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Abstract

Let Q c R™! »n > 2, be a 1-sided nontangentially accessible domain, that is, a set which is quantitatively
open and path-connected. Assume also that Q satisfies the capacity density condition. Let Lou = —div(AgVu),
Lu = —div(AVu) be two real (not necessarily symmetric) uniformly elliptic operators in Q, and write wy,,, wr,
for the respective associated elliptic measures. We establish the equivalence between the following properties:
() wr € Aw(wr,), (ii) L is LP (wg,)-solvable for some p € (1,00), (iii) bounded null solutions of L satisfy
Carleson measure estimates with respect to wr,, (iv) S < N (i.e., the conical square function is controlled by the
nontangential maximal function) in LY (wp,,) for some (or for all) g € (0, o) for any null solution of L, and (v) L
is BMO(wy,)-solvable. Moreover, in each of the properties (ii)-(v) it is enough to consider the class of solutions
given by characteristic functions of Borel sets (i.e, u(X) = wf (S) for an arbitrary Borel set S C 9€Q).

Also, we obtain a qualitative analog of the previous equivalences. Namely, we characterize the absolute continuity
of wr,, with respect to wy, in terms of some qualitative local L2(w L,) estimates for the truncated conical square
function for any bounded null solution of L. This is also equivalent to the finiteness wy -almost everywhere of
the truncated conical square function for any bounded null solution of L. As applications, we show that wy is
absolutely continuous with respect to wy, if the disagreement of the coefficients satisfies some qualitative quadratic
estimate in truncated cones for wy  -almost everywhere vertex. Finally, when L is either the transpose of L or its
symmetric part, we obtain the corresponding absolute continuity upon assuming that the antisymmetric part of the
coefficients has some controlled oscillation in truncated cones for wy,-almost every vertex.

Contents

1 Introduction 2
2 Preliminaries 7
3 Uniformly elliptic operators, elliptic measure and the Green function 14

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.50 Published online by Cambridge University Press


doi:10.1017/fms.2022.50
https://orcid.org/0000-0002-0554-9647
https://orcid.org/0000-0001-7751-1632
https://orcid.org/0000-0001-6788-4769
https://orcid.org/0000-0001-7759-3068
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.50&domain=pdf
https://doi.org/10.1017/fms.2022.50

2 Mingming Cao et al.

4 Proof of Theorem 1.1 20
5 Proof of Theorem 1.6 42
6 Proof of Theorems 1.7 and 1.8 46

1. Introduction

The solvability of the Dirichlet problem (1.1) on rough domains has been of great interest in the last
50 years. Given a domain Q c R"*! and a uniformly elliptic operator L on £, it consists on finding a
solution u (satisfying natural conditions in accordance to what is known for the boundary data f) to the
boundary value problem

u=f on 0Q. (4.1

{Lu =0 in Q
To address this question, one typically investigates the properties of the corresponding elliptic measure
since it is the fundamental tool that enables us to construct solutions of equation (1.1). The techniques
from harmonic analysis and geometric measure theory have allowed us to study the regularity of elliptic
measures and hence understand this subject well. Conversely, the good properties of elliptic measures
allow us to effectively use the machinery from these fields to obtain information about the topology
and the regularity of the domains. These ideas have led to a quite active research at the intersection of
harmonic analysis, partial differential equations and geometric measure theory.

The connection between the geometry of a domain and the absolute continuity properties of its
harmonic measure goes back to the classical result of F. and M. Riesz [50], which showed that, for a
simply connected domain in the plane, the rectifiability of its boundary implies that harmonic measure
is mutually absolutely continuous with respect to the surface measure. After that, considerable attention
has focused on establishing higher-dimensional analogues and the converse of the F. and M. Riesz
theorem. For a planar domain, Bishop and Jones [6] proved that, if only a portion of the boundary
is rectifiable, harmonic measure is absolutely continuous with respect to arclength on that portion. A
counterexample was also constructed to show that the result of [50] may fail in the absence of some
strong connectivity property (like simple connectivity). In dimensions greater than 2, Dahlberg [13]
established a quantitative version of the absolute continuity of harmonic measures with respect to
surface measure on the boundary of a Lipschitz domain. This result was extended to BMO; domains
by Jerison and Kenig [41] and to chord-arc domains by David and Jerison [17] (see also [5, 31, 36]
for the case of 1-sided chord-arc domains). In this direction, this was culminated in the recent results
of [4] under some optimal background hypothesis (an open set in R"*! satisfying an interior corkscrew
condition with an n-dimensional Ahlfors—David regular boundary). Indeed, [4] gives a complete picture
of the relationship between the quantitative absolute continuity of harmonic measure with respect to
surface measure (or, equivalently, the solvability of equation (1.1) for singular data; see [29]) and
the rectifiability of the boundary plus some weak local John condition (that is, local accessibility by
nontangential paths to some pieces of the boundary). Another significant extension of the F. and M.
Riesz theorem was obtained in [3], where it was proved that, in any dimension and in the absence
of any connectivity condition, every piece of the boundary with finite surface measure is rectifiable,
provided surface measure is absolutely continuous with respect to harmonic measure on that piece. It is
worth pointing out that all the aforementioned results are restricted to the n-dimensional boundaries of
domains in R"*!. Some analogues have been obtained in [15, 16, 18, 47] on lower-dimensional sets.

On the other hand, the solvability of the Dirichlet problem (1.1) is closely linked with the absolute
continuity properties of elliptic measures. The importance of the quantitative absolute continuity of
the elliptic measure with respect to the surface measure comes from the fact that w; € RH, (o)
(short for the reverse Holder class with respect to o, being o the surface measure) is equivalent to the
L4 (or)-solvability of the Dirichlet problem (see, e.g., [29]). In 1984, Dahlberg formulated a conjecture
concerning the optimal conditions on a matrix of coefficients guaranteeing that the Dirichlet problem
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(1.1) with LP data for some p € (1, ) is solvable. Kenig and Pipher [44] made the first attempt on
bounded Lipschitz domains and gave an affirmative answer to Dahlberg’s conjecture. More precisely,
they showed that elliptic measure is quantitatively absolutely continuous with respect to surface measure
whenever the gradient of the coefficients satisfies a Carleson measure condition. This was done in
Lipschitz domains but can be naturally extended to chord-arc domains. In some sense, some recent
results have shown that this class of domains is optimal. First, [31, 36, 5] show that, in the case of
the Laplacian and for 1-sided chord-arc domains, the fact that the harmonic measure is quantitatively
absolutely continuous with respect to surface measure (equivalently, the L? (o)-Dirichlet problem is
solvable for some finite p) implies that the domains must have exterior corkscrews; hence, they are
chord-arc domains. Indeed, in a first attempt to generalize this to the class of Kenig—Pipher operators,
Hofmann, the third author of the present paper and Toro [34] were able to consider variable coefficients
whose gradient satisfies some L'-Carleson condition (in turn, stronger than the one in [44]). The general
case, on which the operators are in the optimal Kenig—Pipher-class (that is, the gradient of the coefficients
satisfies an L2-Carleson condition) has been recently solved by Hofmann et al. [33].

One can also relate the solvability of the Dirichlet problem (1.1), with data in BMO, with the fact that
the elliptic measure belongs to A,. This was first shown by Fefferman and Stein [23] for the Laplacian
in R*! and extended to uniformly elliptic operators in [19] and [51] in the contexts of Lipschitz and
1-sided chord-arc domains, respectively. In the nonconnected case, Hofmann and Le [29] showed that
BMO-solvability implies that the elliptic measure belongs to the class weak-A., with respect to surface
measure. Kenig et al. [42], extending [43], proved in the context of bounded Lipschitz domains that
if all bounded solutions satisfy Carleson measure estimates (CME), then the elliptic measure belongs
to the class A (see also [9] for 1-sided chord-arc domains). An examination of the proofs of [42, 9]
reveals that the Carleson measure conditions are only used for solutions of the form u(X) = wf (S,
X € Q, with § € 9Q being a Borel set. Hence, in those contexts, to show that the elliptic measure is
a Muckenhoupt weight, it suffices to see that all elliptic measure solutions with bounded data satisfy
CME, and this may be simpler than establishing the BMO-solvability as in [19, 51, 29].

In another direction, one can consider perturbations of elliptic operators in rough domains. That is,
one seeks for conditions on the disagreement of two coefficient matrices so that the solvability of the
Dirichlet problem or the quantitative absolute continuity with respect to the surface measure of the
elliptic measure for one elliptic operator could be transferred to the other operator. This problem was
initiated by Fabes, Jerison and Kenig [20] in the case of continuous and symmetric coefficients and
extended by Dahlberg [14] to a more general setting under a vanishing Carleson measure condition.
Soon after, working again in the domain Q = B(0, 1) and with symmetric operators, Fefferman [21]
improved Dahlberg’s result by formulating the boundedness of a conical square function, which allows
one to preserve the Ao, property of elliptic measures but without preserving the reverse Holder exponent
(see [22, Theorem 2.24]). A major step forward was made by Fefferman, Kenig and Pipher [22] by
giving an optimal Carleson measure perturbation on Lipschitz domains. Additionally, they established
another kind of perturbation to study the quantitative absolute continuity between two elliptic measures.
Beyond the Lipschitz setting, these results were extended to chord-arc domains [48, 49], 1-sided chord-
arc domains [8, 9] and 1-sided nontangentially accessible (NTA) domains satisfying the capacity density
condition (CDC) [2]. It is worth mentioning that the so-called extrapolation of Carleson measure was
utilized in [2, 8]. Nevertheless, a simpler and novel argument was presented in [9] to get the large
constant perturbation. More specifically, the authors use that the A, property of elliptic measures can
be characterized by the fact bounded solutions satisfy CME; see [9, Theorem 1.4], extending the main
result of [42] to the 1-sided chord-arc setting. Also, it is worth mentioning that [2] considers for the first
time perturbation results on sets with bad surface measures.

The goal of this paper is to continue with the line of research initiated in [1, 2]. We work with
Q c R™!' n > 2, al-sided NTA domain satisfying the CDC. We consider two real (not necessarily
symmetric) uniformly elliptic operators Lou = —div(AgVu) and Lu = —div(AVu) in Q and denote
by wr,,wr the respective associated elliptic measures. The paper [2] considered the perturbation
theory in this context providing natural conditions on the disagreement of the coefficients so that wy, is
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quantitatively absolutely continuous with respect to wy,, (see also [22]). In our first main result, we single
out the latter property and characterize it in terms of the solvability of the Dirichlet problem or some
other properties that certain solutions satisfy. In a nutshell, we show that such condition is equivalent
to the fact that null solutions of L have a good behavior with respect to wy,. The precise statement is as
follows:

Theorem 1.1. Let Q ¢ R"™! n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let Lu = —div(AVu) and Lou = —div(AgVu) be real (nonnecessarily symmetric)
elliptic operators. Bearing in mind the notions introduced in Definition 3.3, the following statements are
equivalent:

(a) wr € An(0Q, wy,) (cf. Definition 3.1).

(b) Lis LP(wy,)-solvable for some p € (1, c0).

(b)Y’ Lis L? (wr,)-solvable for characteristic functions for some p € (1, ).

(c) L satisfies CME(wrp,).

(c) L satisfies CME(wp,) for characteristic functions.

(d) L satisfies S < N in LY(wy,) for some (or all) q € (0, ).

(dY L satisfies S < N in LY(wy,) for characteristic functions for some (or all) g € (0, co).
(e) Lis BMO(wp,)-solvable.

(e) Lis BMO(wp,)-solvable for characteristic functions.

(f) Lis BMO(wy,)-solvable in the generalized sense.

(f) Lis BMO(wy,)-solvable in the generalized sense for characteristic functions.

Furthermore, for any p € (1, ) there hold

(a),y wL € RHp (0Q,01,) & (b), Lis L’ (wr,) — solvable,

(b), Lis L (wr,)-solvable = (b);L is L? (wr,)-solvable for characteristic functions,
and
(b), L is LP (wr,)-solvable = (b), L is LY (wy,)-solvable for all q > p.

Remark 1.2. Note that in Definition 3.3 the L”(wy,)-solvability depends on some fixed @ and N.
However, in the previous result what we prove is that if (a) holds, then (b) is valid for all @ and N. For
the converse, we see that if (b) holds for some @ and N, then we get (a). This eventually says that if (b)
holds for some a and N, then it also holds for every @ and N. The same occurs with (d) where now there
is only a.

As an immediate consequence of Theorem 1.1, if we take Ly = L, in which case we clearly have
Wy, € An(0Q,wy,) (indeed, wy, € RH,(0Q, wy,) for any 1 < p < o), then we obtain the following
estimates for the null solutions of L (note that (ii) and (iii) coincide with [1, Theorems 1.3 and 1.5],
respectively):

Corollary 1.3. Let Q@ ¢ R™!, n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7), and let Lu = —div(AVu) be a real (nonnecessarily symmetric) elliptic operator.
Bearing in mind the notions introduced in Definition 3.3, the following statements hold:

(i) Lis LP (wg)-solvable and also LP (wy)-solvable for characteristic functions, for all p € (1, o).
(ii) L satisfies CME(wp).
(iii) L satisfies S < N in LY(wy) for all g € (0, o).
(iv) L is BMO(wy )-solvable and also BMO(wy )-solvable for characteristic functions.
(v) L is BMO(wyp)-solvable and also BMO(wy )-solvable for characteristic functions, in the general-
ized sense.
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Remark 1.4. We would like to emphasize that in (i) the L (wp,)-solvability holds for all @ and N, the
same occurs with (iii) which holds for all a; see Definition 3.3.

Our second application is a direct consequence of [2, Theorems 1.5, 1.10] and Theorem 1.1:

Corollary 1.5. Let Q ¢ R™!, n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the
CDC (cf. Definition 2.7), and let Lu = —div(AVu) and Lou = —div(AoVu) be real (nonnecessarily
symmetric) elliptic operators. Define

0(A, Ag)(X) = sup |[A(Y) — Ag(Y)], X e Q, (1.2)
YeB(X,5(X)/2)

and

1 Gry(Xa, X)
llo(A. Ag)ll = sup sup ———— // o(4, Ay (x2ZtXn X py
B B w)*(A) Mpne 6(X)?

where A = BNQ, A’ = B’NQ, and the sup is taken, respectively, over all balls B = B(x,r) withx € 0Q
and 0 < r < diam(9Q), and B’ = B(x’,r) with x’ € 2A and 0 < r’ < cor/4, and cg is the corkscrew
constant. We also define

s
oot an = [[ L300 seon

whereT%(x) ={X e Q:|X —-x| < (1+a)§(X)}.
If

llo(A, Ap)ll <00 or  Aa(0(A, Ag)) € L7 (0Q, wi,), (1.3)

then all the properties (a)—(f)’ in Theorem 1.1 are satisfied.
Moreover, given 1 < p < oo, there exists €, > 0 (depending only on dimension, the 1-sided NTA
and CDC constants, the ellipticity constants of Lo and L and p) such that if

oA Al < &p o lIa(o(A ADliL(uwry) < &

then wp € RHp (0Q, wy,), and hence, L is L9 (wy,)-solvable for g > p.

Our next goal is to state a qualitative version of Theorem 1.1 in line with [7]. The A, condition will
turn into absolute continuity. The qualitative analog of S < A is going to be that the conical square
function satisfies L? estimates in some pieces of the boundary. On the other hand, as seen from the proof
of Theorem 1.1 (see Lemma 4.3 and equation (4.30)), the CME condition, more precisely, the left-hand
side term of equation (3.8) is connected with the local L?-norm of the conical square function. Thus,
the L?-estimates for the conical square function are the qualitative version of CME. In turn, all these
are equivalent to the simple fact that the truncated conical square function is finite almost everywhere
with respect to the elliptic measure wy,,.

Theorem 1.6. Let Q ¢ R™! n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists ay > 0 (depending only on the 1-sided NTA and CDC constants)
such that for each fixed « > «g and for every real (not necessarily symmetric) elliptic operators
Lou = —div(AoVu) and Lu = — div(AVu) the following statements are equivalent:

(@) wr, < wr, on 0Q.

(b) 0Q = Upnso Fn, where wr,(Fo) = 0, for each N > 1, Fiy = 0Q N 0Qn for some bounded 1-
sided NTA domain Qn C Q satisfying the CDC, and Su € LY(Fn, wr,) for every weak solution
u € (‘())Vllo’cng) N L®(Q) of Lu = 0 in Q, for all (or for some) r > 0, and for all (or for some)
q € (0, 00).

https://doi.org/10.1017/fms.2022.50 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.50

6 Mingming Cao et al.

(b) 0Q =Upnso Fn, where wr,(Fo) =0, foreach N > 1, Fiy = 0QN 0Qy for some bounded 1-sided
NTA domain Qp C Q satisfying the CDC, and S7u € L9(Fy,wr,), where u(X) = wf (S),XeQ
for any arbitrary Borel set S C 0Q, for all (or for some) r > 0 and for all (or for some) q € (0, ).

(©) Su(x) < oo for wy,-a.e. x € 0Q, for every weak solution u € WIIO’CZ(Q) NL=®(Q) of Lu=0inQ
and for all (or for some) r > 0.

(©) Sfu(x) < oo for wr,-a.e. x € 0Q, where u(X) = w{(S), X € Q, for any arbitrary Borel set
S € 0Q and for all (or for some) r > 0.

(d) For every weak solution u € WIL’Cz(Q) N L*(Q) of Lu = 0 in Q and for wy,-a.e. x € 0Q, there
exists rx > 0 such that S u(x) < co.

(d)" For every Borel set S C 08 and for wy,-a.e. x € 0Q, there exists ry > 0 such that 57 u(x) < oo,
where u(X) = w)L((S), XeQ

Our first application of the previous result is a qualitative version of [2, Theorem 1.10]:

Theorem 1.7. Let Q ¢ R™! n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists ay > 0 (depending only on the 1-sided NTA and CDC constants) such
that, if the real (not necessarily symmetric) elliptic operators Lou = — div(AoVu) and Lu = — div(AVu)
satisfy for some @ > aq and for some r > 0

2
'//a( : (2(§;}3H(_IX) dX < oo, forwpy-a.e. x € 0Q, (1.4)

where 0(A, Ay) is as in equation (1.2), then wr, < wr.

To present another application of Theorem 1.6, we introduce some notation. For any real (not

necessarily symmetric) elliptic operator Lu = — div(AVu), we let LT denote the transpose of L, and let
L™ = L+2—LT be the symmetric part of L. These are, respectively, the divergence form elliptic operators
with associated matrices AT (the transpose of A) and AY™ = A+TAT.
Theorem 1.8. Ler Q ¢ R™! n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists ag > 0 (depending only on the 1-sided NTA and CDC constants) such
that, if Lu = —div(AVu) is a real (not necessarily symmetric) elliptic operator and we assume that
(A= AT) € Lipy,.(Q) and that for some a > ay and for some r > 0 one has

F(x; A) = // |dive (A — AT)(X)]?6(X) ™dX < 00,  for wp-a.e. x € 09, (1.5)
 (x)

where

n+l
dch(A — AT)(X) = (Z 6,-(a,-,.,~ - aj,,»)(X) . X € Q,

1<j<n+l1

then wy < wrT and W <K Wrsym.
Moreover, if

FY(x;A) < o0, for wp-a.e. and wyr-a.e. x € 09, (1.6)

then w; K W™ K W, <K Wrsym.

