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Introduction and Overview

To practice the intellectual virtue of open-mindedness, steering between the

vices of fickleness and obstinacy, one must respond to evidence in a way that

respects the bearing of that evidence on matters one is considering. This

Element is about that notion. While deductive logic scaffolds the relationship

between evidence and hypothesis, a full account – an inductive logic – will

involve ‘weighing evidence and judging probability’ (Lipton 2004, p. 5).

In Section 1, I begin by distinguishing inductive inference from deductive

logic and consider what the project of ‘inductive logic’ could be now (as opposed

to various projects that historically went under that label). I propose that ‘induct-

ive logic’ could serve as a good label for the study of relations of evidential

support and confirmation. Reflection on Hume’s venerable ‘problem of induc-

tion’, as well as some elementary considerations of the logic of confirmation,

reveals some basic constraints any account must respect. Section 2 starts on the

positive project, proposing to understand the degree to which a hypothesis is

supported as relative to a particular ideal perspective on the hypothesis, given

a background body of total evidence and a conception of evidential support. It is

there argued that these epistemic perspectives must have a probabilistic structure

and that they are not necessarily to be identified with the actual attitudes of any

individual. Thus the account on offer is broadly Bayesian, yet not wholly

subjectivist. Having introduced the notion of overall degree of support, I turn

in Section 3 to the notion of incremental confirmation of a hypothesis by

evidence, sketching ways in which the Bayesian approach explains successes

of the scientific method, improves on the qualitative accounts briefly mentioned

in Section 1.5 and on other probability-based approaches, and ultimately pro-

vides a framework for induction. I respond there to some challenges to my

proposal, while devoting the whole of Section 4 to what I see as the most

significant obstacle facing any broadly Bayesian approach to evidential support,

the problem of identifying and justifying an appropriate epistemic perspective to

take on a given issue of theory choice. The online appendices take up some

matters that do not fit given the tight constraints of this series, including some

suggestions for further reading in Online Appendix A.

1 Induction and Inductive Logic

I begin in Section 1.1 with a discussion of induction characterised as a species of

theoretical reasoning. A general account of theoretical reason goeswell beyond the

scope of this Element, but part of an account of inductive reasoning is understand-

ing the reasons towhich it responds, which in Section 1.2 I suggest are promisingly

theorised as grounded in relations of evidential support. Section 1.3 distinguishes

1Probability and Inductive Logic
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absolute evidential support from incremental evidential favouring, or confirm-

ation; I will treat both in this Element. I briefly mention why this project might

deserve to be called ‘inductive logic’ (Section 1.4).

In Section 1.5, I note one respect in which evidential support is unlike formal

logic: whether some evidence supports a hypothesis doesn’t depend on their

content alone, but also on background knowledge. This dependence is so substan-

tial that any adequate theory of evidential supportmust recognise it as a three-place

relation between evidence, hypothesis, and background knowledge – background

knowledge serving to fix how evidence bears on hypotheses. I argue in Section 1.6

that this observationwas pre-empted by Hume in his discussion of induction in the

Enquiry. Far from being fatal to the prospects of inductive logic, Hume’s problem

rather emphasises the need for a treatment that separates the structure of inductive

reasons from their justification (Section 1.7).

1.1 Induction

Induction is a species of inference. It is distinguished from practical reason as it

involves the reasoned adoption of new beliefs. It is distinguished from deduc-

tion in that the new beliefs are not logical consequences of the old. Induction is

closely associated with scientific reasoning, what Hume called ‘inferences from

experience’ (1999/1748, sec. 4.21): making predictions and reasoning from

evidence to hypothesis.

Consider what happened when scientists adopted Hutton and Lyell’s

Uniformitarian approach to geology (Lyell 1830). Uniformitarians argued that

the same geological processes (erosion, deposition, lithification, orogeny, etc.,)

active today are also those responsible for shaping the landscape of the Earth

throughout time. Ripple marks in an exposed vertical rock layer, far from the

sea, demand an explanation. The Uniformitarian explains them as arising from

the operation, over geological timescales, of familiar processes: postulating an

ancient shallow sea in which the ripple marks were formed, the covering of

those rippled layers by subsequent sediments, the gradual folding and uplift of

the resulting sedimentary rock into a mountain range, and the erosion of that

range over millions of years to reveal the ripples again to the eye (Drexel et al.

