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VOLUME DEGENERACY OF THE TYPICAL CELL
AND THE CHORD LENGTH DISTRIBUTION FOR
POISSON–VORONOI TESSELLATIONS
IN HIGH DIMENSIONS
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Abstract

This paper is devoted to the study of some asymptotic behaviors of Poisson–Voronoi
tessellation in the Euclidean space as the space dimension tends to ∞. We consider
a family of homogeneous Poisson–Voronoi tessellations with constant intensity λ in
Euclidean spaces of dimensions n = 1, 2, 3, . . . . First we use the Blaschke–Petkantschin
formula to prove that the variance of the volume of the typical cell tends to 0 exponentially
in dimension. It is also shown that the volume of intersection of the typical cell with the
co-centered ball of volumeu converges in distribution to the constantλ−1(1−e−λu). Next
we consider the linear contact distribution function of the Poisson–Voronoi tessellation
and compute the limit when the space dimension goes to ∞. As a by-product, the chord
length distribution and the geometric covariogram of the typical cell are obtained in the
limit.

Keywords: Poisson–Voronoi tessellation; typical cell; Blaschke–Petkantschin formula;
high dimension; chord length distribution; linear contact distribution; geometric
covariogram

2000 Mathematics Subject Classification: Primary 60D05
Secondary 60F25; 60F05

1. Introduction

Random tessellations are objects of interest in stochastic geometry both for theoretical
reasons and for applications as models in material sciences, biology, geology, communication
theory, and data analysis. One of the most important types of random tessellations, Poisson–
Voronoi tessellations, arises as a natural combination of Voronoi tessellations and Poisson
point processes. Poisson–Voronoi tessellations appear to be good models in many applications,
and although simpler than other models, the computation of many of its relevant statistical
characteristics seems to be very difficult. There are many references on the subject of Poisson–
Voronoi tessellations; see, for example, [3], [6, pp. 455–459], [7], [8], [9], [10], [11], [12], [13],
[15, pp. 291–410], and [17, pp. 307–338].

Using different approaches, Miles [8] and Møller [13] computed the mean value of a class
of important geometric characteristics, known as intrinsic volumes, in arbitrary dimensions.
Moreover, Møller introduced some stereological investigations based on simulation results.
Okabe [15] provided computer simulation results for, in particular, two and three dimensions.
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Muche and Stoyan [14], based on the results of Gilbert [2], derived integral formulae for the
linear and spherical contact distribution functions in the case of the random set given by the
union of all cell faces (n = 3) or edges (n = 2). The formulae are numerically tractable and
lead to formulae for the chord length distribution function.

Although Poisson–Voronoi tessellations have received considerable attention in stochastic
geometry, the field of tessellations in high dimensions is rather new and unexplored.

In this paper we take the first step towards investigating Poisson–Voronoi tessellations in
high dimensions. We are especially interested in the limiting behavior of the volume and shape
of a typical cell as the space dimension tends to ∞.

In Section 2 we discuss some preliminaries about Poisson–Voronoi tessellation, mean values,
and the typical cell. In Section 3 we use the Blaschke–Petkantschin formula to prove that the
variance of the n-volume of a typical cell of a Poisson–Voronoi tessellation with constant
intensity λ in R

n decreases to 0 as n tends to ∞. We also prove that the convergence occurs
exponentially, and we compute the exponent of convergence. In Section 4 we extend the result
in a more geometrical form, and we show that the volume of the intersection of a typical cell
with a co-centered ball of volume u tends to the constant λ−1(1 − e−λu) as the dimension
increases. This might be a significant result towards understanding the limiting behavior
of the shapes of cells and might be interpreted as evidence for the fact that cells in high-
dimensional Poisson–Voronoi tessellations are somehow ‘stretched’; but, owing to the measure
concentration phenomena in high dimensions, we should be careful when giving geometric
interpretations. In Section 5 we adopt a different mathematical quantification of the limiting
shape behavior of cells by considering the linear contact distribution function. We will compute
this function and, equivalently, the geometric covariogram associated to the typical cell in the
limiting case of the space dimension going to ∞. In Section 6, as a by-product, the chord length
distribution function is also computed in the limit. An efficient algorithm is also implemented
to simulate the intersection of a line and a Poisson–Voronoi tessellation. The simulation results
are compared with the analytic formula and some observations are discussed.

2. Preliminaries

A ‘tessellation’ (or a mosaic) in the Euclidean space R
n is a locally finite aggregate of space

filling and nonoverlapping n-dimensional particles called cells, where the cells are convex
compact sets with disjoint interiors. A ‘random tessellation’X of R

n is a random process with
tessellations of R

n as realizations. A random tessellation X is said to be ‘stationary’ if all
translations of X have the same distribution and is said to be ‘isotropic’ if all rotations of X
about the origin have the same distribution. A random tessellation which is both stationary and
isotropic is called ‘motion invariant’.

For a stationary random tessellation X in R
n, the mean n-volume of cells, the mean

(n − 1)-volume of their boundaries, and the mean values of other geometric characteristics
are of interest. To define the mean value of an arbitrary characteristic on cells of X, we can
average the values of the characteristic on all cells in a bounded domain of space and then
enlarge this domain to the whole space. Although the above procedure of averaging does not
refer to any particular cell of X, it is nonetheless possible to construct a (virtual) random cell
called a ‘typical cell’ ofX which is denoted byCt such that the mean values computed as above
are equal to the expectation of the characteristic on Ct .