The structure of this paper is as follows. Section 2 contains some preliminaries, definitions and tools
that will be used throughout. Also, for convenience of the reader, we gather in Section 3 several facts
concerning elliptic measures and Green functions which can be found in the upcoming [35]. The proof
of Theorem 1.1 is in Section 4. Section 5 is devoted to proving Theorem 1.6. In Section 6, we will
present the proofs of Theorems 1.7 and 1.8 which follow easily from a more general perturbation result
which is interesting in its own right.
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We note that some interesting related work has been carried out while this manuscript was in
preparation due to Feneuil and Poggi [24]. This work can be particularized to our setting and contains
some results which overlap with ours. First, [24, Theorem 1.22] corresponds to (¢)’ = (a) in
Theorem 1.1. It should be mentioned that both arguments use the ideas originated in [42] (see also [43])
which present some problems when extended to the 1-sided NTA setting. Namely, elliptic measure may
not always be a probability, and also it could happen that for a uniformly bounded number of generations
the dyadic children of a given cube may agree with that cube. These two issues have been carefully
addressed in [9, Lemma 3.10] (see Lemma 4.2 with 8 > 0) and although such a result is stated in
the setting of 1-sided CAD it is straightforward to see that it readily adapts to our case. Our proof of
(c)) = (a) in Theorem 1.1 follows easily from that lemma. Second, [24, Theorem 1.27] (see also [24,
Corollary 1.33]) shows (d) in Theorem 1.1 with ¢ = 2 for a class of perturbations of L. In our setting,
we are showing that (d) follows if (a) holds for any given operator L (whether or not it is a generalized
perturbation of Ly).

2. Preliminaries
2.1. Notation and conventions

o We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses of the
theorems (which we refer to as the ‘allowable parameters’). We shall also sometimes write a < b
and a ~ b to mean, respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C
are as above unless explicitly noted to the contrary. Unless otherwise specified, uppercase constants
are greater than 1, and lowercase constants are smaller than 1. In some occasions, it is important to
keep track of the dependence on a given parameter y; in that case, we write a <, b ora ~, b to
emphasize that the implicit constants in the inequalities depend on 7.

o Our ambient space is R™ p > 2.

o Given E c R™!, we write diam(E) = SUp, yeg |X — y| to denote its diameter.

o Given an open set Q C R™! we shall use lowercase letters x, v, Z, etc., to denote points on 9Q, and
capital letters X, Y, Z, etc., to denote generic points in R"*! (especially those in R"*! \ Q).

o The open (n+ 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when the center x lies
on dQ or B(X, r) when the center X € R™ \ Q. A surface ball is denoted A (x,r) := B(x,r) N I,
and unless otherwise specified, it is implicitly assumed that x € 0.

o If 9Q is bounded, it is always understood (unless otherwise specified) that all surface balls have radii
controlled by the diameter of 0Q, that is, if A = A(x, r), then r < diam(9Q). Note that in this way
A = 9Q if diam(0Q) < r < diam(9Q).

o For X € R™!, we set 6(X) := dist(X, 4Q).

o We let H" denote the n-dimensional Hausdorff measure.

o ForaBorel set A ¢ R™!, we let 1,4 denote the usual indicator function of A, i.e., 14(X) = 1if X € A,
and 14(X) =0if X ¢ A.

o We shall use the letter I (and sometimes J) to denote a closed (n + 1)-dimensional Euclidean cube
with sides parallel to the coordinate axes, and we let £(/) denote the side length of 1. We use Q to
denote dyadic ‘cubes’ on E or dQ. The latter exist as a consequence of Lemma 2.8 below.

2.2. Some definitions

Definition 2.1 (Corkscrew condition). Following [41], we say that a domain Q ¢ R"*! satisfies the
Corkscrew condition if for some uniform constant 0 < ¢¢ < 1, and for every x € 0Q and 0 < r <
diam(9Q), if we write A := A(x,r), there is a ball B(Xa, cor) € B(x,r) N Q. The point X, C Q is
called a Corkscrew point relative to A (or, relative to B). We note that we may allow r < C diam(9Q)
for any fixed C simply by adjusting the constant cy.
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Definition 2.2 (Harnack chain condition). Again following [41], we say that Q satisfies the Harnack
chain condition if there are uniform constants C;, C, > 1 such that for every pair of points X, X’ € Q
there is a chain of balls By, By, ...,By C Qwith N < C;(2 + log;r IT), where

|X - X'|

min{é(X),6(X")} 21
such that X € B, X’ € By, Bk N Bry; # @ and forevery 1 <k < N
C; "' diam(By) < dist(By, dQ) < C, diam(By). (2.2)

The chain of balls is called a Harnack chain.

We note that in the context of the previous definition if IT < 1 we can trivially form the Harnack
chain B| = B(X,36(X)/5) and B, = B(X’,35(X’)/5), where equation (2.2) holds with C, = 3. Hence,
the Harnack chain condition is nontrivial only when IT > 1.

Definition 2.3 (1-sided NTA and NTA). We say that a domain Q is a /-sided NTA domain (1-sided
NTA) if it satisfies both the corkscrew and Harnack chain conditions. Furthermore, we say that Q is
a NTA domain if it is a 1-sided NTA domain and if, in addition, Qey := R™*! \5 also satisfies the
corkscrew condition.

Remark 2.4. In the literature, 1-sided NTA domains are also called uniform domains. We remark that
the 1-sided NTA condition is a quantitative form of openness and path connectedness.

Definition 2.5 (Ahlfors regular). We say that a closed set E ¢ R™! is n-dimensional Ahlfors regular
(AR for short) if there is some uniform constant C; > 1 such that

C;'r" < H(E N B(x,r)) < Cy 1", x€E, 0<r<diam(E). (2.3)

Definition 2.6 (1-sided CAD and CAD). A -sided chord-arc domain (1-sided CAD) is a 1-sided NTA
domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with AR boundary.

We next recall the definition of the capacity of a set. Given an open set D  R"*! (where we recall
that we always assume that n > 2) and a compact set K C D, we define the capacity of K relative to D as

Cap,(K,D) = inf{[/ [Vv(X)]?dX : v e (D), v(x) = lin K}.
D

Definition 2.7 (CDC). An open set Q is said to satisfy the CDC if there exists a uniform constant ¢; > 0
such that
Cap,(B(x,r) \ Q, B(x,2r))
>

— 2.4)
Cap, (B(x,r), B(x,2r))

for all x € 9Q and 0 < r < diam(0Q).
The CDC is also known as the uniform 2-fatness as studied by Lewis in [45]. Using [28, Example
2.12], one has that
Cap,(B(x,7), B(x,2r)) ~ r" !, forall x e R"! and r > 0, (2.5)

and hence, the CDC is a quantitative version of the Wiener regularity, in particular every x € 9Q is
Wiener regular. It is easy to see that the exterior corkscrew condition implies CDC. Also, it was proved
in [51, Section 3] and [30, Lemma 3.27] that a set with Ahlfors regular boundary satisfies the CDC with
constant ¢ depending only on n and the Ahlfors regular constant.
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2.3. Dyadic grids and sawtooths

In this section, we introduce a dyadic grid from [1, Lemma 2.13] along the lines of that obtained in [10]
but using the dyadic structure from [39, 40, 37]:

Lemma 2.8 (Existence and properties of the ‘dyadic grid’, [1, Lemma 2.13]). Let E C R™! pe a closed
set. Then there exists a constant C > 1 depending just on n such that for each k € Z there is a collection
of Borel sets (called ‘cubes’)

Di:={Qf CE: jeJu},
where i denotes some (possibly finite) index set depending on k satisfying:

(@) E=Ujes, foor each k € Z.

(b) Ifm < k, then either Qf cQM™orQMmn Qf. =0.

(c) Foreachk € Z, j € Jx and m < k, there is a unique i € 3, such that Qj‘. c o
(d) Foreachk €Z, j € 3 there is x;? € E such that

B(x},c'27")nE c 0% c B(x},c27")nE.

In what follows given B = B(x,r) with x € E, we will denote A = A(x,r) = BN E. A few remarks
are in order concerning this lemma. Note that within the same generation (that is, within each Dy) the
cubes are pairwise disjoint (hence, there are no repetitions). On the other hand, we allow repetitions in
the different generations, that is, we could have that Q € Dy and Q' € Dy_; agree. Then, although Q
and Q’ are the same set, as cubes we understand that they are different. In short, it is then understood
that D is an indexed collection of sets, where repetitions of sets are allowed in the different generations
but not within the same generation. With this in mind, we can give a proper definition of the ‘length’ of
a cube (this concept has no geometric meaning in this context). For every Q € Dy, we set £(Q) = 27K,
which is called the ‘length’ of Q. Note that the ‘length’ is well defined when considered on D, but it is
not well-defined on the family of sets induced by D. It is important to observe that the ‘length’ refers
to the way the cubes are organized in the dyadic grid. It is clear from (d) that diam(Q) < ¢(Q). When
E = 0Q, with Q being a 1-sided NTA domain satisfying the CDC condition, the converse holds, hence
diam(Q) ~ €(Q); see [, Remark 2.56]. This means that the ‘length’ is related to the diameter of the
cube.

Let us observe that if E is bounded and k € Z is such that diam(E) < C~'27%, then there cannot be
two distinct cubes in Dy.. Thus, Dy, = {Qk} with Q% = E. Therefore, we are going to ignore those k € Z
such that 2% > diam(E). Hence, we shall denote by D(E) the collection of all relevant Qf., ie.,

D(E) = UDk,
k

where, if diam(E) is finite, the union runs over those k € Z such that 27% < diam(E). We write
E = 2C?, with C being the constant in Lemma 2.8, which is purely dimensional. For Q € D(E), we will
set k(Q) = k if Q € Dy. Property (d) implies that for each cube Q € D(E), there exist xp € E and rg,
with 2716(Q) < ro < €(Q) (indeed ro = (2C)~1£(Q)), such that

A(XQ,Z}’Q) cQc A()CQ,EJ‘Q). (26)
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We shall denote these balls and surface balls by
BQ = B(XQ,I’Q), AQ = A()CQ,FQ), (27)
Bo := B(x0.Brg),  Ag :=A(x0,Erg), (2.8)

and we shall refer to the point x¢ as the ‘center’ of Q.

Let Q € Dy, and consider the family of its dyadic children {Q’ € D1 : Q' € Q}. Note that for any
two distinct children Q’, Q”, one has |xg' — xg»| > ror = ror = rp/2, otherwise xgr € Q" NAgr C
Q" N Q’, contradicting the fact that Q" and Q" are disjoint. Also, xo/,xg» € O C A(xp, Erg), hence
by the geometric doubling property we have a purely dimensional bound for the number of such x¢o/,
and hence, the number of dyadic children of a given dyadic cube is uniformly bounded.

We next introduce the ‘discretized Carleson region’ relative to Q € D(E),Dgp = {Q’ e D: Q' c Q}.
Let F = {Q;} c D(E) be a family of pairwise disjoint cubes. The ‘global discretized sawtooth’ relative
to F is the collection of cubes Q € D(E) that are not contained in any Q; € F, that is,

Dr =D\ U Dy,
Q,eF

For a given Q € D(E), the ‘local discretized sawtooth’ relative to F is the collection of cubes in Dg
that are not contained in any Q; € F or, equivalently,

D]:’Q = DQ\ U DQ[. ZDfﬂDQ.
Q;eF

We also allow F to be the empty set in which case Dy = D(E) and Dy o = Dg.

In the sequel, Q C R™! 5 > 2 will be a 1-sided NTA domain satisfying the CDC. Write D = D(9€)
for the dyadic grid obtained from Lemma 2.8 with £ = Q. In [1, Remark 2.56], it is shown that under
the present assumptions one has that diam(A) =~ rp for every surface ball A and diam(Q) ~ ¢(Q) for
every Q € D. Given Q € D, we define the ‘corkscrew point relative to Q° as Xg := Xa,. We note that

0(Xp) = dist(Xp, Q) =~ diam(Q).

We also introduce the ‘geometric’ Carleson regions and sawtooths. Given Q € D, we want to define
some associated regions which inherit the good properties of Q. Let W = W(Q) denote a collection
of (closed) dyadic Whitney cubes of Q c R™*! so that the cubes in W form a covering of Q with
nonoverlapping interiors and satisfy

4 diam(7) < dist(41,0Q) < dist(1, 0Q) < 40diam(]), YIieW, 2.9)
and
diam(/;) ~ diam(/l,), whenever I; and I, touch.

Let X (1) denote the center of I, let £(I) denote the side length of I and write k = k; if £(I) = 27,

Given 0 < A < 1 and I € W, we write I* = (1 + A)[ for the ‘fattening’ of /. By taking A small
enough, we can arrange matters so that, first, dist(/*, J*) ~ dist({, J) for every I,J € W. Secondly, I*
meets J* if and only if 01 meets dJ (the fattening thus ensures overlap of /* and J* for any pair /,J € W
whose boundaries touch so that the Harnack chain property then holds locally in /* U J*, with constants
depending upon A.) By picking A sufficiently small, say 0 < A < Ay, we may also suppose that there is
TE (%, 1) such that for distinct 1, J € W, we have that 7J N I* = @. In what follows, we will need to
work with dilations I** = (1 + 24)1 or I*** = (1 + 44)1, and in order to ensure that the same properties
hold, we further assume that 0 < A < 1y/4.
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Given ¢ € N, for every cube Q € D, we set
WS ={1eW:2770(Q) < €(I) < 2”¢(Q), and dist(1,0) < 2”¢(Q)}. (2.10)

We will choose ¢ > ¥y, with ¢y large enough depending on the constants of the corkscrew condition
(cf. Definition 2.1) and in the dyadic cube construction (cf. Lemma 2.8) so that Xp € I for some
I e Wg , and for each dyadic child Q7 of Q, the respective corkscrew points Xy, € I’ for some

I e Wg . Moreover, we may always find an I € Wg with the slightly more precise property that
€(Q)/2 < ¢(1) < €(Q) and

t(02)
£(Q1)

ng N Wgz # @, whenever1 < < 2, and dist(Q1, Q2) < 1000£(Q3).

Foreach I € Wg , we form a Harnack chain from the center X (/) to the corkscrew point X and call
it H(I). We now let )/VlQ9 ** denote the collection of all Whitney cubes which meet at least one ball in the
Harnack chain H(I) with [ € WS, that is,

Wg* :={J € W : thereexists € Wg such that H(I) N J # @}.

We also define

U = U 1+ )1 = U I

P, 9=
rew} rewp
By construction, we then have that
W2 cW? cW and Xp eUS, Xpi €U
o ~"o and - %o €U, Ao/ €U

for each child Q7 of Q. It is also clear that there is a uniform constant k* (depending only on the 1-sided
CAD constants and 9) such that

27K00) < e() <2 6(Q), Ve Wg’*,
X(I) —yg Xo. Ve wo.

dist(1,0) < 2X'¢(Q), VIe Wg’*.

Here, X (1) —ug Xo means that the interior of U, 3 contains all balls in a Harnack chain (in Q)
connecting X (/) to X, and moreover, for any point Z contained in any ball in the Harnack chain, we
have dist(Z, 0Q) ~ dist(Z,Q\ U g) with uniform control of implicit constants. The constant k* and
the implicit constants in the condition X (7) —u X depend at most on the allowable parameters on

A and on ). Moreover, given I € W, we have that [ € Wg;*, where Q; € D satisfies £(Q;) = €(I) and

contains any fixed y € dQ such that dist(7, Q) = dist(/,y). The reader is referred to [31, 35] for full
details. We note, however, that in [31] the parameter ¢ is fixed. Here, we need to allow ¢ to depend on
the aperture of the cones, and hence, it is convenient to include the superindex 9.

For a given Q € D, the ‘Carleson box’ relative to Q is defined by

9 . 9
TQ ._mt( U UQ,).

Q’eDg
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For a given family F = {Q;} c D of pairwise disjoint cubes and a given Q € D, we define the ‘local
sawtooth region’ relative to F by

o, :=int( U UZ,)zint( U 1*), 2.11)

; 9
Q'eDr.0 TeW? ,

where W}Z, 0= Ugren,. ° Wg* Note that in the previous definition we may allow F to be empty in
which case clearly Qg 0= Tg . Similarly, the ‘global sawtooth region’ relative to F is defined as

Q? ::int( U Ug,)zint( U 1) 2.12)
Q'eDr 1ew?

where W}z =Ugen, Wg* If F is the empty set clearly Q¥ = Q. For a given Q € D and x € 4Q, let
us introduce the ‘truncated dyadic cone’

9 — L3
rge:= | ul,
x€Q’eDp

where it is understood that FZ (x) =@ if x ¢ Q. Analogously, we can slightly fatten the Whitney boxes
and use I** to define new fattened Whitney regions and sawtooth domains. More precisely, for every

Q e D7
D . P, x Gy P, x 0, ._ D, x
)" = 1nt( U Uy ) Qb = mt( U Uy ) Ty (x) = U Ul
Q’eDgo Q' eDr o x€Q’'eDg,
where Ug’* =, ews I**. Similarly, we can define Tg’**, Q?Z, FZ’** (x), and Ug’** by using I***

in place of I**.
To define the ‘Carleson box’, TA‘9 associated with a surface ball A = A(x,r), let k(A) denote the

unique k € Z such that 27¥~1 < 200r < 27 and set

D" := {0 € D) : QN2A # @} (2.13)
We then define
T = int( g @) (2.14)
Qehb?

We can also consider fattened versions of TAﬂ given by
P _ . P, ® D . D,
TA = 1nt( U TQ ), TA = mt( U TQ )
QeDA QeDA

Following [31, 35], one can easily see that there exist constants 0 < x; < 1 and xo > 16E (with E
the constant in equation (2.6)), depending only on the allowable parameters and on , so that

KiBoNQCTY CT)  cT)™ cT)™ cxoBonQ=: B, NQ, (2.15)
BanQcTy cT? 1) cTP™ cxoBanQ= 1B, nQ, (2.16)
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and also
0 C koBA NAQ = 1B, N 9Q =: 1A", V(O e DA, (2.17)

where By is defined as in equation (2.7), A = A(x,r) withx € 0Q,0 < r < diam(9Q) and Bx = B(x,r)
is so that A = Bx N 9Q. From our choice of the parameters, one also has that B*Q C B*Q, whenever

QcQ.

Lemma 2.9 [1, Proposition 2.37] and [31, Appendices A.1-A2]. Let Q ¢ R™, n > 2, be a I-
sided NTA domain satisfying the CDC. For every ¥ > 1, all of its Carleson boxes Tg, Tg’*,Tg’**
and TAﬂ,TAﬂ’*, TAﬂ’** and sawtooth regions QZ., Q;}_.’*, Qg** and QJ’?_.’Q, QJﬂT*Q, ng are 1-sided NTA
domains and satisfy the CDC with uniform implicit constants depending only on dimension, the corre-

sponding constants for Q, and ¥.

Given Q we define the ‘localized dyadic conical square function’

1
Sou(x) = (// [Vu(Y)|?6(Y)' =" dy 2, x € 0Q, (2.18)
T (x)

for every u € WIL’CZ(Té9 ). Note that S g u(x) = 0 for every x € 9Q\ Q since FZ (x) = @ in such case. The
‘localized dyadic nontangential maximal function’ is given by

Ngu(x) = sup |u(Y)|, X € 0Q, (2.19)
Yery"(x)
for every u € %(Tg **), where it is understood that V, g u(x) =0 forevery x € 0Q\ Q.

Given @ > 0 and x € 0%, we introduce the ‘cone with vertex at x and aperture o’ defined as
'*(x) ={X € Q:|X-x| <((+a)d(X)}. One can also introduce the ‘truncated cone’ for every
x€0Q,and0 <r <coweset['F(x) = B(x,r) NI"¥(x).

