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On the Bernstein Problem in the
Three-dimensional Heisenberg Group

Josef E Dorfmeister, Jun-ichi Inoguchi, and Shimpei Kobayashi

Abstract. In this note we present a simple alternative proof for the Bernstein problem in the three-
dimensional Heisenberg group Nil3 by using the loop group technique. We clarify the geomet-
ric meaning of the two-parameter ambiguity of entire minimal graphs with prescribed Abresch-
Rosenberg differential.

Introduction

The Bernstein problem is one of the traditional problems of global differential geome-
try. The original result due to Bernstein asserts that every entire minimal graph in Eu-
clidean three-space R>(xi, x5, x3) is a plane. In other words, Bernstein’s result shows
that the only global solution on the (xi,x;)-plane to the so-called minimal surface
equation

{1+ (fe)* faam = 2 fra frm + {1+ (f,)*} fram, = 0
is a linear function of x; and x,.

The Bernstein problem has been generalized to a problem basically asking for a
classification of all entire minimal graphs. On the other hand, when the ambient space
is not the Euclidean three-space, the Bernstein problem often needs to be amended.
For instance, in Minkowski three-space LL; equipped with the natural Lorentz metric
dx} + dx} — dx3, there are many entire (timelike) minimal graphs over the timelike
plane L, = R?(x,, x3); see, for example, [7]. Next, we focus on the three-dimensional
Heisenberg group Nils, which is one of the model spaces of Thurston geometries [8].
The space Nils is realized as Cartesian three-space R?(x;, x5, x3) equipped with the
Riemannian metric

2 2 1 2
dxi +dx; + {dx3 + E(xzdxl - xldxz)}

and a nilpotent Lie group structure; see, for example, [4]. The Riemannian metric
is invariant under the nilpotent Lie group structure and has a 4-dimensional isom-
etry group. The identity component of the isometry group is a semi-direct product
N113 X 802

It has been known for a long time that nontrivial entire minimal graphs exist in
Nils; see, for example, [5]. Therefore, in Nil; the Bernstein problem has been phrased
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more specifically as the problem to construct entire minimal graphs over the natural
(1, x2)-plane with a prescribed holomorphic quadratic differential.

Under this formulation, Fernidndez and Mira [6] studied the Bernstein problem in
Nils. They proved in a fairly indirect way that for a prescribed holomorphic quadratic
differential Q dz* over the complex plane C with Q # 0 or the unit disc ID, there exists
a two-parameter family of entire minimal vertical graphs whose Abresch-Rosenberg
differential is Q dz2. Their proof relies first on the Lawson-type correspondence (of-
ten called sister correspondence) between minimal surfaces in Nil; and surfaces of
constant mean curvature (CMC in short) with mean curvature H = 1/2 in the prod-
uct space H? x R, where H? denotes the hyperbolic two-space. Secondly, they use
the correspondence between harmonic maps into H?* and CMC surfaces with mean
curvature H = 1/2 in the product space H? x R. Finally, they use a result of Wan and
Au [9,10] solving the Bernstein problem for spacelike CMC surfaces in L; and use
that the Gauss map of those surfaces is also harmonic into H?.

In this paper we give a much simpler proof of the solution to the Bernstein problem
in Nil; by virtue of the generalized Weierstrass type representation established in our
previous work [4]. The advantage of our approach is that we can give a direct relation
between minimal graphs in Nil; and spacelike CMC surface with mean curvature H =
1/2 graphs in IL; (Theorem 1.7). This relation enables us to give a simple alternative
proof of Fernandez and Mira’s theorem (Theorem 1.8).

Our new proof also provides new insights. In fact it clarifies the geometric meaning
of the two-parameter ambiguity of entire minimal graphs with prescribed Abresch-
Rosenberg differential. While it is quite clear that the two-parameter family is related
to the boosts in SUy ;, our argument also shows how the corresponding family of sur-
faces varies in Nils.

1 Bernstein Problem

We discuss the Bernstein problem in Nil, that is, the classification of entire minimal
vertical graphs in Nil;. We only consider vertical graphs; therefore, we will sometimes
omit the word “vertical”. From now on, we denote the coordinates of Nil; or L3 by
(x1, %2, x3).

