𝜕Ω). Let 𝑀 ≥ 1 be large enough to be chosen, and set

FΔ0 :=
{
𝑄 ∈ D(𝜕Ω) : 𝑟0/(2𝑀) ≤ ℓ(𝑄) < 𝑟0/𝑀,𝑄 ∩ Δ0 ≠ Ø

}
.

One has that FΔ0 is a pairwise disjoint family and

Δ0 ⊂
⋃
𝑄∈FΔ0

𝑄 ⊂ 5
4Δ0,

provided M is large enough.
Write 𝑟̃0 := 𝑟0/2𝑀 . Let 𝑥 ∈ 𝑄0 ∈ FΔ0 and 𝑋 ∈ Γ𝛼

𝑟̃0
(𝑥). Let 𝐼𝑋 ∈ W be so that 𝐼𝑋 � 𝑋 , and pick

𝑄𝑋 ∈ D(𝜕Ω) with 𝑥 ∈ 𝑄𝑋 and ℓ(𝑄𝑋 ) = ℓ(𝐼𝑋 ). Note that

ℓ(𝑄𝑋 ) = ℓ(𝐼𝑋 ) ≤ diam(𝐼𝑋 ) ≤ dist(𝐼𝑋 , 𝜕Ω) ≤ 𝛿(𝑋) ≤ |𝑋 − 𝑥 | < 𝑟0 =
𝑟0

2𝑀
≤ ℓ(𝑄0).

This and the fact that 𝑥 ∈ 𝑄0 ∩𝑄𝑋 give 𝑄𝑋 ⊂ 𝑄0. On the other hand,

dist(𝐼𝑋 , 𝑄𝑋 ) ≤ |𝑋 − 𝑥 | ≤ (1 + 𝛼)𝛿(𝑋) ≤ (1 + 𝛼) (diam(𝐼𝑋 ) + dist(𝐼𝑋 , 𝜕Ω))

≤ 41
√
𝑛 + 1(1 + 𝛼)ℓ(𝐼𝑋 ) = 41

√
𝑛 + 1(1 + 𝛼)ℓ(𝑄𝑋 ).

This shows that if we fix 𝜗 = 𝜗(𝛼) so that 2𝜗 ≥ 41
√
𝑛 + 1(1+𝛼), then 𝐼𝑋 ∈ W𝜗

𝑄𝑋
⊂ W𝜗,∗

𝑄𝑋
. As a result,

𝑋 ∈ 𝐼𝑋 ⊂ 𝑈𝜗𝑄𝑋
and 𝑋 ∈ Γ𝜗𝑄0

(𝑥). All these show that for every 𝑄0 ∈ FΔ0 and 𝑥 ∈ 𝑄0 ∈ FΔ0 we have
Γ𝛼
𝑟̃0
(𝑥) ⊂ Γ𝜗𝑄0

(𝑥). Thus, equation (4.15) yields

‖S𝛼𝑟̃0𝑢‖
𝑞

𝐿𝑞 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
≤

∑
𝑄0∈FΔ0

∫
𝑄0

S𝛼𝑟̃0𝑢(𝑥)
𝑞 𝑑𝜔

𝑋Δ0
𝐿0

(𝑥)

≤
∑

𝑄0∈FΔ0

∫
𝑄0

S𝜗𝑄0
𝑢(𝑥)𝑞 𝑑𝜔𝑋Δ0

𝐿0
(𝑥) �𝛼

∑
𝑄0∈FΔ0

∫
𝑄0

N 𝜗
𝑄0

𝑢(𝑥)𝑞 𝑑𝜔𝑋Δ0
𝐿0

(𝑥).

To continue, let 𝑄0 ∈ FΔ0 , 𝑥 ∈ 𝑄0 and 𝑋 ∈ Γ𝜗,∗𝑄0
(𝑥). Then 𝑋 ∈ 𝐼∗∗ with 𝐼 ∈ W𝜗,∗

𝑄 and 𝑥 ∈ 𝑄 ⊂ 𝑄0. As
a consequence,

|𝑋 − 𝑥 | ≤ diam(𝐼∗∗) + dist(𝐼, 𝑄0) + diam(𝑄0) �𝜗 ℓ(𝐼) ≈ 𝛿(𝑋) ≤ 𝜅0ℓ(𝑄0) < 2𝜅0𝑟̃0
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where we have used equation (2.15), and the last estimate holds provided M is large enough. This shows
that 𝑋 ∈ Γ𝛼

′

2𝜅0𝑟̃0
(𝑥) for some 𝛼′ = 𝛼′(𝜗) (hence, depending on 𝛼). As a consequence of these, we obtain

∑
𝑄0∈FΔ0

∫
𝑄0

N 𝜗
𝑄0

𝑢(𝑥)𝑞 𝑑𝜔𝑋Δ0
𝐿0

(𝑥) ≤
∫

5
4Δ0

N 𝛼′

2𝜅0𝑟̃0
𝑢(𝑥)𝑞 𝑑𝜔𝑋Δ0

𝐿0
(𝑥)

�𝛼

∫
5Δ0

N 𝛼
8𝜅0𝑟̃0

𝑢(𝑥)𝑞 𝑑𝜔𝑋Δ0
𝐿0

(𝑥) ≤
∫

5Δ0

N 𝛼
𝑟0 𝑢(𝑥)

𝑞 𝑑𝜔
𝑋Δ0
𝐿0

(𝑥),

where we have used equation (4.6) and the last estimate follows provided M is large enough. �

4.6. Proof of (d) =⇒ (d)′

This is trivial since, for any arbitrary Borel set 𝑆 ⊂ 𝜕Ω, the solution 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω belongs to
𝑢 ∈ 𝑊1,2

loc (Ω). �

4.7. Proof of (d)′ =⇒ (a)

Assume that equation (3.9) holds for some fixed 𝛼0 and 𝑞 ∈ (0,∞) and for 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, for
any arbitrary Borel set 𝑆 ⊂ 𝜕Ω. By Lemma 4.4 (applied to 𝐹 (𝑋) = |∇𝑢(𝑋) |𝛿(𝑋) (1−𝑛)/2), for any 𝛼
large enough to be chosen we have

‖S𝛼𝑟0𝑢‖𝐿𝑞 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
�𝛼,𝛼0 ‖S𝛼0

3𝑟0𝑢‖𝐿𝑞 (3Δ0 ,𝜔
𝑋3Δ0
𝐿0

)
�𝛼0 𝜔

𝑋15Δ0
𝐿0

(15Δ0)
1
𝑞 ≈ 𝜔

𝑋Δ0
𝐿0

(Δ0)
1
𝑞 , (4.18)

for every Δ0 = Δ (𝑥0, 𝑟0) with 𝑥0 ∈ 𝜕Ω, 0 < 𝑟0 < diam(𝜕Ω)/3 and where we have used that 0 ≤ 𝑢 ≤ 1.
Let us see how to extend the previous estimate, in the case 𝜕Ω is bounded, to any diam(𝜕Ω)/3 ≤ 𝑟0 <
diam(𝜕Ω). Note that if 𝑥 ∈ Δ0 and 𝑋 ∈ Γ𝛼diam(𝜕Ω) (𝑥) \ Γ

𝛼
diam(𝜕Ω)/4(𝑥), then

1
4

diam(𝜕Ω) ≤ |𝑋 − 𝑥 | ≤ (1 + 𝛼)𝛿(𝑋) ≤ (1 + 𝛼) |𝑋 − 𝑥 | < (1 + 𝛼) diam(𝜕Ω).

Set W𝑥 = {𝐼 ∈ W : 𝐼 ∩ (Γ𝛼diam(𝜕Ω) (𝑥) \ Γ
𝛼
diam(𝜕Ω)/4(𝑥)) ≠ Ø}, whose cardinality is uniformly bounded

(depending in dimension and 𝛼). Thus, since ‖𝑢‖𝐿∞ (Ω) ≤ 1, Caccioppoli’s inequality gives

∬
Γ𝛼

diam(𝜕Ω) (𝑥)\Γ
𝛼
diam(𝜕Ω)/4 (𝑥)

|∇𝑢(𝑋) |2𝛿(𝑋)1−𝑛 𝑑𝑋 �
∑
𝐼 ∈W𝑥

ℓ(𝐼)1−𝑛
∬
𝐼
|∇𝑢(𝑋) |2 𝑑𝑋

�
∑
𝐼 ∈W𝑥

ℓ(𝐼)−1−𝑛
∬
𝐼 ∗
|𝑢(𝑋) |2 𝑑𝑋 � #W𝑥 �𝛼 1.

With this in hand and equation (4.18) applied with 𝑟0 = diam(𝜕Ω)/4 < diam(𝜕Ω)/3, we readily obtain

‖S𝛼𝑟0𝑢‖𝐿𝑞 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
≤ ‖S𝛼diam(𝜕Ω)𝑢‖𝐿𝑞 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)

≤ ‖S𝛼diam(𝜕Ω)𝑢 − S𝛼diam(𝜕Ω)/4𝑢‖𝐿𝑞 (Δ0 ,𝜔
𝑋Δ0
𝐿0

)
+ ‖S𝛼diam(𝜕Ω)/4𝑢‖𝐿𝑞 (Δ0 ,𝜔

𝑋Δ0
𝐿0

)
� 𝜔

𝑋Δ0
𝐿0

(Δ0)
1
𝑞 .
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We next see that given 𝛾 ∈ (0, 1) there exists 𝛽 ∈ (0, 1) so that for every 𝑄0 ∈ D(𝜕Ω) and for every
Borel set 𝐹 ⊂ 𝑄0 we have

𝜔
𝑋𝑄0
𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄0)

≤ 𝛽 =⇒
𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄0)
≤ 𝛾. (4.19)

Indeed, fix 𝛾 ∈ (0, 1) and 𝑄0 ∈ D(𝜕Ω), and take a Borel set 𝐹 ⊂ 𝑄0 so that 𝜔𝑋𝑄0
𝐿 (𝐹) ≤ 𝛽𝜔

𝑋𝑄0
𝐿 (𝑄0),

where 𝛽 ∈ (0, 1) is small enough to be chosen. Applying Lemma 4.2, if we assume that 0 < 𝛽 < 𝛽0,
then 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆) satisfies equation (4.3) and therefore

𝐶−𝑞
𝜂 log (𝛽−1)

𝑞
2 𝜔

𝑋𝑄0
𝐿0

(𝐹) ≤
∫
𝐹
S𝜗0
𝑄0 ,𝜂

𝑢(𝑥)𝑞 𝑑𝜔𝑋𝑄0
𝐿0

(𝑥) ≤
∫
𝑄0

S𝜗0
𝑄0 ,𝜂

𝑢(𝑥)𝑞 𝑑𝜔𝑋𝑄0
𝐿0

(𝑥). (4.20)

We claim that there exists 𝛼0 = 𝛼0 (𝜗0, 𝜂) (hence, depending on the allowable parameters) such that

Γ𝜗0
𝑄0 ,𝜂

(𝑥) ⊂ Γ𝛼0
𝑟∗
𝑄0
(𝑥), 𝑥 ∈ 𝑄0, (4.21)

with 𝑟∗𝑄0
= 2𝜅0𝑟𝑄0 (cf. equation (2.15)). To see this, let 𝑥 ∈ 𝑄0 and 𝑋 ∈ Γ𝜗0

𝑄0 ,𝜂
(𝑥). Then 𝑋 ∈ 𝐼∗ for

some 𝐼 ∈ W𝜗0 ,∗
𝑄′ , where 𝑄 ′ ⊂ 𝑄 ∈ D𝑄0 with 𝑄 � 𝑥 and ℓ(𝑄 ′) > 𝜂3ℓ(𝑄). Then 𝑋 ∈ 𝑇 𝜗0 ,∗

𝑄0
⊂ 𝐵∗

𝑄0
∩ Ω

(see equation (2.15)) and

|𝑋 − 𝑥 | ≤ |𝑋 − 𝑥𝑄0 | + |𝑥𝑄0 − 𝑥 | < 𝜅0𝑟𝑄0 + Ξ𝑟𝑄0 ≤ 2𝜅0𝑟𝑄0 := 𝑟∗𝑄0
,

and also

|𝑋 − 𝑥 | ≤ diam(𝐼∗) + dist(𝐼, 𝑄 ′) + diam(𝑄) �𝜗0 ,𝜂 ℓ(𝐼) ≈ 𝛿(𝑋).

Hence, there exists 𝛼0 = 𝛼0(𝜗0, 𝜂) such that 𝑋 ∈ Γ𝛼0
𝑟∗
𝑄0
(𝑥), that is, equation (4.21) holds.

To continue, observe first that by equation (2.6) and the fact that 𝜅0 ≥ 16Ξ (cf. equation (2.15)), we
have 𝑄0 ⊂ Δ∗

𝑄0
. This, equation (4.21), Harnack’s inequality, equation (4.18) and Lemma 3.9 imply∫

𝑄0

S𝜗0
𝑄0 ,𝜂

𝑢(𝑥)𝑞 𝑑𝜔𝑋𝑄0
𝐿0

(𝑥) �
∫
Δ∗
𝑄0

S𝛼𝑟∗
𝑄0

𝑢(𝑥)𝑞 𝑑𝜔𝑋𝑄0
𝐿0

(𝑥)

≈
∫
Δ∗
𝑄0

S𝛼𝑟∗
𝑄0

𝑢(𝑥)𝑞 𝑑𝜔
𝑋Δ∗

𝑄0
𝐿0

(𝑥) �𝛼 𝜔
𝑋Δ∗

𝑄0
𝐿0

(2Δ∗
𝑄0
) ≈ 𝜔

𝑋𝑄0
𝐿0

(𝑄0). (4.22)

Combining equations (4.20) and (4.22), we conclude that

𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄0)
≤ 𝐶𝜂,𝜗0 ,𝑞 log (𝛽−1)−

𝑞
2 .

This readily gives equation (4.19) by choosing 𝛽 small enough so that 𝐶𝜂,𝜗0 ,𝑞 log (𝛽−1)−
𝑞
2 < 𝛾.

