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Positive Definite Measures with
Discrete Fourier Transform and
Pure Point Diffraction

Nicolae Strungaru

Abstract. In this paper we characterize the positive definite measures with discrete Fourier transform.

As an application we provide a characterization of pure point diffraction in locally compact Abelian

groups.

1 Introduction

Physical quasicrystals were discovered in 1984 by Shechtman, Blech, Gratias, and

Cahn and independently in 1985 by Ishimasa, Nissen, and Fukano. They are aperi-

odic solids having an essentially discrete diffraction diagram.

The mathematical framework for diffraction was set in the 1990’s by Hof [9].

Given a point set Λ, which represents the positions of the atoms in a solid, its au-

tocorrelation measure γ (see below for a precise definition) is a positive and positive

definite measure. The Fourier transform γ̂ of γ is called the diffraction pattern of Λ.

If γ̂ is a discrete measure, we say that Λ is pure point diffractive. The key to under-

standing the structure of quasicrystals is the understanding of pure point diffraction.

Gil de Lamadrid and Argabright [10] showed that discreteness of γ̂ is equivalent

to the strong almost periodicity of γ, and this holds in the setting of arbitrary lo-

cally compact Abelian groups. As a consequence we get that pure point diffraction

is equivalent to the strong almost periodicity of the corresponding autocorrelation

measure. However, this type of almost periodicity is generally hard to check, and one

would like to relax this condition. For weighted Dirac combs with Meyer support,

and in particular for point sets verifying the Meyer condition, Baake and Moody [3]

proved that pure point diffraction is equivalent to norm-almost periodicity of the au-

tocorrelation measure. For Meyer sets the almost periodicity of the autocorrelation

has been replaced by the almost periodicity of the underlying set in a suitable topol-

ogy by Moody and Strungaru [13], and this has been generalized to arbitrary point

sets in R
d by Gouéré [7]. Gouéré also proved that for a Delone set Λ ⊂ R

d, with

autocorrelation measure γ, pure point diffraction is equivalent with the condition:

(i) For all R > 0 and all ǫ > 0 the set {t ∈ R
d | γ(t + BR(0)) ≥ γ({0}) − ǫ} is

relatively dense.
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Positive Definite Measures 545

While this condition is easy to understand, Gouéré’s proof is based on the

Schwartz class of functions and thus on the geometry of R
d.

The goal of this paper is to generalize this equivalence from the case of R
d to an

arbitrary locally compact Abelian group G (and in some sense, beyond point sets).

In Theorem 5.4 we prove that for Delone sets in arbitrary locally compact Abelian

groups, pure point diffraction is equivalent to the following condition:

(i) For all sets V in a basis of precompact open neighborhoods of 0 and all ǫ > 0

the set {t ∈ G | γ(TtV ) > γ({0}) − ǫ} is relatively dense.

Along the way we get a more general result about the discreteness of the Fourier

transform of a positive definite measure, which might be of independent interest.

The main tools used in this paper are the equivalence of strong almost periodicity

of the autocorrelation and pure point diffraction [10], as well as Krein’s inequality

for positive definite functions [4].

The paper is organized as follows. In Section 2 we introduce the concept of almost

periodicity and its connection to the discreteness of the Fourier transform. We also

introduce Krein’s inequality. In Theorem 3.3 we provide a new characterization for

the discreteness of the Fourier transform of a positive definite measure, while in Sec-

tion 4 we show that if the measure is also positive and has 0 as an isolated point for

its support, then the conditions in Theorem 3.3 can be simplified. In Section 5 we

introduce the reader to the diffraction theory and see how Theorems 3.3 and 4.2 can

be used to characterize pure point diffraction.

2 Preliminaries

Throughout the paper, G denotes a locally compact Abelian group. We will denote

by CU (G) the space of bounded and uniformly continuous functions on G, and by

Cc(G) the space of compactly supported continuous functions on G.

Definition 2.1 For a function f on G, f † and f̃ denote the functions defined by 1

f †(x) = f (−x) and f̃ (x) = f †(x) = f (−x) ∀x ∈ G.

Definition 2.2 For f , g ∈ Cc(G) their convolution is defined by

f ∗ g(x) =

∫

G

f (x − t)g(t)dt.

