Non-Orientable Surfaces and Dehn Surgeries

D. Matignon and N. Sayari

Abstract. Let K be a knot in S^3 . This paper is devoted to Dehn surgeries which create 3-manifolds containing a closed non-orientable surface \hat{S} . We look at the slope p/q of the surgery, the Euler characteristic $\chi(\hat{S})$ of the surface and the intersection number s between \hat{S} and the core of the Dehn surgery. We prove that if $\chi(\hat{S}) \geq 15 - 3q$, then s = 1. Furthermore, if s = 1 then $q \leq 4 - 3\chi(\hat{S})$ or K is cabled and $q \leq 8 - 5\chi(\hat{S})$. As consequence, if K is hyperbolic and $\chi(\hat{S}) = -1$, then $q \leq 7$.

1 Introduction

Let K be a non-trivial knot in S^3 , N(K) a regular neighborhood of K and $X_K = S^3 - \operatorname{int} N(K)$ the exterior of K. The unoriented isotopy class of an essential simple closed curve on a torus is called its *slope*. We use $\mathbb{Q} \cup \{\frac{1}{0}\}$ as in [17] to parameterize the slopes on ∂X_K with respect to a basis of $H_1(\partial X_K)$ formed by a meridian and a preferred longitude of K. Note that $\{\frac{1}{0}\}$ is the slope of a meridian of K.

Let r be a slope on ∂X_K , and let K(r) be the closed 3-manifold obtained by r-Dehn surgery on K. Thus $K(r) = X_K \cup J_r$, where J_r is a solid torus, glued to X_K along their boundaries in such a way that r bounds a meridian disk in J_r . We denote by K_r the core of the attached solid torus J_r in K(r). K(r) is said to be *integral* when r = p/q and q = 1. We may assume that q is non-negative.

In general, knowing the number of intersections of a specific surface with the core of a surgery can be very useful.

Concerning the production of essential 2-spheres (those that do not bound a 3-ball) the Cabling Conjecture [5] says that only cabled knots in S^3 can produce essential 2-spheres by a Dehn surgery. This is equivalent to say that the minimal number of intersections of an essential sphere with the core of a surgery is 2.

Concerning the production of essential tori, Gordon and Luecke (see [11]) have shown that if a non-integral surgery on a hyperbolic knot creates an essential torus which meets the core of the surgery twice, then that in fact the knot has to be one of the infinite family of such knots described by Eudave-Muñoz (see [3]).

This paper is devoted to the study of the production of a closed non-orientable surface \hat{S} by a p/q-Dehn surgery on a knot K in S^3 .

Recall that if $\chi(\hat{S}) \geq 0$, then q = 1. In fact if \hat{S} is a Klein bottle, then by [9, Theorem 1.3], q = 1. Furthermore if $\chi(\hat{S}) = 1$, *i.e.* \hat{S} is a projective plane, then K(p/q) is reducible or K(p/q) is homeomorphic to the real 3-dimensional projective

Received by the editors December 4, 2002; revised April 8, 2003.

AMS subject classification: 57M25, 57N10, 57M15.

Keywords: Non-orientable surface, Dehn surgery, Intersection graphs.

© Canadian Mathematical Society 2004.

space, but in both cases q = 1, by [13, Theorem 1] and the Cyclic Surgery Theorem [1].

Because of these remarks, throughout this paper \hat{S} denotes a closed non-orientable surface in K(p/q) with $\chi(\hat{S}) < 0$.

Recall that the genus of a closed non-orientable surface \hat{S} is the maximal number of disjoint Mobius bands in \hat{S} . We denote by g the genus of \hat{S} , so \hat{S} is the connected sum of g projective planes, and $\chi(\hat{S}) = 2 - g$. In the following, we assume that $g \ge 3$.

Before going further, we may note that if K(p/q) contains a closed non-orientable surface, then p is even and q is odd, by [9, Lemma 6.2].

Conjecture A Only integral surgeries can produce a closed non-orientable surface of genus three.

Let s be the minimal number of intersection between $K_{p/q}$ and \hat{S} . The main result is the following:

Theorem 1.1

```
(i) If s \neq 1, then \chi(\hat{S}) \leq 14 - 3q.

(ii) If s = 1, then q \leq 4 - 3\chi(\hat{S}) or K is cabled and q \leq 8 - 5\chi(\hat{S}).
```

Corollary 1.2 Let K be an hyperbolic knot in S^3 . Suppose that K(p/q) contains a closed non-orientable surface of genus three. Then $q \le 7$.