Next, we show that equation (4.19) implies 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0). To see this, we first obtain a dyadic-
𝐴∞ condition. Fix 𝑄0, 𝑄0 ∈ D with 𝑄0 ⊂ 𝑄0. Remark 3.10 gives for every 𝐹 ⊂ 𝑄0

1
𝐶1

𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄0)
≤

𝜔
𝑋𝑄0

𝐿0
(𝐹)

𝜔
𝑋𝑄0

𝐿0
(𝑄0)

≤ 𝐶1
𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄0)
and

1
𝐶1

𝜔
𝑋𝑄0
𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄0)

≤
𝜔
𝑋𝑄0

𝐿 (𝐹)

𝜔
𝑋𝑄0

𝐿 (𝑄0)
≤ 𝐶1

𝜔
𝑋𝑄0
𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄0)

,

(4.23)
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for some 𝐶1 > 1. Thus, given 𝛾 ∈ (0, 1), take the corresponding 𝛽 ∈ (0, 1) so that equation (4.19) holds
with 𝛾/𝐶1 in place of 𝛾. Then,

𝜔
𝑋𝑄0

𝐿 (𝐹)

𝜔
𝑋𝑄0

𝐿 (𝑄0)
≤ 𝛽

𝐶1
=⇒

𝜔
𝑋𝑄0
𝐿 (𝐹)

𝜔
𝑋𝑄0
𝐿 (𝑄0)

≤ 𝛽 =⇒
𝜔
𝑋𝑄0
𝐿0

(𝐹)

𝜔
𝑋𝑄0
𝐿0

(𝑄0)
≤ 𝛾

𝐶1
=⇒

𝜔
𝑋𝑄0

𝐿0
(𝐹)

𝜔
𝑋𝑄0

𝐿0
(𝑄0)

≤ 𝛾. (4.24)

To complete the proof, we need to see that equation (4.24) gives 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ). Fix 𝛾 ∈ (0, 1)
and a surface ball Δ0 = 𝐵0 ∩ 𝜕Ω, with 𝐵0 = 𝐵(𝑥0, 𝑟0), 𝑥0 ∈ 𝜕Ω, and 0 < 𝑟0 < diam(𝜕Ω). Take an
arbitrary surface ball Δ = 𝐵 ∩ 𝜕Ω centered at 𝜕Ω with 𝐵 = 𝐵(𝑥, 𝑟) ⊂ 𝐵0, and let 𝐹 ⊂ Δ be a Borel
set such that 𝜔𝑋Δ0

𝐿0
(𝐹) > 𝛾𝜔

𝑋Δ0
𝐿0

(Δ). Consider the pairwise disjoint family F = {𝑄 ∈ D : 𝑄 ∩ Δ ≠
Ø, 𝑟4Ξ < ℓ(𝑄) ≤ 𝑟

2Ξ }, where Ξ is the constant in equation (2.6). In particular, Δ ⊂
⋃
𝑄∈F 𝑄 ⊂ 2Δ . The

pigeon-hole principle yields that there is a constant 𝐶 ′ > 1 depending just on the doubling constant of
𝜔
𝑋Δ0
𝐿0

so that 𝜔𝑋Δ0
𝐿0

(𝐹 ∩𝑄0)/𝜔
𝑋Δ0
𝐿0

(𝑄0) > 𝛾/𝐶 ′ for some 𝑄0 ∈ F . Let 𝑄0 ∈ D be the unique dyadic
cube such that 𝑄0 ⊂ 𝑄0 and 𝑟0

2 < ℓ(𝑄0) ≤ 𝑟0. We can then invoke the contrapositive of equation (4.24)
with 𝛾/𝐶 ′ in place of 𝛾 to find 𝛽 ∈ (0, 1) such that by Lemma 3.9 and Harnack’s inequality we arrive at

𝜔
𝑋Δ0
𝐿 (𝐹)

𝜔
𝑋Δ0
𝐿 (Δ)

≥
𝜔
𝑋Δ0
𝐿 (𝐹 ∩𝑄0)

𝜔
𝑋Δ0
𝐿 (Δ)

≈
𝜔
𝑋Δ0
𝐿 (𝐹 ∩𝑄0)

𝜔
𝑋Δ0
𝐿 (𝑄0)

≈
𝜔
𝑋𝑄0

𝐿 (𝐹 ∩𝑄0)

𝜔
𝑋𝑄0

𝐿 (𝑄0)
>

𝛽

𝐶1
.

In short, we have obtained that for every 𝛾 ∈ (0, 1) there exists 𝛽 ∈ (0, 1) such that

𝜔
𝑋Δ0
𝐿0

(𝐹)

𝜔
𝑋Δ0
𝐿0

(Δ)
> 𝛾 =⇒

𝜔
𝑋Δ0
𝐿 (𝐹)

𝜔
𝑋Δ0
𝐿 (Δ)

> 𝛽.

This and the classical theory of weights (cf. [11, 25]) show that 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ), and the proof is
complete. �

4.8. Proof of (c) =⇒ (c)′

This is trivial since for any arbitrary Borel set 𝑆 ⊂ 𝜕Ω, the solution 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, belongs to
𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω). �

4.9. Proof of (e) =⇒ (f)

Let Δ 𝜀 = 𝐵𝜀 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω, where 𝐵𝜀 = 𝐵(𝑥, 𝜀𝑟) with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and
𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ 𝜀 and 0 < 𝑟 ′ < 𝜀𝑟𝑐0/4 and 𝑐0 is the corkscrew constant. Using equation
(3.6) and Lemma 4.1, we easily obtain

1
𝜔
𝑋Δ𝜀

𝐿0
(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ 𝜀 , 𝑋) 𝑑𝑋

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

+ | 𝑓Δ ,𝐿0 |2
1

𝜔
𝑋Δ𝜀

𝐿0
(Δ ′)

∬
𝐵′∩Ω

|∇𝑢𝐿,Ω (𝑋) |2𝐺𝐿0 (𝑋Δ 𝜀 , 𝑋) 𝑑𝑋

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

+ ‖ 𝑓 ‖2
𝐿∞ (𝜕Ω,𝜔𝐿0 )

( 𝑟 ′

diam(𝜕Ω)

)2𝜌

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

+ ‖ 𝑓 ‖2
𝐿∞ (𝜕Ω,𝜔𝐿0 )

𝜀2𝜌 .

Taking the sup over 𝐵𝜀 and 𝐵′, we readily arrive at equation (3.7). �
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4.10. Proof of (f) =⇒ (c)′

We first observe that (f) applied with 𝜀 = 1 gives

sup
𝐵

sup
𝐵′

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

≤ 𝐶
(
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
+ 𝜚(1)‖ 𝑓 ‖2

𝐿∞ (𝜕Ω,𝜔𝐿0 )
)
� ‖ 𝑓 ‖2

𝐿∞ (𝜕Ω,𝜔𝐿0 )
, (4.25)

where Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω, and the sups are taken, respectively, over all balls 𝐵 = 𝐵(𝑥, 𝑟) with
𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4 and 𝑐0 is the
corkscrew constant.

With this in place, we are now ready to establish (c)′. Take an arbitrary Borel set 𝑆 ⊂ 𝜕Ω, and let
𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω. Fix 𝑋0 ∈ Ω, and use that 𝜔𝑋0

𝐿 is Borel regular to see that for every 𝑗 ≥ 1 there
exist a closed set 𝐹𝑗 and an open set 𝑈 𝑗 so that 𝐹𝑗 ⊂ 𝑆 ⊂ 𝑈 𝑗 and 𝜔𝑋0

𝐿 (𝑈 𝑗 \ 𝐹𝑗 ) < 𝑗−1. Using Urysohn’s
lemma, we can construct 𝑓 𝑗 ∈ 𝒞(𝜕Ω) such that 1𝐹𝑗 ≤ 𝑓 𝑗 ≤ 1𝑈 𝑗 and for 𝑋 ∈ Ω set

𝑣 𝑗 (𝑋) :=
∫
𝜕Ω

𝑓 𝑗 (𝑦)𝑑𝜔𝑋𝐿 (𝑦).

It is straightforward to see that |1𝑆 (𝑥) − 𝑓 𝑗 (𝑥) | ≤ 1𝑈 𝑗\𝐹𝑗 (𝑥) for every 𝑥 ∈ 𝜕Ω; hence, for every compact
set 𝐾 ⊂ Ω and for every 𝑋 ∈ 𝐾 , we have by Harnack’s inequality

|𝑢(𝑋) − 𝑣 𝑗 (𝑋) | ≤
∫
𝜕Ω

|1𝑆 (𝑥) − 𝑓 𝑗 (𝑥) | 𝑑𝜔𝑋𝐿 (𝑥) ≤ 𝜔𝑋𝐿 (𝑈 𝑗 \ 𝐹𝑗 ) ≤ 𝐶𝐾,𝑋0𝜔
𝑋0
𝐿 (𝑈 𝑗 \ 𝐹𝑗 ) < 𝐶𝐾,𝑋0 𝑗

−1.

Thus, 𝑣 𝑗 −→ 𝑢 uniformly on compacta in Ω. This together with Caccioppoli’s inequality readily imply
that ∇𝑣 𝑗 −→ ∇𝑢 in 𝐿2

loc (Ω). In particular, ∇𝑣 𝑗 −→ ∇𝑢 in 𝐿2 (𝐾) for every compact set 𝐾 ⊂ Ω.
Fix Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω, with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω), and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′)

with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4 and 𝑐0 is the corkscrew constant. Let 𝑓 𝑗 ,Δ ,𝐿0 :=
⨏
Δ 𝑓 𝑗 𝑑𝜔

𝑋Δ
𝐿0

and
𝑢𝐿,Ω (𝑋) := 𝜔𝑋𝐿 (𝜕Ω), 𝑋 ∈ Ω. For every compact set 𝐾 ⊂ Ω, we then have by equation (4.25) applied
to each 𝑓 𝑗

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐾∩𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

= lim
𝑗→∞

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐾∩𝐵′∩Ω

|∇𝑣 𝑗 (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 � 1.

Taking the sup over B and 𝐵′, we then conclude that (𝑐)′ holds since by the maximum principle one has
‖𝑢‖𝐿∞ (Ω) = 1. �

4.11. Proof of (e)′ =⇒ (f)′

The argument used to see that (e) =⇒ (f) can be carried out in the present scenario with no changes. �

4.12. Proof of (f)′ =⇒ (c)′

Let 𝑓 = 1𝑆 with 𝑆 ⊂ 𝜕Ω a Borel set such that 𝜔𝑋𝐿0
(𝑆) ≠ 0 for some (or all) 𝑋 ∈ Ω. Note that

‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) ≤ ‖ 𝑓 ‖𝐿∞ (𝜕Ω,𝜔𝐿0 ) = 1. From this and the fact that 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, satisfies
‖𝑢‖𝐿∞ (Ω) = 1, we readily see that equation (3.7) with 𝜀 = 1 implies equation (3.8). �
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4.13. Proof of (c)′ =⇒ (a)

Let 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, for an arbitrary Borel set 𝑆 ⊂ 𝜕Ω. Let 𝜗 ≥ 𝜗0 and 𝜂 ∈ (0, 1). Then∫
𝑄0

S𝜗𝑄0 ,𝜂
𝑢(𝑥)2 𝑑𝜔

𝑋𝑄0
𝐿0

(𝑥) =
∫
𝑄0

(∬
Γ𝜗
𝑄0 ,𝜂

(𝑥)
|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛 𝑑𝑌

)
𝑑𝜔

𝑋𝑄0
𝐿0

(𝑥)

=
∬
𝐵∗
𝑄0

∩Ω
|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛

( ∫
𝑄0

1Γ𝜗
𝑄0 ,𝜂

(𝑥) (𝑌 ) 𝑑𝜔
𝑋𝑄0
𝐿0

(𝑥)
)
𝑑𝑌, (4.26)

where we have used that Γ𝜗𝑄0 ,𝜂
(𝑥) ⊂ 𝑇 𝜗,∗𝑄0

⊂ 𝐵∗
𝑄0

∩ Ω (see equation (2.15)) and Fubini’s theorem. To
estimate the inner integral, we fix 𝑌 ∈ 𝐵∗

𝑄0
∩Ω and 𝑦̂ ∈ 𝜕Ω such that |𝑌 − 𝑦̂ | = 𝛿(𝑌 ). We claim that{

𝑥 ∈ 𝑄0 : 𝑌 ∈ Γ𝜗𝑄0 ,𝜂
(𝑥)

}
⊂ Δ ( 𝑦̂, 𝐶𝜗𝜂−3𝛿(𝑌 )). (4.27)

To show this, let 𝑥 ∈ 𝑄0 be such that𝑌 ∈ Γ𝜗𝑄0 ,𝜂
(𝑥). This means that there exists 𝑄 ∈ D𝑄0 such that 𝑥 ∈ 𝑄

and 𝑌 ∈ 𝑈𝜗
𝑄,𝜂3 . Hence, there is 𝑄 ′ ∈ D𝑄 with ℓ(𝑄 ′) > 𝜂3ℓ(𝑄) such that 𝑌 ∈ 𝑈𝜗𝑄′ and consequently

𝛿(𝑌 ) ≈𝜗 dist(𝑌, 𝑄 ′) ≈𝜗 ℓ(𝑄 ′). As a result,

|𝑥 − 𝑦̂ | ≤ diam(𝑄) + dist(𝑌, 𝑄 ′) + 𝛿(𝑌 ) �𝜗 ℓ(𝑄) + 𝛿(𝑌 ) �𝜗 𝜂−3𝛿(𝑌 ),

thus 𝑥 ∈ Δ ( 𝑦̂, 𝐶𝜗𝜂−3𝛿(𝑌 )) as desired. If we now use equation (4.27), we conclude that for every
𝑌 ∈ 𝐵∗

𝑄0
∩Ω∫
𝑄0

1Γ𝜗
𝑄0 ,𝜂

(𝑥) (𝑌 ) 𝑑𝜔
𝑋𝑄0
𝐿0

(𝑥) ≤ 𝜔
𝑋𝑄0
𝐿0

(
Δ ( 𝑦̂, 𝐶𝜗𝜂−3𝛿(𝑌 ))

)
�𝜗,𝜂 𝜔

𝑋𝑄0
𝐿0

(
Δ ( 𝑦̂, 𝛿(𝑌 ))

)
. (4.28)

Write 𝐵 = 8𝑐−1
0 𝐵∗

𝑄0
, 𝐵′ = 𝐵∗

𝑄0
, Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω. Assuming that 𝑟𝐵 = 16𝑐−1

0 𝜅0𝑟𝑄0 <
diam(𝜕Ω), we have by Lemma 3.9 part (b) and Harnack’s inequality

𝜔
𝑋𝑄0
𝐿0

(
Δ ( 𝑦̂, 𝛿(𝑌 ))

)
≈ 𝜔𝑋Δ

𝐿0

(
Δ ( 𝑦̂, 𝛿(𝑌 ))

)
≈ 𝛿(𝑌 )𝑛−1𝐺𝐿0 (𝑋Δ , 𝑌 ), 𝑌 ∈ 𝐵∗

𝑄0
∩Ω = 𝐵′ ∩Ω. (4.29)

If we then combine equations (4.26), (4.28) and (4.29), we conclude that (c)′ and Lemma 3.9 yield∫
𝑄0

S𝜗𝑄0 ,𝜂
𝑢(𝑥)2 𝑑𝜔

𝑋𝑄0
𝐿0

(𝑥) �𝜗,𝜂
∬
𝐵′∩Ω

|∇𝑢(𝑌 ) |2𝐺𝐿0 (𝑋Δ , 𝑌 ) 𝑑𝑌 � 𝜔𝑋Δ
𝐿0

(Δ ′) ‖𝑢‖2
𝐿∞ (Ω) � 𝜔

𝑋𝑄0
𝐿0

(𝑄0).