The convolution of a function f ∈ Cc(G) and a measure µ is the function f ∗ µ
defined by

f ∗ µ(x) =

∫

G

f (x − t)dµ(t).

Almost periodic functions were first introduced by Bohr on the real line, and later

generalized to arbitrary locally compact groups. We recall the standard definition of

an almost periodic function.

1The author is not familiar with any standard notation for f †. Argabright and de Lamadrid [10] denote

this function by f ′, Berg and Forest [4] use the f̌ notation, while Hewwit and Ross [8] use f ⋆.
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546 N. Strungaru

Definition 2.3 A function f ∈ CU (G) is called almost periodic if the set

{t ∈ G
∣∣ ‖ f − Tt f ‖∞ < ǫ},

is relatively dense for each ǫ > 0, where Tt f (x) := f (x − t).

The importance of almost periodicity in the study of discreteness of the Fourier

transform was observed by Eberlein, who proved that a finite measure is discrete

if and only if its Fourier transform is an almost periodic function [6]. This result

was later generalized to unbounded measures by Argabright and de Lamadrid in the

following way.

Theorem 2.4 ([10]) For a Fourier transformable translation bounded measure µ the

following are equivalent:

(i) µ is a discrete measure;

(ii) for all f ∈ Cc(Ĝ) the function f ∗ µ̂ is an almost periodic function.

Crystallographers are interested in the Fourier dual of this result. Thus we have

to make an extra assumption, namely that the measure µ is double Fourier trans-

formable (i.e., µ is Fourier transformable, and its Fourier transform µ̂ is also Fourier

transformable). This is usually the case, since the autocorrelation measure is usu-

ally positive and positive definite (see Section 5), thus double Fourier transformable

by [4]. Hence, by applying Theorem 2.4 to the inverse Fourier transform of µ we get

the following.

Proposition 2.5 For a double Fourier transformable measure µ the following are

equivalent:

(i) µ̂ is a discrete measure;

(ii) for all f ∈ Cc(G) the function f ∗ µ is an almost periodic function.

An immediate consequence of this is the following.

Proposition 2.6 Let µ be a double Fourier transformable measure with discrete

Fourier transform. Then, for all f ∈ Cc(G) and all ǫ > 0, the set

{t ∈ G | Re(µ(Tt f )) > Re(µ( f )) − ǫ}

is relatively dense.

In general the reverse is not true, but in the case of positive definite functions,

Krein’s inequality provides the link to proving that equivalence holds in Proposi-

tion 2.6.

Proposition 2.7 (Krein’s inequality) Let f be a positive definite function on G. Then,

for all x, t ∈ G we have

| f (t + x) − f (x)|
2
≤ 2 f (0)[ f (0) − Re f (t)].

In particular,

‖ f − Tt f ‖2
∞ ≤ 2 f (0)[ f (0) − Re f (t)].
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3 Positive Definite Measures

As we mentioned in the introduction, we will try to simplify the condition in The-

orem 2.4 by using Krein’s inequality for positive definite functions. Given a positive

definite measure µ, we will convolve it with a function of the type f ∗ f̃ and get a

positive definite function. Proposition 2.7 will give a simpler characterization for the

ǫ-almost periods of µ∗ f ∗ f̃ . In order to use Theorem 2.4 we only need f ∗ f̃ ∈ Cc(G),

thus we only need to assume that f is compactly supported and an L2 function on

G [8].

We will denote by BCL(G) the set of bounded compactly supported L2 functions

on G. That is,

BCL(G) := { f : G → C|‖ f ‖∞ < ∞, ‖ f ‖2 < ∞ and supp( f ) is compact}.

Let ∆ : BCL(G) → Cc(G) be defined by ∆( f ) := f ∗ f̃ . For a precompact open

set U , we will denote by ∆(U ) the function ∆(U ) := ∆(1U ). It is clear that ∆( f ) is

always positive definite, and if f ≥ 0, then ∆( f ) ≥ 0.

Definition 3.1 A subset U ⊂ BCL(G) is called Fourier separable if for any open

precompact set V ⊂ Ĝ there exists f ∈ U so that f̂ does not vanish on V .