Furthermore, if s > 1 then $q \le 5$.

Proof Since $\chi(\hat{S}) = -1$, and K is not a cable knot, the result follows immediately from Theorem 1.1.

Let K be a knot in S^3 , a non-orientable Seifert surface for K is a connected compact non-orientable surface with boundary K. It is easy to see that any even integer can be the boundary slope of some non-orientable Seifert surface for K (see 14). Hence K(2n/1) contains a closed non-orientable surface \hat{S} and $|K_{2n/1} \cap \hat{S}| = 1$.

Actually, if p is even then, K(p/q) always contain a closed non-orientable surface, which intersects the core of the surgery once. This is because a simple closed curve γ of slope p/q (p even) on the boundary of the exterior X of K is null homologous in X, modulo 2; so γ bounds a compact surface which is non-orientable (since p is not 0).

Note also that it is proved in [2] that alternating knots have essential non-orient-able Seifert surfaces; furthermore their boundary slopes are not necessary unique (see [15]).

Question B Does there exist a surgery that produces a closed non-orientable surface of genus three such that its core intersects the surface necessarily more than once?

Here are a few words about the argument of the Theorem 1.1, and the organization of the paper.

Assume that there exists a p/q-Dehn surgery that produces a non-orientable closed surface \hat{S} . We may suppose that \hat{S} is chosen (among all closed non-orientable

surfaces in K(p/q)) to minimize the intersection number $s = \#|K_{p/q} \cap \hat{S}|$. Now, among all these *minimal* closed non-orientable surfaces, we choose \hat{S} of minimal genus.

The proof of Theorem 1.1 is based on the combinatorics of the intersection graphs coming from a pair consisting of a level sphere \hat{Q} in S^3 , and the boundary \hat{P} of a thin regular neighborhood of \hat{S} in K(p/q).

In Section 2, we recall the basic definitions of the intersection graphs. We consider M a compact, connected and orientable 3-manifold whose boundary is a torus. Then we recall the basic definitions of a pair of intersection graphs that come from two orientable surfaces with boundaries, and properly embedded in M. Finally, we give an inequality relating the Euler characteristics of the corresponding surfaces and the number of vertices, trivial loops and Scharlemann cycles of the graphs. This inequality generalizes the inequality of C. Hayashi and C. Motegi [14].

In Section 3, we use the specific properties of the pair of intersection graphs associated to the punctured surfaces $\hat{Q} \cap X_K$ and $\hat{P} \cap X_K$, *i.e.* the surfaces $(\hat{Q} \text{ and } \hat{P} \text{ respectively})$ with the discs of the Dehn filling removed. We then improve the inequality of the previous section.

In the next section, we consider the case where \hat{S} is pierced only once by the core of the Dehn surgery. Then we prove that if K is a cabled knot then $q \le 5g - 2$, otherwise $q \le 3g - 2$.

In Section 5, we consider the case where \hat{S} is pierced more than once by the core of the Dehn surgery. Then we prove (using the inequality of Section 3) that $q < 5 + \frac{g}{s}$ where s is the number of intersections between \hat{S} and the core of the Dehn surgery.

Finally, the last section is devoted to the special case where the knots are composite knots, Conway knots or 2-bridge knots. We apply the previous results to obtain the following.

Lemma 1.3 Let K be a knot in S^3 , on which p/q surgery produces a closed non-orientable surface of genus $g \ge 3$, with s = 1.

```
If K is a composite knot, then q \le g - 1.
If K is a Conway knot or a 2-bridge knot, then q \le g.
```

Lemma 1.4 Let K be a knot in S^3 , on which p/q surgery produces a closed non-orientable surface of genus $g \ge 3$, with $s \ne 1$.

```
If K is a composite knot, then q \leq \frac{g+1}{3}.

If K is a Conway knot or a 2-bridge knot, then a
```

If K is a Conway knot or a 2-bridge knot, then $q \leq \frac{g+4}{3}$.