A ‘Voronoi tessellation’ corresponding to a discrete set of points � ⊆ R
n is defined as

{Cx(�) : x ∈ �}, where Cx , the Voronoi cell of � centered at x, is defined by Cx = Cx(�) =
{z ∈ R

n : |z− x| = d(z, �)}.
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Voronoi tessellations corresponding to point processes are important examples of random
tessellations. When the underlying point process X̃ is a homogeneous Poisson point process
of intensity λ, the resulting random tessellation is named a ‘Poisson–Voronoi tessellation’ with
intensity λ. Poisson–Voronoi tessellations are motion invariant, since Poisson point processes
are. Miles and Maillardet [10] observed that, for the Poisson–Voronoi tessellation, a typical
cell can be explicitly described by Ct := C0(X̃ ∪ {0}), that is, the Voronoi cell centered at the
origin after adding the origin to the Poisson point process.

Sometimes it is useful to focus on X̂, the union of all cell boundaries of a random tessellation,
as a random set. Doing so, we can speak of the contact distribution function HB associated to
convex compact sets B, defined by

HB(r) = P(X̂ ∩ rB �= ∅).

The case whereB is a unit segment is of special interest. The contact distribution function in this
case is called the ‘linear contact distribution function’ and is denoted by Hl. Obviously, when
the random set is motion invariant,Hl does not depend on the direction of the segment. It is well
known that the linear contact distribution function is strongly connected to another important
characteristic, namely, the ‘chord length distribution function’. Consider the intersection
between an arbitrary line and the random set X̂, obtained, as above, from the cell faces of
a motion invariant random tessellation. The chord length distribution function L(r) is defined
as the distribution function of the length of an interval which is (loosely speaking) uniformly
chosen among these intervals, and the mean chord length l̄ is the expected length of such a
‘typical interval’. It can be proved [17] that

Hl(r) =
(

1

l̄

) ∫ r

0
(1 − L(t)) dt. (2.1)

3. Volume of the typical cell in high dimensions

In this section we want to find the distribution of the volume of a typical cell of a Poisson–
Voronoi tessellation in high dimensions. Denoting by Vn the n-volume of Ct and representing
Vn as the integral of a characteristic function of the typical cell, we easily obtain the following
formula for the moments of Vn:

E(V kn ) =
∫
(Rn)k

exp

[
−λµn

( k⋃
i=1

B(xi)

)]
dx1 · · · dxk, (3.1)

where B(xi) is the ball centered at xi with radius |xi | and µn refers to the Lebesgue measure
in R

n. The idea is to use this equality to find the moments as the dimension increases. It is a
simple matter to prove some general estimates on the moments.

Lemma 3.1. For all n and k,
1

λk
≤ E(V kn ) ≤ k!

λk
.

In particular,

E(Vn) = 1

λ
,

1

λ2 ≤ E(V 2
n ) ≤ 2

λ2 .
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Proof. Note that, for any x1, . . . , xk ∈ R
n,

k∑
i=1

µn(B(xi)) ≥ µn

( k⋃
i=1

B(xi)

)
≥ max

1≤i≤k µn(B(xi)).

Therefore, using (3.1), we obtain

∫
(Rn)k

exp

[
−λ

k∑
i=1

µn(B(xi))

]
dx1 · · · dxk ≤ E(V kn )

≤
∫
(Rn)k

exp
[
−λ max

1≤i≤k µn(B(xi))
]

dx1 · · · dxk.

Writing down the above integrals in polar coordinates,

xi = riθi , ri ∈ [0,∞), θi ∈ Sn−1,

and noting that dxi = rn−1
i dri dθi , the first integral becomes

∫
(Rn)k

exp

[
−λ

k∑
i=1

µn(B(xi))

]
dx1 · · · dxk =

(∫
Rn

exp[−λµn(B(x))] dx

)k

=
(∫ ∞

0

∫
Sn−1

exp[−λκnrn]rn−1 dθ dr

)k

=
(∫ ∞

0
exp[−λκnrn]rn−1(nκn) dr

)k

=
(

1

λ

)k
,

where κn denotes the volume of the unit ball in R
n and, hence, nκn is the (n− 1)-area of Sn−1.

The right-hand side of the inequality becomes

∫
(Rn)k

exp
[
−λ max

1≤i≤k µn(B(xi))
]

dx1 · · · dxk

=
∫

[0,∞)k

∫
(Sn−1)k

exp
[
−λκn max

1≤i≤k r
n
i

]
(r1 · · · rk)n−1 dθ1 · · · dθk dr1 · · · drk

= k

∫
rk=max1≤i≤k{ri }

∫
(Sn−1)k

exp[−λκnrnk ](r1 · · · rk)n−1 dθ1 · · · dθk dr1 · · · drk

= k

∫ ∞

0

∫
[0,rk]k−1

(r1 · · · rk−1)
n−1 dr1 · · · drk−1(nκn)

k exp[−λκnrnk ]rn−1
k drk

= k

∫ ∞

0

(∫ rk

0
rn−1 dr

)k−1

(nκn)
k exp[−λκnrnk ]rn−1

k drk
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= k

∫ ∞

0

(
rnk

n

)k−1

(nκn)
k exp[−λκnrnk ]rn−1

k drk

= kλ−k
∫ ∞

0
(λκnr

n
k )
k−1 exp[−λκnrnk ]nλκnrn−1

k drk

= kλ−k
∫ ∞

0
uk−1e−u du

= kλ−k�(k)
= k! λ−k.

This completes the proof.

In (3.1), both the integrand and the domain of integration vary with n, which makes it difficult
to pass to the limit. Fortunately, the integrand depends only on the relative position of the xis.
This strong symmetry helps to reduce the domain of integration by invoking the well-known
formula of Blaschke [1] and Petkantschin [16] in stereology and integral geometry (see, e.g.
[4, pp. 95–119], [8], [11], and [12]).