Lemma 3.2 Let µ be a double Fourier transformable positive definite measure, and let

U ⊂ BCL(G) be a Fourier separable set. Then the following are equivalent:

(i) µ̂ is a discrete measure;

(ii) for all f ∈ U and all ǫ > 0, the set

{t ∈ G|Re[µ(Tt∆( f ))] > µ(∆( f )) − ǫ}

is relatively dense.

Proof The implication (i) ⇒ (ii) follows from Proposition 2.6.

For (ii)⇒ (i), fix an f ∈ U. Since both µ and ∆( f †) are positive definite, ∆( f †)∗µ
is a positive definite function, thus we can use Krein’s inequality

(3.1)
∣∣∆( f †) ∗ µ(t + s) − ∆( f †) ∗ µ(s)

∣∣2
≤

2∆( f †) ∗ µ(0)[∆( f †) ∗ µ(0) − Re(∆( f †) ∗ µ(t))]

for all s, t ∈ G, since

∆( f †) ∗ µ(t) =

∫

G

∆( f †)(t − s)dµ(s) =

∫

G

∆( f )(s − t)dµ(s) = µ(Tt∆( f )).

Let ǫ > 0. Then, by (ii), the set

R :=

{
t ∈ G | µ(∆( f )) − Re

(
µ(Tt∆( f ))

)
<

ǫ2

2µ ∗ ∆( f )(0) + 1

}
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is relatively dense. Combining with (3.1), we get that the set

{t ∈ G|‖∆( f †) ∗ µ − Tt (∆( f †) ∗ µ)‖∞ < ǫ},

is relatively dense.

Thus, since ǫ > 0 was arbitrary, ∆( f †) ∗ µ is an almost periodic function.

Then, for all g ∈ Cc(G), the function ∆( f †) ∗ µ ∗ g is almost periodic (see [10],

for example). Thus, the measure ∆( f †) ∗ µ is Fourier transformable (since positive

definite) and verifies Proposition 2.5(ii). Therefore, its Fourier transform | f̂ †|2µ̂ =

(| f̂ |2)†µ̂ is a discrete measure.

Since (| f̂ |2)†µ̂ is a discrete measure for all f ∈ U, by the Fourier separability

assumption, µ̂ is a discrete measure.

Using the fact that the set {1U | U ⊂ G precompact open set} is Fourier separa-

ble, by combining Proposition 2.6 and Lemma 3.2 we get the following

Theorem 3.3 Let µ be a double Fourier transformable, positive definite measure, let

V be a fixed basis of precompact open sets on G, and let U ⊂ BCL(G) be a Fourier

separable set. The following are equivalent:

(i) µ̂ is a discrete measure;

(ii) for all precompact open sets U and all ǫ > 0, the set

{t ∈ G | Re[µ(t + ∆(U ))] > µ(∆(U )) − ǫ}

is relatively dense;

(iii) for all open sets U ∈ V and all ǫ > 0, the set

{t ∈ G | Re[µ(t + ∆(U ))] > µ(∆(U )) − ǫ}

is relatively dense;

(iv) for all f ∈ Cc(G) and all ǫ > 0, the set

{t ∈ G | Re[µ(Tt∆( f ))] > µ(∆( f )) − ǫ}

is relatively dense;

(v) for all f ∈ BCL(G) and all ǫ > 0, the set

{t ∈ G | Re[µ(Tt∆( f ))] > µ(∆( f )) − ǫ}

is relatively dense;

(vi) for all f ∈ U and all ǫ > 0, the set

{t ∈ G | Re[µ(Tt∆( f ))] > µ(∆( f )) − ǫ}

is relatively dense.

An immediate consequence of this result is the following.

https://doi.org/10.4153/CMB-2011-059-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-059-x


Positive Definite Measures 549

Corollary 3.4 If the group G has a function f ∈ BCL(G) with nowhere vanishing

Fourier transform, then for all the double Fourier transformable, positive definite mea-

sures µ on G the following are equivalent:

(i) µ̂ is a discrete measure;

(ii) for all ǫ > 0 the set

{t ∈ G | Re[µ(Tt∆( f ))] > µ(∆( f )) − ǫ}

is relatively dense.

4 Positive and Positive Definite Measures

For this section µ is a positive and positive definite measure for which 0 is an isolated

point of its support. That is, there exists an open neighborhood U of 0 so that

µ|U = µ({0})δ0.

