CONDOR observations of high mass star formation in Orion

N. H. Volgenau¹, M. C. Wiedner¹, G. Wieching¹, M. Emprechtinger¹, F. Bielau¹, U. U. Graf¹, C. E. Honingh¹, K. Jacobs¹, B. Vowinkel¹, R. Güsten², D. Rabanus¹, J. Stutzki¹ and F. Wyrowski²

 $^{1}\mathrm{I}.$ Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

²Max Planck Institut für Radioastronomie, 53121 Bonn, Germany

CONDOR, the CO, N⁺, Deuterium Observations Receiver, is designed to make velocity-resolved observations of the CO, [NII], and p-H₂D⁺ lines in the 1.4 THz (200-240 μ m) atmospheric windows. CONDOR's first light observations were made with the APEX telescope in November 2005. The CONDOR beam on APEX (at $\nu=1.5$ THz) was expected to consist of a 4.3" main beam and a 73" error beam; this beam structure was verified from scans of Mars. The pointing accuracy, also determined from Mars scans, was better than 7". The average atmospheric transmission during our Orion observations (elev~ 57°) was 19 ± 4 % along the line-of-sight. A forward efficiency of $F_{eff}=0.8$ was determined from sky dips, and observations of the Moon and Mars were used to couple the CONDOR beam to sources of different sizes ($\eta_c=0.40$ and ~0.10 , respectively). For more information, see Wiedner et al. 2006.

With CONDOR, we observed CO J=13-12 emission from three sites of high-mass star formation in Orion (IRc2, FIR4, and NGC2024). A sample spectrum from Orion IRc2 is shown in Fig. 1. In our analysis of IRc2, we assume that all spectra from positions $<\pm20''$ include a "spike" ($\Delta v\approx 5~{\rm km~s^{-1}}$) and a "hot core" component ($\Delta v\approx 35~{\rm km~s^{-1}}$). The optically thin spike emission arises from the interface of the Orion Ridge and the energizing M42 HII region. A simple isothermal model fit to the J=13-12 and higher-J CO lines (e.g. Boreiko et al. 1989) reveals that the layer must indeed be warm ($T_{kin}\approx 620~{\rm K}$), dense ($n(H_2)\approx 2\times 10^6~{\rm cm^{-3}}$), and thin ($N(CO)\approx 1.2\times 10^{16}~{\rm cm^{-2}}$). Because the Ridge has a temperature gradient, we are currently modeling the data using a PDR code. We are also analyzing the line wings to constrain the outflow properties.

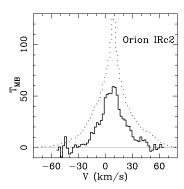


Fig. 1: CONDOR/APEX CO J=13-12 (solid) and HHT CO J=7-6 (dotted) spectra centered on Orion IRc2. The velocity resolution is smoothed to 2 km s⁻¹. Conversion to T_{MB} was made with $\eta_c=0.40$ for the CONDOR data and $\eta_c=0.54$ for the HHT data (Wilson et al. 2001). These coupling efficiencies are only valid for the extended, warm CO emission (the "spike" component); thus, the scale for the line wings (the "hot core" component) is underestimated.

This research is supported within SFB 494 of the Deutsche ForschungsGemeinschaft.

References

Boreiko, R.T., Betz, A.L. & Zmuidzinas, J. 1989, ApJ 337, 332 Wiedner, M.C., Wieching, G., Bielau, F., et al. 2006, A & A 454, L33 Wilson, T.L., Muders, D., Kramer, C., & Henkel, C. 2001, ApJ 557, 240