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Non-Orientable Surfaces
and Dehn Surgeries

D. Matignon and N. Sayari

Abstract. Let K be a knot in S3. This paper is devoted to Dehn surgeries which create 3-manifolds

containing a closed non-orientable surface Ŝ. We look at the slope p/q of the surgery, the Euler

characteristic χ(Ŝ) of the surface and the intersection number s between Ŝ and the core of the Dehn

surgery. We prove that if χ(Ŝ) ≥ 15 − 3q, then s = 1. Furthermore, if s = 1 then q ≤ 4 − 3χ(Ŝ) or K

is cabled and q ≤ 8 − 5χ(Ŝ). As consequence, if K is hyperbolic and χ(Ŝ) = −1, then q ≤ 7.

1 Introduction

Let K be a non-trivial knot in S3, N(K) a regular neighborhood of K and XK =

S3 − int N(K) the exterior of K. The unoriented isotopy class of an essential simple

closed curve on a torus is called its slope. We use Q ∪ { 1
0
} as in [17] to parameterize

the slopes on ∂XK with respect to a basis of H1(∂XK ) formed by a meridian and a

preferred longitude of K. Note that { 1
0
} is the slope of a meridian of K.

Let r be a slope on ∂XK , and let K(r) be the closed 3-manifold obtained by r-Dehn

surgery on K. Thus K(r) = XK ∪ Jr , where Jr is a solid torus, glued to XK along their

boundaries in such a way that r bounds a meridian disk in Jr. We denote by Kr the

core of the attached solid torus Jr in K(r). K(r) is said to be integral when r = p/q

and q = 1. We may assume that q is non-negative.

In general, knowing the number of intersections of a specific surface with the core

of a surgery can be very useful.

Concerning the production of essential 2-spheres (those that do not bound a 3-

ball) the Cabling Conjecture [5] says that only cabled knots in S3 can produce essential

2-spheres by a Dehn surgery. This is equivalent to say that the minimal number of

intersections of an essential sphere with the core of a surgery is 2.

Concerning the production of essential tori, Gordon and Luecke (see [11]) have

shown that if a non-integral surgery on a hyperbolic knot creates an essential torus

which meets the core of the surgery twice, then that in fact the knot has to be one of

the infinite family of such knots described by Eudave-Muñoz (see [3]).

This paper is devoted to the study of the production of a closed non-orientable

surface Ŝ by a p/q-Dehn surgery on a knot K in S3.

Recall that if χ(Ŝ) ≥ 0, then q = 1. In fact if Ŝ is a Klein bottle, then by [9,

Theorem 1.3], q = 1. Furthermore if χ(Ŝ) = 1, i.e. Ŝ is a projective plane, then

K(p/q) is reducible or K(p/q) is homeomorphic to the real 3-dimensional projective
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Non-Orientable Surfaces and Dehn Surgeries 1023

space, but in both cases q = 1, by [13, Theorem 1] and the Cyclic Surgery Theorem

[1].

Because of these remarks, throughout this paper Ŝ denotes a closed non-orientable

surface in K(p/q) with χ(Ŝ) < 0.

Recall that the genus of a closed non-orientable surface Ŝ is the maximal number

of disjoint Mobius bands in Ŝ. We denote by g the genus of Ŝ, so Ŝ is the connected

sum of g projective planes, and χ(Ŝ) = 2−g. In the following, we assume that g ≥ 3.

Before going further, we may note that if K(p/q) contains a closed non-orientable

surface, then p is even and q is odd, by [9, Lemma 6.2].

Conjecture A Only integral surgeries can produce a closed non-orientable surface of

genus three.

Let s be the minimal number of intersection between Kp/q and Ŝ. The main result is

the following:

Theorem 1.1

(i) If s 6= 1, then χ(Ŝ) ≤ 14 − 3q.

(ii) If s = 1, then q ≤ 4 − 3χ(Ŝ) or K is cabled and q ≤ 8 − 5χ(Ŝ).