1.1 Completeness

The basic result used in this paper is Theorem A.3. It provides the direct relation
between minimal surfaces in Nil; and spacelike CMC surfaces in L;. This close rela-
tionship is also underlined by a simple relation between the corresponding metrics.

Lemma 11 Let f* and fﬂi be an associated family of minimal surfaces in Nil; and
an associated family of spacelike CMC surfaces with mean curvature H = 1/2 in L3 cor-
related and defined as in Theorem A.3, respectively. Denote the metric of f* by e*dzdz
and the metric off]ﬁt3 by e"s dzdz. Moreover, let ¢ dz be the coefficient of e3 in

(M frdz= il(cp?dz)e,._
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Then the following relation holds:
e"s + 4]¢h|* = "

Proof Itisknown that the conformal factors e and e*'s can be computed explicitly
in terms of spinors (see [4, Section 3.1], Remark A.4, and [2]):

2 2
=4[ +lyal?)s e =4(ln - lval) "
where 1// (j = 1,2) is a family of spinors for the associated family f*. Since ¢5 =
29y, the claim follows.

Remark 1.2 Tt is known that the metrics e*s dzdz of an associated family of space-
like CMC surfaces fL are independent of A; that is, on a simply connected domain,
any two members of the associated family { f]L }rest are isometric. In fact the metric

can be computed by the support h(dz)" z(dz)l/ 2 (see Appendix A for the definition),
as
1y h*dzdz = " dzdz.

However, the metrics e*dzdz of an associated family of minimal surface f* depend
on 1; that is, any two members of the associated family { f},.q: are, in general, non-
isometric.

Using the relation above, we have the following theorem.

Theorem 1.3  Let f* and fﬁ be an associated family of minimal surfaces in Nil; and
an associated family of spacelike CMC surfaces with mean curvature H = 1/2 in L
correlated and deﬁned as in Theorem A.3, respectively. Assume that one member of the
associated family { f]L }rest is closed with respect to the Euclidean topology. Then each
member of the associated family { f*}\csr is a complete, entire graph.

Proof We denote the spacelike CMC surface in L3, which is closed with respect to
the Euclidean topology, by f', = flli |a+cs1. From the assumption and by [3, p. 415], we
conclude that f;' is complete. Moreover, from [9, Proposition 2], " is also an entire
graph. Since the metric is invariant within the associated family { f]L trest (see Re-
mark 1.2), each member of the associated family of spacelike CMC surfaces { f]L Faest
is also complete. Then from Lemma 1.1, we have that each member of the associated
family of minimal surfaces { f*} s is complete.

Let us look more closely at the correspondence between fﬂi and f*. From for-
mulas (A.4) and (A.5) we infer by inspection that f}L and ff} share the same x;-,
X2-components. |

1.2 Rigid Motions

It is known that the isometry group of L is the six-dimensional Lie group that is gen-
erated by a one-parameter family of rotations around the x3-axis (the timelike axis),
a two-parameter family of boosts, and three families of translations. In contrast, the
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isometry group of Nil; is only four-dimensional and is generated by a one-parameter
family of rotations around x3-axis and three families of translations in Nils.

A comparison of the two Sym formulas in Theorem A.3 indicates that isometries of
Minkowski space will not necessarily become isometries of Nil;. The precise relation
will be made clear in the next lemma.

Lemma 1.4 Let ff} and }E} be two associated family of spacelike CMC surfaces with
mean curvature H = 1/2 in 1L defined by the Sym-formula in 771~eoren1A.3for some ex-
tended frames F* and F*, respectively and set fi, = fL3| A1 and fr, = f]L3| A=1- Moreover,
let f* and f * denote the two associated families of minimal surfaces inNil defined from
the same extended frames F* and F?, respectively and set f = fM)-; and f = f*-1.
Assume that fi, and fi, are isometric by some rigid motion in LLs. Then the following
statements hold:

() If fi, and fi, are isometric by a rotation around the xs-axis (the timelike axis),
then f and f are isometric by the rotation around the x3-axis (the same angle)
and some translation. _

(ii) If fr, and fi, are isometric by a translation, then f and f are isometric by some
translation (not necessarily the same translation).

(iii) If fi, and fi, are isometric by a boost, then f and f are, in general, not isometric.