The following is a weaker version of Proposition 2.6.

Lemma 4.1 Let V be an open neighborhood of 0. If µ̂ is a discrete measure, then, for

all ǫ > 0, the set

{t ∈ G|µ(TtV ) > µ({0}) − ǫ}

is relatively dense.

Proof Let f ∈ Cc(G) be such that f ≤ 1V and f (0) = 1. Since µ̂ is a discrete

measure, f̃ ∗ µ is an almost periodic function, hence the set

P := {t ∈ G|‖ f̃ ∗ µ − Tt ( f̃ ) ∗ µ‖∞ < ǫ}

is relatively dense.

Let us observe that for all t ∈ P we have |µ( f ) − µ(Tt f )| < ǫ.

In particular,

µ(TtV ) ≥ µ(Tt f ) > µ( f ) − ǫ ≥ µ({0}) f (0) − ǫ = µ({0}) − ǫ.

In the remainder of this section we will prove that, under the settings from

the beginning of the section, the converse of Lemma 4.1 is also true. The main

idea is that for all f ∈ BCL(G) such that supp( f ) − supp( f ) ⊂ U we have

µ(∆( f )) = µ({0})(∆( f )(0)). Thus, in Theorem 3.3(iv) we can replace µ(∆( f ))

with µ({0})(∆( f )(0)). Also, since µ is positive, it preserves inequalities, and this

allows us to switch between functions and small open sets in Theorem 3.3(vi).
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Theorem 4.2 Let µ be a positive and positive definite measure such that 0 is an isolated

point of its support, and V a fixed basis of precompact open neighborhoods of 0. Then

the following are equivalent:

(i) µ̂ is a discrete measure;

(ii) for all W precompact open neighborhoods of 0 and all ǫ > 0, the set

{t ∈ G | µ(TtW ) > µ({0}) − ǫ}

is relatively dense;

(iii) for all V ∈ V and all ǫ > 0, the set

{t ∈ G | µ(TtV ) > µ({0}) − ǫ}

is relatively dense.

Proof The implication (i) ⇒ (ii) follows from Lemma 4.1, while (ii) ⇒ (iii) is clear.

We now prove (iii) ⇒ (i).

Let U := { f ∈ Cc(G) | f ≥ 0, f 6≡ 0, supp( f ∗ f̃ ) ⊂ U}. Let f ∈ U and

0 < ǫ < ∆( f )(0). Since ∆( f ) is continuous at 0, there exists a V ∈ V so that

|∆( f )(x) − ∆( f )(0)| < ǫ ∀x ∈ V.

Hence,

∆( f ) ≥ (∆( f )(0) − ǫ)1V .

We know by (iii) that the set R := {t ∈ G | µ(TtV ) > µ({0}) − ǫ
|∆( f )(0)−ǫ|+1

} is

relatively dense. Now let t ∈ R.

Then

Re[µ(Tt∆( f ))] = µ(Tt∆( f )) ≥
(
∆( f )(0) − ǫ

)
µ(Tt 1V )

>
(
∆( f )(0) − ǫ

)
µ({0}) − ǫ = µ(∆( f )) − ǫ

(
1 + µ({0})

)

= Re[µ(∆( f ))] − ǫ
(

1 + µ({0})
)
.

So, if we show that U is a Fourier separable set, the equivalence (vi) ⇔ (i) in

Theorem 3.3 completes the proof.

Let V ⊂ Ĝ be an open precompact set, and let K be its closure. Since G is the dual

group of Ĝ and V is a basis of open sets at 0, there exists a W ∈ V so that W −W ⊂ U

and

W ⊂ N(K, 1/4) := {x ∈ G | |〈x, χ > −1〉| < 1/4∀χ ∈ K}.