The ‘conical square function’ and the ‘nontangential maximal function’ are defined, respectively, as

S%u(x) :=(//M)|Vu(y)|25(y)1-"dy)2, N%(x):= sup |u(X)|, xedQ (2.20)

Xele(x)

foreveryu € Wllo’cz(Q) and u € €(Q), respectively. Analogously, the ‘truncated conical square function’
and the ‘truncated nontangential maximal function’ are defined, respectively, as

Su(x) :=(//n()qu(Y)|26(Y)1‘"dY)2, Nu(x) := sup |u(X)], (2.21)

Xel?(x)

where x € 0Q and 0 < r < oo, for every u € WllO’CZ(Q N B(x,r)) and u € € (2N B(x,r)), respectively.

We would like to note that truncated dyadic cones are never empty. Indeed, in our construction, we
have made sure that Xp € U, g for every Q € D; hence, for any Q € D and x € Q one has Xp € Fg (x).
Moreover, X' € F’Q’ (x) forevery Q' € D with Q’ 5 x. For the regular truncated cones, it could happen
that T#(x) = @ unless « is sufficiently large. Suppose for instance that Q = {X = (x1,...,Xu41) €
R™! ¢ xq,...,X,41 > O} is the first orthant, then T?(0) = @ forany 0 < r < coif & < Va+1— 1.
On the other hand, if « is sufficiently large, more precisely, if @ > c61 — 1, where ¢ is the corkscrew
constant (cf. Definition 2.1), then

Xaer €T0(x),  Vx€dQ, 0<r < diam(4Q). (2.22)

https://doi.org/10.1017/fms.2022.50 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.50

14 Mingming Cao et al.

3. Uniformly elliptic operators, elliptic measure and the Green function

Next, we recall several facts concerning elliptic measures and Green functions. To set the stage, let
Q c R™! be an open set. Throughout, we consider elliptic operators L of the form Lu = —div(AVu)
with A(X) = (ai,j(X))ﬁil being a real (nonnecessarily symmetric) matrix such that a; ; € L*(Q),
and there exists A > 1 such that the following uniform ellipticity condition holds

ATEP < AX)E - €, |A(X)& -l < Al€] Inl 3.1)

for all £,7 € R™! and for almost every X € Q. We write LT to denote the transpose of L, or, in other
words, LTu = —div(ATVu) with AT being the transpose matrix of A.
We say that u is a weak solution to Lu = 0 in Q provided that u € WIL’CZ(Q) satisfies

f/ A(X)Vu(X) - Vp(X)dX =0 whenever ¢ € €. (Q).
Q

Associated with L, one can construct the elliptic measure {w’L( }xeq and the Green function G, . For
the latter, the reader is referred to the work of Griiter and Widman [27] in the bounded case, while the
existence of the corresponding elliptic measure is an application of the Riesz representation theorem.
The behavior of wy, and G, as well as the relationship between them, depends crucially on the properties
of Q, and assuming that Q is a 1-sided NTA domain satisfying CDC, one can follow the program carried
out in [41]. For a comprehensive treatment of the subject and the proofs, we refer the reader to the
forthcoming monograph [35].

If Q satisfies the CDC, then it follows that all boundary points are Wiener regular, and hence, for a
given f € 6.(0Q) we can define

u(X) = /asz f(z)dw)L((z), whenever X € Q,

and u := f on AL, and obtain that u € WIL’S(Q) N @ (Q) and Lu = 0 in the weak sense in Q. Moreover,
if f € Lip(0Q), then u € W?(Q).

We first define the reverse Holder class and the A, classes with respect to a fixed elliptic measure in
Q. One reason we take this approach is that we do not know whether H"|5q is well-defined since we

do not assume any Ahlfors regularity in Theorem 1.1. Hence, we have to develop these notions in terms
of elliptic measures. To this end, let Q satisfy the CDC, and let Ly and L be two real (nonnecessarily
symmetric) elliptic operators associated with Lou = —div(AoVu) and Lu = — div(AVu), where A and

Ay satisfy equation (3.1). Let w{o and cu)L( be the elliptic measures of Q associated with the operators
Lo and L, respectively, with pole at X € Q. Note that if we further assume that  is connected, then

Harnack’s inequality readily implies that wf < w{ on 0Q for every X,Y € Q. Hence, if w)L(O < ‘”12)

on 4Q for some Xy, Yy € Q, then wf < a)’L'O on 0Q for every X,Y € Q, and thus we can simply write
wr, < wr, on 0Q. In the latter case, we will use the notation

dw)L(
h(-5L, Lo, X) = — (3.2)
da)h)

to denote the Radon—Nikodym derivative of u))L( with respect to w¥ , which is a well-defined function
w’L(O—almost everywhere on 0Q.

Definition 3.1 (Reverse Holder and A, classes). Fix Ag = BoN9IQ, where By = B(xg, rg) with xg € 9Q
and 0 < rp < diam(0€2). Given 1 < p < oo, we say that w;, € RH),(Ag, wy,), provided that w; < wy,
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on Ay, and there exists C > 1 such that

w; ™ (A)

1
X, P X,
(£ nst o X ) < € f hit o xaaol 0 = s
\ s w0 (A)

for every A = BNOQ, where B C B(xg, rg), B = B(x,r) withx € 0Q,0 < r < diam(9dQ). The infimum
of the constants C as above is denoted by [wy |r Hy(Aoswr)-

Similarly, we say that w; € RH, (0L, wy,) provided that for every Ag = A(xo, ro) with xo € 0Q
and 0 < rgp < diam(0Q) one has w;, € RH, (Ao, wy,) uniformly on Ao, that is,

welrm, (00,01,) = SEP[wL]RHp(AO,wLO) < 00,
0

Finally,

As(Bo,wr) = | RHp(Ag,w1,) and  Ac(9Q, w1,) = | ] RH,(0Q, w1,).
p>1 p>1

Definition 3.2 (BMO). Fix Ay = ByN a2, where By = B(xg, rg) withxg € 0Qand 0 < ry < diam(9Q).
We say that f € BMO(Ag, wy) provided f € LIIOC(AO,a))L(AO) and

. X
I tots.on) = sup inf £ 1) =l der, () <

where the sup is taken over all surface balls A = BN9Q, where B C B(xg, rg), B = B(x,r) withx € 02,
0 < r < diam(0Q).

Similarly, we say that f € BMO(9Q, wy) provided that for every Ay = A (xg, ro) with xo € dQ and
0 < ryp < diam(9Q) one has f € BMO(Ay, wy) uniformly on A, that is, f € Llloc((?Q, wy) (that is,
I1f 1allps (09,w%) < for every surface ball A ¢ 9Q and for every X € QQ—albeit with a constant that

may depend on A and X) and satisfies
. X
I onogomsn = supsup int f- 1£06) = el du (3) <
Ao A ceR A

where the sups are taken, respectively, over all surface balls Ag = B(xg,rp) N dQ with xg € dQ and
0 < rp < diam(9Q), and A = BN 9dQ, B = B(x,r) C By withx € 0Q and 0 < r < diam(9Q).

Definition 3.3 (Solvability, CME, S < N). Let Q C R™! 5 > 2, be a 1-sided NTA domain (cf. Def-
inition 2.3) satisfying the CDC (cf. Definition 2.7), and let Lu = — div(AVu) and Lou = — div(AoVu)
be real (nonnecessarily symmetric) elliptic operators.

o Given 1 < p < oo, we say that L is LP (wp,)-solvable if for a given @ > 0 and N > 1 there exists
Cq,n = 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of Lg
and L, @, N and p) such that for every Ay = A(xq, r9) with xg € 9Q,0 < ry < diam(9Q), and for
every f € €(0Q) with supp f € NAy if one sets

u(X) = fa fOdaf), X, (3.4)

then

N ull x5, < Ca,NIIfl (3.5

Xpo -
L”(Ao,wLOO) L"(NA(),wL(?O)
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o We say that L is BMO(wp,)-solvable if there exists C > 1 (depending only on n, the 1-sided NTA
constants, the CDC constant and the ellipticity of Ly and L) such that for every f € €(dQ) N
L*(09Q, wy,) if one takes u as in equation (3.4) and we set ur, o(X) := w)L‘((?Q), X € Q, then

1
Sl;p S};P XA ‘// [V(u— fA,LouL,Q)(X)lzGLo(XA’ X) dX < C||f||]23MO(6S2,wLO)’ (3.6)
Wy (A" 'nQ

where A = BN OQ, A" = B'NOQ, far, = f f dwi?, and the sups are taken, respectively, over

all balls B = B(x,r) withx € 0Q and 0 < r i diam(9Q), and B’ = B(x’,r’) with x’ € 2A and
0 < r’ <rco/4, and ¢ is the corkscrew constant.

o We say that L is BMO(wp,)-solvable in the generalized sense (see [29, Section 5]) if there exists
C > 1 (depending only on n, the 1-sided NTA constants, the CDC constant, and the ellipticity of Lg
and L) such that for every & € (0, 1] there exists o(&) > 0 such that o(g) — 0 as & — 0" in such a
way that for every f € €(0Q) N L*(9Q, wr,) if one takes u as in equation (3.4), then

1 // 2 2 2
sup sup ————— [Vu(X)|°GLy(Xa,, X)dX < C(||f]l w )y TeENIw 80w 1)
P ‘U}L(OAS(A') o Lo ; ( BMO(9Q, wr) L=(6Q, LO))
3.7

where A, = B.N0Q, A’ = B’'N0Q, and the sups are taken, respectively, over all balls B, = B(x, &r)
with x € 0Q and 0 < r < diam(9Q), and B’ = B(x’,r’) withx’ € 2A. and 0 < r’ < erco/4, and cq
is the corkscrew constant.

o We say that L satisfies CME(wy,) if there exists C > 1 (depending only on n, the 1-sided NTA
constants, the CDC constant and the ellipticity of Ly and L) such that for every u € WIL’Cz(Q) NL=(Q)
satisfying Lu = 0 in the weak sense in Q the following estimate holds

supsup%// |Vu(X)|2Gl4)(XA,X) dX < C||u||im(g), (3.8)

B B wp (A) MBne
where A = BN dQ, A’ = B’ N €, and the sups are taken, respectively, over all balls B = B(x,r)
with x € 0Q and 0 < r < diam(9Q), and B’ = B(x’,r”) with x” € 2A and 0 < r’ < rc¢p/4, and ¢ is
the corkscrew constant.

o Given 0 < g < oo, we say that L satisfies S < N in LY(wp,) if, for some given a > 0, there exists
Co = 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of Lg
and L, a and g) such that for every Ag = A(xg, rg) with xg € dQ,0 < r¢ < diam(dQ), and for every
u € WIL’CZ(Q) satisfying Lu = 0 in the weak sense in € the following estimate holds

Syull apy - (3.9

)

< ColNZu
Lq(Ao,wZ)AO) a“ 7 ”

X,

L4 (SAO’wL[)
o We say that any of the previous properties holds for characteristic functions if the corresponding
estimate is valid for all solutions of the form u(X) = w)L( (S), X € Q, with § ¢ 9Q being an arbitrary

Borel set (with § € NAg in the case of L (wp,,)-solvability.)

Remark 3.4. We would like to observe that, when either © and 9Q are both bounded or dQ is unbounded,
the elliptic measure is a probability (that is, ur o(X) = a))L( (0Q) =1 for every X € Q.) Hence, it has
vanishing gradient and one can then remove the term fx 1,1 ¢ in equation (3.6). This means that the
only case on which subtracting fa,r,ur o is relevant is that where Q is unbounded and Q2 is bounded
(e.g., the complementary of a ball.) As a matter of fact, one must subtract that term or a similar one
for equation (3.6) to hold. To see this, take f = 1 € BMO(9Q, wy,,) so that ”f”BMO(BQ,wLO) =0 and
let u = uy g be the associated elliptic measure solution. One can see (cf. [35]) that the function uy g
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is nonconstant (it decays at infinity), hence 0 < u;, o(X) < 1 for every X € Q and |Vuy o| # 0. This
means that the version of equation (3.6) without the term fa r,ur,o cannot hold. Moreover, note that in
this case equation (3.6) is trivial: fa r,ur,0 = ur o and the left-hand side of equation (3.6) vanishes.

Remark 3.5. As just explained in the previous remark, when either Q and 9Q are both bounded or 9Q2 is
unbounded, the left-hand sides of equations (3.6) and (3.7) are the same. As a result, (e) clearly implies
(f)—and (e)’” implies (f)’—upon taking o(&) = 0 (we will see in the course of the proof that these two
implications always hold). Much as before, when Q is unbounded and 92 is bounded, equation (3.7)

needs to incorporate the term o(&)|| f ”im( 00.wr )’ otherwise it would fail for u = uy, g.
> 0

Remark 3.6. In equation (3.6), one can replace fa 1, by fa,r, (see Remark 4.5 below). Also, when Q
is unbounded and d€2 bounded, one can subtract a constant that does not depend on A nor A’. Namely,
let Xo € Q satisfy §(Xq) = diam(0Q) (say, Xo = Xa (xo.r,) With xo € 0Q and ro = diam(0€2).) Then

in equation (3.6) one can replace fa 1, by faq,1, = f f da)i‘)’; see Remark 4.5.
aQ

The following lemmas state some properties of Green functions and elliptic measures. Proofs may
be found in the forthcoming monograph [35]. See also [27] for the properties of the Green function in
bounded domains.

Lemma 3.7. Suppose that Q ¢ R™!, n > 2, is an open set satisfying the CDC. Given a real (nonnec-
essarily symmetric) elliptic operator L = — div(AV), there exist C > 1 (depending only on dimension
and on the ellipticity constant of L) and c¢ > 0 (depending on the above parameters and on 6 € (0, 1))
such that G, the Green function associated with L, satisfies

GrL(X,Y)<C|X-Y|'™, (3.10)

colX =Y < GL(X,Y), if|X-Y|<65(X), 6¢€(0,1); (3.11)
GL(Y) € €(Q\{Y}) and GL(-Y)lpa=0 VY e€Q; (3.12)
GL(X,Y) >0, VX,YeQ, X=#VY, (3.13)
GrL(X,Y)=Gr~(Y,X), VX, YeQ, X=#Y. (3.14)

Moreover, G (-,Y) € W]]O’CZ(Q \{Y}) for any Y € Q and satisfies LG (-,Y) = Oy in the sense of
distributions, that is,

[/QA(X)VXGL(X, Y) - Ve(X)dX = oY), VeeE(Q). (3.15)

In particular, G (-, Y) is a weak solution to LG (-,Y) = 0 in the open set Q\ {Y}.
Finally, the following Riesz formula holds:

// AT(X)VxGr(X,Y) - Vo(X)dX = ¢(Y) —/ pdwt, foraeYeQ,
Q OQ

for every ¢ € €2 (R™),

Remark 3.8. If we also assume that Q is bounded, following [35] we know that the Green function G,
coincides with the one constructed in [27]. Consequently, foreachY € Q and 0 < r < §(Y), there holds

Gr(-Y) e WH(Q\B(Y,r) n W' (Q). (3.16)
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Moreover, for every ¢ € €°(Q) suchthat 0 < ¢ < land ¢ = 1 in B(Y,r) with 0 < r < §(Y), we have
that

(1-@)GL(-Y) € Wy (Q). (3.17)

The following result lists a number of properties which will be used throughout the paper:

Lemma 3.9. Suppose that Q ¢ R™, n > 2, is a I-sided NTA domain satisfying the CDC. Let
Lo = —div(AgV) and L = —div(AV) be two real (nonnecessarily symmetric) elliptic operators. There
exist Cy > 1, p € (0,1) (depending only on dimension, the 1-sided NTA constants, the CDC constant
and the ellipticity of L) and C, > 1 (depending on the same parameters and on the ellipticity of L)
such that for every By = B(xg, ro) with xg € 0Q, 0 < rg < diam(9Q) and Ay = By N IQ we have the
following properties:

(a) w{(Ao) > Cl_lfor everyY € C]‘IBO N Q and w}L(AO (Ag) = Cl_l.
(b) If B= B(x,r)withx € 0Qand A = BNOQ is suchthat2B C By, thenforall X € Q\ By we have that

1
C—w’g(A) <r"GL(X, Xa) < Clwf(A).
1

(©) If X € Q\ 4By, then
a))L((ZA()) < Clw{(Ao).

(d) If B= B(x,r) withx € 0Q and A := B N 0Q is such that B C By, then for every X € Q\ 2x¢By
with kg as in equation (2.16), we have that

1 x wX(A) X
oL (B) < = < Gl M (A)
1 L (AO)
Asa consequence,
X
1 1 dw,™ 1
=G , for w¥-a.e.y € Ay.
CiwX(Ag) = dw¥ wX(Ao) L

(e) Forevery X € BoN Q and for any j > 1

dwy 5(X)\" .
L (y)SCl( ( )) , for w¥-a.e.y € dQ\ 2/ Ag.
dw. P 2/ro
L

) If0<uc WIL’CQ (Bo N Q) NE(By N Q) satisfies Lu = 0 in the weak-sense in By N Q and u = 0 in
A then

0
u(X) < C ( X )) u(Xa,),  forX e iBynQ.
Remark 3.10. We note that from (d) in the previous result and Harnack’s inequality one can easily see

that given Q, Q’, Q" € D(9Q)

XQ//

@ o
)

(0), whenever Q c Q' c Q”. (3.18)

XQ//
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Also, (d), Harnack’s inequality and equation (2.6) give

XQ/
de 1 Xor
y) = , for w;?"-a.e. y € Q', whenever Q' c Q"' (3.19)
deQ// wXQ// (Q,)
L L

. Xor Xor
Observe that since w; %" < w,°

Radon—Nikodym derivative.

we can easily get an analogous inequality for the reciprocal of the

Remark 3.11. It is not hard to see that if w; < wy,, then Lemma 3.9 gives the following:

wr € RH,(0Q,wr,) & sup h(-5 L, Lo, XA (x,r)]l

Xpery . < 00, (3.20)
x€8Q,0<r <diam (6Q) LP(A(x,r) 0y 7))

The left-to-right implication follows at once from equation (3.3) by taking B = By (hence, A = Ap) and
Lemma 3.9 part (a). For the converse, fix By = B(xg, rg) and B = B(x,r) with B C By, x9,x € 9L and
0 < rg,r < diam(9Q). Write Ag = ByNndQ and A = BN Q. If r ~ ry, we have by Lemma 3.9 part (a),
1
h(y:L.Lo. Xa)Pdw* )| 5 G L Lo Xa)ll
A > ’ (B A() LO ~ ’ ’ (B A(] Lr (AO,(L)LOAO)
w; (D)
~ ||h(-;L, Lo, X £
IG5 X))
Loy

On the other hand, if r < rp, we have by Lemma 3.9 part (d) and the fact that w; < wy,, that

XA Xa X, XA XA
dw;™  dw," dwy? dw w7 (A
h(-;L, Lo, Xa,) = —=— = —E& L Lo zh(-;L,LO,XA)L—(), wr,-ae. in A,
0 X0 do®® do’s 5 Xag Xa,
deO wp awp da)lﬂ wr, (A)

This and Lemma 3.9 part (d) give

1
X, P
( f O Lo Lo, Xag) Py () = KL Lo, Xag)l )
A * Ly

w, " (8)

~ ||h(-; L, Lo, Xa)|| —_—.
Wyt (A)

LP(A,wp2)
Thus, equation (3.3) holds and the right-to-left implication holds.