2012/1993, pp. 171–197).

In postulating this continuity between present and past geological processes,

Uniformitarians endorse a canonical form of inductive inference. They reason from

evidence of observed geological activity to predictions concerning the outcomes

of unobserved geological activity. (Here, and throughout, evidence is treated as

propositional – that volcanic rocks intruded into older sedimentary rocks is

evidence, not the rocks themselves.) While most geological inference concerns

2 Philosophy and Logic
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what our evidence reveals about events of the distant past, Uniformitarianism also

supports inference from past to future, perhaps a more traditional conception of

inductive inference. This type of inference is at least parallel to inverse inference in

statistics, reasoning from features of a known sample to those of the larger popula-

tion from which it is drawn.

If accepted, Uniformitarianism would vindicate many inverse inferences. Its

characteristic thesis is, in effect, the application to geology of what has come to

be known as the Uniformity Principle:

that instances, of which we have had no experience, must resemble those, of
which we have had experience, and that the course of nature continues always
uniformly the same. (Hume 2000/1739, sec. 1.3.6.4)

Butwhatmight justify the acceptance ofUniformitarianism itself? This appears to

involve another scientific inference schema. Uniformitarians were opposed by

Catastrophists (Gohau 1990 pp. 139–150), who proposed that various geological

irregularities (discontinuities in the fossil record, unconformities in rock strata)

were to be explained by currently unattested processes that dramatically trans-

formed the earth over very short timescales. (Some were keen to link these ideas

to flood narratives in various religious traditions.) Principal advantages of

Uniformitarianism over Catastrophism include its simplicity and avoidance of

ad hoc bespoke geological processes. Uniformitarianism is supported over

Catastrophism, on the basis of the agreed geological evidence, by an inference

to the best explanation (IBE) that takes these features to be truth-conducive

virtues (Harman 1965; Henderson 2014; Lipton 2004). That is: the simpler and

less ad hoc theory is regarded as better than its rivals, and indeed, good enough to

meet a threshold for acceptance. The inference ismotivated by the natural thought

that a false theorywould not be able to give such a simple and satisfactory account

of the evidence. Darwin says as much in his description of this inference schema:

It can hardly be supposed that a false theory would explain, in so satisfactory
a manner as does the theory of natural selection, the several large classes of
facts above specified. It has recently been objected that this is an unsafe
method of arguing; but it is a method used in judging of the common events of
life, and has often been used by the greatest natural philosophers. (Darwin
1876, p. 421)

As Darwin notes, IBE and inverse inference are both exemplified in ordinary

reasoning as well as scientific contexts. We conclude that the last evening train

will depart late, on the basis that it’s always been late. We may also conclude in

turn that something is a little different about the population of passengers who

tend to take the last train, perhaps hypothesising that they are particularly prone

to the sorts of behaviours that cause delays.

3Probability and Inductive Logic
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While there are interesting special features of inverse inference as opposed to

the inference to the best explanation more generally, both exhibit an ‘amplia-

tive’ character. In the example previously discussed, the Uniformitarian

hypothesis is not a logical consequence of the given geological evidence,

because Catastrophism is consistent with the evidence but incompatible with

Uniformitarianism. Logical deduction may exclude hypotheses that are incon-

sistent with the evidence, but mere consistency does not favour one among the

hypotheses consistent with the evidence. By contrast, reasonable inductive

inference can lead us to favour one of many coherent hypotheses, as in the

examples discussed previously. It is coherent to suppose the future quite unlike

the past; yet we habitually infer that the future will broadly resemble the past.

As such, inductive inference ‘goes beyond’ the evidence.

The central normative question about induction arises at this point. What, if

anything, makes it reasonable to go beyond the evidence, by accepting one of

many coherent hypotheses? Or, from the other end of the process, how was ‘our

hard-won factual knowledge . . . secured by any process of demonstrably sound

reasoning’ (Howson 2000, p. 1)? So stated, this is an enormously challenging

question. It involves the identification, characterisation, and justification of

inductive methods for forming beliefs in response to empirical evidence.