Since the Haar measure θbG is regular, there exists a compact set K1 ⊂ W so that

θbG(K1) > 4/5θbG(W ).
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We know that there exists a continuous function f with 1W ≥ f ≥ 1K1
. Then

f ∈ U, and for all χ ∈ K we have

Re[ f̂ (χ)] = Re[

∫

G

f (x)χ(x)dx] =

∫

W

f (x) Re[χ(x)]dx

=

∫

K1

f (x) Re[χ(x)]dx +

∫

W\K1

f (x) Re[χ(x)]dx

≥

∫

K1

Re[χ(x)]dx +

∫

W\K1

f (x) Re[χ(x)]dx

≥

∫

K1

3/4dx −

∫

W\K1

1dx = 3/4θbG(K1) − θbG(W\K1)

= 7/4θbG(K1) − θbG(W ) > 0.

Thus, Re[ f̂ (χ)] 6= 0∀χ ∈ K.

5 Diffraction Theory

5.1 A Short Review

Recall that a measure ν is called translation bounded (or shift bounded) if for all com-

pact sets K ⊂ G, there exists a constant CK < ∞ so that

(5.1) ‖ν‖K := sup
t∈G

{|ν| (t + K)} ≤ CK .

It is easy to see that ν is translation bounded if and only if (5.1) holds for one

compact set K with non-empty interior.

For some C > 0 and some compact set K with non-empty interior, we denote by

MC,K (G) := {ν|‖ν‖K ≤ C}.

By [2] MC,K (G) is vaguely compact.

A van Hove sequence is a sequence of compact sets Bn ⊂ G with the property that

for all compact sets K ⊂ G

lim
n→∞

θG(∂K (Bn))

θG(Bn)
= 0,

where the K-boundary is defined by

∂K (Bn) = ((Bn + K)\Bn) ∪ ((G\Bn − K) ∩ Bn).

For a point set M we define the measure δM by δM :=
∑

x∈M δx.
Given a Delone set Λ, the sequence

(5.2)
δΛ∩Bn

∗ δ̃Λ∩Bn

θG(Bn)
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lives in some MC,K (G) and thus has a vague cluster point γ(Λ). We will call any such

cluster point γ(Λ) an autocorrelation measure of Λ. γ(Λ) is a positive and positive

definite measure, and thus double Fourier transformable. Its Fourier transform is

called a diffraction measure for Λ.

More generally we can define an autocorrelation of a translation bounded measure

ν as a vague cluster point of

(5.3)
ν|Bn

∗ ν̃|Bn

θG(Bn)
.

Again, such a cluster point exist because all these measures belong to some MC,K (G).

Moreover, any cluster point is positive definite, and thus Fourier transformable.

Note that in both cases, by going to a van Hove subsequence of {Bn}, we can

assume that γ is the limit of (5.2) or (5.3).

5.2 Pure Point Diffraction

Definition 5.1 A measure ν, with an autocorrelation γ(ν), is called pure point

diffractive if the diffraction measure γ̂(ν) is a discrete (pure point) measure. A De-

lone set Λ is called pure point diffractive if the corresponding measure δΛ is pure

point diffractive.

Remark 5.2 The definition of pure point diffractiveness depends on the choice of

the cluster point in the definition of the autocorrelation. So, whenever we say that Λ

or ν is pure point diffractive, we understand that Definition 5.1 holds for Λ or ν and

our choice of the autocorrelation. For an example, see Example 5.9.

Given a translation bounded measure ν with an autocorrelation γ that verifies the

assumptions from Section 4, Theorem 4.2 gives us the following.

Proposition 5.3 Let ν be a translation bounded measure with an autocorrelation γ.

Let V be a fixed basis of precompact open neighborhoods of 0. If γ is positive and has 0

as an isolated point for its support, then the following are equivalent:

(i) Λ is pure point diffractive;

(ii) for all V precompact open neighborhoods of 0 and all ǫ > 0, the set

{t ∈ G | γ(TtV ) > γ({0}) − ǫ}

is relatively dense;

(iii) for all V ∈ V and all ǫ > 0, the set

{t ∈ G | γ(TtV ) > γ({0}) − ǫ}

is relatively dense.

In particular, since the autocorrelation of a Delone set always verifies these as-

sumptions, we get the following.
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Theorem 5.4 Let Λ be a Delone set with an autocorrelation γ. Let V be a fixed basis

of precompact open neighborhoods of 0. Then the following are equivalent:

(i) Λ is pure point diffractive;

(ii) for all V precompact open neighborhoods of 0 and all ǫ > 0, the set

{t ∈ G | γ(TtV ) > γ({0}) − ǫ}

is relatively dense;

(iii) for all V ∈ V and all ǫ > 0, the set

{t ∈ G | γ(TtV ) > γ({0}) − ǫ},

is relatively dense.