Remark 3.12. It is not difficult to see that under the assumptions of Lemma 3.9 one has
I oo = sup int f 1700) el dusf ()
AcQCER S A

where the sup is taken over all surface balls A = B(x,r) N dQ with x € dQ and 0 < r < diam(9Q).
Thus, we could have taken this as the definition of f € BMO(0Q, wr ).

Remark 3.13. Under the assumptions of Lemma 3.9, for every Ag as above if f € BMO(Ap, wr),
then John—Nirenberg’s inequality holds locally in Ay and the implicit constants depend on the doubling

property of w}L(AO in 2A¢. Thus, if one further assumes that f € BMO(9Q, wy ), then forevery 1 < ¢ < oo
there holds

1

. X q
I Mosioronn) = supsup inf £, 170 = el do ()" <o, (21
o A A
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where the sups are taken, respectively, over all surface balls Ag = B(xg, o) N dQ with xo € dQ and
0 < rg < diam(9Q), and A = BN 9Q, B = B(x,r) C By withx € dQ and 0 < r < diam(dQ2). Note
that the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC constant,
the ellipticity of L and g.

4. Proof of Theorem 1.1

We first observe that if the equivalence (a),» <= (b), holds for each p € (1, o), then (a) < (b).
Also, since Jensen’s inequality readily gives that w; € RH,/(0Q, wy,) implies w; € RH, (02, wy,)
forall g > p, the equivalence (a) ,y < (b), yields (b), = (b),, forall ¢ > p.Finally, (b), = (b);,
clearly implies (b) = (b)’. With all these in mind, we will follow the scheme

(@), = (b),=(b),, ®)'=@, (@= @)= W)= (a),
=" (@=0=(0©" (= = ("= (),
(@@=, @@=, @=()"

Before proving all these implications we present some auxiliary results:

Lemma4.1. Let Q ¢ R"™! n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let Lu = — div(AVu) and Lou = —div(AgVu) be real (nonnecessarily symmetric)
elliptic operators. There exists p € (0, 1) (depending only on dimension, the 1-sided NTA constants,
the CDC constant and the ellipticity of L) and Cy > 1 (depending on the same parameters and on the
ellipticity of L) such that the following holds: If A = B N 0Q and A’ = B’ N dQ, where B = B(x,r)
with x € 3Q and 0 < r < diam(9Q), and B’ = B(x',r’) withx’ € 2A and 0 < r’ < rco/4, where ¢ is
the corkscrew constant, and up o(X) = a))L((GQ), X € Q, then

’

—l 2 r 2p
(A);i? (A’) ‘ﬂB’mQ |VML,Q(X)| GLO(XA, X) dX < Cl(d]am—(am) . (41)

Proof. Fix B = B(x,r) with x € 0Q and 0 < r < diam(dQ) and B’ = B(x’,r’) with x’ € 2A and
0<r <rco/4.Let A=BNoQ, A" =B NoQ.

We note that when either Q2 is unbounded or dQ and Q are both bounded then the elliptic measure
is a probability; hence, u; o = 1 and the desired estimate is trivial. This means that we may assume
that € is bounded and Q is unbounded (e.g., the complement of a closed ball). In that scenario, u;, o
decays at o, 0 < ur o < 1in Q, and uz olog = 1. Define v := 1 — uy, o, and note that our assumptions
guarantee that v € WIIO’CZ(Q) NE(Q) with 0 < v < 1 and v|gq = 0. By Lemma 3.9 part (f) applied in
B(x’,diam(9€Q)/2) we have

0(X)

6(X) \»
X eB NnQ.
diam(9Q) ) ’ ©

0<v(X) < ( diam(0Q)

P
) V(XA (v diam(8Q)/2)) < (

Set Wp :={l € W : IN B’ # @}, and pick Z; gr € I N B’ for I € Wg:. Caccioppoli’s and Harnack’s
inequalities and the previous estimate yield

(1) )29

//IWV(X)IZdX < 6™ //1 VOO%AX < 6" (2 ) 5 0" (G s
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Thus, Lemma 3.9 gives

//Bva(X)IZGLO(XA,X) axs ) wfﬁ(Ql)f(l)l‘"//lIVv(X)lde

1eWy
N (1) 2p
s Ie;,;/ wfﬂ (Ql)(diam(BQ))

27k 2
s Z (diam(ag)) 2. i@,

k:2- IeWpg: :0(1)=2"%

where Q; € D(9Q) is so that £(Qy) = £(I) and contains y; € JQ such that dist(7, Q) = dist(yy, I). It
is easy to see that if 2% < r, then the family {Q;} €W, e(1)=2-+ has bounded overlap uniformly on k
and also that Q; c CA’ for every I € Wgs, where C is some harmless dimensional constant. Hence,

’

27k 2 r 20
2 XA ’ XA ’
//mwv(xn Gry(Xa, X)dX < m; /(—diam(aﬂ)) W (CA) 5 (—diam(ag)) W (),

This gives the desired estimate. O

Given Q¢ € D(0Q), ¢ € N, for every n € (0, 1), we define the modified nontangential cone

) o 9 9 o 9

Ty ()= U ub e U= U Uy (4.2)
Qebg, Q'eDo
05x €Q)>E(Q)

It is not hard to see that the sets {Ug - }QEDQO have bounded overlap with constant depending on 7.

The following result was obtained in [9, Lemma 3.10] (for 8 > 0) and in [7, Lemma 3.30] (for 8 = 0),
both in the context of 1-sided CAD, extending [43, Lemma 2.6] and [42, Lemma 2.3]. It is not hard to
see that the proof works with no changes in our setting:

Lemma 4.2. Let Q ¢ R n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7), and let Lu = — div(AVu) be a real (nonnecessarily symmetric) elliptic operator. There
exist 0 < n <« 1 (depending only on the dimension, the 1-sided NTA constants, the CDC constant, and
the ellipticity of L), and By € (0, 1), Cy; > 1 both depending on the same parameters and additionally
on n such that, for every Qo € D(dQ), for every 0 < B < Bo and for every Borel set F C Qy
satisfying wa(’ (F) < ,Bwa“ (Qo), there exists a Borel set S C Qg such that the bounded weak solution
u(X) = wf (S), X € Q, satisfies

83 ux) = (// Vu()Psr)ay) = C;'(log(B)?,  VxeF. (43)
Qo 77

Furthermore, in the case 8 = 0, that is, when w}L(Q" (F) = 0, there exists a Borel set S C Qq such that
the bounded weak solution u(X) = w)L‘ (S), X € Q, satisfies

Q() 7Iu()c) = Vx €eF. 4.4)
Lemma 4.3. Let Q ¢ R™!, n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf-
Definition 2.7), and let Lu = —div(AVu) and Lou = —div(AgVu) be real (nonnecessarily symmetric)

elliptic operators. There exists C > 1 (depending only on the dimension, the 1-sided NTA constants,
the CDC constant and the ellipticity of L and L) such that the following holds. Given B = B(x,r) with
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x €0Qand 0 < r < diam(0Q), and B’ = B(x',r’") withx’ € 2A and 0 < r’ < rcg/4, let A = BN 0Q,
A’ =B’ NI, foreveryu € WI’Z(Q) N L=(Q) satisfying Lu = 0 in the weak sense in &, we have

loc

1
e [ ITuC0RGL (X0 00 ax
wlﬂ(A’) B'NQ

<C / Szcrf’u(y)zdwﬁg” (y) + C sup{|u(Y)| : Y € 2B’,6(Y) > r'/C}>.
277

Proof. Fix B, B’, A, A’ and u as in the statement. Define Wy := {I € W : I N B’ # @} and Wg{ =
{I e Wpr : £(I) <r'/M} for M > 1 large enough to be taken. For each I € Wpg/, pick Z; € I N B’ and
Q; € D(6RQ) so that £(Q;) = €(I) and contains y; € dQ such that dist(I, 0Q) = dist(y;,I). If z € Q;
and I € W then
|z —x'| < |z =yr| +dist(yy,I) + diam(I) + |Z; — x| < Cot (D) +7" < (1 + C,)/M)r" < 2r',
provided M > C,. Hence, Q; C 2A’ for every I € Wg,’ . Write F for the collection of maximal cubes
in {Q1};eyym, with respect to the inclusion (maximal cubes exist since Q; C 2A’ for every I € Wg’f J)
B/

Hence, Q; c Q for some Q € F. Let 4 = 9y and by construction I € ng C W’Q?I* (see Section 2.3.)
Hence, forevery y € Q € F

J 1< U ubc U ub=rim.

1eWp:yeQ €Dy T1eWwpl:yeQ €Dy yeQ'eDg
This gives

zi= Y alien [[mueor s ax

1ewy

-3 Y wlen [[Imueopsaotrax

QeF Iewg”,:QI eDo

-y /Q D //, Vu(X)[26(X)'"dX dwf (7)

QeF IEWII;’{:yEQIEDQ

< Z Lﬂ_g(y) |Vu(X)|26(X)1_ndde)L(§(y)

QeF
:(;T/ngu(y)%wfg(y).
€

To continue, lety € Q € F and X € Fg(y). Then X € I* with I € Wg;* and y € Q' € Dg. Thus,
|X — y| < diam(I*) + dist(, Q") + diam(Q") <9 (1) = 6(X) s r'/M,

where we have used equation (2.15), and the last estimate holds since ¢(I) < r’/M for every I € Wg’f .
This shows that taking M large enough X € F;r/,(y) for some @’ = a’(1#). Note also that 2" < rcg/2 <
diam(0€), and we can now conclude that

ms Y [ spuraliors [ sgur oo s ot @) [ sgum?dol o,
serdo 2 2

where we have used Lemma 3.9.
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Now, we note that for each I € Wy \ Wg’{ we have £(Qy) = €(I) ~p 1’; hence, for every Y € I*
we have

r’<m 6(Y) <Y =Zi|+6(Z;) < diam(I*) +6(Z;) < dist(1,0Q) +6(Z;) <26(Zy) <2|Z; —x'| < 2r'.
Also,
|y; — x'| + dist(yy, I) + diam(1I) + |Z; — x’| < dist(1,0Q) +|Z; — x| < 2|Z; —x'| < 2r".

Thus, Lemma 3.9 implies that wiﬁ Q1) =m wfﬁ (A’). As a consequence of this, we get

nim Y o [[Imueorscoax

1eWp\WH

sty Y an [[ivuopax
1eWp \WH

<o) S e //I*|u<x>|2dx
1eWp \WH

< W) (A #(We \ Wy!) sup{|u(Y)| : Y € 2B',6(Y) 2 ' /C}?
Su Wl (A sup{lu(Y)| - ¥ € 2B,6(¥) > r'/CY2,

where we have used that Wg' \ Wg{ has bounded cardinality depending on n and M.
To complete the proof, we use Lemma 3.9 and the estimates proved for X; and X;:

//Bmlv”(x)'zch’(“’x)d“ 2 //, Vu(X)2G 1, (Xa. X) dX

I1eWp
< 3y wlen [[1vueorscomax
1eWy 1
=21 +2

< wp? (A’)( /m Sstu(y)* dw)™ (y) +sup{|u(Y)| : ¥ € 2B',6(Y) 2 r'/C}2).

This completes the proof. O

For the following result, we need to introduce some notation:

1
2
A%F(x) = (// |F(Y)|2dY) ,  x€dQ 0<r<co,a>0,
7 (x)

forany F € L2 (Q N B(x,r)).

loc
Lemma 4.4. Let Q ¢ R™!', n > 2, be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7), and let Lou = — div(AgVu) be a real (nonnecessarily symmetric) elliptic operator.
Given 0 < g < 00, 0 < @, @’ < oo, there exists C > 1 (depending only on dimension, the 1-sided NTA
constants, the CDC constant, the ellipticity of Lo, q, @ and @’) such that the following holds. Given
B = B(x,r) withx € 0Q and 0 < r < diam(dQ), let A = B N 9K, for every F € L?_(Q) there holds

loc

Fel?

AZF]| < Cl|ALF| Z (QN6B), (4.5)

Lq(A,wfoA) Lq(3A,wng)’
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and

INF|| < CINXF| F € €(QN8B). (4.6)

Lq(A,wfoA) La (4A,wf§A)’

Proof. We start with equation (4.5) and borrow some ideas from [46, Proposition 3.2]. We may assume

that @ > «’, otherwise the desired estimate follows trivially. Let v € A, (9Q, wy,). By the classical
theory of weights (cf. [11, 25]), we can find p € (1, co) such for every A as in the statement we have

— — X 1-p" 7. Xa p-l
Co: S‘XP[V]A,,(A,wLO) : sgp sz/p ( fA, v(x) dwlﬂ (x))(fAl v(x) deO (x)) < o0,

where the sups are taken over all A’ = B’ N 9dQ with B ¢ 5B, B = B(x',r’),x’ € 0Q,0 < r’ <
diam(9€Q) and where Cy depends on [v] Aw(9Q,01,)- NOte that for any such A’ and for any Borel set
F c A’ we have, by Holder’s inequality,

(%)p - (f le‘”fﬁ)p = (f 1pv7 v‘%dwfs)p
< (ﬁ, lpvdwﬁg)(f,vlfp'dwfs)p—l

-1 / vahu‘)L(A
<G f 1 vdeA) f vdeA) S 4y
( ’ F LO ( ’ LO /‘A/de)z[?

Lety € A and X € T'*(y), and pick X so that |X — X| = §(X). Then one can easily see that
X €2B, 6(X) <r, yeA(® min{(3+a)5(X),2r}) = A, B:=B(%,min{(3+a)5(X),2r}) C 5B.

Then, by equation (4.7) and Lemma 3.9, we get

/ d Xa < C ( i(4?(F'))I7'/' d X < C / d Xa
vaw < (p — vdw Sa,a, o [ vadw;,
~A~ Ly i?(A) E Ly a,a’,p A Ly

where A = A(x, min{a’, 1}6(X)). Moreover, if X € 2B with§(X) <randy € A, one can easily show
that

ly —x| <3r, |X-y|<min{l+a’,2}6(X).

If we now combine the previous estimates, then we conclude that

a 2 _ 2 XA
AT, g = L IFOOP aX v dee )
</l FOOP ([ v doift )ax
2BN{5(X)<r)} A
S Co ] FOOP ([ v dorfs () ax
2BN{6(X)<r} A

2 X,
<cof [, Foorarim o)

= G|l AL F|? .
ollA3, ”L2(3A,vdw)L(0A)
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We can now extrapolate (locally in 3A) as in [12, Corollary 3.15] to conclude that

IAZF|| o IALF|

<
Lq(A,vdwz‘OA) Sa, L‘(3A,vdwf$)’

The desired estimate follows at once by taking v = 1 which clearly belongs to A (0, wp,).
Let us next consider equation (4.6). First, introduce

Mﬁ,Loh(z) = sup f |h|dw’g§= sup f |h|14Adw§f§, z€A.
A(z,s) A(z,s)

0<s<3r O<s<3r

We proceed as in [38, Proposition 2.2] and write for any 4 > 0 and 8 > 0
E(B,r,2) :={y €0Q: NrﬁF(y) > A}.

Lety € E(a,r,)NA. Hence, there is X € I'*(y) with |F(X)| > A. Pickx € dQ so that | X —x| = §(X).
Note that

A = A, min{l,a’}5(X)) € A := A(y,min{(2+a +2)6(X),3r}) and A C2A.
One can easily see that if 7 € Z then X € Fé’rl (z). Hence,
AC E(a’,3r,)NA
and
wifg(E(anr,/l) NnA) N wfg(Z)

XA (X =  Xa/X
ng(A) st(A)

MlAuLO 15 3r0 () 2 >Y=Ya.an

where in the last estimate we have used that
W) (R) < w2 (AF min{(4 + 20 +a")6(X), 57})) Sa.ar 02 (D).
We have then shown that
E(a,r, ))NAcC{yeA: Mﬁ,LO g 3,0 () > v}
and by the Hardy-Littlewood maximal inequality, we get
Wt (E(@,r, ) NA) <> ({y € At Mo, Tea3r.0 () > 7))
< W (E(',3r,0) N4A) S wy (E(a’,4r,2) N4A).

This readily implies equation (4.6). O

4.1. Proof of (), = (b),

Fix @ > 0and N > 1. Take Ag = A(xg,r9) with xo € 9Q and 0 < rg < diam(9Q), and fix
f € €(0Q) with supp f € NAg. We may assume that Nro < 4 diam(9€2); otherwise, 0L is bounded
and 4 diam(0Q)/N < ro < diam(dQ) and we can work with N’ = 2diam(dQ)/ro € (2, N/2] and
N'Ay = 0Q.

Let u be the associated elliptic measure L-solution as in equation (3.4). Assume w;, € RH, (0Q, wy,),
and our goal is to obtain that equation (3.5) holds. By Gehring’s lemma [26] (see also [11]), there exists
s > 1 such that wy, € RH (09, wy,).
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Introduce the family of pairwise disjoint cubes
Fro :={0 €D(0Q) : (N +3E)rg < £(Q) <2(N +3E)ro, Q N3EA( # O}
Take x € Ag and X € I (x). Let Ix € W be such that X € Ix. Take yx € dQ such that dist(/x, 9Q) =
dist(Ix, yx), and let OQx € D be the unique dyadic cube satisfying £(Qx) = €(Ix) and yx € QOx.

By construction (see Section 2.3), Ix € ng* and thus I* c T'p, (yx). Thus, by the properties of the
Whitney cubes

6(X) < |X —yx| < diam(Ix) +dist(Ix, yx) < %dist(lx,aﬂ) < Zé(X)
and
40(Qx) =4L(Ix) < dist(Ix,0Q) < 6(X) < f—ldist(lx,ﬁﬂ) <50Vn+1€(Ix) =50Vn + 1£(Q0x).

These and the fact that X € I';7 (x) give

1 1 1
£(0x) < Z(S(X) < ZlX—x| < Zr().
Also, for every z € Ox
- 9 - -
|z —xo0l < lz—yx|+|yx = X|+|X —x[ +[x —xo] <2E€(Qx) + ZIX—XI +ro < (E+4)ro < 3Er,
since 2 > 2, and
|z —x] < |z —yx|+|yx = X|+ X —x[ <2E0(Qx) + B+ @)d(X) < 2E+@)d(X) =: Cad(X)

since X € [ (x). Thus, Ox C 32A0 N A(x,Co6(X)) and there exists a unique Ox € Fa, such that
Ox € O0x.In particular, X € Ix c Ug, C Féx (y) forall y € Qx and

lu(X)| < /\féxu(y), forall y € Ox.

X
Taking the average over Qx with respect to w’,"°, we arrive at

(X1 < _fQ Ng, u() d‘“fs(’(y) Sf sup Nou(y) du)fs(’(y)

Ox Q€Fy,

X, X,
< f sup Nou( dw, () < sp £ sup Nou(y) dwy' ().
A(x,Ca8(X)) QEFa, 0<r<Carg J A(x,r) Q€Fp,

where in the last inequality we have used that 6(X) < [X —x| < rg since I';f (x) € B(x, o). Taking now

the supremum over all X € I';f (x), we arrive at

Nou(x) S sup f sup Nou(y) dwaO ), for all x € Ag.
0<r<Cqro J A(x,r) QeFa, 0

Applying the Hardy-Littlewood maximal inequality and the fact that the set /A, has bounded cardinality,
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we have
XA
Il rOu”LI’A XAg Sa sup f sup NQu(y)da) O(y)
(Ao, °) 0<r<Cqro J A(-,r) QeFa, LP(AO,waAO)
S” sup Nou Xa S sup [INoull X AN sup |INoull . (48)
) ¢ LP(AO’wa?O) QEFy, et LP(AO"”LOAO) QEFy, © LP(Q,ijo)

where we have used that for every Q € F,, we have supp(Nou) C Q.
Let us also observe that for every Q € F, we can pick yg € QN3EA( so thatif z € NA( there holds

|z —x0| < |z —=x0| + |x0 — Yol + |yo —x0| < (N +3E)rg + Erg < 2Erg.