The Blaschke–Petkantschin formula is a geometric measure decomposition of the q-fold
product of the Lebesgue measure in R

n. Let Ln
q denote the space of all q-dimensional subspaces

of R
n, and let dL be the unique O(n)-invariant probability measure on Ln

q . According to the
Blaschke–Petkantschin formula for any integrable function g : (Rn)q → R,∫

(Rn)q
g(x1, . . . , xq) dx(n)1 · · · dx(n)q

= Cn,q

∫
Ln
q

∫
(L)q

g(x1, . . . , xq)∇q(x1, . . . , xq)
n−q dx(q)1 · · · dx(q)q dL,

where ∇q(x1, . . . , xq) is q! times the q-dimensional measure of the q-simplex with vertices
0, x1, . . . , xq and

Cn,q = n!
q! (n− q)!

κn · · · κn−q+1

κq · · · κ1
.

The following theorem is our main result about the limiting behavior of Voronoi cells of a
Poisson point process.

Theorem 3.1. There exists a constant C independent of n such that

var(Vn) ≤ C

λ2
√
n

(
4

3
√

3

)n
.

Proof. Applying the Blaschke–Petkantschin formula to (3.1) yields

E(V 2
n ) =

∫
(Rn)2

exp[−λµn(B(x) ∪ B(y))] dx dy

= Cn,2

∫
(R2)2

exp[−λµn(B(x) ∪ B(y))]∇2(x, y)
n−2 dx dy.

Using polar coordinates, x = (r, θ) and y = (s, ψ), we obtain

E(V 2
n ) = Cn,2

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0
exp[−λµn(B(x)∪B(y))]|rs sin(θ−ψ)|n−2rs dr ds dθ dψ.
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Figure 1: (a) Two intersected balls. (b) The cap of a ball.

But both µn(B(x) ∪ B(y)) and sin(θ − ψ) depend only on ϕ = θ − ψ and, therefore,

E(V 2
n ) = 4πCn,2

∫ π

0

∫ ∞

0

∫ ∞

0
exp[−λvn(r, s, ϕ)](rs)n−1(sin ϕ)n−2 dr ds dϕ,

where vn(r, s, ϕ) stands for the n-volume of the union of two balls of radii r and s with angle
ϕ (see Figure 1(a)). The n-volume of a cap of a ball of radius r with sweeping angle ψ (see
Figure 1(b)) is

rnκn

∫ ψ

0
αn sinn η dη,

where

αn = �(n/2 + 1)

�((n+ 1)/2)�(1/2)

normalizes sinn ϕ in L1(0, π) so that
∫ π

0
αn sinn ϕ dϕ = 1.

Hence,

vn(r, s, ϕ) = rnκn + snκn − rnκn

∫ ψr

0
αn sinn η dη − snκn

∫ ψs

0
αn sinn η dη,

where ψr and ψs satisfy the following relations:

ψr + ψs = π − ϕ, rn sinn ψr = sn sinn ψs.

Defining variables R and u by

R = (rn + sn)κn and u = rn

rn + sn
,

we obtain vn(r, s, ϕ) = RFn(u, ϕ), where

Fn(u, ϕ) := 1 − u

∫ ψr

0
αn sinn η dη − (1 − u)

∫ ψs

0
αn sinn η dη.
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Note that, sinceψr andψs are completely determined by only u and ϕ, Fn is actually a function
of u and ϕ. Since rnκn = Ru and snκn = R(1 − u), the Jacobian of the transformation
(R, u) → (rnκn, s

nκn) is given by ∂(rnκn, snκn)/∂(R, u) = R. Therefore,

E(V 2
n ) = 4πCn,2

∫ π

0

∫ ∞

0

∫ ∞

0
exp[−λvn(r, s, ϕ)](rs)n−1(sin ϕ)n−2 dr ds dϕ

= 4πCn,2
n2κ2

n

∫ π

0

∫ ∞

0

∫ ∞

0
exp[−λvn(r, s, ϕ)](sin ϕ)n−2 d(rnκn) d(snκn) dϕ

=
∫ π

0

4πCn,2
n2κ2

n

sinn−2 ϕ

∫ 1

0

∫ ∞

0
exp[−λRFn(u, ϕ)]R dR du dϕ

= 1

λ2

∫ π

0

4πCn,2
n2κ2

n

sinn−2 ϕ

∫ 1

0

du

F
2
n (u, ϕ)

dϕ.

Substituting µn(B(x) ∪ B(y)) for µn(B(x)) + µn(B(y)) in the right-hand side of (3.1) and
proceeding as in Lemma 3.1, we obtain 1/λ2. This is equivalent to replacing Fn(u, ϕ) by 1,
which implies that 4πCn,2/n2κ2

n = αn−2. In fact, we can obtain this by straightforward
calculations. Thus,

E(V 2
n ) = 1

λ2

∫ π

0
αn−2 sinn−2 ϕ

∫ 1

0

du

F
2
n (u, ϕ)

dϕ.

Note that, since Fn(u, ϕ) is the ratio of the volume of the union of two balls to the sum of
their volumes, it is bounded between 1

2 and 1. The equations for ψr and ψs can be rewritten as

∂ψr

∂u
+ ∂ψs

∂u
= 0, u sinn ψr = (1 − u) sinn ψs,

which imply that
∂Fn

∂u
= −

∫ ψr

0
αn sinn η dη − u

∂ψr

∂u
αn sinn ψr

+
∫ ψs

0
αn sinn η dη − (1 − u)

∂ψs

∂u
αn sinn ψs

=
∫ ψs

ψr

αn sinn η dη.