Corollary 1.5 Let K be a knot in S^3 , on which p/q surgery produces a closed non-orientable surface of genus g = 3.

```
If K is a composite knot, then q=1.
If K is a Conway knot or a 2-bridge knot, then q=1 or q=3 and s=1.
```

2 Intersection Graphs

Let M be a compact, connected and orientable 3-manifold whose boundary is a torus. Let $(F_i, \partial F_i) \subset (M, \partial M)$ (i = 1, 2) be a compact surface, which is possibly non-orientable, compressible or ∂ -compressible in M.

Suppose that $\partial F_1 \cap \partial M \neq \emptyset$ and that the components of $\partial F_1 \cap \partial M$ and of $\partial F_2 \cap \partial M$ represent distinct slopes r_1 and r_2 on ∂M . We assume that F_1 and F_2 intersect transversally and that ∂F_1 and ∂F_2 intersect in the minimal number of points, so that each component of ∂F_1 and each of ∂F_2 intersect just Δ times in ∂M , where $\Delta = \Delta(r_1, r_2)$ is the minimal geometric intersection number between the slopes r_1 and r_2 .

We obtain a surface \hat{F}_i (denoted also by $F(r_i)$) when we cap off the components of $\partial F_i \cap \partial M$ with meridian discs of the r_i -Dehn filling. The intersections of F_1 and F_2 in M give rise to a pair of labelled graphs, $G_1 \subset F(r_1)$ and $G_2 \subset F(r_2)$, in the usual way (see [7] for more details). We obtain these graphs as follows:

 G_1 is the graph obtained by taking as fat vertices the meridian disks of the r_1 -Dehn filling, which cap off the punctured surface F_1 to obtain \hat{F}_1 , *i.e.* the components of $F(r_1)$ – Int F_1 . Similarly the vertices of G_2 are the components $F(r_2)$ – Int F_2 .

The edges of G_1 are the arc components of $F_1 \cap F_2$ in $F(r_1)$. Similarly, the edges of G_2 are the arc components of $F_1 \cap F_2$ in $F(r_2)$.

We number the components of $\partial F_1: 1, 2, \ldots, n_1$ in the order in which they appear on ∂M . Similarly, we number the components of $\partial F_2: 1, 2, \ldots, n_2$. That gives a numbering of the vertices of G_1 and G_2 . Furthermore, it induces a labelling of the endpoints of edges in G_1 and G_2 : each endpoint α of an edge of G_1 is in a component C of ∂F_1 , then the *label* of α is the number of the component of ∂F_2 , which intersects C in α ; similarly, we label the endpoints of edges in G_2 by the number of the corresponding components of ∂F_1 .

On a vertex of G_1 (resp. G_2) one sees the labels 1 through n_2 repeated Δ times (resp. 1 through n_1 repeated Δ times) appearing in order around the vertex. We say that (G_1, G_2) is a pair of intersection graphs of type (\hat{F}_1, \hat{F}_2) , or associated to (F_1, F_2) , where F_1 and F_2 are a pair of transverse surfaces properly embedded, and in general position in M.

Let $i \in \{1, 2\}$. When F_i is orientable, we say that two vertices on G_i are parallel if the ordering of the labels on each is clockwise or the ordering on each is anticlockwise, otherwise the vertices are called *antiparallel*. We use this definition only from Section 4.

A *cycle* is a subgraph homeomorphic to a circle, when vertices are considered as points. Let x be a label of G_i . An x-edge is an edge with label x at one endpoint.

An *x-cycle* of G_i is a cycle Σ of *x*-edges of G_i , such that (see Figure 1):

- (i) Σ bounds a disk D in \hat{F}_i ;
- (ii) Σ can be oriented such that the tail of each edge has the label x;
- (iii) for all the vertices of G_i in Σ , the labelling is in the same sense (clockwise or anticlockwise).

A *Scharlemann cycle* of G_i is an x-cycle that bounds a disk face of G_i . The number of edges in a Scharlemann cycle Σ , is called the *length* of Σ . A pair of edges $\{e_1, e_2\}$ in

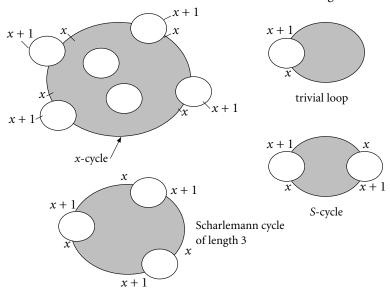


Figure 1: x-cycles.