(4.30)

Note that this estimate corresponds to equation (4.22) for 𝑞 = 2. Hence, the same argument we used
in (d)′ =⇒ (a) applies in this scenario. Note, however, that we have assumed that 16𝑐−1

0 𝜅0𝑟𝑄0 <
diam(𝜕Ω), and this causes that equation (4.24) is valid under this restriction. If 𝜕Ω is unbounded, then
the same argument applies. When 𝜕Ω is bounded, we can replace the family F by F ′ consisting of
all 𝑄 ′ ∈ D with 𝑄 ′ ⊂ 𝑄 for some 𝑄 ∈ F and ℓ(𝑄 ′) = 2−𝑀 ℓ(𝑄), where M is large enough so that
2−𝑀 < Ξ𝑐0/(8𝜅0). This guarantees that 16𝑐−1

0 𝜅0𝑟𝑄′ < diam(𝜕Ω) for every 𝑄 ′ ∈ F ′, and thus, equation
(4.24) holds for every 𝑄 ′ ∈ F ′. At this point, the rest of the argument can be carried out mutatis
mutandis; details are left to the reader. �

4.14. Proof of (a) =⇒ (c)

Note that we have already proved that (a) implies (d). In particular, we know that equation (3.9) holds
with 𝑞 = 2 and for any 𝛼 ≥ 𝑐−1

0 . Our goal is to see that the latter estimate implies (c). With this goal in
mind, consider 𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω) satisfying 𝐿𝑢 = 0 in the weak sense in Ω. Fix 𝐵 = 𝐵(𝑥, 𝑟) with
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𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω) and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with 𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4. Let Δ = 𝐵 ∩ 𝜕Ω,
Δ ′ = 𝐵′ ∩ 𝜕Ω. Note that 2𝑟 ′ < 𝑟𝑐0/2 < diam(𝜕Ω), and we can now invoke Lemma 4.3 and equation
(3.9) with 𝑞 = 2 to conclude that

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑢(𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

�
∫

2Δ′
S𝐶𝛼2𝑟 ′ 𝑢(𝑦)

2 𝑑𝜔
𝑋2Δ′
𝐿0

(𝑦) + sup{|𝑢(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2

�
∫

10Δ′
N 𝛼′

2𝑟 ′𝑢(𝑦)
2 𝑑𝜔

𝑋2Δ′
𝐿0

(𝑦) + ‖𝑢‖2
𝐿∞ (Ω)

� ‖𝑢‖2
𝐿∞ (Ω) .

Taking the sup over B and 𝐵′ we have then shown equation (3.8). �

4.15. Proof of (a) =⇒ (e)

Fix 𝑓 ∈ 𝒞(𝜕Ω) ∩ 𝐿∞(𝜕Ω), and let u be its associated solution as in equation (3.4). Let 𝑢𝐿,Ω (𝑋) :=
𝜔𝑋𝐿 (𝜕Ω), 𝑋 ∈ Ω. Fix 𝐵 = 𝐵(𝑥, 𝑟) with 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω) and 𝐵′ = 𝐵(𝑥 ′, 𝑟 ′) with
𝑥 ′ ∈ 2Δ and 0 < 𝑟 ′ < 𝑟𝑐0/4. Let Δ = 𝐵 ∩ 𝜕Ω, Δ ′ = 𝐵′ ∩ 𝜕Ω. Let 𝜑 ∈ 𝒞(R) with 1[0,4) ≤ 𝜑 ≤ 1[0,8)
and 𝜑Δ′ := 𝜑(| · −𝑥 ′ |/𝑟 ′) so that 14Δ′ ≤ 𝜑Δ′ ≤ 18Δ′ . Recall that for every surface ball Δ̃ we write

𝑓Δ̃ ,𝐿0
:=

⨏
Δ̃

𝑓 𝑑𝜔
𝑋Δ̃
𝐿0

. Then,

𝑓 − 𝑓Δ ,𝐿0 = ( 𝑓 − 𝑓8Δ′,𝐿0 ) + ( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 ) = ( 𝑓 − 𝑓8Δ′,𝐿0 )𝜑Δ′ + ( 𝑓 − 𝑓8Δ′,𝐿0 )(1 − 𝜑Δ′ ) + ( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 )
=: ℎloc + ℎglob + ( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 ).

Hence,

𝑣(𝑋) := 𝑢(𝑋) − 𝑓Δ ,𝐿0𝑢𝐿,Ω (𝑋) =
∫
𝜕Ω

( 𝑓 (𝑦) − 𝑓Δ ,𝐿0 ) 𝑑𝜔𝑋𝐿 (𝑦)

=
∫
𝜕Ω

ℎloc(𝑦) 𝑑𝜔𝑋𝐿 (𝑦) +
∫
𝜕Ω

ℎglob(𝑦) 𝑑𝜔𝑋𝐿 (𝑦) + ( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 )𝑢𝐿,Ω (𝑋)

=: 𝑣loc(𝑋) + 𝑣glob (𝑋) + ( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 )𝑢𝐿,Ω(𝑋). (4.31)

Note that ℎloc, ℎglob ∈ 𝒞(𝜕Ω) ∩ 𝐿∞(𝜕Ω).
Let us observe that we have already proved that (a) implies (d). In particular, we know that equation

(3.9) holds with 𝑞 = 2 and for any 𝛼 ≥ 𝑐−1
0 . Hence, since 2𝑟 ′ < 𝑟𝑐0/2 < diam(𝜕Ω), and we can now

invoke Lemma 4.3 and equation (3.9) with 𝑞 = 2 to conclude that

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

|∇𝑣loc (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

�
∫

2Δ′
S𝐶𝛼2𝑟 ′ 𝑣loc(𝑦)2 𝑑𝜔

𝑋2Δ′
𝐿0

(𝑦) + sup{|𝑣loc(𝑌 ) | : 𝑌 ∈ 2 𝐵′, 𝛿(𝑌 ) ≥ 𝑟 ′/𝐶}2

�
∫

4Δ′
N 𝛼′

2𝑟 ′𝑣loc(𝑦)2 𝑑𝜔
𝑋2Δ′
𝐿0

(𝑦) +
( ∫
𝜕Ω

|ℎloc (𝑦) | 𝑑𝜔𝑋Δ′
𝐿0

(𝑦)
)2

�
∫

4Δ′
N 𝛼′

4𝑟 ′𝑣loc(𝑦)2 𝑑𝜔
𝑋4Δ′
𝐿0

(𝑦) +
( ∫
𝜕Ω

|ℎloc (𝑦) | 𝑑𝜔𝑋8Δ′
𝐿0

(𝑦)
)2

=: I1 + I2. (4.32)
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Regarding I2, we note that by Lemma 3.9 part (𝑎) there holds

I2 ≤
( ∫

8Δ′
| 𝑓 (𝑦) − 𝑓8Δ′,𝐿0 |𝑑𝜔

𝑋8Δ′
𝐿0

(𝑦)
)2
� ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
. (4.33)

To estimate I1, we first observe that, since 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿0 ), there is 𝑞 ∈ (1,∞) so that 𝜔𝐿 ∈
𝑅𝐻𝑞 (𝜕Ω, 𝜔𝐿0 ). Note that, by Jensen’s inequality, we may assume that 𝑞 < 2 (since 𝑅𝐻𝑞1 (𝜕Ω, 𝜔𝐿0) ⊂
𝑅𝐻𝑞2 (𝜕Ω, 𝜔𝐿0 ) if 𝑞2 ≤ 𝑞1). Note that we have already proved that (a)𝑞 implies (b)𝑞′ ; hence, equation
(3.5) holds with 𝑝 = 𝑞′ > 2. This, Hölder’s inequality and the fact that ℎloc ∈ 𝒞(𝜕Ω) with supp ℎloc ⊂
8Δ ′ readily lead to

I1 ≤ ‖N 𝛼′

4𝑟 ′𝑣loc‖2
𝐿𝑞′ (4Δ′,𝜔

𝑋4Δ′
𝐿0

)
𝜔
𝑋4Δ′
𝐿0

(4Δ ′)
1

(𝑞′/2)′ � ‖ℎloc‖2
𝐿𝑞′ (8Δ′,𝜔

𝑋4Δ′
𝐿0

)

�
( ∫

8Δ′
| 𝑓 (𝑦) − 𝑓8Δ′,𝐿0 |𝑞

′
𝑑𝜔

𝑋4Δ′
𝐿0

(𝑦)
) 2

𝑞′
� ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
, (4.34)

where the last estimate uses Lemma 3.9 part (𝑎) and John–Nirenberg’s inequality (cf. equation (3.21)).
We next turn our attention to the estimate involving 𝑣glob. Note that

|ℎglob | ≤ | 𝑓 − 𝑓8Δ′,𝐿0 |1𝜕Ω\4Δ′ =
∞∑
𝑘=2

| 𝑓 − 𝑓8Δ′,𝐿0 |12𝑘+1Δ′\2𝑘Δ′

≤
∞∑
𝑘=2

| 𝑓 − 𝑓8Δ′,𝐿0 | (𝜑2𝑘−1Δ′ − 𝜑2𝑘−3Δ′ ) =:
∑

𝑘≥2:2𝑘𝑟 ′≤diam(𝜕Ω)
ℎglob,k,

with the understanding that the sum runs from 𝑘 = 2 to infinity when 𝜕Ω is unbounded.
Fix 𝑘 ≥ 2 with 2𝑘𝑟 ′ ≤ diam(𝜕Ω), and note that ℎglob,k ∈ 𝒞(𝜕Ω) with supp ℎglob,k ⊂ 2𝑘+2Δ ′\2𝑘−1Δ ′.

Thus, for every 𝑋 ∈ 𝐵′ ∩Ω, by Lemma 3.9 part ( 𝑓 ), we have

𝑣glob,k (𝑋) :=
∫
𝜕Ω

ℎglob,k (𝑦) 𝑑𝜔𝑋𝐿 (𝑦) �
( 𝛿(𝑋)
2𝑘−1𝑟 ′

)𝜌
𝑣glob,k (𝑋2𝑘−1Δ′ ). (4.35)

Next, we estimate 𝑣glob,k (𝑋2𝑘−1Δ′ ), 𝑘 ≥ 2, via a telescopic argument. Indeed applying Harnack’s in-
equality, that 𝜔𝐿 ∈ 𝑅𝐻𝑞 (𝜕Ω, 𝜔𝐿0 ), Lemma 3.9, and John–Nirenberg’s inequality (cf. equation (3.21))
we arrive at

𝑣glob,k (𝑋2𝑘−1Δ′ ) ≤
∫

2𝑘+2Δ′
| 𝑓 (𝑦) − 𝑓8Δ′,𝐿0 | 𝑑𝜔

𝑋2𝑘−1Δ′
𝐿 (𝑦)

�
∫

2𝑘+2Δ′
| 𝑓 (𝑦) − 𝑓8Δ′,𝐿0 | 𝑑𝜔

𝑋2𝑘+2Δ′
𝐿 (𝑦)

�
(⨏

2𝑘+2Δ′
| 𝑓 (𝑦) − 𝑓8Δ′,𝐿0 |𝑞

′
𝑑𝜔

𝑋2𝑘+2Δ′
𝐿0

(𝑦)
) 1

𝑞′

≤
(⨏

2𝑘+2Δ′
| 𝑓 (𝑦) − 𝑓2𝑘+2Δ′,𝐿0 |

𝑞′ 𝑑𝜔
𝑋2𝑘+2Δ′
𝐿0

(𝑦)
) 1

𝑞′ +
𝑘+1∑
𝑗=3

| 𝑓2 𝑗+1Δ′,𝐿0 − 𝑓2 𝑗Δ′,𝐿0 |

≤
(⨏

2𝑘+2Δ′
| 𝑓 (𝑦) − 𝑓2𝑘+2Δ′,𝐿0 |

𝑞′ 𝑑𝜔
𝑋2𝑘+2Δ′
𝐿0

(𝑦)
) 1

𝑞′ +
𝑘+1∑
𝑗=3

⨏
2 𝑗Δ′

| 𝑓 (𝑦) − 𝑓2 𝑗+1Δ′,𝐿0 | 𝑑𝜔
𝑋2 𝑗Δ′
𝐿0

(𝑦)

�
𝑘+1∑
𝑗=3

(⨏
2 𝑗+1Δ′

| 𝑓 (𝑦) − 𝑓2 𝑗+1Δ′,𝐿0 |
𝑞′ 𝑑𝜔

𝑋2 𝑗+1Δ′
𝐿0

(𝑦)
) 1

𝑞′

� 𝑘 ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) .
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This and equation (4.35) give for every 𝑋 ∈ 𝐵′ ∩Ω∫
𝜕Ω

|ℎglob (𝑦) | 𝑑𝜔𝑋𝐿 (𝑦) ≤
∑

𝑘≥2:2𝑘𝑟 ′ ≤diam(𝜕Ω)

∫
𝜕Ω

ℎglob,k (𝑦) 𝑑𝜔𝑋𝐿 (𝑦) =
∑

𝑘≥2:2𝑘𝑟 ′≤diam(𝜕Ω)
𝑣glob,k (𝑋)

�
∑
𝑘≥2

𝑘
( 𝛿(𝑋)
2𝑘−1𝑟 ′

)𝜌
‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) ≈

( 𝛿(𝑋)
𝑟 ′

)𝜌
‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) .

If we next write W𝐵′ := {𝐼 ∈ W : 𝐼 ∩ 𝐵′ ≠ Ø} and pick 𝑍𝐼 ,𝐵′ ∈ 𝐼 ∩ 𝐵′, the previous estimate gives for
every 𝐼 ∈ W𝐵′∬

𝐼
|∇𝑣glob (𝑋) |2𝑑𝑋 � ℓ(𝐼)−2

∬
𝐼 ∗

𝑣glob(𝑋)2𝑑𝑋 ≤ ℓ(𝐼)−2
∬
𝐼 ∗

( ∫
𝜕Ω

|ℎglob (𝑦) | 𝑑𝜔𝑋𝐿 (𝑦)
)2

𝑑𝑋

≈ ℓ(𝐼)𝑛−1
( ∫
𝜕Ω

ℎglob (𝑦) 𝑑𝜔
𝑍𝐼 ,𝐵′
𝐿 (𝑦)

)2
� ℓ(𝐼)𝑛−1

( ℓ(𝐼)
𝑟 ′

)2𝜌
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
.