Proof Since f1,(= fL3| o) and fi, (= f]L3| A1) are isometric by a rigid motion in L,
the isometry between these two surfaces lifts to the level of frames F = F*|;_; and
F= FA|,\=1 as F = MFk, where M is a z- independent SUy ;-valued matrix and k is a
Uj-valued matrix. After introducing the loop parameter, we obtain the relation

F* = M*F'k.
Note that M* is a (ASU} ;) -valued matrix and satisfies M*|;-; = M. Then it is easy
to see that f]{}3 and f]{}3 satisty the relation
1.2) £, = ML (MM i (Mt (M)
Now a straightforward computation shows that the corresponding two minimal sur-
faces f* and f* have the following relation:

3) f*=(AadMM) () - xM)°
- é{ Ad(MY) (120, 1) + [ XY ad M) ()] - v

where we set
(1.4) = iAo MM (MM, Y =id(9,X"),

« »

and the superscripts “o” and “d” denote the off-diagonal and diagonal part respec-
tively. For simplicity of notation we do not distinguish here f* in Nil; and f in suy ;.

We note that for each fixed A € S, the first part of the right-hand side in (1.2) de-
scribes a Lorentz transformation and the second part of the right-hand side in (1.2)
describes a translation. We now consider each of the three types of generators sepa-
rately.
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(1) First, suppose that f, and fi, are isometric by a rotation around the x3-axis
(the timelike axis). Since the original transformation M was a rotation, it follows that

M(= M*;_,) = diag(e'®, %), 9, M*|;_, = 0.

Here 26 is the angle of rotation. A straightforward computation shows that f and
f satisfy the equation f = Ad(M)(f) + %Yd, where the translation term Y can be
computed as

Y = Y aa = A2 (M) (M) o
Therefore, this one-parameter family consists of isometric minimal surfaces in Nil;.

(2) Next suppose that fi, and fi, are isometric by some translation. Since the
original transformation M was a translation, it follows

M(= M) =id, (AM*)[1o 0.

Substituting A = 1 into (1.3) we see immediately that f and f satisfy the relation f =
f + A, where A = A(x, x2) is given by

A=-X°- %([X,fh] -v)",

where X = X*|,_; and Y = Y*|;_; for X* and Y* in (1.4). It is clear that Y is inde-
pendent of x; and x,, the coordinates for f, but x; and x, enter the commutator. An
explicit computation, using the basis {€;, £,, €3} given in [4, (6.1)] and the transfor-
mation formula stated in [4, Appendix B], now shows that fcan be obtained from
f by a translation in Nil; (with a constant vector, whose coefficients basically are the
components of X° and of Y).

(3) Let us finally consider the transformations M given by boosts in L;. These
transformations form a two-parameter family. Since the original transformation was
a boost, it follows that

(1.5) M=M= (; i) . MM =0.

Here, a € R, f € C and a® - |B|* = 1 and we obtain

T = (AdD(f))” = 5 (AdDAG A b))

where Y = Y*|;_; for Y* in (1.4). Now it follows by a straightforward computation

that

~ [(a®+|BP)r+ afs - aBs —2aBp +a*q - B*q 1
Go  Fo(@BDreass afs 2appeati-pa | 1y

2afp+aq-P q —(a*+|B*)r-afs+afs] 2
where p,r € iR and g, s € C are functions defined by
1, r s

1.7) fﬁh:l = (‘Z _qp)’ —Ell(alfﬁ)hﬂ = (S —r)'
Note that the components of the minimal surface f in the basis {&;, €,, €5} are given
by

(x1,%2,x3) = (2Imgq,—2Req, -2Imr).
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Thus, from (1.6) and the action of the isometry group of Nil; as described in (A.1), it
is easy to see that f and f are in general not isometric; see Remark 1.5 in detail. W

Remark 1.5 In Lemma 1.4(iii), from (1.6) and the action of the isometry group
of Nils, we see that the f and f are isometric in Nil; if and only if there exist some
0 € R, (ay, a2, as) € R? such that the following two equations hold:

(o +|B*)x3 — 4aIm(B5) — Y = ax; + bx, + x3 + as,
—4aBp+i(B +a’)x + (B2 - a®)xy = €' (ix) — x3) + iay - as,

where Y? = diag(iY", -iY"), a = 2(a1sin — aycos ), b = 1(aysinf + a; cos 6),
and p and s are purely imaginary and complex valued functions, respectively, defined
in (1.7). From these two equations, it is easy to see that they are satisfied for very
special minimal surfaces f only.