This shows that, for each fixed ϕ, Fn decreases on (0, 1
2 ) and increases on ( 1

2 , 1), and takes its
minimum value at u = 1

2 . Therefore,

1 − Fn(u, ϕ) ≤ 1 − Fn
( 1

2 , ϕ
)

=
∫ (π−ϕ)/2

0
αn sinn η dη

≤
∫ (π−ϕ)/2

0

αn

cos(π − ϕ)/2
cos η sinn η dη

= αn

(n+ 1) sin ϕ/2
sinn+1

(
π − ϕ

2

)

= αn cosn+1(ϕ/2)

(n+ 1) sin ϕ/2
.
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These facts imply that, for n ≥ 3,

λ2 E(V 2
n )− 1 =

∫ π

0
αn−2 sinn−2 ϕ

∫ 1

0

(
1

F
2
n (u, ϕ)

− 1

)
du dϕ

≤ 8
∫ π

0
αn−2 sinn−2 ϕ

αn cosn+1(ϕ/2)

(n+ 1) sin(ϕ/2)
dϕ

= 2n+1αn−2αn

n+ 1

∫ π

0
sinn−3

(
ϕ

2

)
cos2n−1

(
ϕ

2

)
dϕ

= 2n+2αn−2αn

n+ 1

∫ π/2

0
sinn−3 ϕ cos2n−1 ϕ dϕ

= 2n+1αn−2αn

n+ 1

�(n/2 − 1)�(n)

�(3n/2 − 1)
.

Recalling that αn = �(n/2 + 1)/�((n+ 1)/2)�(1/2) and using the Stirling inequality for the
gamma function, the theorem follows after a straightforward calculation.

Corollary 3.1. The volume of the typical cell of the standard Poisson–Voronoi tessellation, Vn,
converges in distribution to a constant value of 1/λ as n → ∞.

Remark 3.1. Using the Stirling inequality and numerical computations for small values of n,
it is not difficult to show that we can choose C = 5. Therefore, in the case of the standard
Poisson–Voronoi tessellation (i.e.λ = 1) we have var(V20) < 0.006 and var(V100) < 3×10−12,
which is practically 0.

Remark 3.2. The order of convergence of Vn given in Theorem 3.1 is sharp in the sense that
there exists a constant C′ such that

var(Vn) ≥ C′

λ2
√
n

(
4

3
√

3

)n
.

To show this, let ϕ∗ = arcsin(1/
√

3) be the angle at which the function ϕ → sin ϕ cos(ϕ/2)
takes its maximum value 4/3

√
3, and let (ϕ1, ϕ2) be a small interval containing ϕ∗ with the

property that, for any ϕ ∈ (ϕ1, ϕ2),

sin ϕ cos
ϕ

2
≥ 4

3
√

3
(1 − ν(ϕ − ϕ∗)2),

by a suitable choice of a positive constant ν. As in previous calculations, for ϕ ∈ (ϕ1, ϕ2) and
1
4 < u < 3

4 , from the inequality
∫ ψ

0
αn sinn η dη ≥

∫ ψ

0
αn sinn η cos η dη = αn sinn+1 ψ

n+ 1
,

we can write

Fn(u, ϕ) ≤ Fn

(
3

4
, ϕ

)
≤ 1 − 3

4

αn sinn+1 ψr

n+ 1
− 1

4

αn sinn+1 ψs

n+ 1
≤ 1 − 1

4

αn sinn+1 ψs

n+ 1
,

with ψr + ψs = π − ϕ and 3 sinn ψr = sinn ψs. This implies that sinψs ≥ sin(π − ϕ)/2 =
cos(ϕ/2) and, hence,

1 − Fn(u, ϕ) ≥ αn

4(n+ 1)
cosn+1

(
ϕ

2

)
.
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Now the previously mentioned bounds on F and the Stirling inequality imply that

λ2 var(Vn) ≥ 3αnαn−2

16(n+ 1)

∫ ϕ2

ϕ1

sinn−2 ϕ cosn+1
(
ϕ

2

)
dϕ

≥ C1

∫ ϕ2

ϕ1

sinn ϕ cosn
(
ϕ

2

)
dϕ

≥ C1

(
4

3
√

3

)n ∫ ϕ2−ϕ∗

ϕ1−ϕ∗
(1 − νx2)n dx.

The change of variable y = √
nx shows that, for large n,

λ2 var(Vn) ≥ C1√
n

(
4

3
√

3

)n ∫ √
n(ϕ2−ϕ∗)

√
n(ϕ1−ϕ∗)

(
1 − νy2

n

)n
dy

≥ C2√
n

(
4

3
√

3

)n ∫ 1

−1
exp[−νy2] dy

= C′
√
n

(
4

3
√

3

)n
.

4. How spherical is the typical cell in high dimensions?

In the previous section we proved that, as the space dimension increases to ∞, the volumes of
the cells become more and more similar. A natural question to ask in this context is whether the
cells of a high-dimensional Poisson–Voronoi tessellation become similar in geometric shapes
rather than just in volumes. If so, the first and most natural candidate for this limiting common
shape is the ball. In this section we measure the distance between the typical cell and a ball
co-centered with it. We have chosen the volume of the symmetric difference as the distance
function. Let Bu denote the ball centered at the origin with volume u, and let

Rn(u) = µn−1(Ct ∩ ∂Bu)
µn−1(∂Bu)

.

Lemma 4.1. We have

µn(Ct ∩ Bu) =
∫ u

0
Rn(v) dv.

Proof. Let ru be the radius of a ball with volume u, i.e. κnr
n
u = u. Then

µn(Ct ∩ Bu) =
∫
Bu

1Ct (x) dx

=
∫ ru

0

∫
Sn−1

rn−1 1Ct (ry) dy dr

=
∫ u

0

1

nκn

∫
Sn−1

1Ct (rvy) dy dv

=
∫ u

0
Rn(v) dv.

This completes the proof.
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Let ν be the probability measure defined by normalizing the (n− 1)-dimensional Hausdorff
measure on ∂Bu. We can represent the moments of Rn(u) by integral expressions similar to
those in (3.1) as follows.

Lemma 4.2. We have

E(Rn(u)
k) =

∫
∂Bu

· · ·
∫
∂Bu

exp

[
−λµn

( k⋃
i=1

B(xi)

)]
ν(dx1) · · · ν(dxk).

