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Front propagation in cellular flows:
scale dependence versus scale invariance

S. Bodea1, E. Beauvier1 and A. Pocheau1,†
1Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
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We experimentally study front propagation in a vortex lattice providing closed steady
cellular flows and no mean flow. To this end, we trigger an autocatalytic reaction in
a solution stirred by magnetohydrodynamic flows in a Hele-Shaw cell. We evidence a
scale-invariant regime below some flow magnitude and a scale-dependent regime above,
the scales referring here to the vortex scale and the front thickness. The transition between
these regimes corresponds to a unitary Damköhler number Da: Da = 1. The enhancement
of the mean front velocity with the flow magnitude nicely agrees with the literature on
numerical simulations and theoretical analyses in the scale-invariant regime Da > 1, but
displays noticeable discrepancies in the scale-dependent one Da < 1. This shows that the
transition between regimes is qualitatively sharp but quantitatively smooth.

Key words: laminar reacting flows, Hele-Shaw flows

1. Introduction

In a reactive medium, the transformation from a fresh state to a fully reacted state might
occur homogeneously, i.e. at the same rate at all places. However, due to local initiations
in the bulk or at boundaries, it actually takes place inhomogeneously, i.e. with a progress
variable depending on space and time. Then, the competition between diffusion and
reaction causes the change of the medium to occur by the propagation of a front which
separates the fresh and fully reacted phases and displays a definite thickness and a definite
velocity (Fischer 1937; Kolmogorov, Petrovskii & Piskunov 1937; Field & Burger 1985;
Williams 1985; Goriely 1995; van Saarloos 2003).

In many situations of practical interest, the reactive medium is a fluid that is
usually stirred by flows for intrinsic (buoyancy, instability) or extrinsic (moving
boundaries, rotational force field) reasons. This is the case in chemical engineering
(Ottino 1994) or in combustion (Williams 1985) but also in epidemics (Russell et al.
2004), chemohydrodynamics (De Wit 2020; Mukherjee & Paul 2022), environment
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(Edouard et al. 1996) or ecology (Abraham 1998; Abraham et al. 2000). Then, an
additional transport phenomenon, advection, competes with diffusion and reaction.
Depending on the scale of the vortices, it can simply transport the reacting medium at
distant locations or, more intrusively, mix the reactive species within the front thickness.

An interesting situation to highlight the implication of advection on front propagation
relates to steady closed flows (Audoly, Berestycki & Pomeau 2000; Abel et al. 2001,
2002; Cencini et al. 2003; Vladimirova et al. 2003; Paoletti & Solomon 2005; Pocheau
& Harambat 2006, 2008; Mahoney et al. 2012; Tzella & Vanneste 2014, 2015, 2019;
Beauvier, Bodea & Pocheau 2016, 2017). Then, as streamlines are confined to compact
regions, no large-scale advection of the medium and thus no net kinematic effect are
expected at long times on fluid particles. However, due to the ability of fronts to cross
streamlines, there nevertheless appears a net effect of advection on front propagation
through a global enhancement of the mean front velocity and, ultimately, of the reacting
rate of the stirred media (Williams 1985; Audoly et al. 2000; Abel et al. 2001, 2002;
Cencini et al. 2003; Vladimirova et al. 2003; Paoletti & Solomon 2005; Pocheau &
Harambat 2006, 2008; Mahoney et al. 2012; Tzella & Vanneste 2014, 2015, 2019;
Beauvier et al. 2016, 2017). Depending on the system, this can be beneficial (reduced
time in chemical industry, increased power of internal combustion engines) or detrimental
(increased spread of epidemic, growth of the ozone hole). In both cases, progress in our
understanding of the behaviour of a propagating front in stirred media will be of great help
in promoting or controlling this phenomenon.

Of course, the velocity enhancement of a reaction–diffusion (RD) front by stirring flows
is directly related to the vortex amplitude U. However, certain spatial scales of the system,
vortex scales, front thickness and container dimensions, may also play a role. This study
aims at examining experimentally whether, and to what extent, these spatial scales actually
influence the mean velocity of a RD front propagating in a stirred medium. In addition to
an improved understanding of the advection–reaction–diffusion (ARD) mechanisms, this
should help to discriminate regimes where spatial scales have to be taken into account
from those where they can be overlooked.

Our experiment addresses the propagation of a RD front in a Hele-Shaw cell stirred by
a vortex lattice induced by magnetohydrodynamic forcing. Since the reaction is athermal,
no additional convective flow is generated. Vortices have the same width L and a depth
d that is fixed by that of the cell. They provide closed steady cellular flows involving no
mean flow. As they extend over a lattice comprising several lines, all of them undergo
stress-free boundary conditions (b.c.), except those adjacent to the sidewalls. In addition
to the front thickness λ, the vortex scales L and d provide the relevant spatial scales of this
ARD system. The proper front velocity, i.e. the propagation velocity of a planar front in a
fluid at rest, will be denoted V0 and will be used to non-dimensionalize vortex amplitude
and mean front velocity.

Here, we seek to experimentally determine the role of these spatial scales on the
propagation of fronts, in particular on their mean propagation velocity V over the stirred
medium. A previous study concluded to the independence of the mean reduced velocity
V/V0 on the aspect ratio L/d of vortices (Beauvier et al. 2016, 2017). Following it, we will
focus attention on the dependence of V/V0 on the vortex to front scale ratio L/λ.

We find a scale-invariant regime at small U/V0 and a scale-dependent one at large U/V0,
and we characterize the transition between them. We then determine the relationships
between V/V0, U/V0 and L/λ in both regimes and compare with numerical simulations
(Vladimirova et al. 2003) and theoretical analysis (Tzella & Vanneste 2014, 2015, 2019)
of ARD dynamics in a plane. Altogether, our study thus improves the characterization of
front propagation in stirred flows and provides a detailed identification of a scale-invariant
968 A29-2
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regime where spatial scales may be overlooked and of a scale-dependent regime where
they significantly influence front propagation.

The paper is organized as follows. We first review in § 2 the main variables and regimes
involved in ARD systems, with emphasis on the scale dependence of the mean front
velocity. In particular, we recall previous experimental results on the independence towards
the vortex aspect ratio L/d and report the various regimes found in numerical simulations
and theoretical analysis. We then describe in § 3 the experimental set-up and how its
available ranges of variables match with the expected regimes. The experimental results
are reported and analysed in § 4. They are followed in § 5 by a discussion of the regimes
encountered and their transition. A general conclusion ends the study.

2. Front propagation in cellular flows: variables and regimes

We consider a reacting medium stirred by steady cellular vortex flows involving no mean
flow. We track the evolution of the reaction by a single progress variable θ , 0 ≤ θ ≤ 1,
where θ = 0 denotes the fresh state where reaction has not yet started and θ = 1 the burn
state where reaction is complete. We label D the molecular diffusivity of species, τ the
characteristic time of the reaction, f (θ)/τ the reaction rate and U(r, t) the vortex flow
field.

A local initiation of the reaction results in the formation of a propagating front.
It corresponds to a progressive wave which, in absence of flow, is expressed as
θ ≡ θ(r − V 0t), where V 0 denotes the front proper velocity.

We recall below the nature of this progressive wave and the relation linking its velocity
V0 and thickness λ to the diffusivity D and the reaction rate f (θ)/τ . We then discuss the
variables involved when the medium is stirred by a vortex flow and focus attention on the
relationship between the mean front velocity, the flow magnitude and the spatial scales.

2.1. Reaction–diffusion
Following reaction and diffusion, the progress variable θ(r, t) satisfies the RD equation

∂θ

∂t
= DΔθ + f (θ)

τ
, (2.1)

where the form of the reaction term f (θ) depends on the nature of the reaction (Fischer
1937; Kolmogorov et al. 1937; Field & Burger 1985; Williams 1985). In combustion,
where the reaction involves a strong activation energy, f (θ) is peaked around the value
of θ corresponding to the energy barrier (Williams 1985). In usual oxidation–reduction
reactions in solutions, this barrier can be neglected so that f (θ) takes a smooth polynomial
form starting from the fresh state θ = 0 and ending at the fully reacted state θ = 1:
f (0) = f (1) = 0; f (θ) > 0, ∀ θ ∈]0, 1[ (Fischer 1937; Kolmogorov et al. 1937; Field &
Burger 1985). As the present experiment stands in the latter case, we will focus our
attention on such polynomial f (·) from now on. As f (θ) and τ are undetermined up to
a common prefactor, we shall use hereafter the normalization condition f ′(0) = 1, where
f ′(·) denotes the derivative of f (·).

Following Kolmogorov, Petrovskii & Piscounov (Kolmogorov et al. 1937), an additional
feature for f (θ), corresponding to the so-called KPP type, proves to yield relevant
implications: f (θ) < f ′(0)θ; ∀ θ ∈]0, 1]. It is in particular satisfied for concave f (·) and in
practice applies to many, but not all, cases.

For all reaction rates, it appears that a continuous family of travelling-wave solutions
with front velocities V larger than a minimum Vm could be solution of the RD equation
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(Fischer 1937; Kolmogorov et al. 1937; Goriely 1995; van Saarloos 2003). This minimum
velocity corresponds to the spreading velocity that would display the front edge close to the
fresh medium θ = 0 for a linearized reaction rate f (θ) ≡ f ′(0)θ . However, when compact
or steep enough initial conditions are considered, as is the case for localized initiations,
a single nonlinear travelling-wave solution with a specific velocity is selected among the
above family for dynamical reasons (Fischer 1937; Kolmogorov et al. 1937; Goriely 1995;
van Saarloos 2003).

When the reaction rate f (·) is of a KPP type, the selected velocity, i.e. the actual
proper front velocity V0, corresponds to the linear spreading velocity Vm (Fischer 1937;
Kolmogorov et al. 1937; Goriely 1995; van Saarloos 2003) which reads

V0 = 2f ′(0)1/2
(

D
τ

)1/2

= α

(
D
τ

)1/2

, (2.2)

where α = 2f ′(0)1/2. As the front dynamics is set by the leading edge θ ≈ 0 close to the
fresh medium, this case is referred to as a pulled dynamics (van Saarloos 2003).

The front thickness λ may be defined as the characteristic size of the variation zone
of θ(r, t) in between the two asymptotes θ = 0 and θ = 1. For dimensional reasons, it
should be of order

√
Dτ . In particular, considering it as the length required to connect

the front asymptotes by the linear profile tangent to the real profile at its inflection
point I, we obtain, for a symmetric profile, λ = |θ ′(I)|−1 with θ ′′(I) = 0 where a prime
denotes the x-derivative ∂/∂x and where, by symmetry, θ(I) = 1/2. The expression of
λ can then be deduced from the RD equation (2.1) for a planar front θ ≡ θ(x − V0t)
propagating at velocity V 0 = V0ex, V0 > 0, from the burnt state θ(−∞) = 1 to the fresh
state θ(+∞) = 0. At the inflection point I, the RD equation gives −V0θ

′(I) = f [θ(I)]/τ
and, finally λ = V0τ/f (1/2). This, together with (2.2), yields

λ = 2
f ′(0)1/2

f (1/2)
(Dτ)1/2 = β(Dτ)1/2, (2.3)

where the prefactor β reads β = 2f ′(0)1/2/f (1/2).
The relations (2.2) and (2.3) for V0 and λ are often expressed for a KPP type reaction

term f (·) corresponding to a polynomial of order two, satisfying f (0) = 0, f (1) = 0 and
f ′(0) = 1. This yields f (θ) = θ(1 − θ) and f (1/2) = 1/4, so that the prefactors α and β
read α = 2 and β = 8.