A complete account of such methods will tackle many of the central issues in

epistemology and philosophy of science, going well beyond the scope of this

Element.

1.2 Inductive Reason and Evidential Support

My focus is narrower. Any inference is a ‘reasoned change in view’ (Harman

1986, p. 5). A theory of inference should then provide an account of the reasons

involved, and what changes one should make to one’s beliefs in light of them.

Consider deductive inference. The reasons in question are grounded in

relations of implication: that P logically implies P∨Q, for example. These

provide reasons such as this: ‘the fact that one’s view logically implies P can be

a reason to accept P’ (Harman 1986, p. 11). This may be a reason, but it is hardly

a decisive one; it depends what else one believes and the other reasons one has.

So any account of deductive change in view should not entail that one must

come to believe P when one’s view logically implies P. Sometimes one should

revise one’s view to remove the implication; there are some formal theories of

how to do that (Alchourrón et al. 1985).

It is rather tricky to state principles of belief revision that exceptionlessly

cover all the possibly reasonable ways of responding to reasons provided by

deductive logic (Harman 1986, chapter 2). Principles of reasoned change in

4 Philosophy and Logic
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view hold in general only ceteris paribus. Principles of belief revision involve

balancing various reasons one has – one has a reason to avoid unmanageable

clutter in one’s beliefs, but also a reason to have opinions about the many and

varied things one might encounter in one’s environment, and these reasons may

push in opposite directions. Finding the resultant force of various component

epistemic reasons to rationalise a particular change in view is not an easy matter,

and the reasons provided by logical implications do not trump other reasons.

This makes inference quite unlike implication: while Q is implied by P of

necessity if it is implied at all, Q may reasonably be inferred from P in some

circumstances while not in others.

A general theory of theoretical reasoning, of how to respond to one’s epistemic

reasons, will include consideration of all the reasons one might have: those

provided by deductive logic, testimony (Fricker 1995; Lackey 2008), memory

(Fernández 2015; Lackey 2005), as well as empirical evidence and explanatory

considerations of the sort considered in Section 1.1. There is nothing especially

distinctively inductive about theoretical reason in general. But an appropriate

topic for us, starting from an interest in scientific reasoning, is to focus on these

‘inductive reasons’ provided by evidence. This would involve principles about

reasons that might parallel the defeasible reasons provided by logical implication.

For example, IBE looks like it might be captured by something like this principle:

that P is the best explanation of some evidence you possess can be a reason to

accept P (Harman 1986, chapter 7). There will be parallel principles about the

epistemic force of simplicity, strength, coherence, and so on.

The diversity of such principles may seem at first glance to be unmanageable.

But in fact each may fall under a plausible general schema:

Evidential Support

That H is supported by the evidence can be a reason to accept H .

This schema concerns a general relation of evidential support. That relation also

appears in other attractive principles governing theoretical reasoning, such as

the claim that one ought to believe a hypothesis only if one’s total evidence

overall supports that hypothesis. Particular examples put substantive constraints

on this notion. For example, the Uniformitarian thinks that current observations

about geological processes support the claim that similar processes were opera-

tive in the distant past. This thought appears to involve a conception of eviden-

tial support that itself rests on Uniformitarian assumptions – namely, that nature

is geologically uniform, broadly speaking. Those Uniformitarian assumptions

are plausible (granting, e.g., the claim that evidence supports those hypotheses

which best explain it – where ‘best’ here includes considerations of theoretical

5Probability and Inductive Logic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009210171
Downloaded from https://www.cambridge.org/core. IP address: 18.221.59.228, on 19 Feb 2025 at 13:09:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009210171
https://www.cambridge.org/core


virtues such as simplicity, non-ad hoc-ness, explanatory strength, etc.). Yet it is

worth noting that Catastrophists likely understand the evidential import and

significance of current geological processes very differently.