Thus, Lemma 3.9 gives∬
𝐵′∩Ω

|∇𝑣glob (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 �
∑
𝐼 ∈W𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )ℓ(𝐼)1−𝑛
∬
𝐼
|∇𝑣glob (𝑋) |2 𝑑𝑋

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

∑
𝐼 ∈W𝐵′

𝜔𝑋Δ
𝐿0

(𝑄𝐼 )
( ℓ(𝐼)

𝑟 ′

)2𝜌

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

∑
𝑘:2−𝑘�𝑟 ′

(2−𝑘

𝑟 ′

)2𝜌 ∑
𝐼 ∈W𝐵′ :ℓ (𝐼 )=2−𝑘

𝜔𝑋Δ
𝐿0

(𝑄𝐼 ),

where 𝑄𝐼 ∈ D(𝜕Ω) is so that ℓ(𝑄𝐼 ) = ℓ(𝐼) and contains 𝑦̂𝐼 ∈ 𝜕Ω such that dist(𝐼, 𝜕Ω) = dist( 𝑦̂𝐼 , 𝐼).
It is easy to see that, for every k with 2−𝑘 � 𝑟 ′, the family {𝑄𝐼 }𝐼 ∈W𝐵′ ,ℓ (𝐼 )=2−𝑘 has bounded overlap and
also that 𝑄𝐼 ⊂ 𝐶Δ ′ for every 𝐼 ∈ W𝐵′ , where C is some harmless dimensional constant. Hence,∬

𝐵′∩Ω
|∇𝑣glob (𝑋) |2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 � ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )

∑
𝑘:2−𝑘�𝑟 ′

(2−𝑘

𝑟 ′

)2𝜌
𝜔𝑋Δ
𝐿0

(𝐶 Δ ′)

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

𝜔𝑋Δ
𝐿0

(Δ ′).
(4.36)

To continue, we pick 𝑘0 ≥ 3 such that 𝑟 < 2𝑘0𝑟 ′ ≤ 2 𝑟 . Note that 2𝑘0+1Δ ′ and Δ have comparable
radius and 𝑥 ′ ∈ 2Δ ∩ 2𝑘0+1Δ ′. Hence, Lemma 3.9 and Harnack’s inequality yield

| 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 | ≤
𝑘0∑
𝑘=3

| 𝑓2𝑘Δ′,𝐿0 − 𝑓2𝑘+1Δ ,𝐿0 | + | 𝑓2𝑘0+1Δ′,𝐿0
− 𝑓Δ ,𝐿0 |

≤
𝑘0∑
𝑘=3

⨏
2𝑘Δ′

| 𝑓 (𝑦) − 𝑓2𝑘+1Δ′,𝐿0 | 𝑑𝜔
𝑋2𝑘Δ′
𝐿0

(𝑦) +
⨏
Δ
| 𝑓 (𝑦) − 𝑓2𝑘0+1Δ′,𝐿0

| 𝑑𝜔𝑋Δ
𝐿0

(𝑦)

�
𝑘0∑
𝑘=3

⨏
2𝑘+1Δ′

| 𝑓 (𝑦) − 𝑓2𝑘+1Δ′,𝐿0 | 𝑑𝜔
𝑋2𝑘+1Δ′
𝐿0

(𝑦)

� 𝑘0 ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 )

≤ (1 + log(𝑟/𝑟 ′)) ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) . (4.37)
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This and Lemma 4.1 imply

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

��( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 )∇𝑢𝐿,Ω(𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

� (1 + log(𝑟/𝑟 ′))2
( 𝑟 ′

diam(𝜕Ω)

)2𝜌
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )

≤ (1 + log(𝑟/𝑟 ′))2
( 𝑟 ′
𝑟

)2𝜌
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
� ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
. (4.38)

Here, we note in passing that if diam(𝜕Ω) = ∞ (or if both 𝜕Ω and Ω are bounded), then the left-hand
side of the previous estimate vanishes as we know that 𝑢𝐿,Ω ≡ 1.

To complete the proof, we just collect equations (4.31)–(4.34), (4.36) and (4.38):∬
𝐵′∩Ω

|∇𝑣(𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 �

∬
𝐵′∩Ω

|∇𝑣loc (𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

+
∬
𝐵′∩Ω

|∇𝑣glob (𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

+
∬
𝐵′∩Ω

��( 𝑓8Δ′,𝐿0 − 𝑓Δ ,𝐿0 )∇𝑢𝐿,Ω(𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

� ‖ 𝑓 ‖2
BMO(𝜕Ω,𝜔𝐿0 )

𝜔𝑋Δ
𝐿0

(Δ ′).

This completes the proof. �

Remark 4.5. It is not difficult to see that in equation (3.6) one can replace 𝑓Δ ,𝐿0 by 𝑓Δ′,𝐿0 . Indeed, this
is what we have essentially done in the proof: Much as in equation (4.37), one has that

| 𝑓Δ ,𝐿0 − 𝑓Δ′,𝐿0 | � (1 + log(𝑟/𝑟 ′)) ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) .

With this, we can proceed as in equation (4.38) to see that

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

��( 𝑓Δ ,𝐿0 − 𝑓Δ′,𝐿0 )∇𝑢𝐿,Ω(𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋 � ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
.

Hence, equation (3.6) with 𝑓Δ ,𝐿0 is equivalent to equation (3.6) with 𝑓Δ′,𝐿0 .
On the other hand, when Ω is unbounded and 𝜕Ω bounded, in equation (3.6), one can replace 𝑓Δ ,𝐿0

by 𝑓𝜕Ω,𝐿0 :=
⨏
𝜕Ω

𝑓 𝑑𝜔𝑋Ω
𝐿0

, where 𝑋Ω ∈ Ω satisfy 𝛿(𝑋Ω) ≈ diam(𝜕Ω) (say, 𝑋Ω = 𝑋Δ (𝑥0 ,𝑟0) with 𝑥0 ∈ 𝜕Ω

and 𝑟0 ≈ diam(𝜕Ω)). To see this, one proceeds as in equation (4.37) to see that

| 𝑓Δ ,𝐿0 − 𝑓𝜕Ω,𝐿0 | � (1 + log(diam(𝜕Ω)/𝑟)) ‖ 𝑓 ‖BMO(𝜕Ω,𝜔𝐿0 ) .

This and Lemma 4.1 readily give

1
𝜔𝑋Δ
𝐿0

(Δ ′)

∬
𝐵′∩Ω

��( 𝑓Δ ,𝐿0 − 𝑓𝜕Ω,𝐿0 )∇𝑢𝐿,Ω(𝑋)
��2𝐺𝐿0 (𝑋Δ , 𝑋) 𝑑𝑋

� (1 + log(diam(𝜕Ω)/𝑟))2
( 𝑟 ′

diam(𝜕Ω)

)2𝜌
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )

≤ (1 + log(diam(𝜕Ω)/𝑟))2
( 𝑟

diam(𝜕Ω)

)2𝜌
‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
� ‖ 𝑓 ‖2

BMO(𝜕Ω,𝜔𝐿0 )
.

Hence, equation (3.6) with 𝑓Δ ,𝐿0 is equivalent to equation (3.6) with 𝑓𝜕Ω,𝐿0 .
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4.16. Proof of (a) =⇒ (e)′

The proof is almost the same as the previous one with the following modifications. We work with 𝑓 = 1𝑆
with 𝑆 ⊂ 𝜕Ω an arbitrary Borel set. We replace 𝜑 by 1[0,4) and use in equation (4.32) that Lemma 4.3
is also valid for the associated 𝑣loc since it belongs to 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω). Also, in equation (4.33) we
need to invoke that (a)𝑞 =⇒ (b)𝑞′ =⇒ (b)′𝑞′ . The rest of the proof remains the same, details are left
to the interested reader. �

5. Proof of Theorem 1.6

The implications (b) =⇒ (c) =⇒ (d), (b)′ =⇒ (c)′ =⇒ (d)′ are trivial. Also, since for any Borel
set 𝑆 ⊂ 𝜕Ω the solution 𝑢(𝑋) = 𝜔𝑋𝐿 (𝑆) belongs to 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω), it is also straightforward that
(b) =⇒ (b)′, (c) =⇒ (c)′, and (d) =⇒ (d)′.

We next observe that for every 𝛼 > 0, 0 < 𝑟 < 𝑟 ′ and 𝜛 ∈ R, if 𝐹 ⊂ 𝜕Ω is a bounded set and
𝑣 ∈ 𝐿2

loc (Ω), then

sup
𝑥∈𝐹

∬
Γ𝛼
𝑟′ (𝑥)\Γ

𝛼
𝑟 (𝑥)

|𝑣(𝑌 ) |2𝛿(𝑌 )𝜛𝑑𝑌 < ∞. (5.1)

To see this, we first note that since F is bounded we can find R large enough so that 𝐹 ⊂ 𝐵(0, 𝑅). Then,
if 𝑥 ∈ 𝐹, one readily sees that

Γ𝛼𝑟 ′ (𝑥)\Γ𝛼𝑟 (𝑥) ⊂ 𝐵(0, 𝑟 ′ + 𝑅) ∩
{
𝑌 ∈ Ω :

𝑟

1 + 𝛼
≤ 𝛿(𝑌 ) ≤ 𝑟 ′

}
=: 𝐾.

Note that 𝐾 ⊂ Ω is a compact set. Then, since 𝑣 ∈ 𝐿2
loc (Ω), we conclude that

sup
𝑥∈𝐹

∬
Γ𝛼
𝑟′ (𝑥)\Γ

𝛼
𝑟 (𝑥)

|𝑣(𝑌 ) |2𝛿(𝑌 )𝜛𝑑𝑌 ≤ max
{
𝑟 ′,

1 + 𝛼

𝑟

} |𝜛 | ∬
𝐾
|𝑣(𝑌 ) |2𝑑𝑌 < ∞. (5.2)

Using, then, equation (5.1), it is also trivial to see that (d) =⇒ (c) and (d)′ =⇒ (c)′. Hence, we
are left with showing

(a) =⇒ (b) and (c)′ =⇒ (a).

5.1. Proof of (a) =⇒ (b)

Assume that 𝜔𝐿0 
 𝜔𝐿 . Let 𝜗 ≥ 𝜗0 large enough to be chosen (this choice will depend on 𝛼). Fix an
arbitrary 𝑄0 ∈ D𝑘0 , where 𝑘0 ∈ Z is taken so that 2−𝑘0 = ℓ(𝑄0) < diam(𝜕Ω)/𝑀0, where 𝑀0 > 8𝜅0𝑐

−1
0 ,

𝜅0 is taken from equation (2.15) and 𝑐0 is the corkscrew constant. Let 𝑋0 := 𝑋𝑀0Δ𝑄0
be a corkscrew

point relative to 𝑀0Δ𝑄0 so that 𝑋0 ∉ 4𝐵∗
𝑄0

by the choice of 𝑀0. By Lemma 3.9 part (𝑎) and Harnack’s
inequality, there exists 𝐶0 > 1 such that

𝜔𝑋0
𝐿 (𝑄0) ≥ 𝐶−1

0 . (5.3)

Set

𝜔0 := 𝜔𝑋0
𝐿0
, 𝜔 := 𝐶0𝜔

𝑋0
𝐿0
(𝑄0)𝜔𝑋0

𝐿 , G0 := 𝐺𝐿0 (𝑋0, ·), and G := 𝐶0𝜔
𝑋0
𝐿0
(𝑄0)𝐺𝐿 (𝑋0, ·). (5.4)

By assumption, we have 𝜔0 
 𝜔. Also, equation (5.3) gives

1 ≤ 𝜔(𝑄0)
𝜔0 (𝑄0)

= 𝐶0𝜔
𝑋0
𝐿 (𝑄0) ≤ 𝐶0. (5.5)
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For 𝑁 > 𝐶0, we let F+
𝑁 := {𝑄 𝑗 } ⊂ D𝑄0\{𝑄0}, respectively, F−

𝑁 := {𝑄 𝑗 } ⊂ D𝑄0\{𝑄0}, be the
collection of descendants of 𝑄0 which are maximal (and therefore pairwise disjoint) with respect to the
property that

𝜔(𝑄 𝑗 )
𝜔0 (𝑄 𝑗 )

<
1
𝑁
, respectively

𝜔(𝑄 𝑗 )
𝜔0 (𝑄 𝑗 )

> 𝑁. (5.6)

Write F𝑁 := F+
𝑁 ∪ F−

𝑁 , and note that F+
𝑁 ∩ F−

𝑁 = Ø. By maximality, there holds

1
𝑁

≤ 𝜔(𝑄)
𝜔0 (𝑄) ≤ 𝑁, ∀𝑄 ∈ DF𝑁 ,𝑄0 . (5.7)

Denote, for every 𝑁 > 𝐶0,

𝐸±
𝑁 :=

⋃
𝑄∈F±

𝑁

𝑄, 𝐸0
𝑁 := 𝐸+

𝑁 ∪ 𝐸−
𝑁 , 𝐸𝑁 := 𝑄0 \ 𝐸0

𝑁 , (5.8)

and

𝑄0 =

( ⋂
𝑁>𝐶0

𝐸0
𝑁

)
∪
( ⋃
𝑁>𝐶0

𝐸𝑁

)
=: 𝐸0 ∪

( ⋃
𝑁>𝐶0

𝐸𝑁

)
. (5.9)

By Lemma 2.9, Ω𝜗F𝑁 ,𝑄0
is a bounded 1-sided NTA satisfying the CDC for any 𝜗 ≥ 𝜗0. As in [31,

Proposition 6.1]

𝐸𝑁 ⊂ 𝐹𝑁 := 𝜕Ω ∩ 𝜕Ω𝜗F𝑁 ,𝑄0
⊂ 𝑄0 \

⋃
𝑄 𝑗 ∈F𝑁

int(𝑄 𝑗 ).

Hence,

𝐹𝑁 \𝐸𝑁 ⊂
(
𝑄0\

⋃
𝑄 𝑗 ∈F𝑁

int(𝑄 𝑗 )
)
\
(
𝑄0\

⋃
𝑄 𝑗 ∈F𝑁

𝑄 𝑗

)
⊂ 𝜕𝑄0 ∪

( ⋃
𝑄 𝑗 ∈F𝑁

𝜕𝑄 𝑗

)
.

This, [1, Lemma 2.17] and Lemma 3.9 imply

𝜔0 (𝐹𝑁 \ 𝐸𝑁 ) = 0. (5.10)

Next, we are going to show

𝜔0(𝐸0) = 0. (5.11)

Let 𝑥 ∈ 𝐸±
𝑁+1. Then there exists 𝑄𝑥 ∈ F±

𝑁+1 such that 𝑥 ∈ 𝑄𝑥 . By equation (5.6), we have

𝜔(𝑄𝑥)
𝜔0(𝑄𝑥)

<
1

𝑁 + 1
<

1
𝑁

if 𝑄𝑥 ∈ F+
𝑁+1 or

𝜔(𝑄𝑥)
𝜔0 (𝑄𝑥)

> 𝑁 + 1 > 𝑁 if 𝑄𝑥 ∈ F−
𝑁+1.

By the maximality of the cubes in F±
𝑁 , one has 𝑄𝑥 ⊂ 𝑄 ′

𝑥 for some 𝑄 ′
𝑥 ∈ F±

𝑁 with 𝑥 ∈ 𝑄 ′
𝑥 ⊂ 𝐸±

𝑁 .
Thus, {𝐸+

𝑁 }𝑁 , {𝐸−
𝑁 }𝑁 and {𝐸0

𝑁 }𝑁 are decreasing sequences of sets. This, together with the fact that
𝜔(𝐸±

𝑁 ) ≤ 𝜔(𝑄0) ≤ 𝐶0𝜔0 (𝑄0) ≤ 𝐶0 and 𝜔0 (𝐸±
𝑁 ) ≤ 𝜔0 (𝑄0) ≤ 1, imply that

𝜔

( ⋂
𝑁>𝐶0

𝐸±
𝑁

)
= lim
𝑁→∞

𝜔(𝐸±
𝑁 ) and 𝜔0

( ⋂
𝑁>𝐶0

𝐸±
𝑁

)
= lim
𝑁→∞

𝜔0(𝐸±
𝑁 ). (5.12)
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By equations (5.6) and (5.8),

𝜔(𝐸+
𝑁 ) =

∑
𝑄∈F+

𝑁

𝜔(𝑄) <
1
𝑁

∑
𝑄∈F+

𝑁

𝜔0 (𝑄) = 1
𝑁
𝜔0(𝐸+

𝑁 ) ≤
1
𝑁
,

which together with equation (5.12) yield

𝜔

( ⋂
𝑁>𝐶0

𝐸+
𝑁

)
= lim
𝑁→∞

𝜔(𝐸+
𝑁 ) = 0.