In practice, for the present case of autocatalytic oxidation–reduction reactions in
solution, the reaction term might be a polynomial of order three or slightly more (Field
& Burger 1985), in conjunction with an increasing number of relevant coupled chemical
equations. Although this would yield slightly different prefactors, we prefer to keep
reference to the above quadratic KPP case, given its large use in the literature. Accordingly,
we will retain hereafter the values (α, β) = (2, 8) for the prefactors.

2.2. Advection–reaction–diffusion
When the reactive solution is stirred by a cellular flow U(r, t), the dynamics of the
progress variable θ(r, t) exhibits an advection term yielding the ARD equation

∂θ

∂t
+ U · ∇θ = DΔθ + f (θ)

τ
. (2.4)

This still yields a progressive wave θ(r, t), i.e. a propagation front, but which then
evolves at a mean velocity V different than V 0 and with space–time periodic modulations
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P(r, t) = P(r + L, t + L/V) implied by the periodic effect of vortices of width L and
lattice generator L: θ(r, t) = P(r, t)θ̃(r − V t).

Here, V corresponds to the effective velocity of the front in the stirred medium, i.e. to
the velocity at which it transforms the medium beyond the periodic modulations P(r, t).
It thus stands as the extrapolation of V 0 when a stirring flow is present and is actually
larger: V > V0. The common objective of studies in this domain is to understand the role
of transport phenomena in the velocity enhancement V/V0 > 1 and to express its relation
with the various relevant parameters.

Together with the flow variables L (vortex width), d (vortex depth) and U (the magnitude
of the flow U), the ARD equation (2.4) provides five independent variables, L, d, τ , D,
U on which the effective front velocity V therefore depends: V ≡ V(L, d, τ,D,U) or,
equivalently, since D = τV2

0/α
2 from relation (2.2), V ≡ V(L, d, τ,V0,U).

Let us render this expression non-dimensional by using the spatial variable L and the
velocity variable V0. As, from (2.2) and (2.3), V0τ = (α/β)λ, this provides the set of
non-dimensional variables (1, d/L, λ/L, 1,U/V0) on which the reduced velocity V/V0
therefore depends. Accordingly, the determination of V/V0 can be reformulated as the
search for the following function f (·, ·, ·) of three non-dimensional variables: V/V0 =
f (U/V0, L/λ, L/d).

This is the natural representation for experiments since U, L and d are control parameters
for them. However, other equivalent choices of non-dimensional variables may be taken. In
particular, the non-dimensionalization of the ARD equation (2.4) by the vortex width L and
the vortex amplitude U yields, with the non-dimensional variables t̂ = tU/L, Û = U/U
and operators ∇̂ = L∇, Δ̂ = L2Δ, the non-dimensional ARD equation

∂θ

∂ t̂
+ Û · ∇̂θ = Pe−1Δ̂θ + Da f (θ), (2.5)

where Pe = UL/D and Da = L/(Uτ) denote the Péclet number and the Damköhler
number, respectively. Accordingly, the determination of the reduced effective velocity
V/V0 can also be formalized as the search for the function g(·, ·, ·) satisfying V/V0 =
g(Pe,Da, L/d). This is the representation actually considered in numerical simulations
and in theoretical analysis, since both take the non-dimensional ARD equation (2.5) as
their starting point.

Given the time scales provided by advection τu = L/U, diffusion τD = L2/D and
reaction τr = τ , the Péclet and Damköhler numbers may be expressed as the following
ratios: Pe = τD/τu, Da = τu/τr. Accordingly, they may be used to determine whether
advection dominates diffusion (τu 
 τD; Pe � 1) or reaction (τu 
 τr; Da 
 1) or is
dominated by them (Pe 
 1; Da � 1).

Using (2.2) and (2.3), the link between Pe or Da and the variables U/V0 and L/λ is
provided by

Pe = (αβ)L/λ U/V0 = 16L/λ U/V0, (2.6)

Da = (β/α)L/λ(U/V0)
−1 = 4L/λ(U/V0)

−1, (2.7)

and conversely by

PeDa = β2(L/λ)2 = 64(L/λ)2, (2.8)

Pe/Da = α2(U/V0)
2 = 4(U/V0)

2. (2.9)
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2.3. Scale invariance versus scale dependence
The reduced velocity may thus be expressed either in terms of the group of variables
(U/V0, L/λ, L/d), (Pe,Da, L/d) or, equivalently, (Pe/Da,PeDa, L/d):

V
V0

= f
(

U
V0
,

L
λ
,

L
d

)
= g

(
Pe,Da,

L
d

)
= h

(
Pe
Da
,PeDa,

L
d

)
. (2.10)

In both cases, it a priori depends on both the scale ratios L/d and L/λ, either implicitly in
g(·, ·, ·) or explicitly in f (·, ·, ·) and h(·, ·, ·) following (2.8) and (2.9). In particular, in the
latter case, scale invariance would mean independence of h(·, ·, ·) with respect to PeDa.
More generally, the above scale dependence means that the vortex width L may directly
influence the effective front velocity, either because of the ARD process in the case of a
dependence on L/λ or because of the vortex structure in the case of a dependence on L/d.

2.3.1. Invariance with respect to the vortex aspect ratio L/d
So far, as numerical and theoretical studies have been restricted to a two-dimensional (2-D)
space (Audoly et al. 2000; Abel et al. 2001, 2002; Cencini et al. 2003; Vladimirova et al.
2003; Tzella & Vanneste 2014, 2015, 2019), i.e. to propagation in a plane, they could not
address the effect of the vortex structure on front propagation. However, this is an issue
accessible to experiments providing the change in the vortex structure is controlled.

In order to test the dependence of the effective velocity V on d and thus on its aspect
ratio L/d, we have considered in the same set-up as that used here, different cell depths
d with the same vortex width L (Beauvier et al. 2016, 2017). In all of these cases, the
vortices underwent no-slip b.c. at the top and bottom plates of the cells. Since Ekman
pumping (Ekman 1905) is negligible at the flow magnitude considered in this study (Kelley
& Ouellette 2011; Beauvier et al. 2017), these top/bottom rigid b.c. resulted in planar
flows with a Poiseuille profile. However, vortices involved other b.c. on their lateral sides,
which differed depending on whether they composed a single line or a multiline lattice, as
follows.

(i) Vortex line – mixed no-slip/stress-free lateral b.c.
In a vortex line, all vortices make contact with the channel walls on two of their sides
and with their neighbouring vortices on their two other sides. The former contacts
involve a no-slip b.c. whereas the latter results in stress-free b.c.

(ii) Vortex array – complete stress-free lateral b.c.
In a vortex array, vortices involve contact with neighbouring vortices on all their
sides, except the vortices adjacent to the walls which involve a no-slip b.c. there.
However, since propagation is dominated by the bulk vortices, one may ignore the
implication of wall vortices and conclude that propagation is driven by vortices
which experience stress-free b.c. on all their lateral sides.

The dependence of the effective velocity V on d has been found to actually differ
depending on these two configurations (Beauvier et al. 2016, 2017), as follows.

(i) Mixed no-slip/stress-free lateral b.c. – dependence on d
In a vortex line, V appeared to noticeably decrease for larger d. This was related to
a larger boundary layer at the cell walls with an implication on front advection and
thus on the effective front velocity. In particular, the evolution of V with d has been
shown to be consistent with a front propagation obeying a least time criterion within
the imposed vortex flow (Pocheau & Harambat 2006, 2008).
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(ii) Complete stress-free lateral b.c. – independence of d
In a vortex array, V appeared not to depend on d. This was related to the fact that,
for stress-free lateral b.c., the only implication of d on the planar flow was on the
Poiseuille profile (Beauvier et al. 2017). Then, as the front appeared to first propagate
in the midplane where the flow velocity is the largest before invading the whole
vortex, the flow velocity on the other planes, and thus the distance d between the
top/bottom b.c., was irrelevant for the propagation of the front head in the vortex
array.

In this study, as we shall restrict attention to vortex lattices, i.e. to free lateral b.c., the
effective velocity will be actually independent of d and thus of the vortex aspect ratio L/d.
Accordingly, the possible dependence of the effective velocity on variables will reduce to
V/V0 = f (U/V0, L/λ) or V/V0 = g(Pe,Da).

2.3.2. Dependence on the vortex to front scale ratio L/λ
Physically, one may guess that, when the front thickness λ is much less than the vortex
width L, λ
 L, the actual front thickness no longer matters, so that the front may be
considered as an infinitely thin interface: λ ≡ 0. One should then expect the effective
velocity to be independent of the vortex to front scale ratio L/λ in this asymptotic, and
actually scale-invariant, regime: L/λ ≈ ∞; V/V0 = f (U/V0,∞).

Conversely, when the vortex width L becomes so small that it gets comparable to the
front thickness λ, L = O(λ), it can be expected that, in the fluid frame, the RD process
will be disturbed by flow advection within the transition zone between fresh and reacted
species. The effective velocity should then depend on the ratio L/λ.

However, between these expected asymptotic behaviours, determining where will the
dependence on L/λ actually occur and how it will affect the effective velocity stands as a
relevant issue. Accordingly, although one may expect a regime independent of the vortex
to front scale ratio L/λ at large L/λ and dependent on it at small L/λ, a specific study is
mandatory to confirm and detail this picture. This is the purpose of the remainder of the
paper.

Before presenting it, we summarize below the results obtained from numerical
simulations and theoretical analysis of the ARD equation in a 2-D space.

2.4. Analysis of the dependence on the vortex to front scale ratio L/λ from the
ARD equation

Numerical (Vladimirova et al. 2003) and theoretical (Tzella & Vanneste 2014, 2015, 2019)
studies of the effective propagation provided by the ARD equation have been conducted
in a 2-D space. Whereas they cannot address the effect of the overlooked transverse
dimension and thus of the vortex structure, they may be relevant for the front propagation
in a three-dimensional (3-D) fluid stirred by a planar flow, in particular regarding the
implication of the vortex to front scale ratio L/λ in a vortex lattice. The reason for this is
the same as that which leads to the independence of front propagation on d in § 2.3.1: in
a vortex lattice, fronts first invade the midplane where the flow velocity is the largest, so
that their effective propagation actually takes place in a 2-D space.