1.3 Absolute and Incremental Support

The Evidential Support schema stands in need of clarification, as there are both

absolute and incremental relations of evidential support, both of which can provide

reasons to believe. (While our schema is ambiguous, it seems true on either

disambiguation.) Absolute evidential support exists when a particular hypothesis

is on balance overall most favoured by the total evidence. Incremental evidential

support – what is often termed confirmation – exists when some evidence is in

favour of a hypothesis. These notions come apart. Quite how they diverge will

depend in part on the precise account of evidential support on offer (I’ll follow this

up in Section 3.1). But even before a precisemodel is on the table, there are intuitive

cases where some evidence favours a hypothesis without absolutely supporting it;

and there are cases where a hypothesis is on balance most supported while being

disfavoured by some evidence:

• Many incompatible hypotheses can be supported by the evidence; at most one

can be absolutely supported by the evidence. Suppose we are searching for

a bushwalker, lost on a plateau. Lost walkers tend to follow drainage basins

downstream (Koester 2008); we see there are four possible creeks they might

have followed. Ground-based searchers have excluded one of them. This

evidence favours (supports) all three remaining hypotheses about where the

hiker might be without necessarily favouring any one in particular.

• If we have only a small sample, the evidence may favour a hypothesis without

being sufficient to absolutely support it overall. A small survey yields evi-

dence that all smokers in the sample have impaired lung capacity, and this

evidence supports the hypothesis that all smokers have impaired lung cap-

acity. However, the small sample size precludes that evidence being sufficient

to warrant an inference to that conclusion.

• A positive result from a reliable medical diagnostic is evidence in favour of

the hypothesis that one has the disease. But even reliable diagnostics are

imperfect, giving rise to ‘false positives’ – cases where the test is positive but

where the subject doesn’t in fact have the disease. If a disease is rare in the

population, a good diagnostic test can favour the hypothesis that one has the

illness without making it overall credible – it may just be rendered more

credible than it would have been in the absence of that evidence. (This is an

example of the relevance of the ‘base rate’; see Section 3.3.)

6 Philosophy and Logic
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• This is a good example of the way that a hypothesis can be supported overall

while being disconfirmed. A positive test result makes it slightly less incred-

ible that one has a rare disease, but not sufficiently so to make that hypothesis

acceptable.

Both absolute and incremental supports provide epistemic reasons. Neither

suffices to determine the outcome of inductive reasoning: even if H is overall

most credible in light of evidence, there may be reasons to suspend judgement,

or to change one’s mind about other things. A belief inH needn’t result from the

acquisition of evidence that overall supports H .

The project that now comes into view is to offer a general characterisation

of absolute and incremental evidential support, as relations that may obtain

between any hypothesis and any body of evidence such that had it ‘actually

obtained, [it] would constitute favourable evidence for’ that hypothesis

(Hempel 1945a, p. 2). (Notice Hempel’s formulation exhibits the same

ambiguity in ‘evidence for’.) When applied in scientific practice, perhaps

the vital questions concern which among the hypotheses that are presently

live for us are supported by the actual evidence. But the theory of evidential

support is more general.

1.4 Inductive Logic

Deductive logic is the study of consequence relations. Those consequence

relations underlie the coherence and completeness of various states of belief,

and those features yield some special cases of evidential support, for example,

that if the evidence logically entails P, then P is supported by the evidence, or if

Q is inconsistent with the evidence, then Q is not supported by the evidence. So

the relation of evidential support should have deductive consequence as

a special case. This is captured in this widely accepted condition:

Entailment Condition

If some evidence E entails a distinct non-trivial hypothesis H , then E (abso-

lutely and incrementally) supports H . (cf. Hempel 1945b, p. 103)

If the study of deductive consequence is deductive logic, the study of these more

general notions of evidential support might well be termed inductive logic. The

suggestion is that this would be an apt label for the attempt to offer quite general

and abstract structural features of evidential support relations, in roughly the

way that deductive logic captures quite general and abstract structural features

of conclusive evidential support. This is the project I will explore in this

Element, pursuing what Strevens (2004) calls an ‘inductive framework’.
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There is no guarantee that factoring an account of theoretical inductive

reasoning into a story about inductive reasons (which I am identifying with

the theory of evidential support) and a story about changes in view (an account

of the dynamics of belief) will bear fruit. Perhaps the right way to think about

the matter involves no such division; or perhaps the right way to think about

inductive reasons is not in terms of incremental evidential support. The only

way to proceed here is to attempt to construct a theory of evidential support, and

evaluate the project of inductive logic in light of the fruits or failures of that

attempt. That, in any case, is the constructive spirit behind my approach.