In view of the fact that by assumption 𝜔0 
 𝜔, we then conclude that

0 = 𝜔0

( ⋂
𝑁>𝐶0

𝐸+
𝑁

)
= lim
𝑁→∞

𝜔0(𝐸+
𝑁 ). (5.13)

On the other hand, equation (5.6) yields

𝜔0 (𝐸−
𝑁 ) =

∑
𝑄∈F−

𝑁

𝜔0(𝑄) <
1
𝑁

∑
𝑄∈F−

𝑁

𝜔(𝑄) = 1
𝑁
𝜔(𝐸−

𝑁 ) ≤
𝐶0
𝑁

,

and hence,

𝜔0

( ⋂
𝑁>𝐶0

𝐸−
𝑁

)
= lim
𝑁→∞

𝜔0(𝐸−
𝑁 ) = 0. (5.14)

Since {𝐸0
𝑁 }𝑁 is a decreasing sequence of sets with 𝜔0 (𝐸0

𝑁 ) ≤ 𝜔0 (𝑄0) ≤ 1, equations (5.13) and (5.14)
readily imply equation (5.11):

𝜔0 (𝐸0) = lim
𝑁→∞

𝜔0(𝐸0
𝑁 ) ≤ lim

𝑁→∞
𝜔0 (𝐸+

𝑁 ) + lim
𝑁→∞

𝜔0 (𝐸−
𝑁 ) = 0.

Now, we turn our attention to the square function estimates in 𝐿𝑞 (𝐹𝑁 , 𝜔0) for 𝑞 ∈ (0,∞). Let
𝑢 ∈ 𝑊1,2

loc (Ω) ∩ 𝐿∞(Ω) be a weak solution of 𝐿𝑢 = 0 in Ω. To continue, we observe that if 𝑄 ∈ D𝑄0

is so that 𝑄 ∩ 𝐸𝑁 ≠ Ø, then necessarily 𝑄 ∈ DF𝑁 ,𝑄0 , otherwise, 𝑄 ⊂ 𝑄 ′ ∈ F𝑁 , hence 𝑄 ⊂ 𝑄0\𝐸𝑁
which is a contradiction. As a result, equation (5.7) yields

𝜔0(𝑄)
𝜔(𝑄) ≈𝑁 1, ∀𝑥 ∈ 𝐸𝑁 , 𝑄 ∈ D𝑄0 , 𝑄 � 𝑥.

By the (dyadic) Lebesgue differentiation theorem with respect to 𝜔, along with the fact that 𝜔0 
 𝜔 (cf.
equation (5.4)), we conclude that 𝑑𝜔0/𝑑𝜔(𝑥) ≈𝑁 1 for 𝜔-a.e. 𝑥 ∈ 𝐸𝑁 , hence also for 𝜔0-a.e. 𝑥 ∈ 𝐸𝑁 .
Thus,∫

𝐸𝑁

S𝜗𝑄0
𝑢(𝑥)𝑞𝑑𝜔0(𝑥) =

∫
𝐸𝑁

S𝜗𝑄0
𝑢(𝑥)𝑞 𝑑𝜔0

𝑑𝜔
(𝑥) 𝑑𝜔(𝑥) ≈𝑁

∫
𝐸𝑁

S𝜗𝑄0
𝑢(𝑥)𝑞 𝑑𝜔(𝑥)

�
∫
𝑄0

S𝜗𝑄0
𝑢(𝑥)𝑞 𝑑𝜔(𝑥) �

∫
𝑄0

N 𝜗
𝑄0

𝑢(𝑥)𝑞 𝑑𝜔(𝑥) � ‖𝑢‖𝑞
𝐿∞ (Ω)𝜔(𝑄0) � ‖𝑢‖𝑞

𝐿∞ (Ω) ,

where in the third estimate we have used equation (4.15) with 𝜔𝐿0 = 𝜔𝐿 (see also [1, Theorem 1.5])
which holds since 𝜔𝐿 ∈ 𝐴∞(𝜕Ω, 𝜔𝐿). This and equation (5.10) imply

S𝜗𝑄0
𝑢 ∈ 𝐿𝑞 (𝐹𝑁 , 𝜔0). (5.15)
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Now, note that for fixed 𝛼 > 0, we can find 𝜗 sufficiently large depending on 𝛼 such that, for any
𝑟0 
 2−𝑘0 ,

Γ𝛼𝑟0 (𝑥) ⊂ Γ𝜗𝑄0
(𝑥), ∀ 𝑥 ∈ 𝑄0. (5.16)

Indeed, let 𝑌 ∈ Γ𝛼𝑟0 (𝑥). Pick 𝐼 ∈ W so that 𝐼 � 𝑌 , hence ℓ(𝐼) ≈ 𝛿(𝑌 ) ≤ |𝑌 − 𝑥 | < 𝑟0 
 2−𝑘0 = ℓ(𝑄0).
Pick 𝑄𝐼 ∈ D𝑄0 such that 𝑥 ∈ 𝑄𝐼 and ℓ(𝑄𝐼 ) = ℓ(𝐼) 
 ℓ(𝑄0). Thus,

dist(𝐼, 𝑄𝐼 ) ≤ |𝑌 − 𝑥 | < (1 + 𝛼)𝛿(𝑌 ) ≤ 𝐶 (1 + 𝛼)ℓ(𝐼) = 𝐶 (1 + 𝛼)ℓ(𝑄𝐼 ).

Recalling equation (2.10), if we take 𝜗 ≥ 𝜗0 large enough so that 2𝜗 ≥ 𝐶 (1 + 𝛼), then 𝑌 ∈ 𝐼 ∈ W𝜗
𝑄𝐼

⊂
W𝜗,∗
𝑄𝐼

. The latter gives that 𝑌 ∈ 𝑈𝜗𝑄𝐼
⊂ Γ𝜗𝑄0

(𝑥), and consequently, equation (5.16) holds. We would like
to mention that the dependence of 𝜗 on 𝛼 implies that all the sawtooth regions Ω𝜗F𝑁 ,𝑄0

above as well as
all the implicit constants depend on 𝛼.

Next, equation (5.16) readily yields that S𝛼𝑟0𝑢(𝑥) ≤ S𝜗𝑄0
𝑢(𝑥) for every 𝑥 ∈ 𝑄0. This, together with

equation (5.15), implies that S𝛼𝑟0𝑢 ∈ 𝐿𝑞 (𝐹𝑁 , 𝜔0). If we next take an arbitrary 𝑋 ∈ Ω, by Harnack’s
inequality (albeit with constants depending on X) and by equation (5.1), then we have

S𝛼𝑟 𝑢 ∈ 𝐿𝑞 (𝐹𝑁 , 𝜔𝑋𝐿0
), for any 𝑟 > 0. (5.17)

Note also that by equation (5.11) and Harnack’s inequality

𝜔𝑋𝐿0
(𝐸0) = 0. (5.18)

To complete the proof, we perform the preceding operation for an arbitrary 𝑄0 ∈ D𝑘0 . Therefore,
invoking equations (5.8), (5.9) and (5.10) with 𝑄𝑘 ∈ D𝑘0 , we conclude, with the induced notation, that

𝜕Ω =
⋃

𝑄𝑘 ∈D𝑘0

𝑄𝑘 =

( ⋃
𝑄𝑘 ∈D𝑘0

𝐸 𝑘0

) ⋃ ( ⋃
𝑄𝑘 ∈D𝑘0

⋃
𝑁>𝐶0

𝐸 𝑘𝑁

)

=

( ⋃
𝑄𝑘 ∈D𝑘0

𝐸 𝑘0

) ⋃ ( ⋃
𝑄𝑘 ∈D𝑘0

⋃
𝑁>𝐶0

𝐹𝑘𝑁

)
=: 𝐹0 ∪

( ⋃
𝑘,𝑁

𝐹𝑘𝑁

)
, (5.19)

where 𝜔𝑋𝐿0
(𝐹0) = 0 (by equation (5.18)) and 𝐹𝑘𝑁 = 𝜕Ω ∩ 𝜕Ω𝜗F 𝑘

𝑁 ,𝑄𝑘
, where each Ω𝜗F 𝑘

𝑁 ,𝑄𝑘
⊂ Ω is a

bounded 1-sided NTA domain satisfying the CDC. Combining equations (5.19) and (5.17) with 𝐹𝑘𝑁 in
place of 𝐹𝑁 , the proof of (a) =⇒ (b) is complete. �

5.2. Proof of (c)′ =⇒ (a)

Let 𝛼0 be so that equation (4.21) holds. Suppose that (c)′ holds where throughout it is assumed that
𝛼 ≥ 𝛼0. In order to prove that 𝜔𝐿0 
 𝜔𝐿 on 𝜕Ω, by Lemma 2.8 and the fact that by Harnack’s inequality
𝜔𝑋𝐿 
 𝜔𝑌𝐿 and 𝜔𝑋𝐿0


 𝜔𝑌𝐿0
for any 𝑋,𝑌 ∈ Ω, it suffices to show that for any given 𝑄0 ∈ D,

𝐹 ⊂ 𝑄0, 𝜔
𝑋𝑄0
𝐿 (𝐹) = 0 =⇒ 𝜔

𝑋𝑄0
𝐿0

(𝐹) = 0. (5.20)

Consider then 𝐹 ⊂ 𝑄0 with 𝜔
𝑋𝑄0
𝐿 (𝐹) = 0. Lemma 4.2 applied to F gives a Borel set 𝑆 ⊂ 𝑄0 such that

𝑢(𝑋) := 𝜔𝑋𝐿 (𝑆), 𝑋 ∈ Ω, satisfies

S𝛼𝑟∗
𝑄0

𝑢(𝑥) ≥ S𝜗0
𝑄0 ,𝜂

𝑢(𝑥) = ∞, ∀ 𝑥 ∈ 𝐹, (5.21)

https://doi.org/10.1017/fms.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.50


46 Mingming Cao et al.

where the first inequality follows from equation (4.21) and the fact that 𝛼 ≥ 𝛼0, and 𝑟∗𝑄0
= 2𝜅0𝑟𝑄0 . By

assumption and equation (5.1), we have that S𝛼
𝑟∗
𝑄0

𝑢(𝑥) < ∞ for 𝜔𝑋𝑄0
𝐿0

-a.e. 𝑥 ∈ 𝜕Ω. Hence, 𝜔𝑋𝑄0
𝐿0

(𝐹) = 0

as desired and the proof of (c)′ =⇒ (a) is complete. �

6. Proof of Theorems 1.7 and 1.8

We will obtain Theorems 1.7 and 1.8 as a consequence of the following qualitative version of [9,
Theorem 4.13]:

Theorem 6.1. Let Ω ⊂ R𝑛+1, 𝑛 ≥ 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists 𝛼̃0 > 0 (depending only on the 1-sided NTA and CDC constants)
such that the following holds. Assume that 𝐿0𝑢 = − div(𝐴0∇𝑢) and 𝐿1𝑢 = − div(𝐴1∇𝑢) are real (not
necessarily symmetric) elliptic operators such that 𝐴0 − 𝐴1 = 𝐴 + 𝐷, where 𝐴, 𝐷 ∈ 𝐿∞(Ω) are real
matrices satisfying the following conditions:

(i) There exist 𝛼1 ≥ 𝛼̃0 and 𝑟1 > 0 such that∬
Γ
𝛼1
𝑟1 (𝑥)

𝑎(𝑋)2𝛿(𝑋)−𝑛−1𝑑𝑋 < ∞, for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω, (6.1)

where 𝑎(𝑋) := sup
𝑌 ∈𝐵 (𝑋,𝛿 (𝑋 )/2)

|𝐴(𝑌 ) |, 𝑋 ∈ Ω.

(ii) 𝐷 ∈ Liploc(Ω) is antisymmetric and there exist 𝛼2 ≥ 𝛼̃0 and 𝑟2 > 0 such that∬
Γ
𝛼2
𝑟2 (𝑥)

| div𝐶 𝐷 (𝑋) |2𝛿(𝑋)1−𝑛𝑑𝑋 < ∞, for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω. (6.2)

Then 𝜔𝐿0 
 𝜔𝐿1 .

Assuming this result momentarily, we deduce Theorems 1.7 and 1.8:

Proof of Theorem 1.7. For 𝐿0 and L as in the statement set 𝐴0 = 𝐴0, 𝐴1 = 𝐴, 𝐴 = 𝐴0 − 𝐴 and 𝐷 = 0 so
that 𝐴0 − 𝐴1 = 𝐴+𝐷. Note that equation (6.1) follows at once from equation (1.4) and also that equation
(6.2) holds automatically. With all these in hand, Theorem 6.1 gives 𝜔𝐿0 = 𝜔𝐿0


 𝜔𝐿1
= 𝜔𝐿 . �

Proof of Theorem 1.8. Set 𝐴0 = 𝐴, 𝐴1 = 𝐴�, 𝐴 = 0 and 𝐷 = 𝐴 − 𝐴� so that 𝐴0 − 𝐴1 = 𝐴 + 𝐷.
Observe that 𝐷 ∈ Liploc(Ω) is antisymmetric, equation (6.1) holds trivially and equation (6.2) agrees
with equation (1.5). Thus, Theorem 6.1 implies that 𝜔𝐿 
 𝜔𝐿� .

On the other hand, 𝜔𝐿 
 𝜔𝐿sym follows similarly if we set 𝐴0 = 𝐴, 𝐴1 = (𝐴 + 𝐴�)/2, 𝐴 = 0 and
𝐷 = (𝐴 − 𝐴�)/2.

Finally, 𝜔𝐿� 
 𝜔𝐿 follows from what has been proved by switching the roles of L and 𝐿� and the
fact that ℱ𝛼

𝑟 (𝑥; 𝐴) < ∞ for 𝜔𝐿�-a.e. 𝑥 ∈ 𝜕Ω. �

Before proving Theorem 6.1, we need the following auxiliary result which adapts [34, Lemma 4.44]
and [1, Lemma 2.39] to our current setting. We would like to mention that [1, Lemma 2.39] corresponds
to the case F = Ø in the following statement.

Lemma 6.2. Let Ω ⊂ R𝑛+1 be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7). Given 𝑄0 ∈ D, a pairwise disjoint collection F ⊂ D𝑄0 , and 𝑁 ≥ 4, let F𝑁 be the
family of maximal cubes of the collection F augmented by adding all the cubes 𝑄 ∈ D𝑄0 such that
ℓ(𝑄) ≤ 2−𝑁 ℓ(𝑄0). There exist Ψ𝜗𝑁 ∈ 𝒞∞

𝑐 (R𝑛+1) and a constant 𝐶 ≥ 1 depending only on dimension
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n, the 1-sided NTA constants, the CDC constant and 𝜗, but independent of N, F and 𝑄0 such that the
following hold:

(i) 𝐶−1 1Ω𝜗
F𝑁 ,𝑄0

≤ Ψ𝜗𝑁 ≤ 1Ω𝜗,∗
F𝑁 ,𝑄0

.