 G_Q is called an *S-cycle* if it is a Scharlemann cycle of length 2. A Scharlemann cycle of length 1 is called *trivial loop*. In the following, all the Scharlemann cycles are assumed to be of length at least two; otherwise we will talk about trivial loops.

Lemma 2.1 Let M be an orientable and compact 3-manifold with a torus as boundary. Let (G_1, G_2) be a pair of intersection graphs of type (\hat{F}_1, \hat{F}_2) , where \hat{F}_1 and \hat{F}_2 are orientable. For all $i \in \{1, 2\}$, in the graph G_i , we denote by:

- (i) n_i the number of vertices;
- (ii) t_i the number of trivial loops;
- (iii) m_i the number of Scharlemann cycles.

Then

$$\Delta \leq 2 + \frac{t_1 - \chi(\hat{F}_1)}{n_1} + \frac{t_2 - \chi(\hat{F}_2)}{rn_2} + \frac{m_1}{n_1} + \frac{m_2}{n_2}.$$

Proof Let i=1 or 2. Let $\varepsilon>0$ and $\hat{F}_i\times[-\varepsilon,+\varepsilon]$ be a thin regular neighborhood of \hat{F}_i . Let $\tilde{F}_i=\hat{F}_i\times\{-\varepsilon\}\cup\hat{F}_i\times\{+\varepsilon\}$. Let $\{\sigma_1,\ldots,\sigma_{m_i}\}$ be the set of all the Scharlemann cycles of G_i (possibly an empty set); and D_k the disk face bounded by σ_k , for all $k\in\{1,\ldots,m_i\}$. Now, let A_k be an annulus in $D_k\times[-\varepsilon,+\varepsilon]$, such that one boundary-component of A_k lies in $A_k\times\{-\varepsilon\}$, and the other lies in $A_k\times\{+\varepsilon\}$. Let $A=A_1\cup\cdots\cup A_{m_i}$. Let \hat{R}_i be the resulting surface $\hat{R}_i=\tilde{F}_i^*\cup A$, where \tilde{F}_i^* is the surface obtained by removing in \tilde{F}_i the disks bounded by the boundary components of the annuli A_k (in $D_k\times\{\pm\varepsilon\}$). If $m_i\neq 0$ then the genus of \hat{R}_i is $2g(\hat{F}_i)+m_i-1$, where $g(\hat{F}_i)$ denotes the genus of \hat{F}_i . Therefore $\chi(\hat{R}_i)=2\left(1-2g(\hat{F}_i)-m_i+1\right)=2\chi(\hat{F}_i)-2m_i$. As usual, we denote $\hat{R}_i\cap M$ by R_i .

Let $S_i = R_i$ if $m_i \neq 0$; otherwise $S_i = F_i$ ($m_i = 0$). Let (H_1, H_2) be the pair of intersection graphs associated to the pair of surfaces (S_1, S_2) . Now, we apply the Hayashi-Motegi inequality ([14, Theorem 2.1]). If $m_1 = m_2 = 0$ then we get immediately the required inequality. Next, assume that both m_1 and m_2 are $\neq 0$. By construction, in the graph H_i (for i = 1 or 2) the number of vertices is $2n_i$, the number of of trivial loops is $2t_i$ and there is no Scharlemann cycle. Then

$$\Delta \leq 2 + \frac{2t_1 - \chi(\hat{R}_1)}{2n_1} + \frac{2t_2 - \chi(\hat{R}_2)}{2n_2},$$

which gives

$$\Delta \le 2 + \frac{t_1 - \chi(\hat{F}_1)}{n_1} + \frac{t_2 - \chi(\hat{F}_2)}{n_2} + \frac{m_1}{n_1} + \frac{m_2}{n_2}.$$

Now, without loss of generality, we may assume that $m_1 = 0$ and that $m_2 \neq 0$. We obtain:

$$\Delta \le 2 + \frac{t_1 - \chi(\hat{F}_1)}{n_1} + \frac{2t_2 - \chi(\hat{R}_2)}{2n_2},$$

which gives again the required inequality (since $m_1 = 0$).