In particular,

E(Rn(u)) = e−λu, E(Rn(u)
2) =

∫
(∂Bu)2

exp[−λµn(B(x) ∪ B(y))]ν(dx)ν(dy). (4.1)

Proof. Clearly, Rn(u) = ∫
∂Bu

1Ct (x)ν(dx) and, therefore,

E(Rn(u)
k) = E

∫
∂Bu

· · ·
∫
∂Bu

1Ct (x1) · · · 1Ct (xk)ν(dx1) · · · ν(dxk)

=
∫
∂Bu

· · ·
∫
∂Bu

P(x1, . . . , xk ∈ Ct)ν(dx1) · · · ν(dxk)

=
∫
∂Bu

· · ·
∫
∂Bu

exp

[
−λµn

( k⋃
i=1

B(xi)

)]
ν(dx1) · · · ν(dxk).

Theorem 4.1. For any fixed u, µn(Ct ∩Bu) converges in L2 and, consequently, in distribution
to the constant λ−1(1 − e−λu) as n tends to ∞.

4.1. Proof of Theorem 4.1

Note that, according to Lemmas 4.1 and 4.2,

E(µn(Ct ∩ Bu)) = E

(∫ u

0
Rn(v) dv

)
=

∫ u

0
E(Rn(v)) dv =

∫ u

0
e−λv dv = λ−1(1 − e−λu),

var(µn(Ct ∩ Bu)) = var

(∫ u

0
Rn(v) dv

)

= E

(∫ u

0
(Rn(v)− e−λv) dv

)2

≤ u

∫ u

0
E(Rn(v)− e−λv)2 dv

= u

∫ u

0
var(Rn(v)) dv.

Since the Rn(v)s are uniformly bounded, by the Lebesgue dominated convergence theorem, it
is sufficient to show the following lemma.

Lemma 4.3. limn→∞ var(Rn(v)) = 0.

Proof. By Lemma 4.2,

E(Rn(v)
2) =

∫
(∂Bv)2

exp[−λµn(B(x) ∪ B(y))]ν(dx)ν(dy).
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Note that we can fix x in the above integral because of the symmetry. The integrand depends
only on ϕ, the angle between x and y. More precisely, it is equal to exp[−2λvFn( 1

2 , ϕ)], where
Fn is defined as in the proof of Theorem 3.1. So, the above integral can be rewritten as an
integral over ϕ only. Since the (n − 1)-volume of the strip on ∂Bv between ϕ and ϕ + dϕ is
proportional to sinn−2 ϕ, we conclude that

E(Rn(v)
2) =

∫ π

0
cn sinn−2 ϕ exp

[−2λvFn
( 1

2 , ϕ
)]

dϕ.

Since ν is a probability measure, so is cn sinn−2 ϕ dϕ (in fact, cn = αn−2 by our notation used
in proof of Theorem 3.1). Since 1

2 ≤ Fn ≤ 1 and E(Rn(v)) = e−λv by Lemma 4.2, using the
mean value theorem, we have

var(Rn(v)) =
∫ π

0
αn−2 sinn−2 ϕ

(
exp

[−2λvFn
( 1

2 , ϕ
)] − e−2λv) dϕ

≤ 2λve−λv
∫ π

0
αn−2 sinn−2 ϕ

(
1 − Fn

( 1
2 , ϕ

))
dϕ

= 2λve−λv
∫ π

0
αn−2 sinn−2 ϕ

∫ (π−ϕ)/2

0
αn sinn η dη dϕ

≤ C′′λve−λv 1√
n

(
4

3
√

3

)n
.

The last step is exactly as in the proof of Theorem 3.1.

5. The linear contact distribution function

In this section we focus on the linear contact distribution function as another tool that helps us
to extract useful information from a random tessellation. As mentioned in the preliminaries, the
linear contact distribution function for a motion invariant random tessellation (and especially for
a Poisson–Voronoi tessellation) measures the probability that a given segment hits the boundary
of some cells. Gilbert [2] proved the following double integral representation formula for the
linear contact distribution function in the case of a Poisson–Voronoi tessellation with intensity
λ in R

n:

Hl(r) = 1 − (n− 1)κn−1λ

∫ ∞

0

∫ π

0
ρn−1 sinn−2 ϕ exp[−λµn(Kρ,ϕ,r )] dϕ dρ, (5.1)

where Kρ,ϕ,r is the union of two balls with radii ρ and
√
ρ2 − 2ρr cosϕ + r2, and distance r

between their centers. Muche and Stoyan [14] used this formula to carry out some computations
for dimensions n = 2 and n = 3. In this section we are going to pass to the limiting case,
n → ∞. First, we rewrite (5.1) in terms of new, appropriately defined variables

t = cot ϕ and y = ρ sin ϕ,

and define G(y, t, r) := Kρ,ϕ,r . Doing so, we obtain

Hl(r) = 1 − (n− 1)κn−1λ

∫ ∞

−∞

∫ ∞

0
yn−1 exp[−λµn(Kρ,ϕ,r )] dy dt

= 1 − (n− 1)κn−1λ

∫ ∞

−∞

∫ ∞

0
yn−1 exp[−λµn(G(y, t, r))] dy dt.
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Note thatHl can be interpreted as a distribution function, and so we can consider its j th moment,

M
(n)
j =

∫ ∞

0
jrj−1(1 −Hl(r)) dr

= (n− 1)κn−1λ

∫ ∞

0

∫ ∞

−∞

∫ ∞

0
jrj−1yn−1 exp[−λµn(G(y, t, r))] dy dt dr

= (n− 1)κn−1λ

∫ ∞

0

∫ ∞

−∞

∫ ∞

0
jsj−1yj+n−1 exp[−λµn(G(y, t, sy))] dy dt ds

= (n− 1)κn−1λ

∫ ∞

0
jsj−1

∫ ∞

−∞

∫ ∞

0
yj+n−1 exp[−λynµn(G(1, t, s))] dy dt ds

= (n− 1)κn−1

nλj/n

∫ ∞

0
jsj−1

∫ ∞

−∞
�(1 + j/n)