All the numerical and theoretical studies reported below have been performed in a large
Péclet number regime, Pe � 1, i.e. according to (2.6), at U/V0 � (16L/λ)−1. They all
considered a KPP-like reaction term f (θ) and the sinusoidal stream function ψ(x, y) =
UL/π sin(πx/L) sin(πy/L)which provides steady closed cellular flows with no mean flow.
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We report below the regimes found when varying the Damköhler number Da at large
Péclet number, Pe � 1.

2.4.1. Numerical analysis
In Vladimirova et al. (2003), a parametric study of front propagation in cellular flows has
been performed by direct numerical simulation of the ARD equation in a plane, using the
quadratic KPP reaction term f (θ) = θ(1 − θ).

The different regimes found may be summarized by considering increasing Damköhler
numbers. However, as the control parameter of our experiment is U/V0 at L/λ mainly
fixed, we shall also express the regimes in terms of these variables, thanks to the relations
(2.6) to (2.9).

In each regime, the numerical data provided an approximate relationship between
velocity enhancement V/V0, reduced flow intensity U/V0 and vortex to front scale ratio
L/λ.

A. Regime A: Da 
 Pe−1 
 1 .
From (2.6), Pe � 1 yields (16L/λ)−1 
 U/V0.
From (2.7), Da 
 1 yields 4L/λ
 U/V0.
From (2.8), PeDa 
 1 yields L/λ
 1/8 and 4L/λ
 1/2 
 (16L/λ)−1.
Accordingly, the velocity range of this regime is 4L/λ
 1/2 
 (16L/λ)−1 

U/V0, at small L/λ: L/λ
 1/8.
The reduced velocity was then found to evolve as

V/V0 ∝ (U/V0)
1/4(L/λ)1/4

∝ Pe1/4. (2.11)

B. Regime B: Pe−1 
 Da 
 1.
As above, relations (2.6) and (2.7) yield, for Pe � 1 and Da 
 1, both 4L/λ

U/V0 and (16L/λ)−1 
 U/V0.
However, here, PeDa � 1 implies from (2.8), L/λ� 1/8 and (16L/λ)−1 
 1/2 

L/λ.
Altogether, the velocity range of this regime is thus (16L/λ)−1 
 1/2 
 4L/λ

U/V0, at large L/λ: L/λ� 1/8.
The reduced velocity was then found to evolve as

V/V0 ∝ (U/V0)
1/4(L/λ)3/4

∝ Pe1/2Da1/4. (2.12)

C. Regime C: Pe−1 
 1 
 Da.
From (2.6), Pe � 1 yields (16L/λ)−1 
 U/V0.
From (2.7), Da � 1 yields U/V0 
 4L/λ.
As above, PeDa � 1 yields L/λ� 1/8 and (16L/λ)−1 
 1/2 
 4L/λ.
Altogether the velocity range of this regime is thus (16L/λ)−1 
 U/V0 
 4L/λ, at
large L/λ: L/λ� 1/8.
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The reduced velocity was then found to evolve as

V/V0 ∝ (U/V0)
3/4

∝ (Pe/Da)3/8. (2.13)

We notice that another evolution, V/V0 ∝ (U/V0)/ ln(U/V0), proposed on the basis
of heuristic arguments (Vladimirova et al. 2003), has been found to equally fit the
numerical data. Also, in the framework of the geometrical optics limit for sharp
fronts (the so-called G-equation), this kind of relationship has been found to emerge
as a solution to the one-dimensional (1-D) dynamics of the front head along the
mean propagation axis, the effect of the evolution on the transverse coordinate being
averaged (Cencini et al. 2003). However, we shall retain here the power law evolution
which is more adapted to our analysis.

The range of validity of these regimes as well as their expression for the relative velocity
V/V0 are summarized in table 1. In figure 1, we report a sketch of the position of these
regimes, first on a Da-axis and then, on a U/V0-axis with a distinction between the L/λ

1/8 and L/λ� 1/8 cases. The domain Pe 
 1, which falls out of the scope of the analysis,
is displayed as a dashed line.

2.4.2. Theoretical analysis
A theoretical analysis has been performed by Tzella & Vanneste (2014, 2015, 2019) to
determine the front velocity in the long time limit as a solution to an eigenvalue problem
in connection with large-deviation theory. It has been completed by numerical simulations
of the ARD equation to compare with the theoretical results. While theory considered
general reaction terms of a KPP type, numerical simulations used its quadratic form f (θ) =
θ(1 − θ). Different regimes are identified in which the velocity enhancement is provided
with respect to Pe and Da in terms of solutions of different kinds of issues depending
on the regimes (ordinary differential equation, integral eigenvalue problem, optimization
problem). Their closed-form expressions are obtained by determining their asymptotic
limits far from the domains DaPe = O(1), Da ln(Pe) = O(1) and Da/Pe = O(1). Both
the eigenvalue solutions and their closed-form expressions are confirmed by numerical
solutions of the eigenvalue problem and by numerical simulations of the ARD equation.

As above, we report the different regimes found by considering increasing Damköhler
numbers and by discussing the evolution of U/V0 at small or large L/λ. In each of them,
we report the explicit closed-form relationships between V/V0, U/V0 and L/λ.

1. Regime 1: Da 
 Pe−1 
 1.
The domain of this regime is the same as that of the regime A of the previous § 2.4.1:
4L/λ
 1/2 
 (16L/λ)−1 
 U/V0 and L/λ
 1/8.
The reduced velocity evolves as V/V0 ∝ (U/V0)Pe−1/4Da1/2 or, equivalently, from
(2.6) and (2.7), as V/V0 ∝ Pe1/4, i.e. V/V0 ∝ (U/V0)

1/4(L/λ)1/4, as in the A regime
(2.11).

2. Regime 2: Pe−1 
 Da 
 [ln(Pe)]−1.
From (2.8), the first inequality PeDa � 1 gives L/λ� 1/8 and thus (16L/λ)−1 

1/2 
 4L/λ. The second inequality, Da 
 [ln(Pe)]−1, yields, still from (2.8),
64(L/λ)2 
 Pe/ ln(Pe).
Notice that, in the present large Péclet number domain, Pe/ ln(Pe) increases with Pe.
This yields the following three results.
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A B C
Da

1

1/2

(16L/λ)–1

(16L/λ)–1

1/2

C B

A

U/V0

U/V0

L/λ � 1/8

L/λ � 1/8

4L/λ

4L/λ

Pe–1

(b)

(a)

Figure 1. Numerical simulation (Vladimirova et al. 2003) at large Péclet number Pe � 1. Sketch of the
regimes as a function of the value of Da versus Pe (a) or of the value of U/V0 versus L/λ (b), both for
arbitrary units. The domain Pe 
 1, which falls out of the scope of the analysis, is displayed as a dashed line.
The regimes, labelled A, B, C, are specified in the text with the corresponding velocity enhancement. In (b),
the regime A takes place for L/λ
 1/8 while the remaining regimes B and C occur for the opposite condition
L/λ� 1/8. The red segments indicate the experimental range swept in our study, as specified in § 3.2.2.

(i) First, calling PeT the value of Pe at which PeT/ ln(PeT) = 64(L/λ)2 and
(U/V0)T = PeT(16L/λ)−1 = 4L/λ ln(PeT) the corresponding velocity ratio
deduced from (2.6), we obtain PeT 
 Pe and (U/V0)T 
 U/V0.

(ii) Second, both PeT and (U/V0)T increase with L/λ up to infinity.
(iii) Third, as Pe � 1, ln(PeT) � 1 so that (U/V0)T � 4L/λ.

Therefore, the velocity range of this regime satisfies (16L/λ)−1 
 1/2 
 4L/λ

(U/V0)T 
 U/V0, at large L/λ: L/λ� 1/8.
The reduced velocity then evolves as V/V0 ∝ (U/V0)Da3/4[ln(Pe]−1/4 or,
equivalently, as

V/V0 ∝ (U/V0)
1/4(L/λ)3/4[ln(16L/λ U/V0)]−1/4

∝ Pe1/2Da1/4[ln(Pe]−1/4. (2.14)

3. Regime 3: Pe−1 
 [ln(Pe)]−1 
 Da 
 Pe.
As above, PeDa � 1 implies L/λ� 1/8 and thus (16L/λ)−1 
 1/2. From (2.9),
Da 
 Pe yields 1/2 
 U/V0. Furthermore, the inequality [ln(Pe)]−1 
 Da gives,
similarly as above, Pe 
 PeT and U/V0 
 (U/V0)T . All in all, the velocity range
of this regime is thus (16L/λ)−1 
 1/2 
 U/V0 
 (U/V0)T with L/λ� 1/8.
This regime provides the following evolution for the reduced velocity of the front
V/V0 = π(U/V0)/Wp(8Pe/Da) where Wp(·) denotes the principal branch of the
Lambert W function (Tzella & Vanneste 2014, 2015, 2019). With (2.9), this yields

V/V0 = π(U/V0)/Wp[32(U/V0)
2]

= π/2(Pe/Da)1/2/Wp(8Pe/Da). (2.15)

Notice that, as Pe/Da � 1 in our data range, the approximation Wp(x) ≈ ln(x)−
ln[ln(x)] + o(1) as x → ∞ (Tzella & Vanneste 2019) is valid to better than 5 % for
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[In(Pe)]–1 Pe

Da

U/V0

(U/V0)T

U/V0

Pe–1

1

1

2

4 3 2

3 4

L/   � 1/8

1/2

1/2

(16L/  )–1

(16L/  )–1 4L/

(b)

(a)

L/   � 1/8

Figure 2. Theoretical analysis (Tzella & Vanneste 2015) at large Péclet number Pe � 1. Sketch of the regimes
depending on the values of Da versus Pe (a) or on those of U/V0 versus L/λ (b), both for arbitrary units. The
domain Pe 
 1, which fall out of the scope of the analysis, is displayed as a dashed line. The regimes, labelled
by their number 1 to 4 are specified in the text with the corresponding closed-form of the velocity enhancement.
In (b), the regime 1 takes place for 1/2 
 (16L/λ)−1, i.e. L/λ
 1/8, while the remaining regimes 2, 3 and 4
occur for the opposite condition (16L/λ)−1 
 1/2, i.e. L/λ� 1/8. The red segments indicate the experimental
range swept in this study, as specified in § 3.2.2.

U/V0 > 7. Notice also that, in practice, this expression is close to the power law
(2.13) of regime C. In particular, their ratio varies by less than 6.5 % at U/V0 = 100.

4. Regime 4: Pe 
 Da.
As above, PeDa � 1 implies L/λ� 1/8 and therefore (16L/λ)−1 
 1/2 
 4L/λ.
From (2.9), Pe 
 Da gives U/V0 
 1/2 with still 4L/λ
 (U/V0)T as found
in regime 2, since ln(PeT) � 1. Finally, Pe � 1 yields (16L/λ)−1 
 U/V0.
Altogether, the velocity range of this regime is thus (16L/λ)−1 
 U/V0 
 1/2 

4L/λ
 (U/V0)T with L/λ� 1/8.
The reduced velocity is then found to evolve as V/V0 = 2(U/V0)(Da/Pe)1/2(1 +
3/16 Pe/Da) or, from (2.9), as V/V0 = 1 + 3/16 Pe/Da, i.e. V/V0 = 1 +
3/4(U/V0)

2 (Tzella & Vanneste 2014, 2015, 2019).