We say that two edges in G_i are *parallel* if they represent a cycle of length two, which bounds a disk (when vertices are considered as points) in the punctured surface F_i ; for i = 1 or 2. When we represent each family of parallel edges in a graph G_i by a single edge, we obtain the *reduced graph* of G_i .

In the following $M = X_K$, the exterior of a knot K in S^3 .

3 General Situation

Suppose that K(p/q) contains a closed non-orientable surface \hat{S} , which is chosen to minimize the intersection number $s = \#|K_{p/q} \cap \hat{S}|$, where $K_{p/q}$ is the core of the surgery. Let $S = \hat{S} \cap X_K$.

Let p_+ , p_- be two points in S^3 . We can write $S^3 - \{p_+, p_-\} = \hat{Q} \times]-1, 1[$. By Gabai's Lemma (see [4, p. 491]) putting K in thin position, we can find a 2-sphere $\hat{Q} = \hat{Q} \times \{i\}$ for some i such that

- (i) \hat{Q} intersects K transversely. Thus $Q = \hat{Q} \cap X_K$ is a properly embedded planar surface in X_K such that each component of ∂Q is a copy of the meridian of K;
- (ii) *Q* intersects *S* transversely and no arc component of $Q \cap S$ is parallel in *Q* to ∂Q or parallel in *S* to ∂S .

Now, let $\hat{P} = \partial N(\hat{S})$ be the boundary of a thin regular neighborhood of \hat{S} in K(p/q). Then \hat{P} is an orientable surface, meeting $K_{p/q}$ in $n_1 = 2s$ points. Note that $\chi(\hat{P}) = 2\chi(\hat{S})$ and the genus of \hat{P} is $g(\hat{P}) = g(\hat{S}) - 1$.

In the following, we denote by *g* the genus of \hat{S} . Note that $\chi(\hat{S}) = 2 - g$.

Let $P = \hat{P} \cap X_K$. By the minimality of \hat{S} and the choice of Q, no circle component of $P \cap Q$ bounds a disk in either P or Q; moreover no arc-component of $P \cap Q$ is boundary-parallel in either P or Q. We consider the pair of intersection

graphs (G_P, G_Q) associated to the pair of surfaces (P, Q), and the pair of intersection graphs (G_S, H_Q) associated to the pair of surfaces (S, Q). The graph G_P may be seen as the double cover of G_S , where its edges are also doubled (see [16, Figures 2.1, 2.3 and 2.4]).

Since the surface \hat{P} is separating, we consider two sides in K(p/q): the black side containing \hat{S} , and the white side, i.e., $K(p/q) - N(\hat{S})$.

Therefore, the faces of G_Q are divided into black and white faces. Furthermore, each black face of G_Q is a disk-face of length two, corresponding to the regular neighborhood of an edge of H_Q .

Lemma 3.1 The graphs G_P and G_S cannot contain a Scharlemann cycle.

Proof Otherwise, S^3 would contain a non-trivial lens space as connected summand (see [1] for more details) which is impossible.

Lemma 3.2 The integer $s \ge 1$ is odd.

Proof If *s* is even, then we can obtain a closed non-orientable surface in X_K by attaching suitable annuli in ∂X_K to *S* along ∂S , which is impossible (since S^3 does not contain closed non-orientable surface).

Let n_2 be the number of vertices in G_Q , and m be the number of Scharlemann cycles in G_Q . Since $\chi(\hat{P}) = 2\chi(\hat{S})$ and $\chi(\hat{Q}) = 2$, we obtain the following by Lemma 2.1. Recall that $\Delta(\frac{1}{0}, p/q) = q$.

Lemma 3.3
$$q \le 2 - \frac{\chi(\hat{S})}{s} + \frac{m}{n_2} - \frac{2}{n_2}$$
.

4 Intersection Number One

In this section, we suppose that s = 1. Thus, the graph G_S has a single vertex and all its edges are cycles (when the vertex is considered as a point).

We divide the edges of G_S into two kinds: positive and negative edges. When the vertex is considered as a point, the regular neighborhood on \hat{S} of a positive edge is an annulus, while the regular neighborhood on \hat{S} of a negative edge is a Möbius band. The positive edges join antiparallel vertices in H_Q , while the negative edges join parallel vertices in H_Q . Recall that the edges of G_Q are the doubles of those in H_Q . Therefore, each negative edge gives rise to an S-cycle in G_Q . Let \mathcal{P} and \mathcal{N} be the number of positive and negative edges, respectively.