µn(G(1, t, s))1+j/n dt ds

= (n− 1)κn−1�(1 + j/n)

n(j+3)/2κ
1+j/n
n λj/n

∫ ∞

0
jsj−1

∫ ∞

−∞
dt ds

µ′
n(G(1, t/

√
n, s/

√
n))1+j/n ,

where µ′
n = (1/κn)µn, the Lebesgue measure normalized so that the measure of the unit ball

is equal to 1. Since κn = πn/2/�(n/2 + 1), according to Stirling’s formula, the coefficient
tends to 1/

√
2π(

√
2πe)j as n tends to ∞. The union of the balls in the denominator can be

expressed as the disjoint union of two caps (similar to Figure 1), and it is easy to see that the
hyperplane which separates the two caps is perpendicular to the line joining the centers of the
balls at the coordinate t/

√
n; hence, the denominator can be computed as the following integral

expressions:

µ′
n

(
G

(
1,

t√
n
,
s√
n

))
= κn−1

κn

∫ t/
√
n

−
√

1+t2/n

(
1 + t2

n
− x2

)(n−1)/2

dx

+ κn−1

κn

∫ √
1+t2/n

t/
√
n

(
1 + (t − s)2

n
− (x − s)2

)(n−1)/2

dx

= κn−1

κn

∫ t/
√
n

−
√

1+t2/n

(
1 + t2

n
− x2

)(n−1)/2

dx

+ κn−1

κn

∫ √
1+(t−s)2/n

(t−s)/√n

(
1 + (t − s)2

n
− x2

)(n−1)/2

dx

= κn−1

κn

(
1 + t2

n

)n/2 ∫ t/
√
n+t2

−1
(1 − x2)(n−1)/2 dx

+ κn−1

κn

(
1 + (t − s)2

n

)n/2 ∫ 1

(t−s)/
√
n+(t−s)2

(1 − x2)(n−1)/2 dx

= κn−1

κn
√
n

(
1 + t2

n

)n/2 ∫ t
√
n/

√
n+t2

−√
n

(
1 − x2

n

)(n−1)/2

dx

+ κn−1

κn
√
n

(
1 + (t − s)2

n

)n/2

×
∫ √

n

(t−s)√n/
√
n+(t−s)2

(
1 − x2

n

)(n−1)/2

dx.
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Write the first integral in the form of

∫ ∞

−∞

(
1 − x2

n

)(n−1)/2

1[−√
n,t

√
n/

√
n+t2](x) dx.

The integrand converges pointwise to exp[−x2/2] 1(−∞,t](x) and is dominated by

exp

[−x2

n

n− 1

2

]
≤ exp

[−x2

4

]
,

which is integrable. A similar argument applies for the second integral. Since κn−1/κn
√
n

converges to 1/
√

2π ,

µ′
n

(
G

(
1,

t√
n
,
s√
n

))
→ exp

[
t2

2

] ∫ t

−∞
1√
2π

exp

[−x2

2

]
dx

+ exp

[
(t − s)2

2

] ∫ ∞

t−s
1√
2π

exp

[−x2

2

]
dx

= exp

[
t2

2

]

(t)+ exp

[
(t − s)2

2

]
(1 −
(t − s)),

where 
 is the ‘standard normal cumulative distribution function’. All that remains is to show
that the integrand is dominated by an integrable function in order to prove the convergence of
the moments M(n)

j . Since the union of the balls contains the one with the maximum radius,
the denominator has the lower bound max{1 + t2/n, 1 + (t − s)2/n}(n+j)/2, which is greater
than max{1 + t2/n, 1 + (t − s)2/n}n/2. But (1 + x/n)n is increasing with respect to n for any
positive x and, hence, for n ≥ j + 2, the integrand is dominated by

jsj−1

max{1 + t2/(j + 2), 1 + (t − s)2/(j + 2)}(j+2)/2
,

which is integrable since

∫ ∞

0

∫ ∞

−∞
sj−1 dt ds

max{1 + t2/(j + 2), 1 + (t − s)2/(j + 2)}(j+2)/2

=
∫ ∞

0

∫ s/2

−∞
sj−1 dt ds

(1 + (t − s)2/(j + 2))(j+2)/2
+

∫ ∞

0

∫ ∞

s/2

sj−1 dt ds

(1 + t2/(j + 2))(j+2)/2

= 2
∫ ∞

0

∫ ∞

s/2

sj−1 dt ds

(1 + t2/(j + 2))(j+2)/2

= 2
∫ 1

0

∫ ∞

s/2

sj−1 dt ds

(1 + t2/(j + 2))(j+2)/2
+ 2

∫ ∞

1

∫ ∞

s/2

sj−1 dt ds

(1 + t2/(j + 2))(j+2)/2

≤ 2
∫ ∞

0

dt

(1 + t2/(j + 2))(j+2)/2
+ 2(j + 2)(j+2)/2

∫ ∞

1

∫ ∞

s/2

sj−1 dt ds

tj+2

= 2
√
j + 2

∫ π/2

0
cosj η dη + 2j+2(j + 2)(j+2)/2

j + 1

∫ ∞

1

ds

s2

< +∞.
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It is concluded that

lim
n→∞M

(n)
j = 1

(
√

2πe)j

∫ ∞

0
jsj−1 1√

2π

×
∫ ∞

−∞
dt ds

exp[t2/2]
(t)+ exp[(t − s)2/2](1 −
(t − s))

=
∫ ∞

0
jrj−1 1√

2π

×
∫ ∞

−∞
dt

exp[t2/2]
(t)+ exp[(t − r
√

2πe)2/2](1 −
(t − r
√

2πe))
dr.

Now we are ready to prove the main result.