Remark 1.6  After fixing base points, the Sym-formula establishes a one-to-one rela-
tion between spacelike CMC with mean curvature H = 1/2 surfaces in IL; and minimal
surfaces in Nil;. Clearly, the Poincaré group SUj ; x L3 acts on the family of spacelike
CMC surfaces in L;. If we fix base points, we eliminate the action of the translation
part of the Poincaré group, reducing the action to the Lorentz group SUy ;.

Via the Sym formula, the Poincaré group also acts on the family of minimal sur-
faces in Nil;. Since we fix base points, we can also eliminate the translation part of
the isometry group of Nil;. So generically, the dimension of the family of minimal
surfaces should be three. But from Lemma 1.4, identifying minimal surfaces that are
isometric by rotations, we see that two is the highest dimension of any orbit. These
orbits are realized by the action of boosts. From (1.5), the set of boosts B can be com-
puted as

B = {X? | Xe SUl)l}.
From this, it is clear that B is the symmetric space SUy ;/Uy.

1.3 Bernstein Problem

We will finally present a short alternative proof of the Bernstein problem in Nil; using
the loop group method. The heart of the proof is the following simple relation between
spacelike CMC graphs in IL; and minimal graphs in Nils.

Theorem 1.7  Every entire, complete, spacelike CMC graph in L with mean curvature
H =1/2 and the Hopf differential Qy,dz* induces, via the Sym-formula (applied to its
associated family), an entire, complete, minimal graph in Nils with Abresch-Rosenberg
differential —Qy,dz*.

Conversely, every entire, complete, minimal graph in Nils is obtained in this way.

Proof Let g1, be an entire complete spacelike CMC graph with mean curvature
H =1/2 over the (x;, x;)-plane in L3 whose Hopf differential is Qr,dz?. Let F* be
the extended frame of gr,, defined by (A.3), and apply the Sym-formulas of Theo-
rem A.3 to obtain ffs and f* from the same extended frame F*. Note that ffs and
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f* define an associated family of spacelike CMC surfaces in L3 and minimal surfaces
in Nils, respectively. Moreover, fi, = ff3| a-1 and gr, are isometric by some rigid
motion in L3, by the fundamental theorem of surface theory (the mean curvature H,
the Hopf differential Qy,,dz* and the metric e“'s dzdz are the same), thus fi, is also
a entire, complete, spacelike CMC graph, [9, Proposition 1]. From formulas (A.4)
and (A.5) we infer by inspection that f* and ffs share the same x;-, x-components.
Thus f = f*|)-; is an entire minimal graph as well. Moreover, from Theorem 1.3 we
obtain that f(= f*];-;) is complete, and by Remark A.4 we know that the Abresch-
Rosenberg differential is —Qy,dz>.

To verify the second statement, let f be an entire, complete, minimal graph in Nils
whose Abresch-Rosenberg differential is Q dz? and let F* be the extended frame of f
and f* its associated family from the extended frame F*. Then we have f = f*|;-; up
to translation in Nil;. Moreover, let ff} be the spacelike CMC surface in IL; defined
by the same extended frame F* in (A.4). Note that the Hopf differential of ffs is
QHL dz* = -172Qdz*. Since f and fﬂi [1=1 have the same x;-,x;-components, the latter
surface is an entire CMC graph in IL3, and thus by [3, p. 415], the proofis complete. W

Using Theorem 1.7, it is easy to give the proof of the solution to the Bernstein prob-
lem.

Theorem 1.8 Let Q dz* be a holomorphic quadratic differential on D or M = C with
Q # 0. Then the following statements hold:

(i)  There exists a two-parameter family of entire, complete, minimal graphs in Nils,
whose Abresch-Rosenberg differential is Q dz*.

(ii) Any two members of this two-parameter family are generically non-congruent.

(iii) Each member of this two-parameter family is induced via the Sym-formula by (the
associated family of) an entire, complete, spacelike CMC graph in L3 with the Hopf
differential -Q dz*.