Corollary 1.2 Let K be an hyperbolic knot in S3. Suppose that K(p/q) contains a

closed non-orientable surface of genus three. Then q ≤ 7.

Furthermore, if s > 1 then q ≤ 5.

Proof Since χ(Ŝ) = −1, and K is not a cable knot, the result follows immediately

from Theorem 1.1.

Let K be a knot in S3, a non-orientable Seifert surface for K is a connected compact

non-orientable surface with boundary K. It is easy to see that any even integer can

be the boundary slope of some non-orientable Seifert surface for K (see 14). Hence

K(2n/1) contains a closed non-orientable surface Ŝ and |K2n/1 ∩ Ŝ| = 1.

Actually, if p is even then, K(p/q) always contain a closed non-orientable surface,

which intersects the core of the surgery once. This is because a simple closed curve

γ of slope p/q (p even) on the boundary of the exterior X of K is null homologous

in X, modulo 2; so γ bounds a compact surface which is non-orientable (since p is

not 0).

Note also that it is proved in [2] that alternating knots have essential non-orient-

able Seifert surfaces; furthermore their boundary slopes are not necessary unique

(see [15]).

Question B Does there exist a surgery that produces a closed non-orientable surface of

genus three such that its core intersects the surface necessarily more than once?

Here are a few words about the argument of the Theorem 1.1, and the organization

of the paper.

Assume that there exists a p/q-Dehn surgery that produces a non-orientable

closed surface Ŝ. We may suppose that Ŝ is chosen (among all closed non-orientable
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surfaces in K(p/q)) to minimize the intersection number s = #|Kp/q ∩ Ŝ|. Now,

among all these minimal closed non-orientable surfaces, we choose Ŝ of minimal

genus.

The proof of Theorem 1.1 is based on the combinatorics of the intersection graphs

coming from a pair consisting of a level sphere Q̂ in S3, and the boundary P̂ of a thin

regular neighborhood of Ŝ in K(p/q).

In Section 2, we recall the basic definitions of the intersection graphs. We consider

M a compact, connected and orientable 3-manifold whose boundary is a torus. Then

we recall the basic definitions of a pair of intersection graphs that come from two

orientable surfaces with boundaries, and properly embedded in M. Finally, we give

an inequality relating the Euler characteristics of the corresponding surfaces and the

number of vertices, trivial loops and Scharlemann cycles of the graphs. This inequality

generalizes the inequality of C. Hayashi and K. Motegi [14].

In Section 3, we use the specific properties of the pair of intersection graphs as-

sociated to the punctured surfaces Q̂ ∩ XK and P̂ ∩ XK , i.e. the surfaces (Q̂ and P̂

respectively) with the discs of the Dehn filling removed. We then improve the in-

equality of the previous section.

In the next section, we consider the case where Ŝ is pierced only once by the core of

the Dehn surgery. Then we prove that if K is a cabled knot then q ≤ 5g−2, otherwise

q ≤ 3g − 2.

In Section 5, we consider the case where Ŝ is pierced more than once by the core

of the Dehn surgery. Then we prove (using the inequality of Section 3) that q < 5 +
g
s

where s is the number of intersections between Ŝ and the core of the Dehn surgery.

Finally, the last section is devoted to the special case where the knots are composite

knots, Conway knots or 2-bridge knots. We apply the previous results to obtain the

following.

Lemma 1.3 Let K be a knot in S3, on which p/q surgery produces a closed non-

orientable surface of genus g ≥ 3, with s = 1.

If K is a composite knot, then q ≤ g − 1.

If K is a Conway knot or a 2-bridge knot, then q ≤ g.

Lemma 1.4 Let K be a knot in S3, on which p/q surgery produces a closed non-

orientable surface of genus g ≥ 3, with s 6= 1.

If K is a composite knot, then q ≤ g+1

3
.

If K is a Conway knot or a 2-bridge knot, then q ≤ g+4

3
.