In both regimes 3 and 4, the reduced velocity V/V0 appears to depend only on Pe/Da
so that, following (2.8), (2.9) and (2.10), it is actually independent of L/λ.

The range of validity of these regimes as well as their expression for the relative velocity
V/V0 are summarized in table 1. In figure 2, we report a sketch of the position of these
regimes, first on a Da-axis and, then, on a U/V0-axis with a distinction between the L/λ

1/8 and L/λ� 1/8 cases. The domain Pe 
 1, which falls out of the scope of the analysis,
is displayed as a dashed line.

We note that the regimes 1, 2, 3, 4 reported here correspond to the subregimes,
respectively, labelled Ia, Ib/IIa, IIb/IIIa, IIIb in the analysis by Tzella & Vanneste (2015).

2.4.3. Renormalization analysis
Several theoretical studies have sought to renormalize the ARD equation in order
to take into account the implication of cellular advection on diffusion and reaction
(Audoly et al. 2000; Abel et al. 2001, 2002). They did this heuristically by considering
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the modifications of diffusion and reaction separately, before either looking for the
asymptotic behaviour of the modified ARD equation (Audoly et al. 2000) or introducing
the renormalized diffusion coefficient and the renormalized reaction term in the expression
(2.2) of the proper front velocity (Abel et al. 2001, 2002).

They thus obtained the following.

(i) At Da 
 1:
V/V0 ≈ (U/V0)

1/4(L/λ) f with formally f = 0, since the dependence on L/λ falls out
of the scope of the study (Audoly et al. 2000);

V/V0 ≈ Pe1/4 ≈ (U/V0)
1/4(L/λ)1/4 (Abel et al. 2001, 2002), in agreement with regime

A and regime 1, but not with regime B nor regime 2.
(ii) At Da � 1:
V/V0 ≈ Pe1/4Da−1/2 ≈ (U/V0)

3/4(L/λ)−1/4 (Abel et al. 2001, 2002), in disagreement
with the scale invariance of regime C, regime 3 and regime 4.

Since the numerical analysis 2.4.1 and the theoretical analysis 2.4.2 are more detailed
and complete as to the validity of scalings, we shall refer to them in the following.

2.5. Scope and objective of this study
Numerical simulations (Vladimirova et al. 2003) and the theoretical analysis (Tzella &
Vanneste 2014, 2015, 2019) show many convergences but also some noticeable differences
regarding the localization of regimes (figures 1 and 2) and their expressions of velocity
enhancement.

Regarding the convergences, we first notice that the A and 1 regimes involve the
same range and the same velocity enhancement with in particular a slight dependence
on L/λ: V/V0 ∝ (U/V0)

1/4(L/λ)1/4. Moreover, this last dependence is strengthened in
both the following regimes B and 2 with a variation of V/V0 in (L/λ)3/4: V/V0 ∝
(U/V0)

1/4(L/λ)3/4g(Pe) with g(·) ≡ 1 in regime B and g(Pe) = [ln(Pe)]−1/4 in regime 2.
Then, both the regimes C and 3 show the same kind of variation with U/V0, with no
longer any dependence on L/λ: V/V0 ∝ (U/V0)/ ln(U/V0) ∝ (U/V0)

3/4. Consequently,
the overall evolutions regarding the dependence of V/V0 on L/λ as well as its main
expressions with respect to both U/V0 and L/λ agree in the two studies.

However, some differences appear concerning the location of the transition between
the regimes and the detail of the dependence of the velocity enhancement on U/V0. In
particular, it appears that the regime B spans both the regime 2 and a part of the regime 3
(figures 1 and 2). This results from the difference of transition criteria: Da = O(1) (or
U/V0 = O(4L/λ)) between regimes B and C in numerical simulations (Vladimirova
et al. 2003) in contrast to Da = O([ln(Pe)]−1) (or U/V0 = O((U/V0)T)) between regimes
2 and 3 in theoretical analysis (Tzella & Vanneste 2015). Notice that these criteria
actually significantly differ since, in the present large Péclet regime, (U/V0)T � 4L/λ.
Furthermore, the velocity enhancement exhibits in regime 2 an additional slow logarithmic
dependence on U/V0 (g(Pe) = [ln(Pe)]−1/4) that is absent from regime B. In addition,
its expressions in regime C and regime 3, although quantitatively close, formally differ.
Finally, in the range (16L/λ)−1 
 U/V0 
 4L/λ, the regime C is split into the two
regimes 3 and 4.

The origin of the differences regarding the location of the regimes stands in the fact
that, in numerical simulations (Vladimirova et al. 2003), regimes are defined as domains
in which the characteristic times τu, τr and τD largely differ, whereas in the theoretical
study (Tzella & Vanneste 2014, 2015, 2019), they result from a definite analysis. Not
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surprisingly, the latter provides a more detailed picture of how the velocity enhancement
evolves in the parameter space. In a similar vein, while the expressions for the velocity
enhancement result from data fits in numerical simulations (Vladimirova et al. 2003), they
correspond to closed-form asymptotic expressions of definite solutions of an eigenvalue
problem in the theoretical study (Tzella & Vanneste 2014, 2015, 2019). Again, one may
expect the latter to provide more precise expressions. However, we emphasize that, in both
studies, the expressions for the velocity enhancement stand as intermediate asymptotic
limits, whose validity begins at some distance from the transition between the regimes
shown in figures 1 and 2, i.e. Da = Pe−1 and Da = 1 in the numerical study (Vladimirova
et al. 2003) and DaPe = O(1), Da ln(Pe) = O(1), Da/Pe = O(1) in the theoretical study
(Tzella & Vanneste 2015).

Beyond the differences between these studies regarding regimes and velocity
enhancements, it thus appears valuable to determine the behaviour of front propagation
both in the vicinity of regime transitions and far from them. Despite the experimental
difficulties in sweeping a wide range of parameters, this has motivated the present
experiment, in particular to clarify the emergence of a dependence of the velocity
enhancement on L/λ. For this purpose, the vicinity of the transition between the B and
C regimes or between the 2 and 3 regimes seems the most suitable. In anticipation of the
experimental report, figures 1 and 2 show the experimental range studied here. It is found
to a priori stand around the transition between the B and C regimes and close to that
between the 2 and 3 regimes. However, as the values of transitions are given up to some
prefactor, this will have to be confirmed by analysis of the experiment outcomes.

3. Experiment

The experiment is designed to allow the study of front propagation in stirred flows under
controlled conditions in terms of reaction, flow and geometry. For this purpose, we
considered an athermal oxidation–reduction reaction in a solution confined in a Hele-Shaw
cell stirred by magnetohydrodynamic flows (Pocheau & Harambat 2006, 2008; Beauvier
et al. 2016, 2017).

Since the reaction provides no source or sink of heat, it induces no convective flows.
Thus, the only flows that stir the solution will be those deliberately induced there. In
order to control not only the amplitude but also the structure of the flows, we chose
to avoid flows generated by instability (e.g. thermoconvective, or Couette instabilities)
and focussed on flows forced by an external controllable source. This led us to opt for
magnetohydrodynamic flows. These flows are then forced by Laplace forces induced in
the solution by both a steady electric current and a static magnetic field generated by
magnets (figure 3).

In order to obtain a square array of vortices, we used a square array of magnets and
a rectangular cell of appropriate size to fit with the vortex array. Finally, to obtain a
simple vortex structure despite the sharp decrease of the magnetic field with the distance
to magnets, we considered a thin cell, i.e. a Hele-Shaw cell, with magnets placed just
below it. This allowed the magnetic field to be nearly constant on the direction of the cell
depth, thus minimizing the dissymmetry of the flow between the top and bottom of the
cell. By using a flow amplitude small enough to match the Stokes regime, this allowed us
to obtain planar flows with a near Poiseuille profile (Beauvier et al. 2017) and an amplitude
adjustable from either the current density or the magnetic field.

We describe below the experimental set-up in more detail and report its available ranges
regarding the relevant dimensional or non-dimensional variables.

968 A29-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.536


Front propagation in cellular flows

Magnetic field Window

Magnets

B j

Chemical solution

d
z l

L

L

x

x
y

(b)(a)

Figure 3. Sketch of the chemical solution stirred by magnetohydrodynamic forcing.
(a) Magnetohydrodynamic forcing results from Laplace forces induced by an electric current j flowing
over alternate magnetic fields B induced by magnets. The solution fills a Hele-Shaw cell of depth d = 2 mm
much smaller than its width l or its length. (b) Square lattice of vortices induced by square magnets of size L.

3.1. Chemical reaction, magnetohydrodynamic forcing and set-up
The chemical reaction used is the chlorite-iodide oxidation–reduction reaction in aqueous
solution:

ClO−
2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O, (3.1)

5ClO−
2 + 2I2 + 2H2O → 5Cl− + 4IO−

3 + 4H+, (3.2)

IO−
3 + 5I− + 6H+ → 3I2 + 3H2O. (3.3)

Here, iodide I− is oxidized not only in reaction (3.1) but also in reaction (3.3). In particular,
a product of iodide oxidation in reaction (3.1), namely iodine I2, turns out to generate
by reaction (3.2) iodate IO−

3 , which ultimately serves to improve iodide consumption by
reaction (3.3). Thus, iodide consumption is enhanced by one of its product: it thus appears
as an autocatalytic process. Here, this generates a front of iodide depletion that invades the
medium at a proper normal velocity V0. It is made visible by adding beforehand a starch
indicator which forms a blue starch-triiodide complex with iodide and iodine. The iodide
depletion induced by the passage of the front then makes the medium change from blue
(initial ‘fresh’ state θ ≡ 0) to colourless (final ‘burnt’ state θ ≡ 1). The frontier between
these visible areas allows the optical localization of the reacting front (figure 4).