1.5 Formality and Background Knowledge

Early proponents of inductive logic pursued the project in an ambitious and

literal fashion, attempting to pin down, using formal resources alone, a notion of

support of a conclusion by some premises that would generalise the notion of

logical consequence. Conclusiveness is all-or-nothing, but inconclusive evi-

dence supports hypotheses to varying degrees, so any such inductive logic must

say something about which invalid argument forms are nevertheless ‘logically

confirming’ in virtue of the logical properties of their constituents. Let us for

now introduce the (non-standard) symbol ‘⫦’ to denote this (still hypothetical)

relation of logical confirmation; Γ⫦� says that the premises Γ logically confirm

�.

Any premises should logically confirm any of their logical conse-

quences: if Γ⊨� then Γ⫦�. But that is where the similarity to classical

deductive logic ceases. For one thing, even if Γ⫦�, it need not be that

Γ;ψ⫦�. Some premises about balls drawn from an opaque bag known to

contain 100 balls might be ‘ball 1 is red’, ‘ball 2 is red’, . . ., ‘ball 99 is red’.

Suppose these premises logically confirm the conclusion that all the balls in the

bag are red. But add the premise ‘ball 100 is black’ to the others, and that

conclusion is definitely not supported. This feature of a consequence relation is

known as non-monotonicity (Hawthorne 2021, section 2.2; Straßer forthcom-

ing). Another disanalogy is that while logical consequence is transitive (if �⊨ψ

and ψ ⊨ χ, then �⊨ χ), logical confirmation is not. Shogenji (2003, p. 613) gives

the following example: that X is an academic philosopher confirms that X has

a PhD; that X has a PhD confirms that X is well-paid; but it does not follow that

X’s being an academic philosopher confirms that X is well-paid.

These features are logically unusual, but arguably must be captured by any

adequate inductive logic. They are already suggestive of the thought that logical

features of sentences are not going to match up with what we want from an

inductive logic. This suggestion is correct. Consider this principle, which is
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about the most plausible example of purely logical confirmation: that instances

confirm generalisations:

Nicod’s Condition

A universal generalisation that all Fs are Gs is supported by any instance of an

F which is a G. (Hempel 1945a, p. 10)

In my notation, Fa∧Gað Þ⫦8x Fx→Gxð Þ.
Famously, Nicod’s Condition appears subject to counterexample. Direct coun-

terexamples have been offered (Good 1961; Howson & Urbach 1993, p. 129;

Swinburne 1971, p. 326), and the principle is one of the main drivers of

Hempel’s famous ‘paradox of the ravens’ (Section 3.5). Unfortunately, without

Nicod’s Condition, Hempel’s remaining purely formal principles are far too

weak to pin down any definite notion of evidential support (Earman 1992,

p. 66ff). Other proposed additional principles, such as the Converse

Consequence Condition (Hempel 1945b, p. 104; Moretti 2003), are subject to

not-unrelated counterexamples. It appears that a theory of evidential support

must draw on resources more substantive than those provided by formal logic.

(However, something of a revival of a syntactic approach to confirmation may

be found in Carnap’s work – see Section 4.4.)

Counterexamples to Nicod’s Condition offer a general lesson. Sometimes, an

instance supports a generalisation; sometimes, a generalisation is undermined

by an instance. Consider a slight modification of one of Good’s cases:

Suppose that we know we are in one or other of two worlds, and the
hypothesis, H, under consideration is that all the crows in our world are
black. We know in advance that in one world there are a hundred black crows,
no crows that are not black, and a million other birds; and that in the other
world there are a thousand black crows, one white one, and a [hundred] other
birds. A bird is selected equiprobably at random from all the birds in our
world. It turns out to be a black crow. This is strong evidence . . . that we are in
the second world, wherein not all crows are black. Thus the observation of
a black crow, in the circumstances described, undermines the hypothesis that
all the crows in our world are black. (Good 1967, p. 322)