Corollary 1.5 Let K be a knot in S3, on which p/q surgery produces a closed non-

orientable surface of genus g = 3.

If K is a composite knot, then q = 1.

If K is a Conway knot or a 2-bridge knot, then q = 1 or q = 3 and s = 1.
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2 Intersection Graphs

Let M be a compact, connected and orientable 3-manifold whose boundary is a torus.

Let (Fi , ∂Fi) ⊂ (M, ∂M) (i = 1, 2) be a compact surface, which is possibly non-

orientable, compressible or ∂-compressible in M.

Suppose that ∂Fi ∩ ∂M 6= ∅ and that the components of ∂F1 ∩ ∂M and of ∂F2 ∩
∂M represent distinct slopes r1 and r2 on ∂M. We assume that F1 and F2 intersect

transversally and that ∂F1 and ∂F2 intersect in the minimal number of points, so

that each component of ∂F1 and each of ∂F2 intersect just ∆ times in ∂M, where

∆ = ∆(r1, r2) is the minimal geometric intersection number between the slopes r1

and r2.

We obtain a surface F̂i (denoted also by F(ri)) when we cap off the components of

∂Fi ∩ ∂M with meridian discs of the ri-Dehn filling. The intersections of F1 and F2

in M give rise to a pair of labelled graphs, G1 ⊂ F(r1) and G2 ⊂ F(r2), in the usual

way (see [7] for more details). We obtain these graphs as follows:

G1 is the graph obtained by taking as fat vertices the meridian disks of the r1-Dehn

filling, which cap off the punctured surface F1 to obtain F̂1, i.e. the components of

F(r1) − Int F1. Similarly the vertices of G2 are the components F(r2) − Int F2.

The edges of G1 are the arc components of F1 ∩ F2 in F(r1). Similarly, the edges of

G2 are the arc components of F1 ∩ F2 in F(r2).

We number the components of ∂F1 : 1, 2, . . . , n1 in the order in which they ap-

pear on ∂M. Similarly, we number the components of ∂F2 : 1, 2, . . . , n2. That gives

a numbering of the vertices of G1 and G2. Furthermore, it induces a labelling of the

endpoints of edges in G1 and G2: each endpoint α of an edge of G1 is in a component

C of ∂F1, then the label of α is the number of the component of ∂F2, which inter-

sects C in α; similarly, we label the endpoints of edges in G2 by the number of the

corresponding components of ∂F1.

On a vertex of G1 (resp. G2) one sees the labels 1 through n2 repeated ∆ times

(resp. 1 through n1 repeated ∆ times) appearing in order around the vertex. We say

that (G1, G2) is a pair of intersection graphs of type (F̂1, F̂2), or associated to (F1, F2),

where F1 and F2 are a pair of transverse surfaces properly embedded, and in general

position in M.

Let i ∈ {1, 2}. When Fi is orientable, we say that two vertices on Gi are parallel if

the ordering of the labels on each is clockwise or the ordering on each is anticlock-

wise, otherwise the vertices are called antiparallel. We use this definition only from

Section 4.

A cycle is a subgraph homeomorphic to a circle, when vertices are considered as

points. Let x be a label of Gi . An x-edge is an edge with label x at one endpoint.

An x-cycle of Gi is a cycle Σ of x-edges of Gi , such that (see Figure 1):

(i) Σ bounds a disk D in F̂i ;

(ii) Σ can be oriented such that the tail of each edge has the label x;

(iii) for all the vertices of Gi in Σ, the labelling is in the same sense (clockwise or

anticlockwise).

A Scharlemann cycle of Gi is an x-cycle that bounds a disk face of Gi . The number

of edges in a Scharlemann cycle Σ, is called the length of Σ. A pair of edges {e1, e2} in
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Figure 1: x-cycles.