Lemma 4.1 If K is not a cable knot then $\mathbb{N} \leq g(n_2 - 1)$; otherwise $\mathbb{N} \leq g(2n_2 - 1)$.

Proof Let \mathcal{F} be a family of parallel negative edges in G_S , and $\#|\mathcal{F}|$ be its number of edges.

Claim 4.2 If K is not a cable knot then $\#|\mathcal{F}| < n_2$; otherwise $\#|\mathcal{F}| < 2n_2$.

Proof If $\#|\mathcal{F}| \ge n_2$ then K is a cable knot, by [8, Section 5]. So, we assume that K is cabled and that $\#|\mathcal{F}| \geq 2n_2$. The edges in \mathcal{F} describe orbits in H_Q (see [8, Section 5] for more details). Since $\#|\mathcal{F}| \geq 2n_2$, each orbit is represented at least twice. By an innermost argument, there are two edges e, f in one orbit which are parallel in H_O . But e, f are already parallel edges in G_S ; since we assume that K(p/q) does not contain a projective plane (otherwise q = 1) this is impossible by [6, Lemma 2.1].

Let Γ be the reduced graph of G_S . Since \hat{S} is the connected sum of g projective planes, Γ contains at most g negative edges. This completes the proof of Lemma 4.1

Lemma 4.3
$$\mathcal{P} \leq \frac{(g-1)n_2}{2}$$
.

Proof Let x be a label of G_S , and Γ_x be the subgraph of G_S consisting of all the positive edges with one label x. We denote by E_x the number of edges of Γ_x .

Claim 4.4 For all labels $x \in \{1, ..., n_2\}$, the graph Γ_x cannot contain a disk-face.

Proof Assume for a contradiction that there exists a label x, such that Γ_x contains a disk-face D. Then, its boundary is a cycle, whose edges are x-edges. Therefore, by [13, Lemma 2.2] the graph G_S contains a Scharlemann cycle in D, in contradiction to Lemma 3.1.

Claim 4.5 For all labels $x \in \{1, ..., n_2\}$, $E_x \leq g - 1$, equivalently $\chi(\hat{S}) \leq 1 - E_x$.

Proof By the Euler characteristic equality:

$$\chi(\hat{S}) = V - E + \sum_{f \text{ face of } \Gamma_x} \chi(f)$$

where V = 1 is the number of vertices and $E = E_x$ the number of edges of Γ_x . By the previous claim, $\chi(\hat{S}) \leq 1 - E_x$. Since $\chi(\hat{S}) = 2 - g$, $E_x \leq g - 1$.

An edge in G_S which has the same label at its both endpoints is a negative edge (because it joins the same vertex in H_Q). Therefore, by the previous claim, each vertex in H_Q is incident to at most g-1 positive edges. Thus: $\mathcal{P} \leq \frac{1}{2}(g-1)n_2$, proving Lemma 4.3.

Lemma 4.6 If K is not a cable knot then $q \le 3g - 2$; otherwise $q \le 5g - 2$.

Proof The number of edges of G_S is $\frac{1}{2}qsn_2 = \frac{qn_2}{2} = \mathcal{P} + \mathcal{N}$. Using Lemmas 4.1 and 4.3, we obtain two inequalities according to whether K is cabled or not:

(1)
$$\frac{qn_2}{2} \le \frac{1}{2}(g-1)n_2 + g(2n_2 - 1)$$
, or
(2) $\frac{qn_2}{2} \le \frac{1}{2}(g-1)n_2 + g(n_2 - 1)$;

(2)
$$\frac{q\tilde{n}_2}{2} \le \frac{1}{2}(g-1)n_2 + g(n_2-1);$$

which gives

(1)
$$q \le 5g - 1 - \frac{2g}{n_2}$$
, if *K* is cabled, and (2) $q \le 3g - 1 - \frac{2g}{n_2}$, if *K* is not cabled.

5 Large Intersection Number

In this section, we assume that s > 1, then $s \ge 3$, by Lemma 3.3. Consequently $n_1 = 2s \ge 6$.