This case shows that the evidence – seeing a black crow – is variably supportive

of the hypothesis that all crows are black, depending on the background condi-

tions – in this case, background knowledge of the space of possibilities. Seeing

a black crow under the circumstances described is only unsurprising in the second

world, and is thus strong evidence that we occupy the second world; thus an

instance turns out to be strong evidence against the generalisation that all crows

are black. But under our typical assumptions about the background space of
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possibilities, that same evidence is evidence for the generalisation. Evidential

support is not a relation between hypothesis and evidence alone, and a fortiori is

not an internal relation (one necessitated by its relata). Support is in that respect

disanalogous to logical entailment.

Evidential support is notmerely formal in character (Hawthorne 2021, section

2.3), even whenwe can say quite general things about the form of any relation of

evidential support (see Section 2.4). But a framework for evidential support

stops short of giving any concrete indication of which evidence supports which

claims. Successful induction is grounded not just in the formal structure of the

evidence, but in its content. As Norton says ‘particular facts in each domain

license the inductive inferences admissible in that domain’ (Norton 2003,

p. 648). The most straightforward way to capture this observation (admittedly,

not Norton’s own) is to explicitly relativise and represent confirmation as ‘a

three-place relation (“E confirms H relative to K”) [since] background know-

ledge can make a crucial difference to confirmation’ (Earman 1992, p. 67).

This suggestion immediately allows us to represent the way that statistical

inference depends on a background probabilitymodel (Fitelson 2006, section 4).

Suppose we are drawing from an urn of known constitution, containing two red

and two black balls. Against a background probability model involving drawing

with replacement, the evidence that the first two draws were both red provides

no support for the hypothesis that the next draw will be red: the trials do not

influence one another and each is accurately represented by the same probability

model (they are independent and identically distributed, or ‘IID’). But in the

context of a background model involving drawing without replacement, that

same evidence is conclusive support for the hypothesis that the next draw is

black.

The background information is not just more evidence; we cannot collapse

evidential support back to a two-place relation. In the previous example, that the

draws are independent is not a piece of evidence alongside the fact that the first

draw was red. The assumption of independence provides a framework into

which both evidence and hypothesis must fit, to allow it to constrain how a given

body of evidence bears on hypotheses.

1.6 Hume’s Problem

In the foregoing example, the adoption of a particular stochastic model is itself

likely the upshot of some inductive reasoning. That the trials are IID is a hypothesis

justified on the basis of evidence (perhaps evidence about outcome frequencies or

about the mechanisms involved in drawing from and mixing up the urn). The

evidence itself only yields inductive reasons in the context of some inductive

framework.
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Hume’s infamous ‘problem of induction’ can be seen to rest on an early

recognition of this point (Henderson 2022). Hume recognised that our inductive

habits rested on the pattern of causal relationships evident in our experience,

and the ‘supposition’ that future patterns ‘will be conformable to the past’

(Hume 1999/1748, para. 4.19):

all inferences from experience suppose, as their foundation, that the future
will resemble the past, and that similar powers will be conjoined with similar
sensible qualities. If there be any suspicion, that the course of nature may
change, and that the past may be no rule for the future, all experience becomes
useless, and can give rise to no inference or conclusion. It is impossible,
therefore, that any arguments from experience can prove this resemblance of
the past to the future; since all these arguments are founded on the supposition
of that resemblance. Let the course of things be allowed hitherto ever so
regular; that alone, without some new argument or inference, proves not, that,
for the future, it will continue so. (Hume 1999/1748, para. 4.21)

Hume frames the question as one about the reasons evidence about the past

provides for beliefs about the future course of nature. He doesn’t explicitly

invoke evidential support. But his target, that the past provides a ‘rule for the

future’, is fairly clearly a claim about evidential support for hypotheses about

the future by evidence about the past. His aim, in my terminology, is to reveal

what reasons there are for us to adopt an inductive framework F in which the

past provides a rule for the future. His worry is one of circularity: that any

reasons to adopt framework F are themselves only reasons on the presuppos-

ition of F . For those are reasons drawn from our evidence about the past, and

our views about how that evidence bears on hypotheses are likewise grounded

in how past evidence bore on past hypotheses. When Hume emphasises the

possibility ‘that the course of nature may change’, he is not merely pointing out

a difference between induction and deduction. He is pointing out that our grasp

on relations of evidential support is itself dependent on our evidential history.