GQ is called an S-cycle if it is a Scharlemann cycle of length 2. A Scharlemann cycle of

length 1 is called trivial loop. In the following, all the Scharlemann cycles are assumed

to be of length at least two; otherwise we will talk about trivial loops.

Lemma 2.1 Let M be an orientable and compact 3-manifold with a torus as bound-

ary. Let (G1, G2) be a pair of intersection graphs of type (F̂1, F̂2), where F̂1 and F̂2 are

orientable. For all i ∈ {1, 2}, in the graph Gi , we denote by:

(i) ni the number of vertices;

(ii) ti the number of trivial loops;

(iii) mi the number of Scharlemann cycles.

Then

∆ ≤ 2 +
t1 − χ(F̂1)

n1

+
t2 − χ(F̂2)

rn2

+
m1

n1

+
m2

n2

.

Proof Let i = 1 or 2. Let ε > 0 and F̂i × [−ε, +ε] be a thin regular neighborhood

of F̂i . Let F̃i = F̂i × {−ε} ∪ F̂i × {+ε}. Let {σ1, . . . , σmi
} be the set of all the

Scharlemann cycles of Gi (possibly an empty set); and Dk the disk face bounded by

σk, for all k ∈ {1, . . . , mi}. Now, let Ak be an annulus in Dk×[−ε, +ε], such that one

boundary-component of Ak lies in Ak × {−ε}, and the other lies in Ak × {+ε}. Let

A = A1∪· · ·∪Ami
. Let R̂i be the resulting surface R̂i = F̃∗

i ∪A, where F̃∗

i is the surface

obtained by removing in F̃i the disks bounded by the boundary components of the

annuli Ak (in Dk×{±ε}). If mi 6= 0 then the genus of R̂i is 2g(F̂i)+mi−1, where g(F̂i)

denotes the genus of F̂i . Therefore χ(R̂i) = 2
(

1− 2g(F̂i)−mi + 1
)

= 2χ(F̂i)− 2mi .

As usual, we denote R̂i ∩ M by Ri .
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Let Si = Ri if mi 6= 0; otherwise Si = Fi (mi = 0). Let (H1, H2) be the pair

of intersection graphs associated to the pair of surfaces (S1, S2). Now, we apply the

Hayashi-Motegi inequality ([14, Theorem 2.1]). If m1 = m2 = 0 then we get im-

mediately the required inequality. Next, assume that both m1 and m2 are 6= 0. By

construction, in the graph Hi (for i = 1 or 2) the number of vertices is 2ni , the

number of of trivial loops is 2ti and there is no Scharlemann cycle. Then

∆ ≤ 2 +
2t1 − χ(R̂1)

2n1

+
2t2 − χ(R̂2)

2n2

,

which gives

∆ ≤ 2 +
t1 − χ(F̂1)

n1

+
t2 − χ(F̂2)

n2

+
m1

n1

+
m2

n2

.

Now, without loss of generality, we may assume that m1 = 0 and that m2 6= 0. We

obtain:

∆ ≤ 2 +
t1 − χ(F̂1)

n1

+
2t2 − χ(R̂2)

2n2

,

which gives again the required inequality (since m1 = 0).

We say that two edges in Gi are parallel if they represent a cycle of length two,

which bounds a disk (when vertices are considered as points) in the punctured sur-

face Fi ; for i = 1 or 2. When we represent each family of parallel edges in a graph Gi

by a single edge, we obtain the reduced graph of Gi .

In the following M = XK , the exterior of a knot K in S3.

3 General Situation

Suppose that K(p/q) contains a closed non-orientable surface Ŝ, which is chosen to

minimize the intersection number s = #|Kp/q ∩ Ŝ|, where Kp/q is the core of the

surgery. Let S = Ŝ ∩ XK .