Following the analysis of RD recalled in § 2.1, a relevant question emerges as to whether
the reaction term f of the chemical reaction expressed in terms of a suitable progress
variable θ is of KPP type. The most direct way to answer it would be to explicitly consider
the form of f (θ). However, a large number of elementary reactions stand behind the
above reactions so that their chemical kinetics stands as a high dimensional dynamical
system. Although it may likely be reduced to a 1-D dynamical system in θ in view of the
irreversible dynamics attached to front propagation, this has not yet been completed in
the chemical kinetics literature (Epstein & Kustin 1985; Citri & Epstein 1987; de Kepper,
Boissonade & Epstein 1990), not only for this autocatalytic reaction but for many similar
ones (Field & Burger 1985; Scott 1994). Nevertheless, some hints support a KPP type
for these kinds of reactions. First, the initial state θ = 0 is unstable, as evidenced by
the irreversible reaction towards the final burnt state θ = 1, so that f ′(0) > 0. Second,
no other steady state exists in between the initial and the final state, so that f (θ) > 0
for 0 < θ < 1. Finally, chemical kinetics usually yields f (θ) to express as f (θ) = θg
where g ≡ g(θi) is a function of the reactants’ concentrations θi. Ordinarily, g decreases
with the reactants’ concentrations until vanishing when the reaction is completed. Then,
expressing g in terms of the progress variable θ using kinetics reduction and stoichiometry,
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L = 5 mm

L = 15 mm L = 20 mm

L = 45 mmL = 40 mm

L = 48 mm

L = 12 mm

(e)
( f )

(b)

(a)

(d )
(c)

(g)

Figure 4. Images of front propagation at various vortex size L, channel width l and thus number of vortices n
on this width. Reactants are dark blue (dark grey) and products are light blue (light grey). The reacting fronts
stand at the frontier between the corresponding domains. They move from the light blue (reacted) domains to
the dark blue (unreacted) domains so as to increase the former at the expense of the latter. The mean direction
of propagation on these images is thus from left to right and, inside vortices, from the vortex periphery to
the vortex centre. All images are 17 cm long, irrespective of the channel length. Lines represent vortex length.
(a) L = 5 mm, l = 100 mm, n = 20; (b) L = 12 mm, l = 144 mm, n = 12; (c) L = 15 mm, l = 120 mm, n = 8;
(d) L = 20 mm, l = 100 mm, n = 5; (e) L = 40 mm, l = 120 mm, n = 3; ( f ) L = 45 mm, l = 135 mm, n = 3;
(g) L = 48 mm, l = 144 mm, n = 3.
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Front propagation in cellular flows

the above feature corresponds to g(θ) < g(0) for θ > 0. As f ′(0) = g(0), this finally
yields f (θ) = g(θ)θ < f ′(0)θ , which is the criterion for the reaction term to be of
KPP-type.

In practice, the front needs a germ to develop. Here, we force it by initiating, at one
end of the set-up, a localized depletion of iodide induced by oxidation–reduction at a
steel plate dipped into the solution. We notice that the proper front velocity V0 depends
slightly on both the temperature of the solution due to Arrhenius factors controlling
the chemical kinetics and on the electric current density due to its implication on
ionic transport (Hanna, Saul & Showalter 1982; Saul & Showalter 1985). The former
dependence has been frozen by stabilizing the temperature of the whole system at 20 ◦C.
As for the latter dependence, it appears to be weaker when the front propagates on
a direction opposite to the electric current (Pocheau & Harambat 2008). Therefore, to
minimize the dependence of V0 at the leading part of the front, initiation has been
made so that the mean direction of propagation is opposite to that of the electric
current.

The chemical solution fills a long parallelepipedal container made of glass plates of
2 mm thickness (figure 3). The whole is placed on a lattice of square magnets whose
magnetic fields B, normal to their faces, alternate directions between neighbours. The
depth d of the solutions is fixed by a top plate resting on spacers and is set at d = 2 mm
in the whole study. This value of d has been found as minimizing the difference between
b.c. regarding the velocity enhancement (Beauvier et al. 2016, 2017). As it is much smaller
than the length and width of the recipient, the configuration for the solution corresponds
to a Hele-Shaw cell.

Two electrodes put at the extremities of the cell generate in the ionic solution a
controlled current density j that is both constant and uniform. The small residual bubbles
induced were naturally evacuated through a free space left at the end of the top plate
without causing any detectable flow disturbance. Together with the magnetic field B,
the current density j yields a density of Laplace force f L = j ∧ B which gives rise
to a density of vorticity source Ω = ∇ ∧ f L that amounts to Ω = −( j · ∇)B since
∇B = 0 and j is uniform. With a current density j = jex where ex points towards the
longest direction of the cell and B ≈ Bzez where ez denotes the vertical direction, the
vorticity source writes as Ω ≈ −j(∂Bz/∂x)ez. As the cell depth is small compared with
the characteristic decay length of the magnetic field component Bz, one may neglect the
decrease of Ω with z in the fluid layer. Then, as we have kept the current density j low
enough to remain in the Stokes regime, the vertical vorticity gives rise to planar vortex
flows displaying the same width as the magnets, alternate senses between neighbours
and a near Poiseuille profile in the z direction: U ≈ UM[4z(d − z)/d2] with the plane
z = 0 located at the lower plate and where UM denotes the maximum of U (Beauvier
et al. 2017). Again, due to the Stokes regime, the response of the system is linear. In
particular, the flow intensity U is proportional to the Laplace force density fL and thus
to both j and Bz. This offers two possibilities to handle U. Both will be used in the
following, the variation of Bz being induced by a distance δ between the magnets and the
solution.

The flow induced by magnetohydrodynamic forcing involves the same symmetries as
the magnet lattice. It is thus spatially periodic with period 2L, antisymmetric with respect
to vortex separatrices and involves no mean flow. Its actual form has been determined
by solution of the Stokes equation using Fourier decomposition (Beauvier et al. 2017).
The harmonics of the magnetic field B are then found to induce similar harmonics on
the stream function ψ . Even harmonics vanish due to the symmetry of B with respect
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to the magnet centres, so that the vortex separatrices of the fundamental mode remain
those of the complete flow. This means in particular that streamlines are closed so that
the flow is actually a cellular flow. Moreover, evaluation of harmonics amplitude from
the Fourier expansion showed that the fundamental mode is largely dominant at least
by a factor 10 compared with the third harmonic, the same hierarchy being valid on the
whole harmonics cascade. This validates the relevance of the sinusoidal stream function
ψ(x, y) = UL/π sin(πx/L) sin(πy/L) in our set-up, as confirmed by PIV measurements
(Beauvier et al. 2017).

Figure 4 and supplementary movies available at https://doi.org/10.1017/jfm.2023.536
display typical states and evolutions of fronts propagating in vortex arrays. Reactants are
dark blue (dark grey) and products are light blue (light grey), the reacting fronts standing at
the frontier between the corresponding domains. Front propagation is such that it increases
the reacted light blue domains at the expense of the unreacted dark blue ones. In figure 4
and in supplementary movies, the mean direction of front propagation is thus from left to
right and, inside vortices, from the vortex periphery to the vortex centre.

As detailed in the present set-up (Pocheau & Harambat 2008) and in agreement with
simulations and analysis (Abel et al. 2001, 2002; Cencini et al. 2003; Vladimirova
et al. 2003; Tzella & Vanneste 2015), reaction of vortices first proceeds from their
periphery before extending towards their centre. Fronts are thus quickly rolled up
along streamlines before invading the vortex on directions normal to streamlines.
Meanwhile, the contamination of neighbour vortices occurs by propagation across
vortex separatrices before the advection rolls up again the front in the contaminated
vortex.

Figure 4 refers to all the vortex sizes spanned in this study. For the representative
points selected in this figure, we list herewith the corresponding values of L (mm),
U/V0, V/V0 − 1, Pe, Da and Da ln(Pe) in the form (L, U/V0, V/V0 − 1; Pe, Da,
Da ln(Pe)): figures 4(a) (5, 22.2, 6.5; 1016, 0.52, 3.6), 4(b) (12, 37.6, 7.7; 4507, 0.80, 6.7),
4(c) (15, 45.7, 11.7; 6849, 0.82, 7.3), 4(d) (20, 50.8, 13.4; 10588, 1.02, 9.5), 4(e)
(40, 63.4, 16.6; 25342, 1.58, 1.6), 4( f ) (45, 48.8, 10.8; 20137, 2.11, 20.9), 4(g) (48, 111.4,
23.8; 53458, 1.08, 11.7).

Supplementary movies show propagation at L = 5 mm, U/V0 = 22.2 (supplementary
movie 1), at L = 20 mm, U/V0 = 50.8 (supplementary movie 2) and at L = 40 mm,
U/V0 = 63.4 (supplementary movie 3). They refer to figures 4(a), 4(d) and 4(e),
respectively.

Following the velocity gradient implied by the Poiseuille profile, the front displays some
curvature in between the cell plates. Its global velocity in the cell plane, V , then depends
linearly on the flow intensity: V = V0n+ < U > where n denotes the front normal in the
cell plane (Edwards 2002; Leconte et al. 2003; Nevins & Kelley 2019). In the narrow-gap
limit where diffusion plays a significant role, 〈U〉 corresponds to the depth-averaged value
of U . However, in the opposite wide-gap limit where the present experiment belongs
(Beauvier et al. 2016, 2017), 〈U〉 stands as the maximum UM of U on the cell depth.

The position of the front is detected as the boundary between dark blue and light
blue domains (figure 4) and the front evolution is recorded for later measurement of
front velocity or analysis of front shape. Here, as similar distortions and wrapping of
fronts in vortices are observed at various vortex widths L, the analysis will focus on
quantitative features, especially the relationship between reduced front velocity, reduced
vortex intensity and reduced characteristic lengths.

As discussed previously in § 2.3.1, in the present Hele-Shaw cell, the front head
propagates in the midplane where the flow velocity is the largest. In addition, in the
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Front propagation in cellular flows

present vortex arrays, front propagation is dominated by bulk vortices which involve
stress-free conditions. Accordingly, the forthcoming results may be deemed as referring
to front propagation in a 2-D space stirred by flows undergoing stress-free lateral b.c.,
as considered in numerical simulations (Vladimirova et al. 2003) and theoretical analysis
(Tzella & Vanneste 2014, 2015, 2019).

3.2. Measurements and variable ranges

3.2.1. Measurements
The proper front velocity V0 has been directly measured at a temperature of 20 ◦C and at
various current densities j, but with no magnet and thus with no flow. A linear increase of
V0 with j has been observed, V0(mm mn−1) = 1.0 + 2.0 × j(mA mm−2), yielding V0 to
vary between 1.0 and 1.5 mm mn−1 in our study. We took this variation into account in
the remainder for computing the reduced velocities V/V0 and U/V0.

As in simulations and theoretical analysis (Audoly et al. 2000; Abel et al. 2001, 2002;
Cencini et al. 2003; Vladimirova et al. 2003; Tzella & Vanneste 2014, 2015, 2019), the
vortex intensity U is defined here as the maximum velocity displayed by the flow field
U on a vortex. In the present Stokes regime, it is expected to be proportional to the
current density j. To determine it experimentally, we first measured, at each vortex size
L and distance δ between magnets and solution, the velocity of the front displacement
when advected on a vortex streamline, from one vortex separatrix to the next. As the front
then stands far from the vortex centre, especially when it moves at half-distance from the
separatrices, it is then close to the quickest vortex streamline. In addition to advection,
proper propagation at normal velocity V0 also contributes to front displacement, but this
can be evaluated and subtracted. Moreover, to minimize this contribution and thus the
resulting uncertainties, we took care to restrict attention to large U/V0 to make advection
dominates proper propagation. We then obtained a relevant indicator Um of the vortex
intensity which, as expected, was proportional to the current density j.