Theorem 5.1. We have

lim
n→∞Hl(r)

= H∞
l (r)

:= 1 − 1√
2π

∫ ∞

−∞
dt

exp[t2/2]
(t)+ exp[(t − r
√

2πe)2/2](1 −
(t − r
√

2πe))
.

Proof. The convergence of the moments has been shown. Denoting the j th moment of the
distribution H∞

l by Mj , according to the classical moment problem, it is enough to show that
lim sup j

√
Mj/j < +∞. We will prove that lim sup j

√
Mj/j = 0.

The function exp[x2/2]
(x) is increasing because

√
2π exp

[
x2

2

]

(x) = exp

[
x2

2

] ∫ x

−∞
exp

[−u2

2

]
du

= exp

[
x2

2

] ∫ 0

−∞
exp

[−(u+ x)2

2

]
du

=
∫ 0

−∞
exp

[
−ux − u2

2

]
du,

and the integrand is obviously increasing with respect to x for u ≤ 0. Similarly, it can be seen
that the function exp[x2/2](1 −
(x)) is decreasing. As a consequence, we have the following
inequality for s ≥ 0:

exp

[
t2

2

]

(t)+ exp

[
(t − s)2

2

]
(1 −
(t − s)) ≥ max

{
exp

[
t2

2

]
, exp

[
(t − s)2

2

]}
.

Hence, ∫ ∞

−∞
dt

exp[t2/2]
(t)+ exp[(t − s)2/2]
(t − s)

≤
∫ s/2

−∞
exp

[
− (t − s)2

2

]
dt +

∫ ∞

s/2
exp

[
− t

2

2

]
dt

= 2
√

2π

(
1 −


(
s

2

))
.
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Figure 2: The limiting linear contact distribution function H∞
l (r).

Therefore, using Stirling’s inequality,

Mj ≤ 2

(
√

2πe)j

∫ ∞

0
jsj−1

(
1 −


(
s

2

))
ds

= 2j+1

(
√

2πe)j

∫ ∞

0
jsj−1(1 −
(s)) ds

= 2j+1

(
√

2πe)j

∫ ∞

0

1√
2π

sj exp

[
− s

2

2

]
ds

= 2j+1

(
√

2πe)j
√

2π

∫ ∞

0
(2u)(j−1)/2e−u du

=
(

2√
πe

)j
�((j + 1)/2)√

π

≤ C

(
2j

πe2

)j/2
,

which completes the proof.

Figure 2 illustrates the limiting linear contact distribution function as computed in Theo-
rem 5.1.

Theorem 5.1 has a geometrical counterpart which is perhaps helpful in understanding the
shapes of cells in a high-dimensional Poisson–Voronoi tessellation. ForK ⊆ R

n, the geometric
covariogram of K is the function gK : R

n → [0,∞) defined as gK(h) = µn(K ∩ (K + h)).
The geometric covariogram can also be defined when K is random by taking the expectation,
i.e. gK(h) = E(µn(K ∩ (K + h))). It is not difficult to prove that, for a stationary random
tessellation, the linear contact distribution is related to the geometric covariogram of the typical
cell gCt by the following simple formula (see, e.g. [5, p. 136])

1 −Hl(r) = gCt (r)

gCt (0)
.

In our case, gCt (0) = E(µn(Ct )) = λ−1, and so we have the following result.
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Figure 3: The solid and dotted lines correspond to the limiting geometric covariograms of Ct and B1/λ,
respectively. Here λ = 1.

Corollary 5.1. Ifgn is the geometric covariogram of the typical cell of a homogeneous Poisson–
Voronoi tessellation in R

n with intensity λ,

lim
n→∞ gn(r) = 1

λ
√

2π

∫ ∞

−∞
du

exp[t2/2]
(t)+ exp[(t − r
√

2πe)2/2](1 −
(t − r
√

2πe))
.

It might be interesting at this point to compare the limiting geometric covariogram for the
typical cell of a high-dimensional Poisson–Voronoi tessellation with the geometric covariogram
of the high-dimensional ball of volume λ−1. The latter can be computed in an almost straight-
forward way (write the intersection of the balls as a disjoint union of two caps and scale with√
n):

lim
n→∞ gB1/λ(r) = 2

λ



(
−r

√
πe

2

)
.

Figure 3 illustrates the two numerically computed limiting geometric covariograms. It is
remarkable that the two functions are close together.

In Section 4 we proved that if Bu denotes the ball centered at the origin with volume u then
µn(C

(n)
t ∩ Bu) converges in distribution to the constant λ−1(1 − e−λu) as n tends to ∞. In

other words, the volume of the intersection of the typical cell and the ball becomes deterministic
in high dimensions. The geometric covariogram measures the expectation of the volume of
the intersection of the typical cell with a translation of itself. Corollary 5.1 gives the value of
this expectation in high dimensions. A natural question to ask is whether this volume becomes
deterministic as in the case of the intersection with a ball of given volume when the dimension
increases.

6. The chord length distribution function

Recall that the chord length distribution function for a random tessellation is the distribution
of lengths of intervals formed by intersecting the tessellation with a fixed line. To use (2.1),
which relates the linear contact distribution function and the chord length distribution function,
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it is necessary to know the value of l̄, the mean chord length. Gilbert [2] provided the following
formula:

l̄ = λ−1/n n�((n+ 1)/2)2�(n− 1/2)

2�(n)�(n/2 + 1)2−1/n�(2 − 1/n)
. (6.1)

Combining this formula with Theorem 5.1, which gives the limiting behavior of the linear
contact distribution function, we can derive a similar asymptotic formula for the chord length
distribution function as well.

Theorem 6.1. As n increases to ∞, the chord length distribution functions converge to the
following distribution function:

L∞(r) := 1 − 1

2
√
πe

×
∫ ∞

−∞
∂

∂r

(
1

exp[t2/2]
(t)+ exp[(t − r
√

2πe)2/2](1 −
(t − r
√

2πe))

)
dt.