(ii) sup𝑋 ∈Ω |∇Ψ𝜗𝑁 (𝑋) | 𝛿(𝑋) ≤ 𝐶.
(iii) Setting

W𝜗
𝑁 :=

⋃
𝑄∈DF𝑁 ,𝑄0

W𝜗,∗
𝑄 , W𝜗,Σ

𝑁 :=
{
𝐼 ∈ W𝜗

𝑁 : ∃ 𝐽 ∈ W \W𝜗
𝑁 with 𝜕𝐼 ∩ 𝜕𝐽 ≠ Ø

}
, (6.3)

one has

∇Ψ𝜗𝑁 ≡ 0 in
⋃

𝐼 ∈W𝜗
𝑁 \W𝜗,Σ

𝑁

𝐼∗∗, (6.4)

and there exists a family {𝑄𝐼 }𝐼 ∈W𝜗,Σ
𝑁

so that

𝐶−1 ℓ(𝐼) ≤ ℓ(𝑄𝐼 ) ≤ 𝐶 ℓ(𝐼), dist(𝐼, 𝑄𝐼 ) ≤ 𝐶 ℓ(𝐼),
∑

𝐼 ∈W𝜗,Σ
𝑁

1𝑄𝐼
≤ 𝐶. (6.5)

Proof. The proof combines ideas from [34, Lemma 4.44], [1, Lemma 2.39], and [32, Appendix A.2].
The parameter 𝜗 ≥ 𝜗0 will remain fixed in the proof, and then constants are allowed to depend on it. To
ease the notation, we will omit the superscript 𝜗 everywhere in the proof. Recall that given I, any closed
dyadic cube in R𝑛+1, we set 𝐼∗ = (1 + 𝜆)𝐼 and 𝐼∗∗ = (1 + 2𝜆)𝐼. Let us introduce 𝐼∗ = (1 + 3

2 𝜆)𝐼 so that

𝐼∗ � int(𝐼∗) � 𝐼∗ ⊂ int(𝐼∗∗). (6.6)

Given 𝐼0 := [− 1
2 ,

1
2 ]
𝑛+1 ⊂ R𝑛+1, fix 𝜙0 ∈ 𝒞∞

𝑐 (R𝑛+1) such that 1𝐼 ∗0 ≤ 𝜙0 ≤ 1𝐼 ∗0 and |∇𝜙0 | � 1 (the

implicit constant depends on the parameter 𝜆). For every 𝐼 ∈ W = W (Ω), we set 𝜙𝐼 (·) = 𝜙0
( · −𝑋 (𝐼 )
ℓ (𝐼 )

)
so that 𝜙𝐼 ∈ 𝒞∞(R𝑛+1), 1𝐼 ∗ ≤ 𝜙𝐼 ≤ 1𝐼 ∗ and |∇𝜙𝐼 | � ℓ(𝐼)−1 (with implicit constant depending only on
n and 𝜆).

For every 𝑋 ∈ Ω, we let Φ(𝑋) :=
∑
𝐼 ∈W 𝜙𝐼 (𝑋). It then follows that Φ ∈ 𝒞∞(Ω) since, for every

compact subset of Ω, the previous sum has finitely many nonvanishing terms. Also, 1 ≤ Φ(𝑋) ≤ 𝐶𝜆
for every 𝑋 ∈ Ω since the family {𝐼∗}𝐼 ∈W has bounded overlap by our choice of 𝜆. Hence, we can set
Φ𝐼 = 𝜙𝐼 /Φ, and one can easily see that Φ𝐼 ∈ 𝒞∞

𝑐 (R𝑛+1), 𝐶−1
𝜆 1𝐼 ∗ ≤ Φ𝐼 ≤ 1𝐼 ∗ and |∇Φ𝐼 | � ℓ(𝐼)−1.

With this at hand, set

Ψ𝑁 (𝑋) :=
∑
𝐼 ∈W𝑁

Φ𝐼 (𝑋) =

∑
𝐼 ∈W𝑁

𝜙𝐼 (𝑋)∑
𝐼 ∈W

𝜙𝐼 (𝑋)
, 𝑋 ∈ Ω.

We first note that the number of terms in the sum defining Ψ𝑁 is bounded depending on N. Indeed, if
𝑄 ∈ DF𝑁 ,𝑄0 , then 𝑄 ∈ D𝑄0 and 2−𝑁 ℓ(𝑄0) < ℓ(𝑄) ≤ ℓ(𝑄0), which implies that DF𝑁 ,𝑄0 has finite
cardinality with bounds depending on dimension and N (here, we recall that the number of dyadic
children of a given cube is uniformly controlled). Also, by construction W∗

𝑄 has cardinality depending
only on the allowable parameters. Hence, #W𝑁 � 𝐶𝑁 < ∞. This and the fact that each Φ𝐼 ∈ 𝒞∞

𝑐 (R𝑛+1)
yield that Ψ𝑁 ∈ 𝒞∞

𝑐 (R𝑛+1). Note also that equation (6.6) and the definition of W𝑁 give

suppΨ𝑁 ⊂
⋃
𝐼 ∈W𝑁

𝐼∗ =
⋃

𝑄∈DF𝑁 ,𝑄0

⋃
𝐼 ∈W∗

𝑄

𝐼∗ ⊂ int
( ⋃
𝑄∈DF𝑁 ,𝑄0

⋃
𝐼 ∈W∗

𝑄

𝐼∗∗
)
= int

( ⋃
𝑄∈DF𝑁 ,𝑄0

𝑈∗
𝑄

)
= Ω∗

F𝑁 ,𝑄0
.
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This, the fact that W𝑁 ⊂ W and the definition of Ψ𝑁 immediately give that Ψ𝑁 ≤ 1Ω∗
F𝑁 ,𝑄0

. On
the other hand, if 𝑋 ∈ Ω𝑁 = ΩF𝑁 ,𝑄0 , then there exists 𝐼 ∈ W𝑁 such that 𝑋 ∈ 𝐼∗, in which case
Ψ𝑁 (𝑋) ≥ Φ𝐼 (𝑋) ≥ 𝐶−1

𝜆 . All these imply (𝑖). Note that (𝑖𝑖) follows by observing that for every 𝑋 ∈ Ω
we have

|∇Ψ𝑁 (𝑋) | ≤
∑
𝐼 ∈W𝑁

|∇Φ𝐼 (𝑋) | �
∑
𝐼 ∈W

ℓ(𝐼)−1 1𝐼 ∗ (𝑋) � 𝛿(𝑋)−1,

where we have used that if 𝑋 ∈ 𝐼∗, then 𝛿(𝑋) ≈ ℓ(𝐼) and also that the family {𝐼∗}𝐼 ∈W has bounded
overlap.

To see (𝑖𝑖𝑖), fix 𝐼 ∈ W𝑁 \WΣ
𝑁 and 𝑋 ∈ 𝐼∗∗, and set W𝑋 := {𝐽 ∈ W : 𝜙𝐽 (𝑋) ≠ 0}. We first note that

W𝑋 ⊂ W𝑁 . Indeed, if 𝜙𝐽 (𝑋) ≠ 0, then 𝑋 ∈ 𝐽∗. Hence, 𝑋 ∈ 𝐼∗∗ ∩ 𝐽∗∗, and our choice of 𝜆 gives that
𝜕𝐼 meets 𝜕𝐽, this in turn implies that 𝐽 ∈ W𝑁 since 𝐼 ∈ W𝑁 \WΣ

𝑁 . All these yield

Ψ𝑁 (𝑋) =

∑
𝐽 ∈W𝑁

𝜙𝐽 (𝑋)∑
𝐽 ∈W

𝜙𝐽 (𝑋)
=

∑
𝐽 ∈W𝑁∩W𝑋

𝜙𝐽 (𝑋)∑
𝐽 ∈W𝑋

𝜙𝐽 (𝑋)
=

∑
𝐽 ∈W𝑁∩W𝑋

𝜙𝐽 (𝑋)∑
𝐽 ∈W𝑁∩W𝑋

𝜙𝐽 (𝑋)
= 1.

Hence, Ψ𝑁
��
𝐼 ∗∗ ≡ 1 for every 𝐼 ∈ W𝑁 \WΣ

𝑁 . This and the fact that Ψ𝑁 ∈ 𝒞∞
𝑐 (R𝑛+1) immediately give

that ∇Ψ𝑁 ≡ 0 in
⋃
𝐼 ∈W𝑁 \WΣ

𝑁
𝐼∗∗.

We are left with showing the last part of (𝑖𝑖𝑖), and for that we borrow some ideas from [32, Appendix
A.2]. Fix 𝐼 ∈ WΣ

𝑁 , and let J be so that 𝐽 ∈ W \W𝑁 with 𝜕𝐼 ∩ 𝜕𝐽 ≠ Ø, in particular ℓ(𝐼) ≈ ℓ(𝐽). Since
𝐼 ∈ WΣ

𝑁 , there exists 𝑄𝐼 ∈ DF𝑁 ,𝑄0 . Pick 𝑄𝐽 ∈ D so that ℓ(𝑄𝐽 ) = ℓ(𝐽) and it contains any fixed 𝑦̂ ∈ 𝜕Ω
such that dist(𝐽, 𝜕Ω) = dist(𝐽, 𝑦̂). Then, as observed in Section 2.3, one has 𝐽 ∈ W∗

𝑄𝐽
. But, since

𝐽 ∈ W \W𝑁 , we necessarily have 𝑄𝐽 ∉ DF𝑁 ,𝑄0 = DF𝑁 ∩ D𝑄0 . Hence, WΣ
𝑁 = WΣ,1

𝑁 ∪WΣ,2
𝑁 ∪WΣ,3

𝑁
where

WΣ,1
𝑁 : = {𝐼 ∈ WΣ

𝑁 : 𝑄0 ⊂ 𝑄𝐽 },

WΣ,2
𝑁 : = {𝐼 ∈ WΣ

𝑁 : 𝑄𝐽 ⊂ 𝑄 ∈ F𝑁 },

WΣ,3
𝑁 : = {𝐼 ∈ WΣ

𝑁 : 𝑄𝐽 ∩𝑄0 = Ø}.

For later use, it is convenient to observe that

dist(𝑄𝐽 , 𝐼) ≤ dist(𝑄𝐽 , 𝐽) + diam(𝐽) + diam(𝐼) ≈ ℓ(𝐽) + ℓ(𝐼) ≈ ℓ(𝐼). (6.7)

Let us first consider WΣ,1
𝑁 . If 𝐼 ∈ WΣ,1

𝑁 , we clearly have

ℓ(𝑄0) ≤ ℓ(𝑄𝐽 ) = ℓ(𝐽) ≈ ℓ(𝐼) ≈ ℓ(𝑄𝐼 ) ≤ ℓ(𝑄0)

and since 𝑄𝐼 ∈ D𝑄0

dist(𝐼, 𝑥𝑄0 ) ≤ dist(𝐼, 𝑄𝐼 ) + diam(𝑄0) ≈ ℓ(𝐼).

In particular, #WΣ,1
𝑁 � 1. Thus, if we set 𝑄𝐼 := 𝑄𝐽 , it follows from equation (6.7) that the two first

conditions in equation (6.5) hold and also
∑
𝐼 ∈WΣ,1

𝑁
1𝑄𝐼

≤ #WΣ,1
𝑁 � 1.

To see that equation (6.5) holds for WΣ,2
𝑁 and WΣ,3

𝑁 , we proceed as follows. For any 𝐼 ∈ WΣ,2
𝑁 ∪WΣ,3

𝑁 ,
we pick𝑄𝐼 ∈ D so that𝑄𝐼 � 𝑥𝑄𝐽 and ℓ(𝑄𝐼 ) = 2−𝑀 ′

ℓ(𝑄𝐽 ) with 𝑀 ′ ≥ 3 large enough so that 2𝑀 ′ ≥ 2Ξ2

(cf. equation (2.6)). Note that 𝑄𝐼 ⊂ Δ𝑄𝐽 ⊂ 𝑄𝐽 which, together with equation (6.7), imply

dist(𝐼, 𝑄𝐼 ) ≤ dist(𝐼, 𝑄𝐽 ) + diam(𝑄𝐽 ) � ℓ(𝐼) (6.8)
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and

diam(𝑄𝐼 ) ≤ 2Ξ 𝑟𝑄𝐼
≤ 2Ξ ℓ(𝑄𝐼 ) = 2−𝑀

′+1 Ξ ℓ(𝑄𝐽 ) ≤ Ξ−1 ℓ(𝑄𝐽 ). (6.9)

Hence, the first two conditions in equation (6.5) hold for 𝐼 ∈ WΣ,2
𝑁 ∪WΣ,3

𝑁 .
To see that the last condition in equation (6.5) holds, we start with the family WΣ,2

𝑁 . For any 𝐼 ∈ WΣ,2
𝑁

there is a unique 𝑄 𝑗 ∈ F𝑁 such that 𝑄𝐽 ⊂ 𝑄 𝑗 . But, since 𝑄𝐼 ∈ DF𝑁 ,𝑄0 , then necessarily 𝑄𝐼 ⊄ 𝑄 𝑗 and
𝑄𝐼 \𝑄 𝑗 ≠ Ø. This and the fact that 2Δ𝑄𝐽 ⊂ 𝑄𝐽 ⊂ 𝑄 𝑗 imply

2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝜕Ω \𝑄 𝑗 ) ≤ dist(𝑥𝑄𝐽 , 𝑄𝐼 \𝑄 𝑗 )

≤ diam(𝑄𝐽 ) + dist(𝑄𝐽 , 𝐽) + diam(𝐽) + diam(𝐼) + dist(𝐼, 𝑄𝐼 ) + diam(𝑄𝐼 ) ≈ ℓ(𝐽) ≈ ℓ(𝐼).

Thus, 2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝜕Ω\𝑄 𝑗 ) ≤ 𝐶 ℓ(𝐽). Suppose next that 𝐼, 𝐼 ′ ∈ WΣ,2
𝑁 are so that𝑄𝐼 ∩𝑄𝐼 ′ ≠

Ø (it could even happen that they are indeed the same cube), and assume without loss of generality that
𝑄𝐼 ′ ⊂ 𝑄𝐼 , hence ℓ(𝐼 ′) ≤ ℓ(𝐼). Let 𝑄 𝑗 , 𝑄 𝑗′ ∈ F𝑁 be so that 𝑄𝐽 ⊂ 𝑄 𝑗 and 𝑄𝐽 ′ ⊂ 𝑄 𝑗′ . Then, 𝑥𝑄𝐽 ∈ 𝑄𝐼
and 𝑥𝑄𝐽′ ∈ 𝑄𝐼 ′ ⊂ 𝑄𝐼 ⊂ 𝑄𝐽 . As a consequence, 𝑥𝑄𝐽′ ∈ 𝑄𝐽 ′ ∩𝑄𝐽 ⊂ 𝑄 𝑗 ∩𝑄 ′

𝑗 , and this forces 𝑄 𝑗 = 𝑄 𝑗′

(since F𝑁 is a pairwise disjoint family). This and equation (6.9) readily imply

2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝜕Ω \𝑄 𝑗 ) ≤ |𝑥𝑄𝐽 − 𝑥𝑄𝐽′ | + dist(𝑥𝑄𝐽′ , 𝜕Ω \𝑄 𝑗 )

≤ diam(𝑄𝐼 ) + dist(𝑥𝑄𝐽′ , 𝜕Ω \𝑄 𝑗′ ) ≤ diam(𝑄𝐼 ) + 𝐶ℓ(𝐽 ′) ≤ Ξ−1 ℓ(𝑄𝐽 ) + 𝐶ℓ(𝐽 ′)

and therefore Ξ−1 ℓ(𝑄𝐽 ) ≤ 𝐶 ℓ(𝐽 ′). This in turn gives ℓ(𝐼) ≈ ℓ(𝐽) ≈ ℓ(𝐽 ′) ≈ ℓ(𝐼 ′). Note also that since
I touches J, 𝐼 ′ touches 𝐽 ′ and 𝑄𝐼 ∩𝑄𝐼 ′ ≠ Ø, we obtain

dist(𝐼, 𝐼 ′) ≤ diam(𝐽) + dist(𝐽, 𝑄𝐽 ) + diam(𝑄𝐽 ) + diam(𝑄𝐽 ′ )
+ dist(𝑄𝐽 ′ , 𝐽 ′) + diam(𝐽 ′) ≈ ℓ(𝐽) + ℓ(𝐽 ′) ≈ ℓ(𝐼).