That is, NAy C 2A 0, and we are now ready to invoke [1, Proposition 2.57] to see that

Nouw s sw £ If0Idw}o0). e Q. (49)
0<rA<4:rQ
To continue let x € Q € Fj,, and let A be a surface ball such that x€Aand 0 < rp < 4Z8rg. In

particular, A ¢ CyAp = Ao and 0 c Ag. Note that a)z? XN w L by Harnack’s inequality and the
fact that 5(XA0) X 19, 6(XZ()) ~n ro and |Xp, — XKO| <N Fo.
- X:
Recall that w; € RH (0, wy,) implies wy € RHps(Ap, w Lso) (uniformly). Therefore, using
Holder’s inequality and recalling that A (-; L, Lo, X) denotes the Radon—Nikodym derivative of w’L( with

respect to “’14)’ we get
X, L X~
fi'f (WMl de, ™ () N X‘i f |FOIA(; L, Lo, X5,) dwy (3)
L (B)
X~
(A)Lso (A) p's X‘A'O pL'v (p'sy XZO (P,li‘),
S fh(y;L,Lo,Xg(g dw, 2" (y) f FOIP™ dar, ™ ()
w, 0 (A) VA A
Xz o
wr,* (D) X3, ey 5 @S
S e f 0L Lo X5 ) de P O)| f ISP dep ()
Ag
wy " (A)

1
b X U
( TGS deg‘%y)) .

This, equation (4.9) and equation (4.8) yield

P
;N X (p’s)’ X3
I ull” x. SanN Sup [ sup IFDIPS" dw, ™ () dw, *(x)
LP (Agyw, -0) QeFa, JAo Asx A 0 0
Lo 0 O<ra<42ro
|f(x)|pdeA° (x) =N ||f||p P
A() Ao w 00)

where we have used the boundedness of the local Hardy-Littlewood maximal function in the second

term on L Wy (KO, w LO") which follows from p > (p’s)” and the fact that w % is doubling in 10A,.
This completes the proof of (b),,. O
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4.2. Proof of (b), = (a),

Fix p € (1, o0), and assume that L is L” (wy,)-solvable. That is, for some fixed &g and some N > 1, there
exists Cqy,n 2> 1 (depending only on n, the 1-sided NTA constants, the CDC constant, the ellipticity of
Lo and L, ag, N and p) such that equation (3.5) holds for u as in equation (3.4) for any f € € (9Q) with

supp f C NAy. From this and equation (4.6), we conclude that we can assume that @ > ¢ I'— 1, where
co is the corkscrew constant (cf. Definition 2.1), and we have
ao
” r() ”LP(AO XAO) ~af ap HN4I’O ||L'”(4A0 X’4A0) a() N”f”LP(NAo,a))L((?O)’ (410)

for u as in equation (3.4) with f € €(9Q) with supp f € NAg and for any Ay = A (xg, ro), Xxo € 0Q
and 0 < rg < diam(9€Q)/4. It is routine to see this estimate also holds with rg ~ diam(d€Q). Indeed,
by splitting f into its positive and negative parts we may assume that f > 0. In that case, if x € 9Q
and X e [T () \ 'S 0Q)/5 (x), we have that §(X) ~ diam(9Q), and by equation (2.22), one has that
X" 1= XA (x.diam(69)/5) € I'§; diam(69) /5 (x). Harnack’s inequality implies then that u(X) ~ u(X’), and this
shows that ./\/r‘(fu(x) s N2 diam(5Q) /Su(x) Further details are left to the interested reader.

We claim that, for every Ao = A (xg, 70), X9 € 0Qand 0 < ro < diam(9Q), and for every f € €(9Q)
with supp f € NAg

| [ rorao o <ax i1l @1

Lp(NAO,waAO)'
To see this, let u be the L-solution with datum |f| (see equation (3.4)). Write Xy := X, and fo =
X(2+a)- 1ag: Note that §(Xy) =~ ro, 6(Xp) =4 ro, and | Xy — Xo| < 2rp. Hence, Harnack’s inequality
yields u(Xo) ~a u(Xo). The choice of guarantees that Xo € F(2+ - ( 0) C I3 (x0); see equation
(2.22). Let xo € 9L so that 6(X0) = |Xo — Xg|. Clearly, for every z € A(xo, a8(Xo)),

R =l < 1% = Tol + fo — <l < (1 +@6(%e) < 3o < o,
thus X € 7 (z) and

N2u(z) 2 u(Xo) ~q u(Xo),  forevery z € A(%o, ad(Xo)).
Note also that if z € A (%), @5(Xy)), then

|z = xo] < |z = %ol + [¥o — Xol + |Xo — xo| < (@ +1)5(Xo) + |Xo — xo| < (@ +2)|Xo — x0| < ro,

hence A (Xy, a6(Xo)) C Ao. Additionally, if z € Ag, then

- = = = = = 2
|z = Xo| < |z —xo| + |x0 — Xo| + | Xo — Xo| < ro + |xo — Xo| + 6(Xo) < ro+2|x0 — Xo| < (l+ 2+a)l’0 < 2ry,

and this shows that Ay C A (X, 2rg). This together with Lemma 3.9 gives
1S W) (Ag) < Wy (A(R0,2r0)) Sa @ (Ao, @ coro/(2+@))) < wp(AFo, 5(Xp)))
and the previous estimates readily give equation (4.11):

| [ 1 )] < uxo) <o u(Fwl 4G 06K

” M”LP(A wXO) ~L¥N ||f||L”(NA() w; )
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To proceed, we fix Ag = A(xg,rp), Xxo € Q and 0 < ry < diam(9Q)/2. Let F C A( be a Borel set.

. XA Xon .
Since w, " and w, ° are Borel regular, for each & > 0, there exist a compact set K and an open set U

such thatOK cFcUc2Apand

W (UNK) +w, " (U\K) < &. (4.12)

Using Urysohn’s lemma, we can construct fr € €.(0Q) such that 1x < fr < 1y. Then, by equation
(4.11) (applied with 2A) and equation (4.12) yield

a)fM“(F) <e +wf2A° (K) <e+ /09 fr(2) d(ufmo(z)

Xon 1 Xon 1
< 8+CQ’N||fF||LP(A 200, Se+Canwy " (U)r <e+Con(w; " (F)+&)r.
0“1,

X X 1 X X
Letting &€ — 0+, we obtain that wLZA" (F) Sa.N wL(Z)A”(F)P. Hence, w, 0 < a)LjA" in Ag. By

L
Harnack’s inequality and the fact that we can cover 0Q with surface balls like Ay we conclude that

X
WL < wr, in 0Q. We can write h(-; L, Lo, X) = 5:’%0 € Llloc(é)Q, wfo) which is well-defined w)Lfo-a.e.

in Q. Thus, for every f € € (0Q) with supp f C 2A(, we obtain from equation (4.11)

| [ rornoiLate s dop )] =| [ 701 d0)™ 0] o 17
2A¢ 2A0

Lr (ZA(),waAO ) '
Using the ideas in [2, Lemma 3.23] and with the help of [2, Lemma 3.14], we can then conclude that

h(-;L,Ly, X < 1.
[IA( 0 2A0)||Lp,(A0’wf§A(,) a.N

This, Harnack’s inequality and the fact that Ay = A (xp, rg) with xgp € dQ and 0 < ry < diam(9Q)/2
arbitrary easily yield that

lh(-; L, Lo, XA(’C”))“LP/(A(x,r),wzf(”)) Sa.n 1, for every x € dQ and 0 < r < diam(9Q).
This and Remark 3.11 readily imply that w; € RH,/ (0L, wy,), and the proof is complete. O

4.3. Proof of (b), = (b)),
Assume that L is L? (wp,,)-solvable with p € (1, 0). Fix @ > 0, N > 1, a surface ball A and a Borel

X, X,
set S € NAy. Take an arbitrary & > 0, and since w %0 and w LAO are Borel regular, we can find a closed
set F and an open set U such that F ¢ S c U c (N + 1)A¢ and

W (U\F) + 0, (U\ F) <.
Using Urysohn’s lemma, we can then construct f € €.(9Q) such that 1s < f < 1. Set

u(X) = a))L((S), v(X) ::/ f) da);f(y), X e Q.
0Q

For every M > cal, define the truncated cone and truncated nontangential maximal function

Loy () =T x)N{X € Q:6(X) 2ro/M}, N;”Mu(x) = sup |u(X)], x € 0Q.

"
XEF}%YM (x)
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Note thatifx € Agand X € I' a (), thenrg/M < 6(X) < ro,coro < 6(Xa,) < roand | X—Xp,| < 2ro.
Hence, by the Harnack chain condition and Harnack’s inequality, there is a constant Cy,; depending on
M such that

WX (U\F) £ Cy 0, (U\F) < Cy &,

and
0 <u(X) :wf(S) < CMs+w§(F) < CM8+/ f(y)da);f(y) =Cpy e +v(X).
oQ

Thus

N pu(x) < Cuy e+ Nygv(x), Vx € Ap.
Note that our assumption is that L” (wy,,)-solvability holds with the fixed parameters @ > O and N > 1,
but since we already know that (a) &= (b), it follows that the L” (w,,)-solvability holds with @ > 0
and N + 1. Thus, the fact that f € €.(9Q) with supp f c U C (N + 1)A( gives

Il xay < Crew) 0 (Ag)¥ + [NV xa < Crre+Canllfll %5
m LP (Mg.wp ) Lo 0L (Agw, ) T ’ LP ((N+D)Ag,w;,0)
1
<CM£+CQNQ) U(U)l’ < CM8+CQ N(a)L O(S) +8)” = CM<9+Ca,1\](||15”17 X, +8)7’.

LP(NAo,wp 0)

+ a 3 o7
We let & — 0" and obtain ||N M ||Lp(A so) < CQ’NHIS”LP(NAO,w)L(OAO)' Since Nro’Mu(x) /
/\/'r‘(fu(x) for every x € 9Q as M — oo, we conclude the desired estimate by simply applying the
monotone convergence theorem. m]

4.4. Proof of (b)) = (a)

Fix p € (1, ), and assume that L is L” (wg,)-solvable for characteristic functions. That is for some
a > 0 and some N > 1 there exists Co,;y > 1 (depending only on n, the 1-sided NTA constants, the
CDC constant, the ellipticity of Ly and L, @, N and p) such that equation (3.5) holds for « as in equation
(3.4) for any f = 15 with S being a Borel set § € NAy.

Take an arbitrary Ay = A(xg,rg), X0 € 9Q and 0 < ry < diam(9Q). We follow the proof of
(b), = (a), and observe that the same argument we used to obtain equation (4.11) easily gives,
taking f = 1g with S being a Borel set S ¢ NAy, that

_ Xag s d
LI’(Ao,wz)AO =wp, (S)7. (4.13)

X,
WX (5) = /A 15(y) do ™ () San 15l )
0

This readily implies that a) ) < u)X in A, and since Ay is arbitrary, we conclude that w;, < wy, in
0Q. To proceed, fix By = B(xo, ro) andB B(x,r) with B C By, xg,x € 3Qand 0 < ry, r < diam(9Q).
Write Ag = BoNdQ and A = BN JQ. Let S € A be an arbitrary Borel set. If r ~ ry, we have by
Harnack’s inequality and Lemma 3.9 part (a)

W (S) w0 (S)
w0 (A) @t (A)

M)\ L @ 0(S)
) s ()

X X L
~ wL (S) Sa/,N wL() (S)P ~ X
( Lo (A) sto (A)
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where in the third estimate we have used equation (4.13) with A in place of Ag. On the other hand, if
r < rog we have by Lemma 3.9 part (d) that w; < wp, with

XAO

L )\ %
o)

wL (S

L S 0Y(S) San WP ()T ~
W (8)

where again we have used equation (4.13) with A in place of Ag in the middle estimate. In short, we
have proved that

X,
W, (9) ONOLY:
—~—— S (T) , for any Borel set S C A.
Y wr,' (A)

Using the fact that the implicit constants do not depend on A (nor on Ag) and Lemma 3.9 part (c), this

readily implies that w)L(AO € RH; (Ao, wfso) for some g € (1, o), where ¢ and the implicit constants do
not depend on A, see [11, 25]. Hence, we readily conclude that w; € RH, (0L, wy,) (see Definition
3.1). This completes the proof of the present implication. O

4.5. Proof of (a) = (d)

Assume that w; € A, (0L, wr,). By the classical theory of weights (cf. [11, 25]) and Lemma 3.9 part
(c), it is not hard to see that wy, € Aw(9Q, wr), hence wy, € RH, (02, wr) for some 1 < p < 0. In
particular for every Qg € D(9Q) and Q € Dg,, by Lemma 3.9 part (c) we have

1 QO
(f (i Lo, L. Xo,)"dor, (”)p = Cf h(y; Lo, L, Xg,)dw,® () = c—?; @
¢ Yo )

Thus, for F C Q we obtain, by Holder’s inequality,

WX 20 (F) 20
i;,(Q) fQ 1r(0)dw, 2 (y) = XQO( ) LI Lo, L Xo o, ()
wLO Lo
Xo, 1, X0 € X0, €
< L= (Q)(fQh(y;Lo,L,XQO>”dwa°<y>)”(wL—(F))p' < (L)

X X X
w2 (Q) w; % (Q) w; % (Q)

To continue, we need a dyadic version of equation (3.9): for every Q¢ € D(9€), and for every 9 > ¥y,
we claim that

155,11, g, X0, < CalNG,ul 0<q<oo. @.15)

L9(Qo.wp, L4(Qo,w LO 0y’

This estimate can be proved following the argument in [, Section 4.2] with the following changes.
Recall [1, (4.5)] (here we note that in [1, Section 4.2] our parameter ¢ is implicit)

0
QO({x €0, :Sg;kou(x) > B4, Ngou(x) < y/l}) < (%) waO(Qj), (4.16)
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where 4, B, v, 6 > 0, Q; is some dyadic cube (see [1, Section 4.2]), Sgﬁk(’u is a truncated localized
N J
dyadic conical square function with respect to the cones

9,ko — 9
o) = U U,
xeQ’'eDgp
£(Q') =270 £(Qo)

and k¢ is large enough (eventually ky — o0). It should be noted that the implicit constant in the
inequality equation (4.16) does not depend on ky. Combining equation (4.16) with equation (4.14), we
easily arrive at

o

wff—o({x €Q0;: Sg}kou(x) > B4, Ngou(x) < )//l}) < (Z)p

5 W2 (Q)). 4.17)

From this, we can derive [1, (4.3)] with w)L(OQO in place of w)L(QO and a typical good-A argument much as
in [1, Section 4.2] readily leads to equation (4.15).

With equation (4.15) at our disposal, we can then proceed to obtain equation (3.9). Fix Ag = A(xo, 1)
with xg € 0Q,0 < ryp < diam(9Q). Let M > 1 be large enough to be chosen, and set

Fao = {0 € D(9Q) : 1o/ (2M) < £(Q) < ro/M,Q N Ao # B}.

One has that F,, is a pairwise disjoint family and

AQC U QC%Ao,

Q€EFa,

provided M is large enough.
Write 7o := ro/2M. Letx € Q¢ € Fa, and X € F%(x). Let Ix € W be so that Ix > X, and pick
Ox € D(0Q) withx € Qx and £(Qx) = €(Ix). Note that

0(Qx) = t(Ix) < diam(Ix) < dist(Ix,0Q) < §(X) < |X —x| <rp = ;—1(‘)/1 < €(Qo).

This and the fact that x € Qg N Qx give Ox C Qp. On the other hand,
dist(Ix,0x) < |X —x| £ (1 +@)6(X) < (1 +a)(diam(Ix) + dist(Iy, 0Q))
<4iVn+1(1 +@)l(Ix) =41Vr+ 1(1 + a)(Qx).
. . _ 9 9 D, %
This shows that if we fix ¢ = 9(«@) so that2¥ > 41Vn+ 1(1+a), then Ix € WQx C WQx . As aresult,

Xelyxc ng and X € Fgo (x). All these show that for every Qo € Fa, and x € Qp € Fa, we have
Fri(’) (x) c FZO (x). Thus, equation (4.15) yields

X,
Isgull? < D] / S2u(x)? dw, " (x)
L"(A()J-ULO ) QuEFa, Qo
X, X,
Y / Shu(x)? dw, " (x) Sa ). / NG u(x)? dew, ™ (x).
QoEFa, Qo QoeFa, Qo

To continue, let Qg € Fa,,x € Qo and X € Fg(’)*(x). Then X € I'"™* with I € Wg* andx € Q C Qp. As
a consequence,

|X — x| < diam(I™") + dist(Z, Q) + diam(Qg) Sg £(I) = §(X) < kot (Qop) < 20Ty
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where we have used equation (2.15), and the last estimate holds provided M is large enough. This shows

that X € F;K' o7 (x) for some o’ = &’ (1) (hence, depending on «). As a consequence of these, we obtain

X, ’ X,
Z -/Qo Ngou(x)" da)Ls" (x) < LAO ./\/2‘,’(070u(x)q dwlj" (x)
7

QoeFa,
@ q XAO a q XAO
Sa Ngr = u(x)? dw, " (x) < Nyu(x) dwy °(x),
5Ag 070 0 5A¢
where we have used equation (4.6) and the last estimate follows provided M is large enough. O

4.6. Proof of (d) = (d)’

This is trivial since, for any arbitrary Borel set § C d€, the solution u(X) = w)L‘ (S), X € Q belongs to
u e Wh(Q). o

loc

4.7. Proof of (d)) = (a)

Assume that equation (3.9) holds for some fixed ag and g € (0, o0) and for u(X) = w’L( (9), X € Q, for
any arbitrary Borel set S ¢ Q. By Lemma 4.4 (applied to F(X) = |Vu(X)|6(X)(1=/2), for any a
large enough to be chosen we have

Xis5a 1 Xa 1
ISCull X, Sarao 182 ul o OO (15A0)T X W) (AQ)F,  (418)

X34,
La (Ao, 0y, L4 (30, 0y )

)

for every Ag = A(xq, ro) with xg € 9Q,0 < ry < diam(9Q)/3 and where we have used that 0 < u < 1.
Let us see how to extend the previous estimate, in the case Q2 is bounded, to any diam(9dQ)/3 < rp <
diam(9Q). Note thatif x € Agand X e T'¢ Q) (x)\ F(;’i’am(ag)/4(x), then

diam
%diam(ﬁQ) <X —x| < (1+a)6(X) < (1 +a)|X —x| < (1+@)diam(dQ).