Let p+, p− be two points in S3. We can write S3 − {p+, p−} = Q̂ × ]−1, 1[. By

Gabai’s Lemma (see [4, p. 491]) putting K in thin position, we can find a 2-sphere

Q̂ = Q̂ × {i} for some i such that

(i) Q̂ intersects K transversely. Thus Q = Q̂ ∩ XK is a properly embedded planar

surface in XK such that each component of ∂Q is a copy of the meridian of K;

(ii) Q intersects S transversely and no arc component of Q ∩ S is parallel in Q to ∂Q

or parallel in S to ∂S.

Now, let P̂ = ∂N(Ŝ) be the boundary of a thin regular neighborhood of Ŝ in

K(p/q). Then P̂ is an orientable surface, meeting Kp/q in n1 = 2s points. Note that

χ(P̂) = 2χ(Ŝ) and the genus of P̂ is g(P̂) = g(Ŝ) − 1.

In the following, we denote by g the genus of Ŝ. Note that χ(Ŝ) = 2 − g.

Let P = P̂ ∩ XK . By the minimality of Ŝ and the choice of Q, no circle com-

ponent of P ∩ Q bounds a disk in either P or Q; moreover no arc-component of

P ∩ Q is boundary-parallel in either P or Q. We consider the pair of intersection
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graphs (GP, GQ) associated to the pair of surfaces (P, Q), and the pair of intersection

graphs (GS, HQ) associated to the pair of surfaces (S, Q). The graph GP may be seen

as the double cover of GS, where its edges are also doubled (see [16, Figures 2.1, 2.3

and 2.4]).

Since the surface P̂ is separating, we consider two sides in K(p/q): the black side

containing Ŝ, and the white side, i.e., K(p/q) − N(Ŝ).

Therefore, the faces of GQ are divided into black and white faces. Furthermore,

each black face of GQ is a disk-face of length two, corresponding to the regular neigh-

borhood of an edge of HQ.

Lemma 3.1 The graphs GP and GS cannot contain a Scharlemann cycle.

Proof Otherwise, S3 would contain a non-trivial lens space as connected summand

(see [1] for more details) which is impossible.

Lemma 3.2 The integer s ≥ 1 is odd.

Proof If s is even, then we can obtain a closed non-orientable surface in XK by at-

taching suitable annuli in ∂XK to S along ∂S, which is impossible (since S3 does not

contain closed non-orientable surface).

Let n2 be the number of vertices in GQ, and m be the number of Scharlemann

cycles in GQ. Since χ(P̂) = 2χ(Ŝ) and χ(Q̂) = 2, we obtain the following by

Lemma 2.1. Recall that ∆( 1
0
, p/q) = q.

Lemma 3.3 q ≤ 2 −
χ(Ŝ)

s
+

m

n2

−
2

n2

.

4 Intersection Number One

In this section, we suppose that s = 1. Thus, the graph GS has a single vertex and all

its edges are cycles (when the vertex is considered as a point).

We divide the edges of GS into two kinds: positive and negative edges. When the

vertex is considered as a point, the regular neighborhood on Ŝ of a positive edge

is an annulus, while the regular neighborhood on Ŝ of a negative edge is a Möbius

band. The positive edges join antiparallel vertices in HQ, while the negative edges

join parallel vertices in HQ. Recall that the edges of GQ are the doubles of those in

HQ. Therefore, each negative edge gives rise to an S-cycle in GQ. Let P and N be the

number of positive and negative edges, respectively.

Lemma 4.1 If K is not a cable knot then N ≤ g(n2 − 1); otherwise N ≤ g(2n2 − 1).

Proof Let F be a family of parallel negative edges in GS, and #|F| be its number of

edges.

Claim 4.2 If K is not a cable knot then #|F| < n2; otherwise #|F| < 2n2.
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Proof If #|F| ≥ n2 then K is a cable knot, by [8, Section 5]. So, we assume that K is

cabled and that #|F| ≥ 2n2. The edges in F describe orbits in HQ (see [8, Section 5]

for more details). Since #|F| ≥ 2n2, each orbit is represented at least twice. By

an innermost argument, there are two edges e, f in one orbit which are parallel in

HQ. But e, f are already parallel edges in GS; since we assume that K(p/q) does not

contain a projective plane (otherwise q = 1) this is impossible by [6, Lemma 2.1].