Proof. From (2.1),
∫ ∞

0
jrj−1(1 − L(r)) dr =

∫ ∞

0
jrj−1 l̄H ′

l (r) dr = j l̄M
(n)
j−1.

Using (6.1) and Stirling’s estimation of the gamma function, we conclude that

lim
n→∞ l̄ = 1√

2e
.

Hence,

lim
n→∞

∫ ∞

0
jrj−1(1 − L(r)) dr = j√

2e
Mj−1

= j√
2e

∫ ∞

0
rj−1 dH∞

l

dr
dr

=
∫ ∞

0
jrj−1(1 − L∞(r)) dr.

So, again, the theorem is a consequence of the convergence of the moments and the estimation
on the Mj s, which implies that

lim sup
j
√
(j/

√
2e)Mj−1

j
= 0 < +∞.

Remark 6.1. Muche and Stoyan [14] numerically computed the densities of the chord length
distribution functions ln(r) in R

n for 2 ≤ n ≤ 7. They conjectured that ‘the limit of
ln(0) as n → ∞ is very large’. Using Theorem 6.1, after some manipulations of the inte-
grals containing the normal distribution function, we can compute the exact limiting value as
limn→∞ ln(0) = √

2e(
√

3 − π/3) ≈ 1.5968 (see Figure 4).

In the remaining part of this section we numerically calculate the chord length distribution
function in arbitrary dimensions by computer simulation. The computation of the Voronoi
tessellation for a given set of data points is a central and well-studied problem in computational
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Figure 4: Chord length density from simulation results in dimensions 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50,
and 100. The dotted line is the analytic limiting chord length density. We ran the algorithm 100 times

with L = 500 000 to obtain the histograms.

geometry. The complexity of this problem increases rapidly with dimension and, in more than
two or three dimensions, the algorithms are not practically executable.

Fortunately, we are interested in the intersection of the Poisson–Voronoi tessellation with
a line, and this intersection can be computed much more efficiently. We implement a tricky
algorithm which helps perform simulations in very high dimensions.

Consider a (long) segment L with lengthR+L+R and a cylinder with radiusR and axis L.
We use cylindrical coordinates to generate Poisson points inside the cylinder, i.e. let N be a
Poisson random variable with the mean value (L+ 2R)κn−1R

n−1 and generate N points with
coordinates (x, r) such that x is uniformly distributed in [−R,L+ R], r is independent of x,
and rn−1 has uniform distribution on [0, Rn−1]. We want to specify the tessellation induced on
[0, L] for a realization of the Poisson point process. The radius R should be large enough such
that Poisson points outside the cylinder have no effect on the tessellation induced on [0, L] (we
will explain this more accurately later). Note that the cylindrical angle of points has no effect on
the tessellation induced on L. More precisely, Cz is the intersection of half-spaces determined
by mid-perpendicular hyperplanes between z and all other Poisson points, each (n− 1)-face of
cells is the mid-perpendicular hyperplane of two Poisson points, and the intersection of L with
the mid-perpendicular hyperplane does not depend on the cylindrical angle of the two points.
In fact, if the coordinates of these two points are (x1, r1) and (x2, r2), the x-coordinate of the
intersection is such that (x−x1)

2 +r2
1 = (x−x2)

2 +r2
2 , i.e. x = (r2

2 +x2
2 −r2

1 −x2
1 )/2(x2 −x1).

We may imagine that all things happen on the upper half-plane of R
2, and we are interested in

the tessellation induced on the boundary.
So first generate Poisson points and then sort these points according to theirx-coordinates and

call them z1, . . . , zN . Let xi+1/2 be the x-coordinate of the intersection of the mid-perpendicular
hyperplane of zi and zi+1 with the continuation of L. The important fact is that a point with
x-coordinate greater than xi+1/2 on L is nearer to zi+1 than zi , and vice versa. Now the
condition xi+1/2 < xi−1/2 ensures that Czi has no intersection with L (since, by the above
fact, any point on L will be nearer to zi−1 or zi+1 than zi) and, hence, we can omit such a
point without any effect on the tessellation of L. Omit all indices with this property, reindex
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the remaining points, and calculate the xi+1/2s again. Do this until no more points can be
omitted. Again, the above fact implies that Czi ∩ L = [xi−1/2, xi+1/2]. It is simple to see that

the maximum distance of any point on L from the set of zis is maxi{
√
(xi − xi+1/2)

2 + r2
i },

and if this is less than R, it means that farther points of the Poisson process (the Poisson points
out of the cylinder) have no effect on [0, L] and we are done. Otherwise, we should enlarge R
and generate more Poisson points. The pseudocode for this algorithm is as follows.

Algorithm 6.1. 1. Choose L and R large enough, and generate Poisson points on the cylinder
with axis R + L+ R and radius R.

2. Sort the points with respect to their x-coordinate.

3. xi+1/2 := (r2
i+1 + x2

i+1 − r2
i − x2

i )/2(xi+1 − xi).

4. Omit the ith Poisson point if xi+1/2 < xi−1/2. (Check this for all indices.)

5. Return to step 3 if any point is omitted.

6. If max{
√
(xi − xi+1/2)2 + r2

i } > R, enlargeR, generate farther Poisson points, and go back
to step 2.

7. The xi+1/2s which are in [0, L] specify the tessellation on this segment.

Figure 4 illustrates the distribution of chord lengths simulated by Algorithm 6.1.

Remark 6.2. Our experiments for dimensions n ≤ 1012 show that choosing R such that
κn−1R

n−1 ≥ 32 is practically enough. Also, the loop of omitting the points is repeated less
than 11 times.

Remark 6.3. Simulation results in dimension n = 1012 indicate that the correlation between
the lengths of consecutive intervals is negative, although small in absolute value. According
to simulations, it seems that this correlation is negative in all dimensions and converges to
approximately −0.118 as the space dimension goes to ∞.
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