Set Wy={IleW:In (Fcﬁam(ag) (x) \Fé’iam(ag)/4(x)) # @}, whose cardinality is uniformly bounded

(depending in dimension and «). Thus, since ||u||z~(q) < 1, Caccioppoli’s inequality gives

IVu(X)[25(X)' ™ dX < Z 5(1)1_"//|VM(X)|2dX
1

nglm(aﬂ) (x)\r(;l{ulll(ﬁﬂ)/4(x) IeWy
< Y e [ weorax s owsa .
IeWy I

With this in hand and equation (4.18) applied with ry = diam(9Q)/4 < diam(0€)/3, we readily obtain

@ < ||S¥
”SroM“Lq(AO’wfjo) s ”Sdlam(c')ﬂ)u”Lq(Ao’wfvo)

@ _ Qa a Xag L
< 1S Sam(an) Sdiam(f’g)/“u”m(Ao,mfjo) + ||Sdiam(052)/4u”Lq(Ao,waAO) Swp (Ag)a.
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We next see that given y € (0, 1) there exists 8 € (0, 1) so that for every Qp € D(9Q) and for every
Borel set F ¢ Q¢ we have

X0, X0, F
a)XL (F) < _ a)XLO (F) <y (4.19)
wLQ° (QO) (’-)LOQO (QO)

Indeed, fix y € (0,1) and Q¢ € D(9Q), and take a Borel set F' C Qy so that w)L(QO (F) < ,Bwfgo (Qo),
where 8 € (0, 1) is small enough to be chosen. Applying Lemma 4.2, if we assume that 0 < 8 < By,
then u(X) = a))L( (S) satisfies equation (4.3) and therefore

q
2

i log (B7) w2 (F) < /F Sg0 u@)? dep® (x) < /Q S @) dwp® (x).  (4.20)
0

We claim that there exists @y = ao(%, 17) (hence, depending on the allowable parameters) such that

Ty () ¢ e (. x€0 4.21)

with r*Q0 = 2korg, (cf. equation (2.15)). To see this, let x € Qp and X € FZ?) " (x). Then X € I* for
some I € Wg?’*, where Q’ € Q € Dg, with Q > x and £(Q") > n°¢(Q). Then X € ng’* c B*QO nQ
(see equation (2.15)) and

*

1X = x| < |X = xg,| + |xg, = x| < korg, +Erg, < 2korg, = rp,»

and also
|X — x| < diam(I*) +dist(1, Q") + diam(Q) <$g,., {(I) = 6(X).

Hence, there exists @ = ao (9, ) such that X € F;ff’ (x), that is, equation (4.21) holds.
o

0
To continue, observe first that by equation (2.6) and the fact that k9 > 16E (cf. equation (2.15)), we
have Qg C A*QO. This, equation (4.21), Harnack’s inequality, equation (4.18) and Lemma 3.9 imply

. X .
/ S0 dewop () < / 8¢ u(x)? dw,  (x)
Qo A*QO &)

X,

A% N X,
0 (24,) = w0 (Qo). (4.22)

Xy e
o
~ S%OM(X)q dwp, 2 (x) Sa wr,

A Qo

Combining equations (4.20) and (4.22), we conclude that
X
wp 2 (F)

4
Xo S Chy.90.q log (B7H 2.
wLo U(QO)

_q
This readily gives equation (4.19) by choosing § small enough so that C;, .4 log (BH 2 <y.

Next, we show that equation (4.19) implies wy, € Aw (0L, wy,). To see this, we first obtain a dyadic-
A condition. Fix 0%, Qg € D with Qg c Q°. Remark 3.10 gives for every F C Qg

X X, X X
1w, (F) < wy (F) <C Wy (F) Lo, ) < w,” (F) <C w,” (F)
C. X =X =7y C, X =X =17y ’
Cw 200 0,2 Q) 0.2 (Qo) CLop® Q) w,2 Q)  ©,%(Q)
(4.23)
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for some C; > 1. Thus, given y € (0, 1), take the corresponding 8 € (0, 1) so that equation (4.19) holds
with y/C) in place of y. Then,

X,

XQO XQO XQO F QO F
—a);o ) < B = —wXL (F) < —wXLO (%) < Cl = —w}f"o( ) <. (4.24)
w,® Q) T w,*(00) w20 1 w20

To complete the proof, we need to see that equation (4.24) gives wy, € Aw(9Q, wr,). Fixy € (0, 1)
and a surface ball Ag = By N dQ, with By = B(xp,r9), xo € 0Q, and 0 < rg < diam(dQ). Take an
arbitrary surface ball A = B N dQ centered at 9Q with B = B(x,r) C By, and let F c A be a Borel
set such that wfﬁo (F) > waﬁo (A). Consider the pairwise disjoint family 7 = {Q e D: QNA #
@, 7= < t(Q) < 55}, where E is the constant in equation (2.6). In particular, A C (Jger Q C 2A. The
pigeon-hole principle yields that there is a constant C’ > 1 depending just on the doubling constant of

Ao

wz) so that wi?“ (Fn QO)/wi?" (Qo) > y/C’ for some Qy € F. Let Q° € D be the unique dyadic

cube such that Qg ¢ Q% and 2 < £(Q") < ro. We can then invoke the contrapositive of equation (4.24)
with y/C” in place of y to find B8 € (0, 1) such that by Lemma 3.9 and Harnack’s inequality we arrive at

X
0 N(F) @M (FNQ) w (FnQy) w0, (FNQ)  p
X = X ~ X, ~ X .
w0 (A) W (A) w; ™ (Qo) W% Qo) ©
In short, we have obtained that for every y € (0, 1) there exists ﬁ € (0, 1) such that
X,
w, " (F) Wy (F)  ~
T > = T .
Wy (A) Wy (A)
This and the classical theory of weights (cf. [11, 25]) show that w;, € A, (IR, wr,), and the proof is
complete. O
4.8. Proof of (c) = (c¢)’
This is trivial since for any arbitrary Borel set S C dQ, the solution u(X) = wi‘ (S), X € Q, belongs to
W (Q) N L& (Q). O
4.9. Proof of (¢) = (f)

Let A, = B, N0Q, A’ = B’ N 9Q, where B, = B(x,er) withx € dQ and 0 < r < diam(dQ), and
B’ = B(x',r") with x” € 2A . and 0 < r’ < &rcy/4 and cq is the corkscrew constant. Using equation
(3.6) and Lemma 4.1, we easily obtain

1
WA // VuOPGLy(Xa,. X) dX
wp (A7) MBoa

1
< W lvioanny) * 1oaal I Pua(0PGL (s, X) ax
Loy

2 2 —r/ v
< ”f”BMO(aQ,a)LO) + “f”L“’(@Q’wLo) (diam(@Q))

2 2 2
< 1m0 @0.wry) + 117 (00,0 8™

Taking the sup over B, and B’, we readily arrive at equation (3.7). O
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4.10. Proof of (f) = (c¢)’
We first observe that (f) applied with & = 1 gives

@ L7
sup sup ———— [Vu(X)|°Gr,(Xa, X) dX
B B wfﬁ(A') B'NQ 0

< CI1f Mgpo00.0ny) + €DIF 7w @0,000) S 110000y 425

where A = BN dQ, A’ = B’ N 9, and the sups are taken, respectively, over all balls B = B(x, r) with
x € 0Q and 0 < r < diam(9Q), and B’ = B(x’,r") with x’ € 2A and 0 < r’ < rco/4 and ¢y is the
corkscrew constant.

With this in place, we are now ready to establish (c)’. Take an arbitrary Borel set S ¢ 0L, and let
u(X) = wf(S), X € Q. Fix Xy € Q, and use that a))L(O is Borel regular to see that for every j > 1 there

exist a closed set F; and an open set U; so that F; ¢ § € U; and w)L(O (Uj\Fj) < 7. Using Urysohn’s
lemma, we can construct f; € €(9Q) such that 1, < f; < 1y, and for X € Q set

v (X) = /a [0 )

It is straightforward to see that [15(x) — f;(x)| < 1y,\F, (x) for every x € 9Q; hence, for every compact
set K € Q and for every X € K, we have by Harnack’s inequality

lu(X) —v;(X)] < /m 11s(x) = £ (0] dwy (x) < W} (Uj \ F)) < Ck x,07°(Uj \ Fy) < Ck x,J ™"

Thus, v; — u uniformly on compacta in Q. This together with Caccioppoli’s inequality readily imply
that Vv; — Vu in L, (). In particular, Vv; — Vu in L*(K) for every compact set K C Q.

Fix A = BNoQ, A’ = BN oQ, with x € 3Q and 0 < r < diam(9Q), and B’ = B(x’,r’)
with x” € 2A and 0 < r’ < rco/4 and ¢ is the corkscrew constant. Let fja 1, = fA fi dw{ﬁ and

uro(X) = w’L( (0Q), X € Q. For every compact set K C Q, we then have by equation (4.25) applied
to each f;

1
e [ 0PGL (30 ax
Wy (A") JKNB'NQ

. 1 // 2
= lim ——— Vv (X)|°Gr, (XA, X)dX < 1.
Joeo a)i? (A") JJknBnQ ! fo

Taking the sup over B and B’, we then conclude that (¢)” holds since by the maximum principle one has
lullp=(g) = 1. O

4.11. Proof of (e¢)) = (f)’

The argument used to see that (¢) = (f) can be carried out in the present scenario with no changes. O

4.12. Proof of () = (c¢)’

Let f = 1g with S € 9Q a Borel set such that w)L(O(S) # 0 for some (or all) X € Q. Note that

I fllsmo (69, wry) < Ifllz=(6@,w,,) = 1. From this and the fact that u(X) = w¥(S), X € Q, satisfies
|lullL=(q) = 1, we readily see that equation (3.7) with & = 1 implies equation (3.8). |
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4.13. Proof of (c)) = (a)
Letu(X) = a))L‘(S), X € Q, for an arbitrary Borel set S ¢ dQ. Let ¢ > ¥y and € (0, 1). Then

/ 53, u(0)? dw, 2 (x) = /Q ( // ) ()qu(Y)lzé(Y)l‘"dY) dw, 2 (x)
0 Q.1 X

- // |Vu(Y)|25(Y)‘-"( / Lo (V) dw,® (0] dY, @4.26)
By 2 Q o

where we have used that Fgo . (x) c Tgo’* C B*QO N Q (see equation (2.15)) and Fubini’s theorem. To
estimate the inner integral, we fix Y € By, N<Qand y € 0Q such that |[Y — | = 6(Y). We claim that

{x€Qo: Y eIy (0} CAF.Con5(Y)). (4.27)

To show this, letx € Qg be suchthatY € FZO . (x). This means that there exists Q € Dg, such thatx € Q
and Y € U” - Hence, there is Q' € Dg with £(Q’) > n*¢(Q) such that ¥ € U?, and consequently
6(Y) ~p dlst(Y Q') ~y £(Q’). As a result,

lx — 3] < diam(Q) +dist(Y, Q") +6(Y) <o €(Q) +8(Y) S n725(Y),

thus x € A(y,Con36(Y)) as desired. If we now use equation (4.27), we conclude that for every
Y € B, NQ

/Q Iy () de 2 (0) < 02 (MG Com0(1) So.0 0, L (AF000). (428)

Write B = SC‘IB*Q B = B*Q A = BNaQ, A’ = B’ N Q. Assuming that rg = l6c Korg, <
diam(0€2), we have by Lemma 3.9 part (b) and Harnack’s inequality

wa° (A(¥,6(Y))) = a)LO (A(3,6(Y))) = 8(Y)" "G, (Xa,Y), YeB, NQ=B'NQ. (429

If we then combine equations (4.26), (4.28) and (4.29), we conclude that (c¢)’ and Lemma 3.9 yield

b X, , X
/ Sgy () dw; 2 (x) $9., //B QIVu(Y)|2GL0(XA,Y) dY < wpt (M) lullfe gy S @7 (Qo).
N,
(4.30)

Note that this estimate corresponds to equation (4.22) for ¢ = 2. Hence, the same argument we used
in (d)Y = (a) applies in this scenario. Note, however, that we have assumed that 166(_)1K07'Q0 <
diam(0Q), and this causes that equation (4.24) is valid under this restriction. If 9Q is unbounded, then
the same argument applies. When 0Q is bounded, we can replace the family F by F’ consisting of
all 9’ € D with Q' ¢ Q for some Q € F and £(Q’) = 27 ¢(Q), where M is large enough so that
2~M < ZEc¢q/(8kp). This guarantees that 166’61K0er < diam(9Q) for every Q’ € F’, and thus, equation
(4.24) holds for every Q' € F’. At this point, the rest of the argument can be carried out mutatis
mutandis; details are left to the reader. O

4.14. Proof of (a) = (¢)

Note that we have already proved that (a) implies (d). In particular, we know that equation (3.9) holds
with g =2 and for any @ > ¢, !, Our goal is to see that the latter estimate implies (c). With this goal in

mind, consider u € WILCZ(Q) N L™ (Q) satisfying Lu = 0 in the weak sense in Q. Fix B = B(x, r) with
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x €0Qand 0 < r < diam(0Q) and B’ = B(x’,r’) withx’ € 2A and 0 < r’ < rcg/4. Let A = BN 9L,
A’ = B’ N 9Q. Note that 2r’ < rcy/2 < diam(9Q), and we can now invoke Lemma 4.3 and equation
(3.9) with g = 2 to conclude that

@ L7
—_ [Vu(X)|“Gr,(Xa, X) dX
wfﬁ(A/) B'NQ ol oA

S /ZA/ S5u(y)* dwy™ (y) +sup{lu(Y)| : Y € 2B,6(Y) 2 r'/C}

4 XoAr
< /1 NSO A () + Wil g

2
< “u”Lw(Q)-

Taking the sup over B and B’ we have then shown equation (3.8). O

4.15. Proof of () = (e)

Fix f € €(0Q) N L*(0Q), and let u be its associated solution as in equation (3.4). Let ur o(X) :=
w)L(((')Q), X € Q. Fix B = B(x,r) with x € 9Q and 0 < r < diam(9Q) and B’ = B(x’,r’) with
x"€2Aand 0 < 7’ <rco/4.Let A =BNOQ, A" =B NoQ. Let p € B(R) with 1|p4) < ¢ < 18
and par = @(] - —x’|/r") so that 14pr < @ar < 1ga-. Recall that for every surface ball A we write

XN
JiL, = dewLﬁ. Then,

f=fary = (f = fary) + (farny — fa.ny) = (f = faar,no)oar + (f = faarn) (1 = oar) + (fear,o — fa,Lo)

= hioc + hglob + (f8ar,1o = fa,Lo)-

Hence,

V(X) 1= u(X) — fasguzo(X) = /6 (F0) = fosg) drf )
= / hioc(y) d“)i(()’) +/ hglob()’) da);f (y) + (fSA’,Lo - fA,Lo)”L,Q(X)
oQ oQ
= Vioe (X) + vaiob (X) + (fsar,zo — fa.L)uro(X).  (4.31)

Note that Ao, hgiob € € (02) N L= (0Q).
Let us observe that we have already proved that (a) implies (d). In particular, we know that equation

(3.9) holds with ¢ = 2 and for any a > col. Hence, since 2r’ < rcg/2 < diam(9Q), and we can now
invoke Lemma 4.3 and equation (3.9) with ¢ = 2 to conclude that

IPioe(X)PG L, (Xa. X) dX
Wi () Mgea T
< [ S dol 0) + supllve V)] ¥ € 2B6(1) 2 7'/
2A

4 ’ ’ 2
< [ N2 do 014 ([ el doy o)
an’ 0Q

A

, , Ry
| Nzl o+ ([ ol o)
L+ D, (4.32)
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Regarding 7,, we note that by Lemma 3.9 part (a) there holds

< /8 0 = foaraldep (y)) 1 Mo 82,01, - (4.33)

To estimate 7, we first observe that, since w;, € A (0, wr,), there is g € (1,00) so that wy, €
RH,(0Q, wy,). Note that, by Jensen’s inequality, we may assume that g < 2 (since RHy, (0, wr,) C

H,, (0Q,wy,) if g2 < q1). Note that we have already proved that (a), implies (b),; hence, equation
(3.5) holds with p = g’ > 2. This, Holder’s inequality and the fact that i, € € (IQ) with supp hjoc C
8A’ readily lead to

Xyar 7 2
T < “Mrfvloc”Lq (4nr ‘ULO (4A") @ 2 5 ||hloc||Lq @A, X4A/)

2
s (/ IF ) = foar.nol d“’xw(y))q S ||f||§MO(aQ,wLo)’ (4.34)

8A’

where the last estimate uses Lemma 3.9 part () and John—Nirenberg’s inequality (cf. equation (3.21)).
‘We next turn our attention to the estimate involving vqp. Note that

(o)
lhgiob] < |f = foar,roloo\aar = Z |f = fsar, Lo Loreipn ok ar

k=2
(o8]
< Z |f = far, 10| (@or-1ar — Por-3pr) =: Z hglob,k,
k=2 k>2:2kr’ <diam(9Q)

with the understanding that the sum runs from & = 2 to infinity when dQ is unbounded.
Fix k > 2 with2¥7” < diam(9Q), and note that Agio x € € (9RQ) With supp hgiob x € 2K2A7\2571A".
Thus, for every X € B’ N Q, by Lemma 3.9 part (f), we have

§(X)

P
2k‘1r’) Valob,k (Xok-147). (4.35)

0 = [ hgns () dorf ) 5
oQ

Next, we estimate Vgjopk(Xok-14/), & > 2, via a telescopic argument. Indeed applying Harnack’s in-
equality, that w; € RH, (0L, wy,), Lemma 3.9, and John—Nirenberg’s inequality (cf. equation (3.21))
we arrive at

X <— ’
oK) < [ 170 = Al w0 )
: ./2k+z 1) = faar,zoldwy 2MA,( )

(fzkz £ () = fanrol? de2k+2A,( ))L,

<
X 1 k+l
’ K+277 !
< (£, 10D~ Faogl ™ )"+ 3 oy Foa
2k+2AY :
Jj=3
1 k+1

/ Xok+2 57 7 )
< ('ka"ZA’ FO) = foran gl dwl; ’ (y) q * Zf £ ) = formiar il da)LZJA )

k+1

1
j+1 A7 ’
s Z f2+1A |f(Y) = fainiar L0|q dey Yy ))q

< k 1/ lemo (o0, wr,y) -
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This and equation (4.35) give for every X € B’ N Q

/ hgion ()| dw] (y) < > / hgiobx () dw’ (v) = > Velob.k (X)
o0 k>2:2k 7" <diam(6Q) 9 k22251 <diam(99)
6(X) 5(X)
s Z (2k T ) 1 llBvoae. o) * = ) 1/ lIBMO (90, w1,

If we next write Wgs := {I € W : I N B’ # @} and pick Z; - € I N B’, the previous estimate gives for
every I € Wp

[Vvion(X)?dX < €(1)7° Velon(X)2dX < (1) |hgiob ()] dwy (¥) de
Il I JL )

, 2 V4 2,
<t ([ g o 1) 5 60 (U2) U omnon,

Thus, Lemma 3.9 gives

I wasofenn s 37 wlenin™ [[19vamcorax
N

IEWB'
1)
2
$ W lnowmwr) Dy @1 (@07 )
IeWps
27k\20
. X
< 1Mo o0, wr,) Z ( r ) Z “Ly (@1):
K2k <t ]EWB/ZZ(I):zik

where Q7 € D(9Q) is so that £(Q;) = €£(I) and contains y; € dQ such that dist(Z, 0Q) = dist(y;, I).
It is easy to see that, for every k with 2% < 7/, the family {Q;}, eWp £(1)=2-+ has bounded overlap and
also that Q; ¢ CA’ for every I € Wpg/, where C is some harmless dimensional constant. Hence,

2 2 27K\
. |VVglob(X)| GLO(XA, X) dX < ”f”BMO(BQ,wLO) Z (7) Wy, (CA )
N

k2 k<r!