Let Γ be the reduced graph of GS. Since Ŝ is the connected sum of g projective

planes, Γ contains at most g negative edges. This completes the proof of Lemma 4.1

Lemma 4.3 P ≤
(g − 1)n2

2
.

Proof Let x be a label of GS, and Γx be the subgraph of GS consisting of all the

positive edges with one label x. We denote by Ex the number of edges of Γx.

Claim 4.4 For all labels x ∈ {1, . . . , n2}, the graph Γx cannot contain a disk-face.

Proof Assume for a contradiction that there exists a label x, such that Γx contains

a disk-face D. Then, its boundary is a cycle, whose edges are x-edges. Therefore, by

[13, Lemma 2.2] the graph GS contains a Scharlemann cycle in D, in contradiction to

Lemma 3.1.

Claim 4.5 For all labels x ∈ {1, . . . , n2}, Ex ≤ g − 1, equivalently χ(Ŝ) ≤ 1 − Ex.

Proof By the Euler characteristic equality:

χ(Ŝ) = V − E +
∑

f face of Γx

χ( f )

where V = 1 is the number of vertices and E = Ex the number of edges of Γx. By the

previous claim, χ(Ŝ) ≤ 1 − Ex. Since χ(Ŝ) = 2 − g, Ex ≤ g − 1.

An edge in GS which has the same label at its both endpoints is a negative edge

(because it joins the same vertex in HQ). Therefore, by the previous claim, each

vertex in HQ is incident to at most g − 1 positive edges. Thus: P ≤ 1
2
(g − 1)n2,

proving Lemma 4.3.

Lemma 4.6 If K is not a cable knot then q ≤ 3g − 2; otherwise q ≤ 5g − 2.

Proof The number of edges of GS is 1
2
qsn2 =

qn2

2
= P + N. Using Lemmas 4.1 and

4.3, we obtain two inequalities according to whether K is cabled or not:

(1) qn2

2
≤ 1

2
(g − 1)n2 + g(2n2 − 1), or

(2) qn2

2
≤ 1

2
(g − 1)n2 + g(n2 − 1);
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which gives

(1) q ≤ 5g − 1 − 2g
n2

, if K is cabled, and

(2) q ≤ 3g − 1 − 2g
n2

, if K is not cabled.

5 Large Intersection Number

In this section, we assume that s > 1, then s ≥ 3, by Lemma 3.3. Consequently

n1 = 2s ≥ 6.

1 2

2 3

3 2s

k 2s+3−k

x x+1

x+1 x

.

.

.

.

.

.

Figure 2: Family of parallel edges in GQ.

Lemma 5.1 No Scharlemann cycle in GQ bounds a white face. In particular every

Scharlemann cycle is an S-cycle.

Proof We argue by contradiction. If GQ contains a Scharlemann cycle which

bounds a white disk-face, then there exists a corresponding Scharlemann cycle σ in

HQ, which bounds a disk-face f . Let x, x + 1 (mod s) be the labels of σ (since s ≥ 3

we have x 6= x + 1). Let H be the annulus in ∂XK between the components labelled

by x and x + 1 of ∂S. Let S ′
= Ŝ with the meridian disks labelled by x and x + 1

removed. Then we can use f to compress S ′ ∪ H to obtain a new non-orientable

closed surface with the same genus as Ŝ, but intersecting the core of the surgery fewer

times, in contradiction to the minimality of Ŝ.

Lemma 5.2 m ≤ 3n2 − 6.

https://doi.org/10.4153/CJM-2004-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-046-9


Non-Orientable Surfaces and Dehn Surgeries 1031

Proof Let Γ be the subgraph of GQ whose vertices are the vertices of GQ and whose

edges are in one-one correspondence with the S-cycle in GQ, each S-cycle being rep-

resented by a single edge in the obvious way.