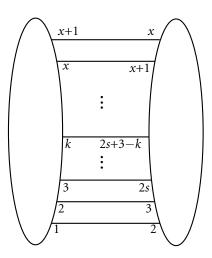


Figure 2: Family of parallel edges in G_O .

Lemma 5.1 No Scharlemann cycle in G_Q bounds a white face. In particular every Scharlemann cycle is an S-cycle.

Proof We argue by contradiction. If G_Q contains a Scharlemann cycle which bounds a white disk-face, then there exists a corresponding Scharlemann cycle σ in H_Q , which bounds a disk-face f. Let x, $x+1 \pmod{s}$ be the labels of σ (since $s \geq 3$ we have $x \neq x+1$). Let H be the annulus in ∂X_K between the components labelled by x and x+1 of ∂S . Let $S'=\hat{S}$ with the meridian disks labelled by x and x+1 removed. Then we can use f to compress $S' \cup H$ to obtain a new non-orientable closed surface with the same genus as \hat{S} , but intersecting the core of the surgery fewer times, in contradiction to the minimality of \hat{S} .

Lemma 5.2 $m \le 3n_2 - 6$.

Proof Let Γ be the subgraph of G_Q whose vertices are the vertices of G_Q and whose edges are in one-one correspondence with the *S*-cycle in G_Q , each *S*-cycle being represented by a single edge in the obvious way.

Claim 5.3 The graph Γ does not contain a disk-face of length two.

Proof Assume for a contradiction that there exist two edges in Γ , which cobound a disk-face Z. Let σ and σ' be the corresponding S-cycles. Without loss of generality, we may assume that $\{1,2\}$ are the labels of σ and $\{x,x+1\}$ are those of σ' .

Then $G_Q \cap Z$ is a family of parallel edges, within no more *S*-cycle inside. Let *e* be an edge in $G_Q \cap Z$. Therefore, if *k* is the label at one endpoint of *e* then $2s + 3 - k \pmod{2s}$ is the label at the other endpoint (see Figure 2).

Consequently, x = 2s/2 + 1 = s + 1, which is an even integer. Thus, σ' is a white Scharlemann cycle, in contradiction to Lemma 5.1.

Recall that there is no trivial loop in G_Q , so all the disk-faces of Γ have at least two sides. Let F be the number of disk-faces of Γ . By the previous lemma, each disk-face has at least three sides. Since m is the number of edges of Γ , we obtain $3F \leq 2m$. The Euler characteristic equality gives:

$$2 = \chi(\hat{Q}) = V - E + \sum_{f \text{ face of } \Gamma} \chi(f)$$

where $V=n_2$ is the number of vertices and E=m the number of edges of Γ . Therefore $2 \le n_2 - m + F$, with $F \le 2m/3$; so $m \le 3n_2 - 6$ finishing the proof of Lemma 5.2.

With Lemma 3.3, we obtain the following.

Corollary 5.4
$$q \le 5 - \frac{\chi(\hat{S})}{s} - \frac{8}{n_2}$$
, and $q < 5 + \frac{g}{s} - \frac{8}{n_2}$.

Corollary 5.5 $\chi(\hat{S}) \leq 14 - 3q$, equivalently $g \geq 3q - 12$.

Proof Since $s \ge 3$, and assuming that $\chi(\hat{S}) < 0$ (otherwise q = 1), the previous corollary gives $q < 5 - \frac{\chi(\hat{S})}{3}$.

Corollary 5.6 If $g \le 8$ (equivalently if $\chi(\hat{S}) \ge -6$) then $q \le 5$.

Proof The previous corollary gives that q < 7; but q is odd.

6 Composite and Conway Knots

A knot is said to be a *composite knot* if there exists a 2-sphere \hat{Q} in S^3 such that \hat{Q} intersects K in 2 points and $Q = \hat{Q} \cap X_K$ is incompressible in X_K .

A knot is said to be *a Conway knot* if there exists a 2-sphere \hat{Q} in S^3 such that \hat{Q} intersects K in 4 points and $Q = \hat{Q} \cap X_K$ is incompressible in X_K .