< 1/ I3mo(09,wry) @1 (A")-
(4.36)

To continue, we pick ko > 3 such that r < 20y’ < 2. Note that 2k0*!A” and A have comparable
radius and x” € 2A N 2K*1A’ Hence, Lemma 3.9 and Harnack’s inequality yield

ko
| foaro = fauzol < Z | frear.y = Forra ol * | Fotariar gy = faoLo]

k()

< kz; £ 0D = Fa |45 )+ £ 1FO) = oo g, s )

Xok+1 pr
.y o UO) = g 4 )
=3 2k+LA7

< ko [l fllemo (0@, wr,y)
< (L+1og(r/r")) I fllBMO(6Q, 1) - (4.37)
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This and Lemma 4.1 imply

1 2
o ] |Gt = o) Vur. (0P Gy (X, X) dx
wy (A) JBna

, r’ 2p
< (1 +log(r/r ))2 (dlam—(E)Q)) ||f||§Mo(aQ,wLO)

2 (TN 2 2
< (1+10g(/r)* (5) 1 Bstooany) = 1 Byiogaman)- (438)
Here, we note in passing that if diam(9Q) = oo (or if both dQ and Q are bounded), then the left-hand

side of the previous estimate vanishes as we know that uy o = 1.
To complete the proof, we just collect equations (4.31)—(4.34), (4.36) and (4.38):

// V(X Gy (Xa. X) dX < f/ V010 (X)[ Gy (Xa. X) dX
B'NQ B'NQ
s // V0000 ()2 G L (Xa, X) dX
B'NQ

2
+// |(fsav,zo = faro) Ve @(X)] Gy (Xa, X) dX
B'NQ
2 X, ’
S 1 leymo(o0. wry) “Lo (A7

This completes the proof. O

Remark 4.5. It is not difficult to see that in equation (3.6) one can replace fa,r, by fa’,r,. Indeed, this
is what we have essentially done in the proof: Much as in equation (4.37), one has that

|fa.Lo = fariol S (1 +1og(r/r) Il fllBMO(0Q, w1y -

With this, we can proceed as in equation (4.38) to see that
1 2 )
(,()XA (A’) -/]’ﬂQ |(fA,L0 - fA’,Lo)V"‘L,Q(X)l GLO(XAaX) dX g ”f”BMO(aQ,wLO)’
Ly

Hence, equation (3.6) with fa 1, is equivalent to equation (3.6) with fa- 1.
On the other hand, when Q is unbounded and 02 bounded, in equation (3.6), one can replace fa

by faa.rL, = f fdwi‘)’, where Xq € Q satisfy 6(Xgq) =~ diam(9Q) (say, X = XA (xy,r,) Withxp € 0Q

0Q
and ro ~ diam(9€)). To see this, one proceeds as in equation (4.37) to see that
|fa.o = foo.Lol < (1 +1og(diam(0Q)/r)) || fllBmo (90, wr,) -

This and Lemma 4.1 readily give

1 2
—_— - \Y X)) "G, (Xa,X)dX
o I 110 = fon2) Vur. a0 Gy (30,30

rl

2 ¥
< (1 +log(@iam(30) /1)? ( oo ) 1 o0, ony)

. 2 r 2 2 2
< (1+log(diam(92)/1))” (gaas ) I vo(am.ny) < 1 I3vio(a6.0r,)

Hence, equation (3.6) with fa 1, is equivalent to equation (3.6) with fsq 1,,-
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4.16. Proof of (a) = (e)’

The proof is almost the same as the previous one with the following modifications. We work with f = 1g
with § C 9€Q an arbitrary Borel set. We replace ¢ by 1(9 4) and use in equation (4.32) that Lemma 4.3
is also valid for the associated vio since it belongs to Wli)’cz () N L*(Q). Also, in equation (4.33) we
need to invoke that (a), = (b),, = (b);,. The rest of the proof remains the same, details are left
to the interested reader. m]

5. Proof of Theorem 1.6

The implications (b) = (¢) = (d), (b)) = (¢)’ = (d)’ are trivial. Also, since for any Borel
set § C 0Q the solution u(X) = w)L‘ (S) belongs to WIL’CZ(Q) N L= (Q), it is also straightforward that
(b) = (b)’, (¢c) = (¢)’,and (d) = (d)".

We next observe that for every @ > 0,0 < r < r’ and w € R, if F C 9Q is a bounded set and
v E leoc (Q), then

sup /f v(¥)26(Y)TaY < oo, 5.0)
xeF LT (o\re (x)

To see this, we first note that since F is bounded we can find R large enough so that F c B(0, R). Then,
if x € F, one readily sees that

r

e\ (x) € B(O, 7 +R) N {Y eQ:—— <o) < r'} = K.

+a

Note that K ¢ Q is a compact set. Then, since v € leoc(Q)’ we conclude that

ol
i

sup// |v(Y)|26(Y)de§max{r’, +“} // W(¥)[2dY < oo. (5.2)

xeF JJTe (x)\[7(x) r K

Using, then, equation (5.1), it is also trivial to see that (d) = (c) and (d)’ = (c¢)’. Hence, we
are left with showing

(a) = (b) and (c) = (a).

5.1. Proof of (a) = (b)

Assume that wr, < wr. Let ¢ > g large enough to be chosen (this choice will depend on «). Fix an
arbitrary Qo € Dy,, where ko € Z is taken so that 27%0 = £(Qp) < diam(9Q) /M, where M, > 8K0(361,
Ko is taken from equation (2.15) and cy is the corkscrew constant. Let Xy 1= Xaz,a 2 be a corkscrew
point relative to MpA g, so that X, ¢ 4B"‘QO by the choice of My. By Lemma 3.9 part (a) and Harnack’s
inequality, there exists Cp > 1 such that

w}*(Qo) = Gy (5.3)
Set
wp = w’lfg, W= Cowfg(Qo)w}L(o» Go :=Gr,(Xo,-), and G:= Cowfg(Qo)GL(Xo, ). (54)
By assumption, we have wy < w. Also, equation (5.3) gives

< w(Qo)
~ wo(Qo)

= Cow)*(Qo) < Co. (5.5)
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For N > Cp, we let Fy, := {Q;} C Dg,\{Qo}, respectively, F5 = {Q;} C Dg,\{Qo}, be the
collection of descendants of Qy which are maximal (and therefore pa1rw1se disjoint) with respect to the
property that
w 1 w(Q;
©, ) —, respectively @,) > N. (5.6)
wo(Q;) N wo(Q;)
Write Fy := F}, U Fy, and note that 73, N F5, = @. By maximality, there holds
w(Q)
— s <N, YQeD . 5.7
wo(Q) Q€ Brv.0n oD
Denote, for every N > Cp,
) o EY=EjUEy,  En:=00\EY, (5.8)
QeFy,

and
Qoz( M E?V)u( U EN):: Eou( | EN). (5.9)
N>Cy N>Cyp N>Cy

By Lemma 2.9, Q?_. 0,154 bounded 1-sided NTA satisfying the CDC for any ¢ > Jy. As in [31,
Proposition 6.1]

Ey € Fy =0Q00Q% , c0y\ | int(@).
Q;eFN

Hence,

mew (@0 | m@ph(on U o)) caoou( |J a0))

QjeFN QjeFN QjeFn
This, [1, Lemma 2.17] and Lemma 3.9 imply
wo(Fn \ En) =0. (5.10)
Next, we are going to show
wo(Eo) = 0. (5.11)

Letx € E},,,. Then there exists Q. € Fy,,, such that x € Q. By equation (5.6), we have

M<L<l ifoe}-lJ\rHl %

wo(Qx) N+1 N
By the maximality of the cubes in Fy;, one has O, C Q) for some Q) € Fy with x € Q} C E},
Thus, {E}, }~. {Ey }~n and {EY ~ 1~ are decreasing sequences of sets. This, together with the fact that
w(EY) < w(Qo) < Cowo(Qo) < Cp and wo(Ey) < wo(Qo) < 1, imply that

>N+1>N ifQy € Fy,,-

w( ﬂ E]iv)— lim w(Ey)  and wo( ﬂ E,f,): lim wo(E}). (5.12)

N>Cy N>Co
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By equations (5.6) and (5.8),

1 1 1
+ _ _ — + _
w(ER) = ) w(©Q) <5 ) @(Q) = ywo(ER) < +.
QeFy, QeFy,
which together with equation (5.12) yield
+ | — 15 +\ _
w( ﬂ EN) = 1\}1Lnoow(EN) =0.
N>Cy
In view of the fact that by assumption wy < w, we then conclude that
_ + | _ 1 +
0= wo( ﬂ EN) = lim wo(E}). (5.13)
N>Cy
On the other hand, equation (5.6) yields
_ 1 1 _ Co
wo(Ey) = D, (@) < — > w(Q) = -w(Ey) < =,
_ N _ N N
QeFy QeFy
and hence,
a)o( ﬂ E;V) = lim wo(Ey) = 0. (5.14)
N>Cy

Since {E?\, }n is a decreasing sequence of sets with a)o(E?V) < wp(Qo) < 1,equations (5.13) and (5.14)
readily imply equation (5.11):

wo(Eo) = lim wo(EY) < lim wo(EX) + lim wo(Ey) =0.

Now, we turn our attention to the square function estimates in LY (Fy, wq) for g € (0, 0). Let
u e WllO’CZ(Q) N L= (L) be a weak solution of Lu = 0 in Q. To continue, we observe that if Q € Dy,
is so that Q N Ey # @, then necessarily Q € D, ¢,, otherwise, Q € Q' € Fn, hence Q C Qo\En
which is a contradiction. As a result, equation (5.7) yields

wo(Q) N
w(Q)

By the (dyadic) Lebesgue differentiation theorem with respect to w, along with the fact that wy < w (cf.
equation (5.4)), we conclude that dwy/dw(x) =N 1 for w-a.e. x € E, hence also for wp-a.e. x € Ey.
Thus,

N 1, VXEEN,QEDQO,Q3)C.

e SZOM(X)qdwo(X) = '/EN Sgou(x)q%(x) dw(x) =y ‘/EN Sgou(x)q dw(x)

s /Q 82 u(x)? dw(x) 5 /Q NZ () do@) 5 [l gy ©(Q0) 5 11l
0 0

where in the third estimate we have used equation (4.15) with wr, = wy, (see also [1, Theorem 1.5])
which holds since wy, € Aw (0, wr). This and equation (5.10) imply

Sﬂ

0.l € Li(Fn,wy). (5.15)
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Now, note that for fixed @ > 0, we can find ¢} sufficiently large depending on @ such that, for any
ro < 27k

L7 (x) c T (%), Vx € Q. (5.16)

Indeed, let Y € T’ (x). Pick I € W so that I 5 Y, hence £(1) = 6(Y) < |Y —x| <rp <27 ko = £(Qp).
Pick Q; € Dg, such thatx € Qy and £(Q;) = €(I) < €(Qop). Thus,

dist(1,0;) < ¥ —x| < (1 +@)6(Y) < C(1 +a)e(I) = C(1 +a)l(Qy).

Recalling equation (2.10), if we take 9 > 9 large enough so that 27 > C(1 +a),thenY € I € ng c
ng* The latter gives that Y € UJ < I'j) (x), and consequently, equation (5.16) holds. We would like

to mention that the dependence of  on @ implies that all the sawtooth regions 91;1\/ 0 above as well as
all the implicit constants depend on «.

Next, equation (5.16) readily yields that Su(x) < S 4 u(x) for every x € Qg. This, together with
equation (5.15), implies that STu € L9(Fn,wo). If we next take an arbitrary X € Q, by Harnack’s
inequality (albeit with constants depending on X) and by equation (5.1), then we have

Su € LY(Fy,wy,), foranyr>0. (5.17)
Note also that by equation (5.11) and Harnack’s inequality
X —
wt, (Eo) = 0. (5.18)

To complete the proof, we perform the preceding operation for an arbitrary Qg € Dy,. Therefore,
invoking equations (5.8), (5.9) and (5.10) with Q € Dy,, we conclude, with the induced notation, that

oa- (J o= U &)U U U =

Qi €Dy Qr €Dy, Qi €Dy, N>Co

=( g Eg)U( U UrF )_FOU(kNF ) (5.19)

Qi €Dy, Qi €Dy, N>Cy

where a)L (Fp) = 0 (by equation (5.18)) and Fk =0QnN c’)QJ”;k o , Where each Qi‘k O cQisa
k '

bounded 1-sided NTA domain satisfying the CDC. Combining equations (5.19) and (5.17) with F' Ilf, in
place of Fy, the proof of (a) = (b) is complete. O

5.2. Proof of (¢)) = (a)

Let ag be so that equation (4.21) holds. Suppose that (¢)” holds where throughout it is assumed that

a > ap. In order to prove that wr, < wy, on d€2, by Lemma 2.8 and the fact that by Harnack’s inequality

w¥ < w¥ and w{o < w{o for any X, Y € Q, it suffices to show that for any given Qg € D,

FCcQu w,2(F)=0 = w,%(F)=0. (5.20)

Consider then F C Q¢ with wa‘) (F) = 0. Lemma 4.2 applied to F gives a Borel set § c Qg such that
u(X) = a))L((S), X € Q, satisfies

a Fo —
Sréou(x) > SQ()’nu(x) = o0, Vx€F, (5.21)
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where the first inequality follows from equation (4.21) and the fact that @ > «(, and r*Q0 = 2korg,. By

X X
assumption and equation (5.1), we have that S u(x) < oo for wImQO -a.e. x € 0Q. Hence, wLOQO (F)=0
o

0
as desired and the proof of (¢)’ = (a) is complete. O

6. Proof of Theorems 1.7 and 1.8

We will obtain Theorems 1.7 and 1.8 as a consequence of the following qualitative version of [9,
Theorem 4.13]:

Theorem 6.1. Let Q ¢ R™! n > 2, be a 1-sided NTA domain (cf. Definition 2.3) satisfying the CDC
(cf. Definition 2.7). There exists ag > 0 (depending only on the 1-sided NTA and CDC constants)
such that the following holds. Assume that Lou = —div(AgVu) and Liu = —div(A;Vu) are real (not
necessarily symmetric) elliptic operators such that Ay — A1 = A + D, where A, D € L*(Q) are real
matrices satisfying the following conditions:

(i) There exist a; > ay and r1 > 0 such that
[/ a(X)?6(X)™ 'dX < oo, forwp,-a.e. x € 9Q, 6.1)
7 (x)
1

where a(X) = sup |[A(Y)], X € Q.
YeB(X,6(X)/2)
(ii) D € Lip,,. (L) is antisymmetric and there exist ay > ag and ry > 0 such that

// |dive D(X)|?6(X)!™"dX < o0, for wp,-a.e. x € OQ. (6.2)
I3 (x)

Then wr, < wr,.

Assuming this result momentarily, we deduce Theorems 1.7 and 1.8:

Proof of Theorem 1.7. For Ly and L as in the statement set Xo = Ao, Z] =A, A= Ap—Aand D =0so
that Ao — A; = A+ D. Note that equation (6.1) follows at once from equation (1.4) and also that equation
(6.2) holds automatically. With all these in hand, Theorem 6.1 gives wr, = w I, KWL, =wWL. O

Proof of Theorem 1.8. Set Ag = A, Ay = AT, A=0and D = A— AT so that Ay — A; = A + D.
Observe that D € Lip,,.(Q) is antisymmetric, equation (6.1) holds trivially and equation (6.2) agrees
with equation (1.5). Thus, Theorem 6.1 implies that w; < wp.

On the other hand, w; < wpsm follows similarly if we set Ag = A, A] = (A+ AT)/2, A =0and

D=(A-AT)/2.
Finally, w; < wr follows from what has been proved by switching the roles of L and L™ and the
fact that 7 (x; A) < oo for wyr-a.e. x € IQ. O

Before proving Theorem 6.1, we need the following auxiliary result which adapts [34, Lemma 4.44]
and [1, Lemma 2.39] to our current setting. We would like to mention that [1, Lemma 2.39] corresponds
to the case F = @ in the following statement.

Lemma 6.2. Let Q c R™! be a I-sided NTA domain (cf. Definition 2.3) satisfying the CDC (cf.
Definition 2.7). Given Qo € D, a pairwise disjoint collection F C Dg,, and N > 4, let Fn be the
Samily of maximal cubes of the collection F augmented by adding all the cubes Q € Dg, such that
£(Q) < 27N e(Qo). There exist ‘-I‘]'\’} € €2 (R™") and a constant C > 1 depending only on dimension
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n, the 1-sided NTA constants, the CDC constant and 1, but independent of N, F and Qg such that the
following hold:

: -1 9
i) C 149 <YY <1,
Q}_N»QQ N QJ"'N.Qo

(i) supyeq V¥R (X)[6(X) < C.
(iii) Setting

wi= | Wi wiT={1ewd 35 e W\ Wl withol 0o =8}, (63)
QED}‘N,QQ

one has

VP =0 in U -, (6.4)
IEW;?]\W;:),’E

and there exists a family {Q 1}, epox SO that
N

c'e(n) <60y <Cce),  dist(1,0;) < CL(), Z 15 <C. (6.5)
IeW,‘;’]’Z

Proof. The proof combines ideas from [34, Lemma 4.44], [1, Lemma 2.39], and [32, Appendix A.2].
The parameter ¢ > ¢y will remain fixed in the proof, and then constants are allowed to depend on it. To
ease the notation, we will omit the superscript @ everywhere in the proof. Recall that given /, any closed
dyadic cube in R"*!, we set I* = (1 + )1 and I** = (1 +22)1. Let us introduce =0+ %/I)I so that

I* Cint(I*) € I* C int(I™). (6.6)

Given I := [-3,5]™" ¢ R™!, fix ¢o € G (R™!) such that 1;: < ¢o < 15 and [Veo| < 1 (the
0

implicit constant depends on the parameter 1). For every I € W = W(Q), we set ¢;(-) = qﬁo(%l()”)

so that ¢; € € (R™), 1;- < ¢7 < 15 and |Veq| < £(I)~" (with implicit constant depending only on
nand A).

For every X € Q, we let ®(X) = X7y ¢1(X). It then follows that @ € €« (Q) since, for every
compact subset of Q, the previous sum has finitely many nonvanishing terms. Also, 1 < ®(X) < Cj
for every X € Q since the family {F‘} 1ew has bounded overlap by our choice of A. Hence, we can set
®; = ¢;/®, and one can easily see that ®; € G (R™), C/;llj* < ®; < 1z and [V < (N
With this at hand, set

1e§v o1 (X)
Yy (X) = ®O;(X)= —~ | X eQ.
N (X) I;V]N 1(X) 3 a0 e

We first note that the number of terms in the sum defining ¥ is bounded depending on N. Indeed, if
0 € Dry,0,, then Q € Dy, and 27NE(Qo) < £(Q) < £(Qo), which implies that Dz, .0, has finite
cardinality with bounds depending on dimension and N (here, we recall that the number of dyadic
children of a given cube is uniformly controlled). Also, by construction Wé has cardinality depending

only on the allowable parameters. Hence, #/Vy < Cy < oco. This and the fact that each ®; € € (R™*!)
yield that Wy € € (R™!). Note also that equation (6.6) and the definition of Wy give

supp ¥n C U I = U U f*cint( U U I**):int( U U&):Q}N’QO.