Claim 5.3 The graph Γ does not contain a disk-face of length two.

Proof Assume for a contradiction that there exist two edges in Γ, which cobound a

disk-face Z. Let σ and σ ′ be the corresponding S-cycles. Without loss of generality,

we may assume that {1, 2} are the labels of σ and {x, x + 1} are those of σ ′.

Then GQ ∩ Z is a family of parallel edges, within no more S-cycle inside. Let e be

an edge in GQ ∩ Z. Therefore, if k is the label at one endpoint of e then 2s + 3 − k

(mod 2s) is the label at the other endpoint (see Figure 2).

Consequently, x = 2s/2 + 1 = s + 1, which is an even integer. Thus, σ ′ is a white

Scharlemann cycle, in contradiction to Lemma 5.1.

Recall that there is no trivial loop in GQ, so all the disk-faces of Γ have at least two

sides. Let F be the number of disk-faces of Γ. By the previous lemma, each disk-face

has at least three sides. Since m is the number of edges of Γ, we obtain 3F ≤ 2m. The

Euler characteristic equality gives:

2 = χ(Q̂) = V − E +
∑

f face of Γ

χ( f )

where V = n2 is the number of vertices and E = m the number of edges of Γ.

Therefore 2 ≤ n2 − m + F, with F ≤ 2m/3; so m ≤ 3n2 − 6 finishing the proof of

Lemma 5.2.

With Lemma 3.3, we obtain the following.

Corollary 5.4 q ≤ 5 −
χ(Ŝ)

s
−

8

n2

, and q < 5 +
g

s
−

8

n2

.

Corollary 5.5 χ(Ŝ) ≤ 14 − 3q, equivalently g ≥ 3q − 12.

Proof Since s ≥ 3, and assuming that χ(Ŝ) < 0 (otherwise q = 1), the previous

corollary gives q < 5 − χ(Ŝ)

3
.

Corollary 5.6 If g ≤ 8 (equivalently if χ(Ŝ) ≥ −6) then q ≤ 5.

Proof The previous corollary gives that q < 7; but q is odd.
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6 Composite and Conway Knots

A knot is said to be a composite knot if there exists a 2-sphere Q̂ in S3 such that Q̂

intersects K in 2 points and Q = Q̂ ∩ XK is incompressible in XK .

A knot is said to be a Conway knot if there exists a 2-sphere Q̂ in S3 such that Q̂

intersects K in 4 points and Q = Q̂ ∩ XK is incompressible in XK .

If K is a composite knot we may assume that n2 = 2, choosing for Q̂ the incom-

pressible 2-punctured sphere in XK . Similarly, if K is a Conway knot or a knot with

two bridges, we may assume that n2 = 4.

Lemma 6.1 If K is a composite knot then q ≤ 1 − χ(Ŝ)

s
, equivalently q ≤ 1 +

g−2

s
.

Proof We may assume that n2 = 2. Since Q̂ is separating, and since the graph GQ

cannot have a trivial loop, it cannot have a Scharlemann cycle either. Therefore, by

Lemma 3.3, we obtain q ≤ 1 − χ(Ŝ)

s
, equivalently q ≤ 1 + g−2

s
.

Lemma 6.2 If K is a Conway knot or a 2-bridge knot then q ≤ 2 − χ(Ŝ)

s
, equivalently

q ≤ 2 + g−2

s
.

Proof We may assume that n2 = 4. Since Q̂ is separating, the possible Scharlemann

cycles in GQ are of length two. By Claim 5.3 they cannot be parallel. Therefore GQ

contains at most 2 Scharlemann cycles. Then, by Lemma 3.3, we obtain q ≤ 2− χ(Ŝ)

s
,

equivalently q ≤ 2 +
g−2

s
.

Recall that s and q are odd. Therefore Lemmas 6.1 and 6.2 prove Lemmas 1.3

and 1.4.
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