As a result, for fixed 𝐼 ∈ WΣ,2
𝑁 there is a uniformly bounded number of 𝐼 ′ ∈ WΣ,2

𝑁 with 𝑄𝐼 ∩𝑄𝐼 ′ ≠ Ø,
thus

∑
𝐼 ∈WΣ,2

𝑁
1𝑄𝐼
� 1.

We finally take into consideration WΣ,3
𝑁 . Let 𝐼 ∈ WΣ,3

𝑁 . Then, 𝑄0 ∩ 2Δ𝑄𝐽 ⊂ 𝑄0 ∩ 𝑄𝐽 = Ø and
therefore 2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝑄0). Besides, since 𝑄𝐼 ⊂ 𝑄0, we have

dist(𝑥𝑄𝐽 , 𝑄0) ≤ diam(𝑄𝐽 ) + dist(𝑄𝐽 , 𝐽) + diam(𝐽) + diam(𝐼) + dist(𝐼, 𝑄𝐼 ) + diam(𝑄𝐼 )
≈ ℓ(𝐽) ≈ ℓ(𝐼).

Thus, 2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝑄0) ≤ 𝐶 ℓ(𝐽). Suppose next that 𝐼, 𝐼 ′ ∈ WΣ,3
𝑁 are so that 𝑄𝐼 ∩𝑄𝐼 ′ ≠ Ø

(it could even happen that they are indeed the same cube), and assume without loss of generality that
𝑄𝐼 ′ ⊂ 𝑄𝐼 , hence ℓ(𝐽 ′) ≤ ℓ(𝐽). Then, since 𝑥𝑄𝐽 ∈ 𝑄𝐼 and 𝑥𝑄𝐽′ ∈ 𝑄𝐼 ′ ⊂ 𝑄𝐼 , we get from equation (6.9)
that

2Ξ−1 ℓ(𝑄𝐽 ) ≤ dist(𝑥𝑄𝐽 , 𝑄0) ≤ |𝑥𝑄𝐽 − 𝑥𝑄𝐽′ | + dist(𝑥𝑄𝐽′ , 𝑄0)

≤ diam(𝑄𝐼 ) + 𝐶ℓ(𝐽 ′) ≤ Ξ−1 ℓ(𝑄𝐽 ) + 𝐶ℓ(𝐽 ′),

and therefore Ξ−1 ℓ(𝑄𝐽 ) ≤ 𝐶 ℓ(𝐽 ′). This yields ℓ(𝐼) ≈ ℓ(𝐽) ≈ ℓ(𝐽 ′) ≈ ℓ(𝐼 ′). Note also that since I
touches J, 𝐼 ′ touches 𝐽 ′ and 𝑄𝐼 ∩𝑄𝐼 ′ ≠ Ø, we obtain

dist(𝐼, 𝐼 ′) ≤ diam(𝐽) + dist(𝐽, 𝑄𝐽 ) + diam(𝑄𝐽 ) + diam(𝑄𝐽 ′ )
+ dist(𝑄𝐽 ′ , 𝐽 ′) + diam(𝐽 ′) ≈ ℓ(𝐽) + ℓ(𝐽 ′) ≈ ℓ(𝐼).
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Consequently, for fixed 𝐼 ∈ WΣ,3
𝑁 , there is a uniformly bounded number of 𝐼 ′ ∈ WΣ,3

𝑁 with𝑄𝐼 ∩𝑄𝐼 ′ ≠ Ø.
As a result,

∑
𝐼 ∈WΣ,3

𝑁
1𝑄𝐼
� 1. This completes the proof of (𝑖𝑖𝑖) and hence that of Lemma 6.2. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We use some ideas from [9, Section 4] and [7, Section 4]. Let 𝑢 ∈ 𝑊1,2
loc (Ω) ∩

𝐿∞(Ω) be a weak solution of 𝐿1𝑢 = 0 in Ω and assume that ‖𝑢‖𝐿∞ (Ω) = 1. Applying Theorem 1.6
(c) =⇒ (a) to u, we are reduced to showing that for some 𝑟 > 0,

S𝛼0
𝑟 𝑢(𝑥) < ∞, for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝜕Ω,

where 𝛼0 is given in Theorem 1.6. By equation (5.16) and Lemma 2.8, it suffices to see that for every
fixed 𝑄0 ∈ D𝑘0 and for some fixed large 𝜗 (which depends on 𝛼0 and hence solely on the 1-sided NTA
and CDC constants) one has

𝑄0 =
⋃
𝑁 ≥0

𝐸𝑁 , 𝜔𝑋0
𝐿0
(𝐸0) = 0 and S𝜗𝑄0

𝑢 ∈ 𝐿2 (𝐸𝑁 , 𝜔𝐿0 ), ∀𝑁 ≥ 1, (6.10)

where 𝑋0 is given at the beginning of Section 5.1. Fix then 𝑄0 ∈ D𝑘0 , and write

𝜔0 := 𝜔𝑋0
𝐿0
, 𝜔 := 𝜔𝑋0

𝐿1
, G0 := 𝐺𝐿0 (𝑋0, ·), and G := 𝐺𝐿1 (𝑋0, ·). (6.11)

Much as in equation (4.21) (with 𝜂 = 2−1/3 so that Γ𝜗,∗𝑄0
= Γ𝜗,∗𝑄0 ,𝜂

), there exist 𝛼̃0 > 0 and C (depending
on the 1-sided NTA and CDC constants) such that if we set 𝑟̃ := 𝐶 𝑟𝑄0 > 0, then

Γ𝜗,∗𝑄0
(𝑥) :=

⋃
𝑥∈𝑄∈D𝑄0

𝑈𝜗,∗𝑄 ⊂ Γ𝛼0
𝑟̃
(𝑥), 𝑥 ∈ 𝑄0. (6.12)

As a result,

S𝑄0𝛾
𝜗 (𝑥)2 : =

∑
𝑥∈𝑄∈D𝑄0

𝛾𝜗𝑄 :=
∑

𝑥∈𝑄∈D𝑄0

∬
𝑈 𝜗,∗

𝑄

𝑎(𝑋)2𝛿(𝑋)−𝑛−1𝑑𝑋

+
∬
𝑈 𝜗,∗

𝑄

| div𝐶 𝐷 (𝑋) |2𝛿(𝑋)1−𝑛𝑑𝑋

�
∬

Γ𝜗,∗
𝑄0

(𝑥)
𝑎(𝑋)2𝛿(𝑋)−𝑛−1𝑑𝑋 +

∬
Γ𝜗,∗
𝑄0

(𝑥)
| div𝐶 𝐷 (𝑋) |2𝛿(𝑋)1−𝑛𝑑𝑋

≤
∬

Γ
𝛼1
max{𝑟,𝑟1}

(𝑥)
𝑎(𝑋)2𝛿−𝑛−1𝑑𝑋 +

∬
Γ
𝛼2
max{𝑟,𝑟2}

(𝑥)
| div𝐶 𝐷 (𝑋) |2𝛿1−𝑛𝑑𝑋 < ∞, (6.13)

for 𝜔𝐿0 -a.e. 𝑥 ∈ 𝑄0, where we have used the fact that the family {𝑈𝜗,∗𝑄 }𝑄∈D has bounded overlap, that
𝛼1, 𝛼2 ≥ 𝛼̃0, and the last estimate follows from equations (6.1), (6.2) and (5.1).

Given 𝑁 > 𝐶0 (𝐶0 is the constant that appeared in Section 5.1), let F𝑁 ⊂ D𝑄0 be the collection of
maximal cubes (with respect to the inclusion) 𝑄 𝑗 ∈ D𝑄0 such that∑

𝑄 𝑗 ⊂𝑄∈D𝑄0

𝛾𝜗𝑄 > 𝑁2. (6.14)

Write

𝐸0 :=
⋂
𝑁>𝐶0

(𝑄0 \ 𝐸𝑁 ), 𝐸𝑁 := 𝑄0\
⋃

𝑄 𝑗 ∈F𝑁

𝑄 𝑗 , 𝑄0 = 𝐸0 ∪ (𝑄0 \ 𝐸0) = 𝐸0 ∪
( ⋃
𝑁>𝐶0

𝐸𝑁

)
. (6.15)
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Let us observe that

S𝑄0𝛾
𝜗 (𝑥) ≤ 𝑁, ∀ 𝑥 ∈ 𝐸𝑁 . (6.16)

Otherwise, there exists a cube 𝑄𝑥 � 𝑥 such that
∑
𝑄𝑥 ⊂𝑄∈D𝑄0

𝛾𝜗𝑄 > 𝑁2, hence 𝑥 ∈ 𝑄𝑥 ⊂ 𝑄 𝑗 for some
𝑄 𝑗 ∈ F𝑁 , which is a contradiction.

Note that if 𝑥 ∈ 𝐸0, then for every 𝑁 > 𝐶0 there exists 𝑄𝑁𝑥 ∈ F𝑁 such that 𝑄𝑁𝑥 � 𝑥. By the definition
of F𝑁 , we then have

S𝑄0𝛾
𝜗 (𝑥)2 =

∑
𝑥∈𝑄∈D𝑄0

𝛾𝜗𝑄 ≥
∑

𝑄𝑁
𝑥 ⊂𝑄∈D𝑄0

𝛾𝜗𝑄 > 𝑁2.

On the other hand, if 𝑥 ∈ 𝑄0 \ 𝐸𝑁+1, there exists 𝑄𝑥 ∈ F𝑁+1 such that 𝑥 ∈ 𝑄𝑥 . By equation (6.14), one
has ∑

𝑄𝑥 ⊂𝑄∈D𝑄0

𝛾𝜗𝑄 > (𝑁 + 1)2 > 𝑁2,

and the maximality of the cubes in F𝑁 gives that 𝑄𝑥 ⊂ 𝑄 ′
𝑥 for some 𝑄 ′

𝑥 ∈ F𝑁 with 𝑥 ∈ 𝑄 ′
𝑥 ⊂ 𝑄0 \𝐸𝑁 .

This shows that {𝑄0 \ 𝐸𝑁 }𝑁 is a decreasing sequence of sets, and since 𝑄0 \ 𝐸𝑁 ⊂ 𝑄0 for every N we
conclude that

𝜔0(𝐸0) = lim
𝑁→∞

𝜔0(𝑄0 \ 𝐸𝑁 ) ≤ lim
𝑁→∞

𝜔0 ({𝑥 ∈ 𝑄0 : S𝑄0𝛾
𝜗 (𝑥) > 𝑁})

= 𝜔0({𝑥 ∈ 𝑄0 : S𝑄0𝛾
𝜗 (𝑥) = ∞}) = 0, (6.17)

where the last equality uses equation (6.13). This and equation (6.15) imply that to get equation (6.10)
we are left with proving

S𝜗𝑄0
𝑢 ∈ 𝐿2 (𝐸𝑁 , 𝜔0), ∀𝑁 > 𝐶0. (6.18)

With this goal in mind, note that if 𝑄 ∈ D𝑄0 is so that 𝑄 ∩ 𝐸𝑁 ≠ Ø, then necessarily 𝑄 ∈ DF𝑁 ,𝑄0 ,
otherwise, 𝑄 ⊂ 𝑄 ′ ∈ F𝑁 , hence 𝑄 ⊂ 𝑄0\𝐸𝑁 . Recalling equation (6.11) and the fact 𝑋0 ∉ 4𝐵∗

𝑄0
, we

use Lemma 3.9 and Harnack’s inequality to conclude that∫
𝐸𝑁

S𝜗𝑄0
𝑢(𝑥)2𝑑𝜔0(𝑥) =

∫
𝐸𝑁

∬
⋃

𝑥∈𝑄∈D𝑄0

𝑈 𝜗
𝑄

|∇𝑢(𝑌 ) |2𝛿(𝑌 )1−𝑛𝑑𝑌𝑑𝜔0 (𝑥)

�
∑

𝑄∈D𝑄0

ℓ(𝑄)1−𝑛𝜔0 (𝑄 ∩ 𝐸𝑁 )
∬
𝑈 𝜗

𝑄

|∇𝑢(𝑌 ) |2𝑑𝑌

≤
∑

𝑄∈DF𝑁 ,𝑄0

ℓ(𝑄)1−𝑛𝜔0(𝑄)
∬
𝑈 𝜗

𝑄

|∇𝑢(𝑌 ) |2𝑑𝑌

�
∑

𝑄∈DF𝑁 ,𝑄0

∬
𝑈 𝜗

𝑄

|∇𝑢(𝑌 ) |2G0 (𝑌 )𝑑𝑌

�
∬

Ω𝜗
F𝑁 ,𝑄0

|∇𝑢(𝑌 ) |2G0 (𝑌 )𝑑𝑌, (6.19)
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where we have used that the family {𝑈𝜗𝑄}𝑄∈D has bounded overlap. To estimate the last term, we make
the following claim∬

Ω𝜗
F𝑁 ,𝑄0

|∇𝑢(𝑌 ) |2G0(𝑌 ) 𝑑𝑌 � 𝜔0(𝑄0) +
∑

𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0(𝑄), (6.20)

where the implicit constant is independent of N.
Assuming this momentarily, we note that

∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0(𝑄) =
∫
𝑄0

∑
𝑥∈𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝑑𝜔0(𝑥)

≤
∫
𝐸𝑁

S𝑄0𝛾
𝜗 (𝑥)2 𝑑𝜔0(𝑥) +

∑
𝑄 𝑗 ∈F𝑁

∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0(𝑄 ∩𝑄 𝑗 )

≤ 𝑁2𝜔0(𝑄0) +
∑

𝑄 𝑗 ∈F𝑁

∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0 (𝑄 ∩𝑄 𝑗 ),

(6.21)

where the last estimate follows from equation (6.16). In order to control the last term, we fix 𝑄 𝑗 ∈ F𝑁 .
Note that if 𝑄 ∈ DF𝑁 ,𝑄0 is so that 𝑄 ∩𝑄 𝑗 ≠ Ø, then necessarily 𝑄 𝑗 � 𝑄 ⊂ 𝑄0. Write 𝑄 𝑗 for the dyadic
parent of 𝑄 𝑗 , that is, 𝑄 𝑗 is the unique dyadic cube containing 𝑄 𝑗 with ℓ(𝑄 𝑗 ) = 2ℓ(𝑄 𝑗 ). By the fact that
𝑄 𝑗 is the maximal cube so that equation (6.14) holds one obtains∑

𝑄 𝑗 ⊂𝑄∈D𝑄0

𝛾𝜗𝑄 =
∑

𝑄 𝑗�𝑄∈D𝑄0

𝛾𝜗𝑄 ≤ 𝑁2.