However, as fronts may change streamlines and as flow velocity changes on a streamline,
the above measurements may slightly depart from the actual vortex intensity U. To evaluate
this bias, we have proceeded to the same measurements on kinematic simulations involving
the canonical planar flow corresponding to the sinusoidal stream function (Beauvier et al.
2017). We then found that the measured velocity Um and U are proportional one to the
other: Um = 0.73U. Applying the same factor to the experiment thus enabled us to obtain
values corresponding to the flow intensity U involved in model flows. In addition, as
measurements of Um are more noisy than those of the current density j, we have preferred
to rely on the measure of j to increase the signal to noise ratio. For this, as Um and j are
proportional one to the other, we have linearly fitted the relation U = Um/0.73 with respect
to j and further applied this linear relation to all current densities, taking care that the linear
factor changes with the configuration (L, δ). This way, we obtained a determination of the
flow intensity that was both noise-free and similar to that used in simulations and analyses.

Beyond an initial transient that does not exceed the propagation over one or two vortices,
the front dynamics becomes periodic, as expected from the periodicity of the vortex lattice
(figure 4). It then displays a mean velocity V that we measure over several vortices. Usually,
the mean direction of propagation was parallel to the channel axis on the whole front.
However, when a large number of vortices were involved in the channel width, e.g. in
figure 4(a), large scale front distortions could arise and make the mean front direction
locally vary. For a better coherence of the study, we then selected those parts of the front
that keep being in average normal to the channel axis with, therefore, a mean direction of
propagation aligned with the channel axis. Finally, to increase the accuracy, we considered

968 A29-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.536


S. Bodea, E. Beauvier and A. Pocheau

35 15

10

5

0 20 40 60 80

30

25

20

15

10

5

0 50 100 150 200

L (mm)

5

12

15

20

40

45

48

U/V0 U/V0

V/
V 0

 –
 1

(b)(a)

Figure 5. Plot of the whole data set with U/V0 as abscissa and V/V0 − 1 as ordinate for a given L. Data show
a noticeable bending for L = 20 mm (a) and slopes varying with L (b). This suggests that different regimes are
combined in the same plot with a possible scale dependence for some of them.

phases of front propagation that can be accurately observed, especially the passing of the
line at equidistance between vortex separatrices.

By measuring the mean effective velocity on typically four vortices, we obtained
V = 4L/T where T denotes the corresponding front travel time. Given a picture length
of 760 pixels encompassing four vortices, an uncertainty of ±1 pixel at the starting and
ending position and of ±1 s for T , the relative uncertainty δV/V amounts in our data base
to δV/V < 1.8 × 10−2. Similarly, the relative uncertainty on the measure of V0 over a
period of 10 mn amounts to δV0/V0 ≈ 3 × 10−3. The measurements of vortex intensity
U are performed in each configuration at U ≈ 30 mm mn−1 and at an increased time
accuracy of 0.1 s. Their uncertainty then amounts to δU/U = 0.05/L + 5.3 × 10−3 with
L expressed in millimetres. This enables us to determine the slope γ = U/j between U and
j in each configuration and then other vortex intensities as U/V0 = γ j/V0. With a relative
accuracy on j of δj/j = 10−2, that of on U/V0 reads as δ(U/V0)/(U/V0) ≈ 0.05/L +
2.86 × 10−2. It yields the largest uncertainties to be δ(V/V0) = 0.6 and δ(U/V0) = 4.5 in
our data range, except for the point of largest U/V0 where it amounts to δ(U/V0) = 6.2.
This, on figure 5, is less than a symbol height and less than or approximately equal to a
symbol width.

3.2.2. Variable ranges
We considered seven configurations corresponding to the same channel depth d = 2 mm
but different vortex widths: L = 5, 12, 15, 20, 40, 45 and 48 mm (figure 4).

The channel width varied from 20 to 144 mm and the channel length was either 400 or
600 mm. In all configurations, the channel width involved several vortices, actually 4 or
20 for L = 5 mm, 12 for L = 12 mm, 8 or 9 for L = 15 mm, 5 or 7 for L = 20 mm, and 3
for L = 40, 45 and 48 mm.

In each configuration, the effective propagation of fronts has been studied for different
flow intensities U and thus different current densities j and distance δ between magnets
and solution. Before reporting the experimental results in § 4, we report here the ranges of
variable in which the study has been performed and compare them with those highlighted
in numerical and theoretical analyses.
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From relations (2.2) and (2.3), both λ and τ appear to directly depend on V0:

λ = αβ
D
V0

= 16
D
V0
, (3.4)

τ = α2 D

V2
0

= 4
D

V2
0
. (3.5)

Therefore, like V0, they undergo a dependency on the current density j which has been
taken into account in the following.

Hereafter, it will be essential to determine the position of the experimental data
range with respect to the transition between regimes identified in numerical simulations
(Vladimirova et al. 2003) (§ 2.4.1) at Da = O(1) and in theoretical analysis (Tzella &
Vanneste 2015) (§ 2.4.2) at Da ln(Pe) = O(1).

Let us label Pe0 = V0L/D and Da0 = L/V0τ the values of Pe and Da when U = V0.
From (2.6) and (2.7), we get

Pe0 = 16L/λ; Pe = Pe0(U/V0), (3.6)

Da0 = 4L/λ = Pe0/4; Da = Pe0/4(U/V0)
−1. (3.7)

This shows that Pe0 controls the ranges of reduced velocities (U/V0) for which Pe or Da
will be greater or less than unity: Pe > 1 for U/V0 > (Pe0)

−1; Da < 1 for U/V0 > Pe0/4.
Here, as 44 < Pe0 < 480 over all L (table 2), the velocity range swept in the experiment,
i.e. 3 < U/V0 < 130, will take place in the large Péclet number domain, Pe � 1, and
around Da = 1. This provides the opportunity to address both the regimes Da < O(1) and
Da > O(1), i.e. the regimes B and C identified in numerical analysis (Vladimirova et al.
2003) (§ 2.4.1).

In table 2, we report for each configuration, i.e. for each value of L, the experimental
range addressed for L/λ, V0, U, U/V0, Pe0, Pe, Da and Da ln(Pe).

This confirms that, for any configurations, the experiment stands in the large Péclet
number regime Pe � 1 and around Da = 1. In particular, while all configurations explore
the Da > 1 domain (i.e. the regime C in § 2.4.1), the configurations L = 5, 12, 15 and
20 mm also involve the Da < 1 domain (i.e. the regime B in § 2.4.1). Therefore, as
expected, both regimes B and C and their transition should belong to the experimental
range. Conversely, it appears that all values of Da ln(Pe) are larger than unity, so that only
the regime 3 of § 2.4.2 should a priori be addressed here.

The range of experimental data is reported by a red line on figures 1 and 2. This provides
graphical evidence for the conclusion that we should access to a transition between regimes
according to the numerical analysis (Vladimirova et al. 2003) but a priori not according to
theoretical analyses (Tzella & Vanneste 2015). However, we emphasize that transitions
between regimes may not be smooth and are determined up to unknown prefactors.
Consequently, beyond the above estimation of the location of the experimental range with
respect to the expected transitions, the analysis of experimental results will have to take
care to detect any change of behaviour in the relation between variables, so as to directly
highlight the transitions.

4. Experimental results and regimes

We report the experimental variation of reduced effective front velocity V/V0 with reduced
flow intensity U/V0 and vortex to front scale ratio L/λ : V/V0 = f (U/V0, L/λ). To
establish a link with analyses, we shall seek to identify different regimes and the transition
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between them. To do so, we shall first rely on the distinction between scale-invariant
regimes in which V/V0 does not depend on L/λ and scale-dependent regimes in which
a dependence on L/λ is in order. Then, in each of them, we shall compare the way
V/V0 varies with respect to both U/V0 and L/λ with the results of numerical or
theoretical analysis (§ 2.4). Finally, once the identification of regimes will be achieved, we
shall address the compatibility between the corresponding experimental ranges to those
considered in numerical and theoretical analysis.

4.1. Velocity enhancement at various scale ratio L/λ
Figure 5 presents the whole set of experimental data as a plot, for each vortex size L, of
V/V0 with respect to U/V0. Since, by definition, V = V0 in absence of flow, i.e. when
U = 0, all data share the same point (V/V0,U/V0) = (1, 0). For a simpler representation
and an easier tracking of power law variations, we shall consider the variables V/V0 − 1
and U/V0, yielding as common point (0, 0).

Although all sizes L show an increase of V/V0 − 1 with U/V0 (figure 5a), noticeable
differences are displayed in their rate of increase and their concavity. This results in a
broadening of the data set with a maximum initial slope for L = 20 mm and minimum
for L = 5 mm (figure 5b) and to a noticeable bending for L = 20 mm (figure 5a). These
differences warn us that data may refer to different regimes and, among them, to possibly
scale-dependent regimes.

In our data range, numerical and theoretical analyses have identified two possible
transitions between regimes: Da = O(1) for the former and Da ln(Pe) = O(1) for the latter
(§ 2.4). Interestingly, according to them, this transition should be linked to scale invariance
with a scale-invariant regime for Da > O(1) (or Da ln(Pe) > O(1)) and a scale-dependent
one for Da < O(1) (or Da ln(Pe) < O(1)), these features being easy to detect in our data
representation.

We choose to consider a simple criterion, Da = 1 and thus to separate data between
those referring to Da < 1 or to Da > 1. Following (2.7), this corresponds to separating
data according to the vortex intensity: U/V0 < 4L/λ for Da > 1; U/V0 > 4L/λ for
Da < 1.

Figure 6 reports the effect of this filtering on data as follows.

(i) For Da > 1 (figure 6a), data points are more tightly clustered around a master curve
than in figure 5, so that the main source of the previous enlargement has been put
aside. This means that the velocity increase V/V0 − 1 is now independent of the
vortex size L, and thus of the scale ratios L/λ: scale invariance is satisfied. In our
data range, this corresponds to regime C and regime 3 (figures 1 and 2; § 2.4).

(ii) For Da < 1 (figure 6b), data at L = 5 mm and L = 20 mm display well-separated
curves which show that V/V0 − 1 definitely depends on L here. This provides
evidence of a scale-dependent regime which, in our data range, corresponds to
regime B and regime 2 (figures 1 and 2; § 2.4). Data at L = 20 mm also display
the noticeable bending noticed in figure 5. Other data are provided at L = 12 mm
and L = 15 mm but they are too scarce to identify a definite type of evolution with
U/V0.