Remark 5.5 Theorem 5.4 also holds for positive weighted Dirac combs with uni-

formly discrete support.

For the diffraction of a general translation bounded measure, by Theorem 3.3 we

also get the following.

Theorem 5.6 Let ν be a translation bounded measure with double Fourier trans-

formable autocorrelation γ, and let U be a fixed basis of precompact open sets. The

following are equivalent:

(i) ν is pure point diffractive;

(ii) for all precompact open sets U and all ǫ > 0, the set

{t ∈ G | Re[γ(t + ∆(U ))] > γ(∆(U )) − ǫ}

is relatively dense;

(iii) For all open sets U ∈ U and all ǫ > 0, the set

{t ∈ G | Re[γ(t + ∆(U ))] > γ(∆(U )) − ǫ}

is relatively dense;

(iv) for all f ∈ Cc(G) and all ǫ > 0, the set

{t ∈ G | Re[γ(Tt∆( f ))] > γ(∆( f )) − ǫ}

is relativey dense;

(v) for all f ∈ BCL(G) and all ǫ > 0, the set

{t ∈ G | Re[γ(Tt∆( f ))] > γ(∆( f )) − ǫ}

is relatively dense.
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Example 5.7 Let Λ := Z. A simple computation shows that the autocorrelation of

Λ is γ := δZ. Then for each 0 ∈ U ⊂ R open and each ǫ > 0, we have

γ(t + U ) ≥ γ({t}) = 1 > 1 − ǫ = γ({0}) − ǫ ∀t ∈ Z.

Hence Λ = Z is pure point diffractive, which is not surprising since it is known

that the diffraction of Z is γ̂ = δZ.

Example 5.8 Let Λ ⊂ Z be constructed the following way. For each t ∈ Z we keep

t with probability 1/2. Such an Λ is called a Bernoulli set.

Let {Bn}n be a van Hove sequence.

Then

δΛ|Bn
∗ δ̃Λ|Bn

vol(Bn)
=

∑

t∈Z

♯{(x, y)|x, y ∈ Λ ∩ Bn, x − y = t}

vol(Bn)
δt

=

∑

t∈Z

♯{y ∈ Z|y, y + t ∈ Λ ∩ Bn}

vol(Bn)
δt .

Note that we count how many times on average y and t + y belong to Λ. If

t ∈ Z\{0}, the two events are independent, so the probability that y, t + y are si-

multaneously in Λ is 1/4. If t = 0, then we only have one condition, namely y ∈ Λ,

which happens with probability 1/2.

Thus, for almost surely all Bernoulli sets Λ, the autocorrelation is

γ =
1

2
δ0 +

1

4

∑

t∈Z∗

δt =
1

4
δ0 +

1

4
δZ.

It is easy to see that for all open sets U with diameter less than 1/4 and all t ∈ R

we have

γ(t + U ) ≤
1

4
= γ({0}) −

1

4
.

Hence, almost surely all Bernoulli sets are not pure point diffractive.

The reason we only get an almost surely statement is because, with probability

zero, we could still get a point set like Λ = 2Z (which is pure point diffractive).

Example 5.9 Let Λ := [Z ∩ (0,∞)] ∪ [Λ ′ ∩ (−∞, 0]], where Λ
′ is a Bernoulli set.

Let

B2n := [−n2, n], B2n+1 := [−n, n2].

Then, almost surely, Λ has two autocorrelations with respect to the van Hove se-

quence Bn: γ1 = δZ given by {B2n+1} and γ2 =
1
4
(δ0 + δZ) given by {B2n}.

Note that Λ is pure point diffractive when we chose the first autocorrelation but

not when we chose the second. Also note that when we chose the first autocorrelation

we get the diffraction of Z, while when we chose the second we get the diffraction of

a generic Bernoulli set.
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Also note that every real solid that is modeled by this set has arbitrary large subsets

with different statistical properties. Thus, if one chooses a sample to diffract, the

diffraction depends on whether the sample is chosen from the left or right side of 0.

Different large samples will have different diffraction patterns.
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