Proof First we note that it is known that for a given holomorphic quadratic differen-
tial Qp,dz* on D or C, there exists a unique entire complete spacelike CMC graph g,
over the (x1, x; )-plane in IL; whose Hopf differential is Qr,dz* [9,10]. Here “unique”
means that any other such spacelike CMC graph whose Hopf differential is Qr,,dz*
is isometric to g, by an isometry of ;. We normalize the mean curvature of g, as
H =1/2 and set Qp,dz* = —Q dz?, where Q dz* is the quadratic differential satisfy-
ing the condition in the theorem. Let F* be the extended frame of gi, and apply the
Sym formulas of Theorem A.3 to obtain ff} and f* from the same extended frame
F*. From Theorem 1.7 we know that fi,, = fﬂi| az1and f = f|;-; are complete entire
graphs. From the construction it is clear that f is a minimal surface. Moreover, the
Abresch-Rosenberg differential of f is Q dz>.

We now consider a spacelike CMC surface gi, isometric to g1, in L. Then as ex-
plained in the proof of Lemma 1.4, the extended frame F* of g, satisfies F* = M*F}k
for some z-independent (ASUy ;),-valued matrix M* and a U;-valued matrix k, in
particular independent of A. For the associated family fﬂ} of g1, which is defined by

the Sym formula (A.4) from the extended frame F*, we see that }L = ]A”EJ 11 and
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gL, are isometric. Thus fi, and fi, are isometric, and again from [9, Proposition 1]
we obtain that fi , is an entire, complete, spacelike CMC graph. Let }v" be the corre-
sponding associated family of minimal surfaces in Nil; which is defined by the Sym
formula (A.5) from the extended frame F. Then using the argument in Theorem 1.7,
we see that f = Jn| a-1 is an entire, complete minimal graph in Nil;. Note that the
Abresch-Rosenberg differential of fis also Q dz*.

We now apply Lemma 1.4. If the isometry fi, and fi, is of case (i) or (ii), then
F(= faz1) is congruent to f(= f*[,1). However, if the isometry of fi, and fi, is
of case (iii), then f is in general non-congruent to f. In particular, in Lemma 1.4(iii)
corresponds to a two-parameter family of boosts in LL;. Therefore, for an entire, com-
plete, spacelike CMC surface, there exists a two-parameter family of non-congruent
complete minimal graphs in Nil; which have the same Abresch-Rosenberg differen-
tial Qdz>2. [ |

1.4 The Two-parameter of Ambiguity and the Associated Family

From Theorem 1.8, we have the geometric meaning of the two-parameter ambiguity of
entire minimal graphs. We also have the associated family of entire minimal graphs.

Remark 1.9  In[6], the two-parameter family of an entire, complete, minimal graphs
in Nil; was obtained by the choice of the initial condition for a nonlinear partial dif-
ferential equation. The solution corresponds to ¢s3; that is, the e;-component of ™' f,
and the initial condition is the initial value ¢3(z, ) for some base point z, in C or .
In our setting, this freedom naturally appears as the two-parameter family of boosts
in Ls. As we see from the proof of Theorem 1.8, two minimal surfaces f* and f*
satisfy the relation (1.3). Set

Wha=(5 ) esui ()= S (PR~ L
k=1 k=1

where « is real. Then a straightforward computation (using the proof of [4, Theo-
rem 6.1]) shows

¢3 = (o +|B*)¢5 +2i Re(aB) ¢y +2i Im(aB) .
From this expression, it is clear that our two-parameter family of boosts induces a
freedom of the initial condition of ¢5 that is naturally parametrized by C.

Corollary 1.10  The associated family of every entire, complete, minimal graph in Nil;
with a given Abresch-Rosenberg differential Q dz* is a family of entire, complete, min-
imal graphs in Nils with the Abresch-Rosenberg differential A"2Qdz* (A € S'). More-
over, within a given associated family, complete minimal graphs have the same support
h (dz)V?(dz)Y/>2.