A transition criterion at Da = 1 is thus relevant to our data to make a difference
between scale-invariant and scale-dependent regimes. In the following, we analyse the
data evolution in each regime so as to provide a quantitative comparison with the findings
of numerical and theoretical analyses.
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Figure 6. (a) Here Da > 1. For all vortex sizes L, slopes are much closer than in figure 5 and bending has
disappeared. This makes data describe a master curve which validates scale invariance, as expected for Da >
1 in regime C and regime 3. (b) Here Da < 1. Main data refer to L = 5 and L = 20 mm. They exhibit a
noticeable difference of rate of increase and a noticeable bending at L = 20 mm. The first feature evidences a
scale dependence, as expected for Da < 1 in regimes B and 2.
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Figure 7. Here Da > 1. (a) Power law fits of data V/V0 − 1 = a(U/V0)
e with exponent either fixed to e = 3/4

as in (2.13) (dotted line) or to 1 (linear law, solid line) or free (dashed line). All fits agree with data with
exponents and prefactors (e, a) equal to (3/4, 0.68), (1, 0.25) and (0.83, 0.49), respectively. (b) Plot of relation
(2.15) of regime 3. Despite the absence of any fitting coefficient, it shows a nice agreement with data, except
for a larger data bending at large U/V0.

4.2. Scale-invariant regime: Da > 1
Two types of relations are proposed in these scale-invariant regimes: a power law (2.13)
with exponent 3/4 or a specific function (2.15). We test both of them with respect to data
in figure 7.

In figure 7(a), we first consider two power laws with a fixed exponent equal either to
3/4 as in (2.13) or to 1 as in a linear law, and we fit their prefactors. We next consider the
general form of a power law, V/V0 − 1 = a(U/V0)

e, and fit both its exponent e and its
prefactor a. It appears that, although the general fit provides a best fitting exponent of e =
0.83, the power laws with e = 3/4 or e = 1, agree with data almost equally well. As the
corresponding regimes C or 3 are bounded, this means that a denser data set with a larger
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Figure 8. Here Da > 1. The evolution of V/V0 − 1 with U/V0 is compensated by dividing data by the factor
(U/V0)

0.83 involved in the best fitting power law (figure 7a). This yields a quasistagnation with respect to L/λ,
with a linear fit yielding (V/V0 − 1)(U/V0)

−0.83 = 0.46 + 0.001L/λ. This provides a quantitative test of scale
invariance.

accuracy would be required to determine the exponent more accurately, or conversely,
that data are not sensitive to the exponent in this bounded velocity range. Anyway, the
exponent e = 3/4 detected in numerical simulations (Vladimirova et al. 2003) is found to
be consistent with our data.

In figure 7(b), it appears that the specific function (2.15) nicely agrees with our data
although a larger bending is displayed at large U/V0. This result is remarkable since it
involves no fitting coefficient. As the data at the largest U/V0 are those at the lowest
Da ln(Pe), their larger distance to function (2.15) may possibly indicate that they stand at
the transition between regime 2 and 3 (Da ln(Pe) = 0(1)) but not enough inside the regime
3 (Da ln(Pe) � 1) in which relation (2.15) is valid. This will be emphasized in § 4.4.

Finally, to quantitatively test scale invariance, we use the best fitting power law (with
exponent e = 0.83) to eliminate the dependence on U/V0 as best we can by considering
the combination (V/V0 − 1)(U/V0)

−0.83. Plotting in figure 8 this variable with respect
to L/λ, we observe some data scattering but no mean evolution with respect to L/λ. In
particular, a linear fit of data yields a mean slope of 10−3 which reveals a quasistagnation.
This confirms the independence of V/V0 on L/λ and thus, scale invariance.

4.3. Scale-dependent regime: Da < 1
Power law variations V/V0 − 1 ≈ (U/V0)

e(L/λ) f with (e, f ) = (1/4, 3/4) are proposed
in regimes B (2.12) and 2, with a logarithmic correction (2.14) in regime 2. To test them,
we first seek in figure 9(a) the best fitting exponent e at L = 5 and L = 20 mm with no
logarithmic correction. We obtain e = 0.66 at L = 5 mm and e = 0.62 at L = 20 mm.
Although this provides a decrease of exponent as compared with that displayed at Da > 1,
this largely departs from the expected value e = 1/4. This disagreement is confirmed in
figure 9(b) by the fact that fits with exponent e = 1/4 largely disagree with data either
with or without logarithmic correction.

To now address the variation with respect to L/λ, we compensate the power law
evolution of V/V0 − 1 with U/V0 by considering a mean exponent e = 0.64 and the
compensated variable (V/V0 − 1)(U/V0)

−0.64. Its plot with respect to L/λ in figure 10
reveals a linear increase, (V/V0 − 1)(U/V0)

−0.64 = aL/λ+ b, with b = 0.65 and a
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Figure 9. Here Da < 1. (a) Power law fits of data V/V0 − 1 = a(U/V0)
e at L = 5 mm (dashed line) and

L = 20 mm (solid line). We obtain exponents and prefactors (e, a) equal to (0.62, 0.81) at L = 5 mm and
(0.66, 1.03) at L = 20 mm, respectively. Exponents are lower than in the Da > 1 regime but far from the 1/4
value expected in regime B or regime 2. (b) Power law fits of data with the expected exponent e = 1/4 at
L = 5 mm (thin lines) and L = 20 mm (thick lines), with (dashed lines) or without (solid lines) logarithmic
correction, as in relations (2.12) and (2.14). The mean value �L/λ of L/λ determined from table 2 is used for
relation (2.14): �L/λ = 3.3 for L = 15 mm and �L/λ = 12.5 for L = 20 mm. All fits largely disagree with data.
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Figure 10. Here Da < 1. Compensation of the mean power law evolution (U/V0)
0.64 displayed by the best

fitting power laws (figure 9a). The exponent 0.64 stands as a mean between the actual close exponents 0.62 and
0.66 displayed in this figure. The noticeable variation in L/λ evidences a scale dependence. Its linear fit (solid
line) provides a noticeable slope, 37 times larger than that displayed in figure 8: (V/V0 − 1)(U/V0)

−0.64 =
0.65 + 0.037L/λ. A power law variation in (L/λ)3/4, although proposed by relations (2.12) and (2.14), is
rejected by our data (dashed line). Instead, a power law fit (V/V0 − 1)(U/V0)

−0.64 = a(L/λ) f gives f = 0.26
as best fitting exponent (dotted line). Finally, a fit of a power law plus a shift b, a(L/λ)h + b, yields as best
fitting parameters (a, b, h) = (0.031, 0.66, 1.06). This corresponds to the dashed–dotted line which, in our
data range, is nearly undistinguishable from the linear fit.

noticeable slope a = 0.037 that is 37 times larger than that found in the scale-invariant
regime Da > 1 (figure 8). This factor quantifies the difference between regimes regarding
scale dependence and quantitatively confirms the scale dependence of the Da < 1 regime.

Both relations (2.12) and (2.14) point to a power law variation in (L/λ)3/4 but this kind
of variation is rejected by our data (dashed line in figure 10). Instead, still in figure 10,
a power law fit (V/V0 − 1)(U/V0)

−0.64 = a(L/λ) f (thin dashed line) gives f = 0.26 as
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best fitting exponent (dotted line), quite close to the value 1/4 predicted in regime A or
regime 1. However, as the sensitive part of this power law stands below our lowest L/λ
data, this should not be over interpreted, especially since our data do not belong either to
regime A or to regime 1.

To reinforce this caution, we notice that a fit a(L/λ)h + b of a power law plus a shift b
yields as best fitting parameters (a, b, h) = (0.031, 0.66, 1.06), close to a linear relation in
view of the closeness of exponent 1.06 to 1 (figure 10). Accordingly, the zero or non-zero
limit value of the compensated variable (V/V0 − 1)(U/V0)

−0.64 for L/λ→ 0 appears
essential for selecting either a linear relation or a power law with exponent 1/4. However,
this issue falls beyond the scope of our data range which is bounded by L/λ > 2.7 (table 2).
Nevertheless, we notice that a zero limit would mean a zero value of V/V0 − 1, i.e.
V = V0, in case of advection by cellular flows at a scale much smaller than the front
thickness. However, as flow keeps enhancing the transport properties of species, one might
expect some implication on the front velocity, i.e. V /= V0. This argument points to a linear
evolution in L/λ rather than to a power law, even if both can be close in the bounded
regimes B and 2.

Compared with the regime behaviours found in numerical and theoretical analysis, a
balanced conclusion is thus in order. On the one hand, the main qualitative feature, scale
dependence, is actually evidenced; on the other hand, none of the power law evolutions
with respect to either U/V0 or L/λ is recovered. It thus seems that, on our data range, we
only feel the vicinity of the expected regimes B and 2 by the loss of scale invariance but
not yet their proper quantitative signature.

4.4. Transition between scale-invariant and scale-dependent regimes
Following the above analyses, scale-invariant regimes correspond to regime C or
regime 3 and scale-dependent regimes to regime B or regime 2. Let us first clarify the
boundaries between regimes before turning to a synthetic view of data evolution between
them.

Depending on the type of analyses, the transition between regimes expresses on a
different combination of variables: Da according to numerical analysis (Vladimirova et al.
2003) and Da ln(Pe) according to theoretical analysis (Tzella & Vanneste 2014, 2015,
2019). In the above sections, a transition at Da = 1 has been found consistent with our
data. However, since according to theoretical analysis, it should stand at Da ln(Pe) = O(1),
one may wonder whether our data could be still consistent with this second criterion.

Figure 11 displays the evolutions of Da ln(Pe) with Da for the different vortex sizes L.
They are almost linear since, at each L, the logarithmic dependence on U/V0 brought about
by ln(Pe) is tiny in our range. However, their slope increases with L, so that the value T(L)
of Da ln(Pe) corresponding to Da = 1 increases with the vortex size L: T(L) = 6.2, 8.0,
8.6 and 9.3 at L = 5, 12, 15 and 20 mm, respectively, and 11.0 at L = 40, 45 and 48 mm.
This is apparent in figure 11 by the fact that the value of Da ln(Pe) on the line Da = 1
increases with L.

Let us then seek to determine a global threshold Tg for Da ln(Pe) suitable for yielding a
scale-invariant domain for Da ln(Pe) > Tg and a scale-dependent one for Da ln(Pe) < Tg.
In figure 11, scale-invariant domains correspond to the quadrants B and C when the
criterion Da > 1 is considered and to the quadrants A and B when one switches to
the criterion Da ln(Pe) > Tg. Taking for Tg the largest value for T(L), i.e. Tg = 11.0,
yields the quadrant A to be empty. Then, changing criterion for scale invariance from
Da > 1 to Da ln(Pe) > Tg comes down to rejecting the data belonging to quadrant C
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Figure 11. Evolution of Da ln(Pe) with respect to Da. The vortex sizes that provide data in the Da < 1 domain
are L = 5, 12, 15 and 20 mm. The vertical line corresponds to Da = 1. The horizontal line displays the largest
value found for T(L) = Da ln(Pe)when Da = 1, i.e. T(48) = 11.0. Taking it as an onset value Tg for Da ln(Pe),
the quadrant A appears to be empty. This makes the domain Da ln(Pe) > Tg (composed of the quadrants A+B),
to be restricted to quadrant B and thus to only a part of the domain Da > 1 (composed of quadrants B+C). This
ensures that the domain Da ln(Pe) > Tg refers to scale invariance, at least at the same level as the domain
Da > 1.

while including no data coming from A. This ensures that the domain Da ln(Pe) > Tg
is at least as scale-invariant as the domain Da > 1. We checked that the rejection of the
few data belonging to quadrant C had no noticeable implication on figures 6–10. More
generally, although our data show the existence of a transition from scale invariance
to scale dependence for the two kinds of criteria, their density or their accuracy is not
large enough for discriminating among them. It nevertheless remains that, as the criterion
based on Da ln(Pe) is derived from a theoretical analysis, its relevance should be more
deeply rooted than the criterion on Da which follows from numerical or experimental data
treatment.