If K is a composite knot we may assume that $n_2 = 2$, choosing for \hat{Q} the incompressible 2-punctured sphere in X_K . Similarly, if K is a Conway knot or a knot with two bridges, we may assume that $n_2 = 4$.

Lemma 6.1 If K is a composite knot then $q \le 1 - \frac{\chi(\hat{S})}{s}$, equivalently $q \le 1 + \frac{g-2}{s}$.

Proof We may assume that $n_2 = 2$. Since \hat{Q} is separating, and since the graph G_Q cannot have a trivial loop, it cannot have a Scharlemann cycle either. Therefore, by Lemma 3.3, we obtain $q \le 1 - \frac{\chi(\hat{S})}{s}$, equivalently $q \le 1 + \frac{g-2}{s}$.

Lemma 6.2 If K is a Conway knot or a 2-bridge knot then $q \le 2 - \frac{\chi(\hat{S})}{s}$, equivalently $q \le 2 + \frac{g-2}{s}$.

Proof We may assume that $n_2=4$. Since \hat{Q} is separating, the possible Scharlemann cycles in G_Q are of length two. By Claim 5.3 they cannot be parallel. Therefore G_Q contains at most 2 Scharlemann cycles. Then, by Lemma 3.3, we obtain $q \leq 2 - \frac{\chi(\hat{S})}{s}$, equivalently $q \leq 2 + \frac{g-2}{s}$.

Recall that s and q are odd. Therefore Lemmas 6.1 and 6.2 prove Lemmas 1.3 and 1.4.

References

- M. Culler, C. McA. Gordon, J. Luecke and P. B. Shalen, *Dehn surgery on knots*. Ann. Math. 125(1987), 237–300.
- [2] C. Delman and R. Roberts, *Alternating knots satisfy strong property P*. Comment. Math. Helv. **74**(1999), 376–397.
- [3] M. Eudave-Muñoz, Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots. Geometric Topology, Athens, GA, 1993, 35–61, Amer. Math. Soc. IP Stud. Adv. Math. 2.1, Amer. Math. Soc., Providence, RI, 1997.
- [4] D. Gabai, Foliations and the topology of 3-manifolds, III. J. Differential Geom. 26(1987), 479–536.
- [5] F. González-Acuña and H. Short, Knot surgery and primeness. Math. Proc. Cambridge Philos. Soc. 99(1986), 89–102.
- [6] C. McA. Gordon, Boundary slopes of punctured tori in 3-manifolds. Trans. Amer. Math. Soc. 350(1998), 1713–1790.
- [7] _____, Combinatorial methods in Dehn surgery. Series on Knots and Everything 15, World Scientific Publishing, River Edge, NJ, 1997, pp. 263–290.
- [8] C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in 3-manifolds. Topology Appl. 18(1984), 181–144.
- [9] C. McA. Gordon and J. Luecke, Dehn surgeries on knots creating essential tori, I. Comm. Anal. Geom. 3(1995), 597–644.
- [10] _____, Dehn surgeries on knots creating essential tori, II. Comm. Anal. Geom. 8(2000) 671–725.
- [11] _____, Non-integral, toroidal Dehn surgeries. preprint.

- [12] _____, Only integral surgeries can yield reducible manifolds. Math. Proc. Cambridge Philos. Soc. 102 (1987), 97–101.
- [13] ______, Reducible manifolds and Dehn surgery. Topology (2) **35**(1996), 385–409.
- [14] C. Hayashi and K. Motegi, Only single twists on unknots can produce composite knots. Trans. Amer. Math. Soc. 349(1997), 151–164.
- [15] K. Ichihara, M. Ohtouge and M. Teragaito, Boundary slopes of non-orientable Seifert surfaces for knots. Topology Appl. 122(2002), 467–478.
- [16] D. Matignon, P^2 -reducibility of 3-manifolds. Kobe J. Math. 14(1997), 33–47.
- [17] D. Rolfsen, Knots and Links. Mathematics Lecture Series 7, Publish or Perish, Berkeley, California, 1976.

Université d'Aix-Marseille I C.M.I. 39, rue Joliot Curie F-13453 Marseille Cedex 13 France

e-mail: matignon@cmi.univ-mrs.fr

Université de Moncton Département de Mathematiques et de Statistique Moncton, New Brunswick E1A 3E9 e-mail: sayarin@umoncton.ca