Proof From the proof of Theorem 1.8, it is clear that for an entire minimal graph
a1 all members of its associated family of minimal surfaces have the Abresch—
Rosenberg differential A"2Qdz? (A € S') and the same support h (dz)"/?(dz)"?. To
prove that the minimal surfaces in the associated family are graphs, we consider the
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spacelike CMC surfaces ff} given in the proof of Theorem 1.8. Then, since ff [r=1
is entire, it is complete [3, p. 415] and thus the spacelike CMC surfaces f]L in the
associated family are also complete. They are in fact isometric to f]L |a=1. Note that
the complete metric is given by h? dzdz; see (1.1). Therefore, by [9, Proposition 1], all
f]Ls are entire graphs, and thus the corresponding minimal surfaces f* in Nil; are also
entire graphs. The completeness of the associated family follows from Lemma1.1. W

Remark 1.11 (Canonical examples) In [6], all entire, complete, minimal vertical
graphs are called the canonical examples.

Appendix A Basic Results
A.1 Isometry Group

The identity component Iso, (Nil) of the isometry group of Nil; is the semi-direct
product Nil; x SO,. If we identify Nil; with C x R and SO, with Uy, respectively, then
the action of Nil; x SO, (2 (C x R) x Uy) is given by

(A1) ((oc =aj +iay, as), eie) (z=x1+ix2,x3) =
(ez+a,x3+ 1 Im(ae’z) +a3),

where 0, a3, x; € Rand a, z € C. Here (x, X2, x3) is a coordinate system of Nils, 6 is
a rotation angle, and (ay, 4z, a3) is a translation vector.

A.2 Basic Notation

Let f: M — Nil; be a conformal immersion of a Riemann surface M into Nil;. Denote
the natural orthonormal basis of the Lie algebra of Nil; by {ey, ez, e3}; see [4, (2.1)].
Then the Maurer-Cartan form f'df = (f ' f,)dz + (f ' f;)dz can be expanded as

ffe= kz_: ¢rex and ffp=ffo = Z drek-

Here, z = x + iy are conformal coordinates, z = x — iy is its complex conjugate.
The subscripts z and z denote the partial differentiations with respect to z and z,
respectively. Moreover, ¢ is a complex-valued function and ¢y is the its complex
onjugate function. Since f is a conformal, ¢y (k = 1,2,3) satisfy ¥;_, ¢2 = 0 and
Yok = fe # 0. We note that the induced metric of f is given by ds* = e“dzdz.
Then using the generating spinors y and ¥, the first equation can be solved by

$1=2)-vi, $2=i((¥2)>+v7), ¢3=2v1Va.

Then the condition Y'3_; [¢x|* = €"/2 is equivalent to e* = 4(|yy|? + |y2|?)?. Let N
be the positively oriented unit normal vector field along f. We define the support
h(dz)/?(dz)? by h = (f7'L, e3), where L = ¢“/>N. Then it is easy to compute h
by the generating spinors y; and v,: h = 2(|y1|? - |y2|?). Moreover, let e¥/? and
Q dz* = 4B dz* be the Dirac potential and the Abresch-Rosenberg differential [1],
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given by

2H +i 3
%(U‘”’N“zglps—w)’

respectively. It is known that the vector of generating spinors ¥ = (1, y,) satisfies
the so-called “linear spinor system” [4]:

H ,
2 -U=V=-"¢""+’p and B=
2 4

7= 70, T,
where
[’j _ %Wz + %Hzeiw/ZJru/z _ew/2 ; v _ 0 —Beiw/z ]
Befw/Z 0 ew/2 %WE+ %ng—w/2+u/2
We note that the second column of the first equation and the first column of the second
equation together are the nonlinear Dirac equations; that is,

o:v> = —Uyy, ozyy =V,
where U = V = e¥/2,

A.3 Flat Connections

From now on we assume that the unit normal f~'N is upward; that is, the e;-com-
ponent of f~!N is positive. Since f ' N is upward, there is a stereographic projection
7 of the unit normal f~'N from the south pole to the unit disk in C. We denote the
map 7 o f~!N by g and call g the normal Gauss map. Then it is easy to see that g

can be represented by the generating spinors as g = % We now define the family of

Maurer—Cartan forms a’ as a* = U*dz + V*dz with

. 1 1 -w/2+u/2 3! w/2
A_ gt 2Hze e
&2 v ( A 1Be2 Sly, )

v _ (—iwz —/\Ee_w/z )

Aew/Z iwf+ %Hze—w/z-#u/l

Then minimal surfaces in Nil; are characterized in terms of the normal Gauss map as
follows.