To better address the transition between the scale-invariant regime at Da > 1 (or
equivalently Da ln(Pe) > 11) and a scale-dependent regime at Da < 1 (or Da ln(Pe) <
11), we now plot our whole data in figure 12(a) with open and full symbols to distinguish
these regimes. We then add the relation (2.15) predicted in the scale-invariant regime for
Da 
 Pe and Da ln(Pe) � 1. We finally plot the numerical data obtained by Vladimirova
et al. (2003) at values of L/λ relevant to our experiment, taking care that the parameter
L/δ used in this study corresponds to 16L/λ.

It appears that the lines that interpolate the numerical data begin to depart from the
asymptotic relation (2.15) in a way similar to experimental data. This shows that this
departure occurs as soon as the transition threshold Da = 1 (i.e. Da ln(Pe) ≈ 11) is
crossed, so that the validity of the asymptotic relation (2.15) breaks there. In this spirit,
one may interpret the larger experimental bending evidenced in figure 7 at Da > 1 and
large U/V0 as a premise of this departure, the value of Da ln(Pe) then becoming not large
enough for ensuring the validity of the criterion Da ln(Pe) � 1 required for this asymptotic
relationship to be valid.

One finally synthesizes in figure 12(b) the evolution between regimes for increasing
U/V0. It first appears that front propagation first satisfies scale invariance but that this
regime is bounded by a value of U/V0 that depends on L/λ. Our experiment agrees with
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Figure 12. Synthesis of the transition between scale-invariant (Da > 1) and scale-dependent regimes (Da <
1). (a) Experimental data are plotted as open symbols for Da > 1 and as full symbols for Da < 1. Numerical
data from Vladimirova et al. (2003) are interpolated as thin lines for Da > 1 and as thick lines for
Da < 1. For each of them, we indicate the corresponding value of L/λ and affect the same colour as that
of the experimental data referring to a similar L/λ value. The relation (2.15) expected in regime 3 is shown as a
thick orange line. The regimes B or 2, referring to the scale-dependent domain, and the regimes C or 3, referring
to the scale-invariant domain, are indicated. (b) Sketch of the evolution between regimes for increasing U/V0.
One notices that the scale-invariant regime is bounded by a value of U/V0 that depends on L/λ and that the
scale-dependent regime induces an intrinsic bending of the evolution of V/V0 with U/V0.

the relation (2.15) or the scalings put forward for this regime, actually regime 3 or regime
C. Above, for larger flow velocities, one enters a scale-dependent regime, actually regime 2
or regime B, which introduces an intrinsic bending of the enhancement of V/V0 with
U/V0. However, experimental data disagree with the scalings proposed in this regime
regarding the dependence of V/V0 on U/V0 and L/λ.

Altogether, it thus appears that the front velocity enhancement by vortex advection is
mainly scale-dependent but with a bounded scale-invariant regime at low flow velocities.

5. Discussion

Our experiment has revealed a transition between a scale-invariant regime at moderate
reduced flow velocity U/V0 and a scale-dependent regime above. It has characterized the
transition threshold and, in each regime, the quantitative relationship between reduced
front velocity V/V0, reduced flow velocity U/V0 and scale ratio L/λ, in link with previous
findings from numerical simulations (Vladimirova et al. 2003) and theoretical analyses
(Tzella & Vanneste 2014, 2015, 2019). To our knowledge, this corresponds to the first
experimental evidence on these topics.

Our experiment displays some fundamental differences with the numerical or theoretical
studies on ARD fronts that are worth being reported.

(i) First, our experiment stands in a 3-D space as opposed to the 2-D space considered
in simulations or in theories. It thus shows the relevance of a 2-D analysis for front
propagation in a 3-D stirred medium, at least when the stirring flow is planar as is
the case here in our Hele-Shaw cell.

(ii) Second, whereas the experiment handles an actual periodic planar flow involving
harmonics (Beauvier et al. 2017), simulation and theories only consider its
fundamental mode. Therefore, the global agreement between experiment and
analyses points to the dominant effect of the fundamental mode of the flow.
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(iii) Finally, we notice that, if the flow velocity U was increased arbitrarily far, the
steady planar flow model will fail because of intrinsic physical reasons. One is
the existence of Ekman pumping (Ekman 1905) at the top and bottom boundaries,
which generates a secondary flow normal to the primary vortex flow. Although this
phenomenon is always active, it is negligible in our data range but would not be at
some larger flow velocities or at larger scales (Kelley & Ouellette 2011; Beauvier
et al. 2017). Another phenomenon refers to nonlinear hydrodynamic effects that
make the flow become asymmetric, time-dependent and even chaotic at large flow
amplitude (Tabeling et al. 1991). This is why the asymptotic relationships proposed
for an arbitrarily large flow amplitude U (regimes A, B, 1 or 2), may never
correspond to real situations, at least with planar flows in a 3-D fluid. Therefore,
although the quest for asymptotic relationships is extremely valuable for clarifying
issues, the behaviour in the vicinity of transitions might be in practice essential, as
found here around Da = 1.

Despite the above differences, our results mainly agree with previous numerical or
theoretical analysis but also exhibit interesting discrepancies.

(i) They agree with the existence of scale-invariant and scale-dependent regimes at
low and large U/V0, respectively, and on a transition between them located at
Da = 1 as found in numerical simulations (Vladimirova et al. 2003), or similarly
at Da ln(Pe) ≈ 11 as determined by theoretical analysis (Tzella & Vanneste 2015).
In particular, the transition is not sharp enough to make an actual difference
between the two kinds of criteria on the present data range. This ambiguity could
be clarified by determining the transition at larger Péclet number and thus at larger
vortex scales and/or larger reduced flow velocity U/V0.

(ii) On the scale-invariant regime (Da > 1), our data quantitatively agree with the
relationships determined in numerical simulations (power law (2.13) with exponent
e = 3/4) or in theoretical analysis (relation (2.15)). In particular, the intrinsic
limited data range in this regime (U/V0 < 4L/λ) together with the closeness of
these relationships in this domain do not allow them to be discriminated, in the
same way as they fail in making difference between power law exponents 3/4 and
1. It is nevertheless remarkable that the definite relation proposed by theoretical
analysis (2.15) agrees with our data without any adjustable parameter.

(iii) On the scale-dependent regime (Da < 1), our data agree with a power law
variation in U/V0. However, its exponent, 0.64, turns out to be lower than its value
3/4 in the scale-invariant regime but nevertheless far larger than the value 1/4
determined in numerical or theoretical analyses. In addition, the scale dependence
on the vortex size L appears affine and definitely different than the power law with
exponent 3/4 found in analyses.

These balanced conclusions on the agreement between our experiment and the relevant
analyses question the nature of the transition between regimes. On the qualitative ground,
the change from scale dependence to scale invariance appears rather sharp; on the
quantitative ground, whereas the relationship expected in the scale-invariant regime is
well recovered, that proposed in the scale-dependent regime is not, regarding both the
dependence on velocity or on scale. In particular, it seems that in our data range, the
evolution of relationships is only on the way to recover that referring to the scale-dependent
regime. Accordingly, the transition between regimes appears to be smooth on the
quantitative ground.
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6. Conclusion

We have studied front propagation in a medium stirred by cellular flows and performed
the first experimental study of the transition between regimes in this issue. In particular,
we have evidenced a scale-invariant regime at large Damköhler number Da and a
scale-dependent regime at low one, with a transition in between at Da = 1. Here, scale
invariance means that the reduced effective velocity V/V0 of fronts propagating in a
vortex array do not depend either on the vortex size L or on the front thickness λ.
On the contrary, scale dependence means that this reduced velocity V/V0 displays different
evolutions with respect to the reduced vortex intensity U/V0 depending on the vortex to
front scale ratio L/λ.

As Da = 4L/λ(U/V0)
−1, the transition at Da = 1 between these regimes corresponds

to a transition on U/V0 that depends on the reduced size L/λ, with scale invariance up
to U/V0 = 4L/λ and scale dependence beyond. This agrees with numerical (Vladimirova
et al. 2003) or theoretical (Tzella & Vanneste 2015) studies on this issue with possibly a
refined transition criterion based on Da ln(Pe) as proposed in Tzella & Vanneste (2015),
i.e. Da ln(Pe) ≈ 11 here.

We have also characterized the relationship between reduced velocity V/V0, reduced
vortex intensity U/V0 and reduced vortex size L/λ in both kinds of regimes. We recovered
the relationships proposed in numerical and theoretical studies in the scale-invariant
regimes but not on the scale-dependent ones. In particular, in the scale-invariant regime,
a relation involving no free parameter (Tzella & Vanneste 2014, 2015, 2019) has been
found to nicely agree with our data. In contrast, the expected decrease of scaling exponent
e on U/V0 (V/V0 ∝ (U/V0)

e(L/λ) f ) from 3/4 in scale-invariant regime to 1/4 to
scale-dependent regime (Vladimirova et al. 2003; Tzella & Vanneste 2015) has only shown
a decrease from 3/4 to 0.64, far from the predicted value 1/4. Also, instead of a power
law dependence with exponent f = 3/4, the dependence on L/λ proved to be closer to an
affine relationship.

All this shows that, on the quantitative level, the features expected in the scale-dependent
regimes by numerical and theoretical analyses require a wider range than explored here to
emerge. This contrasts with the qualitative features of scale invariance or scale dependence
which clearly appeared in our range, above and below the definite threshold Da = 1.
Accordingly, the transition between regimes may be qualified as sharp on the qualitative
level but smooth on the quantitative one. This, in practice, provides the warning that,
although a scale dependence will be manifest at Da < 1, i.e. at large flow magnitude U,
its quantitative characterization will differ from that expected asymptotically at Da 
 1,
at least in the 0.1 � Da < 1 range addressed here. This usefully complements the results
of numerical and theoretical studies.

Altogether, our results thus highlight the different regimes undergone by front
propagation in a vortex lattice and the nature of the transition between them. In particular,
they provide a clear criterion for determining the conditions for which the front thickness
or the vortex size may be overlooked and those where they have to be taken int account.
As these results rely on the fundamental interaction between a RD front and a flow, their
relevance should extend beyond the periodic flows considered here, up to disordered flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.536.
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