As a result,∑
𝑄 𝑗 ∈F𝑁

∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0 (𝑄 ∩𝑄 𝑗 ) =
∑

𝑄 𝑗 ∈F𝑁

𝜔0(𝑄 𝑗 )
∑

𝑄 𝑗�𝑄∈D𝑄0

𝛾𝜗𝑄

≤ 𝑁2
∑

𝑄 𝑗 ∈F𝑁

𝜔0(𝑄 𝑗 ) ≤ 𝑁2𝜔0

( ⋃
𝑄 𝑗 ∈F𝑁

𝑄 𝑗

)
≤ 𝑁2𝜔0(𝑄0). (6.22)

Collecting equations (6.19), (6.20), (6.21) and (6.22), we deduce that∫
𝐸𝑁

(S𝜗𝑄0
𝑢(𝑥))2 𝑑𝜔0(𝑥) ≤ 𝐶𝑁 𝜔0(𝑄0) ≤ 𝐶𝑁 .

This shows equations (6.18) and completes the proof of Theorem 6.1 modulo proving equation (6.20).
Let us then establish equation (6.20). For every 𝑀 ≥ 4, we consider the pairwise disjoint collection

F𝑁 ,𝑀 given by the family of maximal cubes of the collection F𝑁 augmented by adding all the cubes
𝑄 ∈ D𝑄0 such that ℓ(𝑄) ≤ 2−𝑀 ℓ(𝑄0). In particular, 𝑄 ∈ DF𝑁,𝑀 ,𝑄0 if and only if 𝑄 ∈ DF𝑁 ,𝑄0

and ℓ(𝑄) > 2−𝑀 ℓ(𝑄0). Moreover, DF𝑁,𝑀 ,𝑄0 ⊂ DF𝑁,𝑀′ ,𝑄0 for all 𝑀 ≤ 𝑀 ′, and hence Ω𝜗F𝑁,𝑀 ,𝑄0
⊂

Ω𝜗F𝑁,𝑀′ ,𝑄0
⊂ Ω𝜗F𝑁 ,𝑄0

. Then the monotone convergence theorem implies

∬
Ω𝜗

F𝑁 ,𝑄0

|∇𝑢 |2G0 𝑑𝑋 = lim
𝑀→∞

∬
Ω𝜗

F𝑁,𝑀 ,𝑄0

|∇𝑢 |2G0 𝑑𝑋 =: lim
𝑀→∞

K𝑁 ,𝑀 . (6.23)
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Write E (𝑋) := 𝐴1 (𝑋) − 𝐴0(𝑋), and pick Ψ𝑁 ,𝑀 from Lemma 6.2. By Leibniz’s rule,

𝐴1∇𝑢 · ∇𝑢 G0Ψ
2
𝑁 ,𝑀 = 𝐴1∇𝑢 · ∇(𝑢G0Ψ

2
𝑁 ,𝑀 ) − 1

2
𝐴0∇(𝑢2Ψ2

𝑁 ,𝑀 ) · ∇G0

+ 1
2
𝐴0∇(Ψ2

𝑁 ,𝑀 ) · ∇G0 𝑢2 − 1
2
𝐴0∇(𝑢2) · ∇(Ψ2

𝑁 ,𝑀 )G0 −
1
2
E∇(𝑢2) · ∇(G0Ψ

2
𝑁 ,𝑀 ). (6.24)

Note that 𝑢 ∈ 𝑊1,2
loc (Ω) ∩ 𝐿∞(Ω), G0 ∈ 𝑊1,2

loc (Ω \ {𝑋0}) and that Ω𝜗,∗∗F𝑁,𝑀 ,𝑄0
is a compact subset of Ω

away from 𝑋0 since 𝑋0 ∉ 4𝐵∗
𝑄0

and equation (2.15). Hence, 𝑢 ∈ 𝑊1,2 (Ω𝜗,∗∗F𝑁,𝑀 ,𝑄0
) and 𝑢G0Ψ2

𝑁 ,𝑀 ∈
𝑊1,2

0 (Ω𝜗,∗∗F𝑁,𝑀 ,𝑄0
). These together with the fact that 𝐿1𝑢 = 0 in the weak sense in Ω give

∬
Ω
𝐴1∇𝑢 · ∇(𝑢G0Ψ

2
𝑁 ,𝑀 )𝑑𝑋 =

∬
Ω𝜗,∗∗

F𝑁,𝑀 ,𝑄0

𝐴1∇𝑢 · ∇(𝑢G0Ψ
2
𝑁 ,𝑀 )𝑑𝑋 = 0. (6.25)

On the other hand, Lemma 3.7 (see in particular equation (3.15)) implies that G0 ∈ 𝑊1,2 (Ω𝜗,∗∗F𝑁,𝑀 ,𝑄0
)

and 𝐿�
0 G0 = 0 in the weak sense in Ω \ {𝑋0}. Thanks to the fact that 𝑢2Ψ2

𝑁 ,𝑀 ∈ 𝑊1,2
0 (Ω𝜗,∗∗F𝑁,𝑀 ,𝑄0

), we
then obtain ∬

Ω
𝐴0∇(𝑢2Ψ2

𝑁 ,𝑀 ) · ∇G0 𝑑𝑋 =
∬

Ω𝜗,∗
F𝑁,𝑀 ,𝑄0

𝐴�
0 ∇G0 · ∇(𝑢2Ψ2

𝑁 ,𝑀 ) 𝑑𝑋 = 0. (6.26)

By Lemma 6.2, the ellipticity of 𝐴1 and 𝐴0, and equations (6.24)–(6.26), the fact that ‖𝑢‖𝐿∞ (Ω) = 1 and
our assumption E = 𝐴1 − 𝐴0 = −(𝐴 + 𝐷) we then arrive at

K̃𝑁 ,𝑀 :=
∬

Ω
|∇𝑢 |2G0Ψ

2
𝑁 ,𝑀 𝑑𝑋 �

∬
Ω
𝐴1∇𝑢 · ∇𝑢 G0Ψ

2
𝑁 ,𝑀 𝑑𝑋

�
∬

Ω
|∇Ψ𝑁 ,𝑀 | |∇G0 | 𝑑𝑋 +

∬
Ω
|∇𝑢 | |∇Ψ𝑁 ,𝑀 | G0 𝑑𝑋

+
����∬

Ω
𝐴∇(𝑢2) · ∇(G0Ψ

2
𝑁 ,𝑀 ) 𝑑𝑋

���� + ����∬
Ω
𝐷∇(𝑢2) · ∇(G0Ψ

2
𝑁 ,𝑀 ) 𝑑𝑋

����
=: I1 + I2 + I3 + I4. (6.27)

We estimate each term in turn. Regarding I1 we use Lemma 6.2, Caccioppoli’s and Harnack’s
inequalities, and Lemma 3.9:

I1 �
∑

𝐼 ∈W𝜗,Σ
𝑁,𝑀

∬
𝐼 ∗
|∇Ψ𝑁 ,𝑀 | |∇G0 | 𝑑𝑋 �

∑
𝐼 ∈W𝜗,Σ

𝑁,𝑀

ℓ(𝐼)−1 |𝐼 |
1
2

(∬
𝐼 ∗
|∇G0 |2𝑑𝑋

) 1
2

�
∑

𝐼 ∈W𝜗,Σ
𝑁,𝑀

ℓ(𝐼)𝑛−1G0(𝑋 (𝐼)) �
∑

𝐼 ∈W𝜗,Σ
𝑁,𝑀

𝜔0(𝑄𝐼 )

� 𝜔0

( ⋃
𝐼 ∈W𝜗,Σ

𝑁,𝑀

𝑄𝐼

)
≤ 𝜔0(𝐶Δ𝑄0 ) � 𝜔0 (𝑄0), (6.28)
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where the implicit constants do not depend on N nor M. We estimate I2 similarly:

I2 �
∑

𝐼 ∈W𝜗,Σ
𝑁,𝑀

∬
𝐼 ∗
|∇Ψ𝑁 ,𝑀 | |∇𝑢 | G0 𝑑𝑋 �

∑
𝐼 ∈W𝜗,Σ

𝑁,𝑀

ℓ(𝐼)−1 |𝐼 |
1
2 G0 (𝑋 (𝐼))

(∬
𝐼 ∗
|∇𝑢 |2𝑑𝑋

) 1
2

�
∑

𝐼 ∈W𝜗,Σ
𝑁,𝑀

ℓ(𝐼)𝑛−1G0(𝑋 (𝐼)) � 𝜔0(𝑄0). (6.29)

Concerning I3, we use that 𝐴 ∈ 𝐿∞(Ω) and ‖𝑢‖𝐿∞ (Ω) = 1:

I3 �
∬

Ω
|𝐴| |∇𝑢 | |∇G0 |Ψ2

𝑁 ,𝑀 𝑑𝑋 +
∬

Ω
|∇𝑢 | |∇Ψ𝑁 ,𝑀 |Ψ𝑁 ,𝑀 G0 𝑑𝑋 =: I ′

3 + I ′′
3 . (6.30)

Observe that 𝐼∗∗ ⊂ {𝑌 ∈ Ω : |𝑌 − 𝑋 | < 𝛿(𝑋)/2} for every 𝑋 ∈ 𝐼∗, and hence sup𝐼 ∗∗ |𝐴| ≤ inf𝐼 ∗ 𝑎. By
Cauchy–Schwarz inequality, Caccioppoli’s and Harnack’s inequalities and Lemma 3.9, we have

I ′
3 �

∑
𝑄∈DF𝑁 ,𝑄0

∑
𝐼 ∈W𝜗,∗

𝑄

sup
𝐼 ∗∗

|𝐴|
(∬

𝐼 ∗∗
|∇𝑢 |2Ψ2

𝑁 ,𝑀 𝑑𝑋

) 1
2
(∬

𝐼 ∗∗
|∇G0 |2𝑑𝑋

) 1
2

�
∑

𝑄∈DF𝑁 ,𝑄0

∑
𝐼 ∈W𝜗,∗

𝑄

(∬
𝐼 ∗∗

|∇𝑢 |2Ψ2
𝑁 ,𝑀 𝑑𝑋

) 1
2 (

sup
𝐼 ∗∗

|𝐴|2G0 (𝑋 (𝐼))2ℓ(𝐼)𝑛−1
) 1

2

�
∑

𝑄∈DF𝑁 ,𝑄0

∑
𝐼 ∈W𝜗,∗

𝑄

(∬
𝐼 ∗∗

|∇𝑢 |2G0Ψ
2
𝑁 ,𝑀 𝑑𝑋

) 1
2
(
𝜔0 (𝑄)

∬
𝐼 ∗

𝑎(𝑋)2𝛿(𝑋)−𝑛−1𝑑𝑋

) 1
2

�
(∬

Ω
|∇𝑢 |2G0Ψ

2
𝑁 ,𝑀 𝑑𝑋

) 1
2
( ∑
𝑄∈DF𝑁 ,𝑄0

𝜔0(𝑄)
∬
𝑈 𝜗,∗

𝑄

𝑎(𝑋)2𝛿(𝑋)−𝑛−1 𝑑𝑋

) 1
2

≤ K̃
1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0 (𝑄)
) 1

2
, (6.31)

where we used the fact that the family {𝐼∗∗}𝐼 ∈W has bounded overlap. Additionally, as in equation (6.28)

I ′′
3 �

(∬
Ω
|∇𝑢 |2G0 Ψ

2
𝑁 ,𝑀 𝑑𝑋

) 1
2
(∬

Ω
|∇Ψ𝑁 ,𝑀 |2G0 𝑑𝑋

) 1
2

� K̃
1
2
𝑁 ,𝑀

( ∑
𝐼 ∈W𝜗,Σ

𝑁,𝑀

ℓ(𝐼)𝑛−1 G0 (𝑋 (𝐼))
) 1

2

� K̃
1
2
𝑁 ,𝑀 𝜔0(𝑄0)

1
2 . (6.32)

Finally, to bound I4, we note that 𝑢2 ∈ 𝑊1,2
loc (Ω), G0Ψ2

𝑁 ,𝑀 ∈ 𝑊1,2 (Ω) and supp(G0Ψ2
𝑁 ,𝑀 ) ⊂

Ω𝜗,∗F𝑁,𝑀 ,𝑄0
is compactly contained in Ω. Then [9, Lemma 4.1] and Lemma 3.9 imply that

I4 =

����∬
Ω

div𝐶 𝐷 · ∇(𝑢2) G0 Ψ
2
𝑁 ,𝑀 𝑑𝑋

����
�

(∬
Ω
|∇𝑢 |2 G0 Ψ

2
𝑁 ,𝑀 𝑑𝑋

) 1
2
(∬

Ω
| div𝐶 𝐷 |2 G0 Ψ

2
𝑁 ,𝑀 𝑑𝑋

) 1
2

https://doi.org/10.1017/fms.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.50


Forum of Mathematics, Sigma 55

� K̃
1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

∑
𝐼 ∈W𝜗,∗

𝑄

G0 (𝑋 (𝐼))
∬
𝐼 ∗∗

| div𝐶 𝐷 |2 𝑑𝑋

) 1
2

� K̃
1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

∑
𝐼 ∈W𝜗,∗

𝑄

𝜔0 (𝑄)
∬
𝐼 ∗∗

| div𝐶 𝐷 (𝑋) |2 𝛿(𝑋)1−𝑛 𝑑𝑋

) 1
2

� K̃
1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

𝜔0(𝑄)
∬
𝑈 𝜗,∗

𝑄

| div𝐶 𝐷 (𝑋) |2 𝛿(𝑋)1−𝑛 𝑑𝑋

) 1
2

≤ K̃
1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0 (𝑄)
) 1

2
. (6.33)

Gathering equations (6.27)–(6.33) and using Young’s inequality, we obtain

K̃𝑁 ,𝑀 � 𝜔0(𝑄0) + K̃
1
2
𝑁 ,𝑀 𝜔0(𝑄0)

1
2 + K̃

1
2
𝑁 ,𝑀

( ∑
𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0 (𝑄)
) 1

2

≤ 𝐶 𝜔0(𝑄0) + 𝐶
∑

𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0(𝑄) + 1
2
K̃𝑁 ,𝑀 ,

where the implicit constants are independent of N and M. Note that K̃𝑁 ,𝑀 < ∞ because suppΨ𝑁 ,𝑀 ⊂
Ω𝜗,∗F𝑁,𝑀 ,𝑄0

, which is a compact subset of Ω and 𝑢 ∈ 𝑊1,2
loc (Ω). Thus, the last term can be hidden, and we

eventually obtain

K𝑁 ,𝑀 ≤ K̃𝑁 ,𝑀 � 𝜔0 (𝑄0) +
∑

𝑄∈DF𝑁 ,𝑄0

𝛾𝜗𝑄 𝜔0(𝑄).

This estimate (whose implicit constant is independent of N and M) and equation (6.23) readily yield
equation (6.20), and the proof is complete. �
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