IeWn QeDry .0 1 EW*Q Q€D ry 0 IeW*Q Q€D ry .00
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This, the fact that Wy < W and the definition of ¥ immediately give that ¥y < lg} o On
N -0

the other hand, if X € Qn = Qr, o,, then there exists / € Wy such that X € I*, in which case

Yr(X) > P (X) > C;l. All these imply (7). Note that (ii) follows by observing that for every X € Q

we have

VEN (XIS D) Vo)l s D) e 1R(X) s 6(X)7,
I1eWn Iew

where we have used that if X € I*, then 6(X) ~ £(I) and also that the family {I*}; &yv has bounded
overlap.
To see (iii), fix [ € Wy \Wf, and X € I, and set Wx := {J € W : ¢;(X) # 0}. We first note that

Wx € Wy . Indeed, if ¢;(X) # 0, then X € J*. Hence, X € I** N J**, and our choice of 1 gives that
01 meets 0J, this in turn implies that J € Wy since I € Wy \ WI%, All these yield

Z ¢s(X) 2 ¢s(X) 2 ¢s(X)

¥ (X) _ JeWn _ JeWNNWx _ JeWnNNWx -1
N > 6s(X) > $s(X) > ¢s(X)
Jew JeWx JeWnNNWx

Hence, ¥y Ju = 1 for every I € Wy \ Wﬁ This and the fact that ¥ € €° (R"“) immediately give
that V¥y = 0'in U ey, s 17

We are left with showing the last part of (iii), and for that we borrow some ideas from [32, Appendix
A2].FixI € W]%,, and let J be so that J € W\ Wy with dI N dJ # @, in particular £(I) ~ £(J). Since
Ie W]%,, there exists Q7 € D, g,- Pick Q; € Dsothat £(Q,) = ¢(J) and it contains any fixed y € 9Q
such that dist(J, Q) = dist(J,y). Then, as observed in Section 2.3, one has J € W*Q,. But, since

J € W\ Wy, we necessarily have Q; ¢ Dx, 0, = Dz, NDg,. Hence, Wy, = W]%,’l u W,%,z U WI%,’B
where

Wyl i={Ie Wy : Qo c 0y},
Wr?i={leWy: Q;cQeFn}
W,%,’3:={I€W§, 07N Qy =D}
For later use, it is convenient to observe that
dist(Qy,I) < dist(Qy,J) + diam(J) + diam(/) = €(J) + €(I) =~ €(1). 6.7)
Let us first consider Wf,’l. IfI € Wf,’l, we clearly have

£(Qo) < 6(Qy) = t(J) = £(I) = £(Qr) < {(Qo)
and since Q; € Do,

dist(Z, xg,) < dist({, Q) +diam(Qq) = ¢(1).

In particular, #)/Vf,’1 < 1. Thus, if we set Q 1 = Qy, it follows from equation (6.7) that the two first

conditions in equation (6.5) hold and also 3, st 1 o, < ihfl/\/]%,’1 < 1.
N
To see that equation (6.5) holds for WI%,’Z and Wi,ﬁ , we proceed as follows. For any I € Wf,’z UW=3,
we pick Q7 € Dsothat Oy 3 xo, and £(Q) = 27M' £(Q ;) with M’ > 3 large enough so that 2M” > 252

(cf. equation (2.6)). Note that Q 1 C Ag, C Q which, together with equation (6.7), imply

dist(1, ;) < dist(1, Q) + diam(Q;) < €(I) (6.8)
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and
diam(Q;) < 2Er I, <2E0(Q) =2"M*=2e(0)) <E Q). (6.9)

Hence, the first two conditions in equation (6.5) hold for I € Wﬁ’z U Wﬁj.

To see that the last condition in equation (6.5) holds, we start with the family Wf,’z. Forany I € Wf,’z
there is a unique Q; € Fy such that Q; C Q;. But, since Q; € Dr, g,, then necessarily Q7 ¢ Q; and
Q1 \ Q; # @. This and the fact that 2Ap, € Q; € Q; imply

o £(Qy) < dist(xg,,0Q\ Q;) < dist(xg,, 07 \ Q))
< diam(Qy) +dist(Q, J) +diam(J) + diam(1) +dist(7, Q) +diam(Q) ~ £(J) ~ ().

Thus, 2271 £(Q;) < dist(xg,, 0Q\Qj) < C{(J).Supposenextthat [, I’ € Wf,z are so that Ql ﬁé[’

@ (it could even happen that they are indeed the same cube), and assume without loss of generality that
Q,, C Q,,henceé’(l ) <t().LetQ;,0; € Fybesothat Q; € Q; and Oy C Q. Then, xg, € Q,
andxgp,, € Q]/ - QI C Qy.Asaconsequence,xg, € 0y NQy; CQ; OQ’ and this forces Q; = Q

(since Fy is a pairwise disjoint family). This and equation (6.9) readily 1mply

22710(0) < dist(xg,,0Q\ Q)) < |xg, —xg, | +dist(xg,,,0Q\ Q)
< diam(Q;) + dist(xq,,, dQ\ Q) < diam(Q;) + C¢(J") <27 £(Q,) + CE(J")

and therefore 2! £(Q;) < C ¢(J’). This in turn gives £(1) ~ €(J) ~ €(J') = £(1’). Note also that since
I touches J, I’ touches J' and Q; N Q; # @, we obtain

dist(1,I') < diam(J) + dist(J, Q) + diam(Q) + diam(Q )
+dist(Qy:,J’) +diam(J’) = €£(J) + £(J") = £(1).

As aresult, for fixed I € Wf,’z there is a uniformly bounded number of I’ € Wf,@ with Q N Q 1 +0,
thus Zlewz,z IQ < 1.
N 1

We finally take into consideration WI%,’S. Let I € W§’3. Then, Qo N2Ap, € Qo N Qy = @ and
therefore 2271 £(Q ;) < dist(xp,, Qo). Besides, since Q; C Qo, we have

dist(xg,, Qo) < diam(Qy) +dist(Q,J) + diam(J) + diam(I) + dist(/, Q;) + diam(Qy)
~ 0(J) ~ (D).

Thus, 2271 £(Q) < dist(xg,, Qo) < C £(J). Suppose next that 1, I’ € Wf,’*g are so that O; NQp # @
(it could even happen that they are indeed the same cube), and assume without loss of generality that
Qp C Qy,hence £(J') < £(J). Then, since xp, € Q7 andxp,, € Qp C Qy, we get from equation (6.9)
that

2271 0(0y) < dist(xg,, Qo) < |xo, — X0, | +dist(xg,.» Qo)
< diam(Q;) + CL(J) < E71¢(Q,) + CL(T),

and therefore 27! €(Q;) < C{(J'). This yields £(1) = €(J) =~ £(J’) = €(I’). Note also that since /
touches J, I’ touches J' and Q; N Q; # @, we obtain

dist(1,1") < diam(J) +dist(J, Q) + diam(Q ) + diam(Q )
+dist(Qy/,J") +diam(J") = €(J) + €(J") = €(1).
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Consequently, for fixed I € Wfﬁ, there is a uniformly bounded number of I’ € W,%,J with Q N Q 1 Q.
Asaresult, 2, 231 o, S 1. This completes the proof of (ii7) and hence that of Lemma 6.2. O
N

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We use some ideas from [9, Section 4] and [7, Section 4]. Let u € WI’Z(Q) N

loc

L*(Q) be a weak solution of Liu = 0 in Q and assume that ||u||.~q) = 1. Applying Theorem 1.6
(c) = (a) to u, we are reduced to showing that for some r > 0,

Su(x) < oo, for wp,-a.e. x € Q,

where « is given in Theorem 1.6. By equation (5.16) and Lemma 2.8, it suffices to see that for every
fixed Q¢ € Dy, and for some fixed large ¢} (which depends on a¢ and hence solely on the 1-sided NTA
and CDC constants) one has

0o = U Ey, w}’(Ep)=0 and S)uel’(Eyx,wr,), VN 21, (6.10)
N >0

where Xj is given at the beginning of Section 5.1. Fix then Q¢ € Dy,, and write
wo = w)L(:; w = w)L(? Go = Gr,(Xo, ), and G :=Gpr,(Xo,"). (6.11)

Much as in equation (4.21) (with = 2713 sothat T ZO* = Fg(’)*n), there exist @y > 0 and C (depending
on the 1-sided NTA and CDC constants) such that if we set 7 := C rg, > 0, then

g = () Uy cr®®,  xeQo. 6.12)
XEQEDQO
As aresult,
x€QeDg, xeQeDg, o

: 2 1-n
+ //U .. | dive D(X)]26(X)"""dX

< // a(X)25(X)™" 1 dX + // |dive D(X)25(X)"dX
rgy ) Fop

< // a(X)zé‘"‘ldX+/ |dive D(X)]?6'7"dX < o0,  (6.13)
rol (x)

@

max{r,ry } max{7,r)} X

for wr,-a.e. x € Qp, where we have used the fact that the family {U 3’*}QeD has bounded overlap, that
a1, @y = @, and the last estimate follows from equations (6.1), (6.2) and (5.1).

Given N > Cy (Cy is the constant that appeared in Section 5.1), let Fy C Dg, be the collection of
maximal cubes (with respect to the inclusion) Q; € Dg, such that

> vh >N (6.14)
Qjch]DQO

Write

Eo= () (Q\Ex), En:=00\ |J Q5 Qu=EoU(Qo\Ey)=Eou( ] En) 15

N>Cy QjEfN N>Cy
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Let us observe that
So,y?(x) <N,  VxeEy. (6.16)

Otherwise, there exists a cube Q > x such that 3. cgep 00 yg > N% hencex € O, C Q j for some
Q; € Fn, which is a contradiction.

Note that if x € Ey, then for every N > Cj there exists Q% € Fy such that Q%Y > x. By the definition
of Fn, we then have

9 2 o 9 2
Soy" = > vh= > vis N
xeQeDo, QY cQebg,

On the other hand, if x € Q¢ \ En+1, there exists O € Fn+1 such that x € Q.. By equation (6.14), one
has

Z ¥y > (N+1)> > N?,
0,<0eDo,

and the maximality of the cubes in Fy gives that O, c Q’, for some Q’ € Fy withx € Q) € Qo \ En.
This shows that {Q¢ \ En }n is a decreasing sequence of sets, and since Q¢ \ Ey C Qo for every N we
conclude that

wo(Eo) = lim wo(Qo\ En) < lim wo(fx € Qo : So,y” (x) > N})
= wo({x € Qo : Sg, ¥ (x) = 00}) =0, (6.17)

where the last equality uses equation (6.13). This and equation (6.15) imply that to get equation (6.10)
we are left with proving

Spou € L*(En, wo), VN > C. (6.18)

With this goal in mind, note that if Q € Dy, is so that Q N Ey # @, then necessarily Q € Dx, o,
otherwise, Q c Q' € Fy, hence Q C Qp\Ey. Recalling equation (6.11) and the fact Xy ¢ 4B’(‘20, we
use Lemma 3.9 and Harnack’s inequality to conclude that

/E ) Sg,u(x)*dwo(x) = /E ' // ! Uﬂ|Vu(Y)|26(Y)l’”dewo(x)

XEQEDQO Q

< 3w wene [  HFar

QEDQO

< Y U@ //l]g|Vu<Y>|2dY

QeDry .00

2
< >  ITHOPG(1)ar

QED]-'N .Qp

< // Vu(¥)[2Go(Y)aY. (6.19)
Qﬂ

FN-Qo
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where we have used that the family {US}QE]D has bounded overlap. To estimate the last term, we make
the following claim

JL,  mumramar se@o+ Y vhani@. (620)

FN-Qo Q€D ry .00

where the implicit constant is independent of N.
Assuming this momentarily, we note that

Y, e@=[ 3 vhdento

QeDry .0, Q0 xeQeDxy .0,

< /E Soy” () dwo) + DT Y yiw(@nQ))

Q;eFN QED}_NvQO
<Nwo(Qo)+ ). D vhwo(@nQ)),
QjeFNn Q€Dry .0
(6.21)

where the last estimate follows from equation (6.16). In order to control the last term, we fix Q; € Fi.
Note that if 9 € D, ¢, is sothat QN Q; # @, then necessarily Q; ¢ Q C Q. Write Q ; for the dyadic

parent of Q, that is, 0 ; is the unique dyadic cube containing Q ; with £ Q ) =2((Q;). By the fact that
Q; is the maximal cube so that equation (6.14) holds one obtains

> - 3 pen

éj CQGDQO ngQGDQO
As a result,
Z Z Yowo(QNQj) = Z wo(Q;) Z 76
Qj €FN QED]:N .Qp Qj €EFN Q_,'QQE]DQO
<N ) wo(Qj)SNzwo( U Qj)sNzwo(Qo). (6.22)
Qje]:N QjE]'—N

Collecting equations (6.19), (6.20), (6.21) and (6.22), we deduce that
/ (Sgo”(x))2 dwo(x) < Cny wo(Qo) < Cy.
En

This shows equations (6.18) and completes the proof of Theorem 6.1 modulo proving equation (6.20).

Let us then establish equation (6.20). For every M > 4, we consider the pairwise disjoint collection
Fn.m given by the family of maximal cubes of the collection F augmented by adding all the cubes
Q € Dg, such that £(Q) < 27M¢(Qy). In particular, Q € Dzy a0, if and only if QO € Dxy g,

and £(Q) > 27 ¢(Qg). Moreover, Dry .00 € DFy .0, for all M < M’, and hence QJ”_.N w0y C
QgN,M” 0, C Q’]"_.N’ 0, Then the monotone convergence theorem implies
// IVul’Go dX = lim // IVul?Go dX =: lim K. (6.23)
Q7 M —co QY M —c

FN-Qo FN,M Qo
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Write £(X) := A1(X) — Ap(X), and pick W ps from Lemma 6.2. By Leibniz’s rule,

1
A1Vu - Vu Go¥i py = AV - V(uGoWy 4) — EAOV(MZ‘P%,’M) -VGo

1 1 1
+ EAOV(‘PIZV’M) -VGou® - EAOV(uz) V(¥ )0 — nguz) V(GoWy ). (6.24)

Note that u € WIIO’CZ(Q) NL*(Q), Gy € WIIO’CZ(Q \ {Xo}) and that Q’;;*M 0, is @ compact subset of Q

away from X since Xo ¢ 4B, and equation (2.15). Hence, u € Wl’z(Q?_.ZTM’QO) and ugo‘Pf\,’M €

1,2 O, . . . .
Wy (Q Favts Qo)‘ These together with the fact that L1 = 0 in the weak sense in € give

// AVu -V (uGoWs, 4y)dX = //? A1V - V(uGo¥2, ,,)dX = 0. (6.25)
Q Q¥+ ’

FN,M Q0

O sk )
FN.m>Q0

and L] Go = 0 in the weak sense in Q \ {Xo}. Thanks to the fact that uz‘I’IZV,M € Wé’z(Q%:‘M’QO), we

On the other hand, Lemma 3.7 (see in particular equation (3.15)) implies that Gy € W'2(Q

then obtain

// AoV (u>¥yy ) - VGo dX = // ) AJVGo - V(u?Wy ) dX = 0. (6.26)
Q Q7 ’

FN,M -0

By Lemma 6.2, the ellipticity of A; and A, and equations (6.24)—(6.26), the fact that ||u||z~ ) = 1 and
our assumption & = A} — Ag = —(A + D) we then arrive at

EN,M ;:ﬂ|Vu|2g0T12V’MdX$//A1Vu~Vu QO‘I‘IZ\,,M 1754
Q Q

s//|wN,M||vgo|dx+//|w||wN,M|godx
Q Q

//AV(uz)-V(QO‘PIZV,M)dX [/DV(uz)'V(QO‘PIZ\,,M)dX
Q Q

= I] + IQ +I3 + I4. (627)

+ +

We estimate each term in turn. Regarding Z; we use Lemma 6.2, Caccioppoli’s and Harnack’s
inequalities, and Lemma 3.9:

1
2
s // Yl VGl aX <3 m)—luﬁ( // |VQ0|2dX)
ox I” I
IGWN’,M

9,2
TeWwy'y

S ), G s ), wo(@r)

IeWﬁ’iI IeW}?,’va

< wo( U QI) < wy(CAg,) £ wo(Qo), (6.28)

1w
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where the implicit constants do not depend on N nor M. We estimate 7, similarly:

Ls Y [ wevmtimagoax <y f<1>-‘|1|%go<x<1>)( //Vwmde)z

TeWR 5y rewy’y,

< DL D G(X(D) S wo(Qo).  (6.29)

9,2
TeWyn'y

Concerning 73, we use that A € L*(Q) and [|u||p~q) = 1:

I3 < ﬂ |A| |Vu| |Vg0| lPIZV’M dX + ﬂ |Vu| |VlPN,M| lP]\/JW g() dX =: Ié +I3H. (630)
Q Q

Observe that I** ¢ {Y € Q : |Y — X| < 6(X)/2} for every X € I*, and hence sup;.. |A| < inf;- a. By
Cauchy—Schwarz inequality, Caccioppoli’s and Harnack’s inequalities and Lemma 3.9, we have

! !
ne 5% sl f[ i) ( []wara

O€Dry.0 1 EWS’*

PPINP) (/_/1**lvulZlPle,MdX)Z(511:?|A|290(X(I))2{’(I)"‘1)é

o ED}'N Q0 1 EWZ’*

Z Z (/H |Vu|2goT12V’M dX)z(a)o(Q) ‘//I*a(X)Z(S(X)_n_IdX)Z

Q EDFN .Qo 1 EW'Q()’*

S ( //Q VulPGo¥R dX);( >, Owo(Q) //U gy*a(X)Qé(X)-"-l dX);

QeDry .0

A

<Kvwm( X )’gwo(Q))%, (631)

QGD]-'N .Qp

where we used the fact that the family {/7*}; ¢y, has bounded overlap. Additionally, as in equation (6.28)

1 1
2 2
7 < ( // VuPGo ¥, oy dx) ( // |V‘PN,M|ZgodX)
Q Q

siﬁ;@,M( > f(l)"_lgo(X(I)))2SIE;Z\,’Mwo(QO)é. (6.32)

9,2
1 eWN'M

Finally, to bound Z4, we note that u> € W, 2(Q), Go¥y p € WH(Q) and supp(Go¥y, /) C

Q?E; .00 18 compactly contained in . Then [9, Lemma 4.1] and Lemma 3.9 imply that

I4=‘//dchD-V(u2)go‘P12\,,M dX’
Q

1 1
2 2
< (//|vu|2gow§,,M dX) (‘//|dich|290‘Pi,’M dx
Q Q
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> X xan [[ |dwCD|2dx)

QED}'N Qo IEVV19 *

|

< Kiow ( > wo(Q)// |d1VcD(X)|26(X)1"dX)
9>
ul X

~1
i
N,M

QEDJ‘:N Qo IEW'} *

??J
2=

M
QED]:N 0

wo(Q) /,/l.]ﬂy* | dive D(X)|25(X)l_" dX)2
Q

1

%4 wo(Q)) . (6.33)
QeDry .00

~1
2
Ky m
Gathering equations (6.27)—(6.33) and using Young’s inequality, we obtain

R 5 00(Q0) + Ky w000} + K5y (D) vhwo(@)’

Q€Dry .09

1 ~
SCan(Q0)+C > 75wo(@)+ 5 Knm.
QED}'N,Q()

where the implicit constants are independent of N and M. Note that K N.M < oo because supp ¥y s C

Qﬂ ¥ 00 which is a compact subset of Q and u € Wllo’cz(Q). Thus, the last term can be hidden, and we

eventually obtain

Knm <Ky wo(Qo) + Z ¥4 wo(Q).

Q€D_7:N .Qp

This estimate (whose implicit constant is independent of N and M) and equation (6.23) readily yield
equation (6.20), and the proof is complete. O
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