Theorem A.l1 ([4, Theorem 5.3]) Let f:ID — Nil; be a conformal immersion of a

simply connected domain ) that is nowhere vertical and let o’ be the 1-form defined

in (A.2). Moreover, assume that the unit normal f'N is upward. Then the following

statements are equivalent:

(i)  f is a minimal surface.

(i) d+ a* is a family of flat connections on D x SUY ;.

(iii) The normal Gauss map g for f is a non-conformal harmonic map into the hyper-
bolic two-space H?.

Denote by o the involution corresponding to the Riemmanian symmetric space
H? = SU;,,/U; and (ASUy ), the twisted loop group of SU; ; twisted by o.
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Definition A.2 ([4, Definition 1]) Let f be a minimal surface in Nil; and F* a
(ASU,1)4-valued solution to the equation (F*)'dF* = a* such that

1 ity Vily
(A.3) FMooy = ( hd v2 .
b= e Vil ViT

Then F is called an extended frame of the minimal surface f.

A.4 Sym-formula

Identifying the basis {&;, €,, &5} of suy; in [4, (6.1)] with the basis {e;, €2, €3} of nil3
in [4, (2.1)], we obtain the Sym-formula, [4, Section 6.1]. In what follows we will take
derivatives for functions of A. Note that for A = e’? € S!, we have 9 = i10,.

Theorem A.3 ([4, Theorem 6.1])  For the extended frame F* of some minimal surface
f define maps fﬁ and Nﬁs respectively by

. . i
(A4) fl==iMQ FY)(F) ' =N}, and N, = 5 Ad(FY) (3 9).
Moreover, define a map f*:1D — Nily by f* := By 0 ]a with

(A5) Fr= ()= SM@afh),

« _»

where the superscripts “0” and “d” denote the off-diagonal and diagonal parts, respec-

tively. Then, for each A € S', the following statements hold:

(i) The map ff} is a spacelike CMC surface with mean curvature H = 1/2 in L3 and
NHZ is the timelike unit normal vector of fﬂi'

(i) The map f* is a minimal surface in Nil; and N]f}3 is the normal Gauss map of f*.
In particular, f*|,-, gives the original minimal surface f up to translation.

Remark A.4

(i) It is known that the Maurer-Cartan form a* = U*dz + V*dz in (A.2) with
H = 0and A =1 is the Maurer-Cartan form of a spacelike CMC surface with mean
curvature H = 1/2, the Hopf differential Qy,dz* = —~4B dz* and the metric h*dzdz,
see [2, Lemma 3.1].' Any (ASUy,),-valued solution F* of (F*)~'dF* = a* is called
the extended frame of a spacelike CMC surface in L;.

(ii) The Hopf differential of the spacelike CMC surface ffs in Theorem A.3 can
be computed as Q]f:dz2 = —4)\"2Bdz?, where Q* dz* = 4172Bdz? is the Abresch-
Rosenberg differential of the minimal surface f* in Nil,.

(iii) Note that in Theorem A.3 the choice of coordinates is free. We will therefore
apply this result to graph coordinates as well as to conformal coordinates without
further mentioning.

! The mean curvature and the Hopf differential for spacelike surfaces in Minkowski space could be
defined differently from the definition in Euclidean space; The second fundamental form II and the
mean curvature H could be changed to —Il and —H, respectively, that is, in the above case the mean
curvature and the Hopf differential would then become H = —1/2 and Q,, dz* = 4B dz?, respectively.
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In the following corollary, we compute the Abresch-Rosenberg differential Bdz>
for the 1-parameter family f* in Theorem A.3, and it implies that the family f* actually
defines the associated family.

Corollary A.5 Let f* be the family of minimal surfaces in Nils defined by (A.5).
Then f* preserves the mean curvature (= 0) and the support. Moreover, the Abresch-
Rosenberg differential Q*dz? for f* is given by Q*dz?* = 4A"2Bdz?, where Q dz* =
4B dz? is the Abresch-Rosenberg differential for f*|,-,. Therefore, { f M rest is the asso-
ciated family of the minimal surface f*|,-,.
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