More concisely: any general hypotheses about the nature and structure of

evidential support we adopt can only be for reasons that presuppose those

same hypotheses about evidential support (Howson 2000, pp. 10–15).

1.7 The Justification of Induction and the Structure
of Evidential Support

Hume’s resolution of his problem is characteristically bold. He claims that our

inductive inferences are but ‘a species of natural instincts, which no reasoning or

process of the thought and understanding is able, either to produce, or to prevent’

(Hume 1999/1748, para. 5.8). As I would approach the question, Hume here

acknowledges the dependence of evidential support on a background inductive
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framework, and suggests that our adoption of such a framework is not itself the

product of reasons and hence need not wait on a further prior inductive framework.

What does Hume’s naturalistic explanation of our inductive habits tell us

about evidential support? In one way, it merely underscores the result from

Section 1.5 that evidential support must be understood as a three-place relation

between evidence, hypotheses, and an explicit relativisation to some back-

ground inductive framework or assumptions. The fact that the same evidence

can bear differently on hypotheses in different worldly circumstances, while

those worldly circumstances may not themselves be known to us, suggests that

it may not generally be possible to justify the adoption of any such framework.

We don’t need to followHume in his scepticism about inductive frameworks. It

might well be that we can, ultimately, find a justification for accepting a particular

conception of evidential support. For example, perhaps some conception of how

evidence bears on hypotheses is justified by default, or wemight have justification

for some inductive assumptions ‘without being in a position to cite anything that

could count as ampliative, non-question-begging evidence for those beliefs’

(Pryor 2000, p. 520). Perhaps we acquire our inductive habits of thought by

testimony, deference, or immersion in a scientific community, and justification

comes subsequent to the fruits of our epistemic endeavours. Perhaps we are

justified simply because ‘the world is so constituted that inductive arguments

lead on the whole to true opinions’ (Ramsey 1990, p. 93). These would all be

ways in which an inductive framework could be adopted without internalistic

justification of the sort Hume appears to seek.

However such justification might be acquired, it is fruitful to separate the

question of how to justify a particular view about the bearing of evidence on

hypotheses from the question of the structure of evidential support. The latter issue

can be pursued to a significant extent by characterising the three-way connections

between evidence, hypotheses, and standards of evidential support, without taking

a stand on what the actual evidence is, what the actually live hypotheses are, or

what the actual standards of evidential support are. Because this investigation

concerns the abstract structural features of this three-place relation ‘E supports H

relative to inductive framework F’, it is a deserving bearer of the label ‘inductive

logic’. (Though to illustrate its significance, it will be helpful to give at least some

examples of how the relata can be concretely filled in.)

That is how I will pursue inductive logic in this Element. In particular, I will

explore Bayesianism, a particularly influential and fruitful approach to the

formal features of evidential support. Bayesians propose that an inductive

framework can be represented by a probability function, which captures both

any relevant background information and encodes (in its conditional
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probabilities) a conception of absolute evidential relevance. A Bayesian con-

ception of inductive frameworks is presented in Section 2, where roughly the

following account is offered: the evidence absolutely supports H , relative to

some probability model, just when H is more probable than not, conditional on

E. That same model also allows us to represent a comparative notion of

confirmation: to regard E as confirming H is to regard H as more probable

given E than otherwise. The Bayesian theory of confirmation and its conse-

quences is the subject of Section 3. I will return to the issue Hume raises, of how

to justify inductive assumptions, in Section 3.7. We delve further into whether

there are significant prior constraints on what sorts of probability models we

may permissibly adopt in Section 4, including some consideration of

Goodman’s (1954) ‘new riddle’ of induction (Section 4.4).

2 Probability and Evidential Support

In this section, I discuss how probability theory can be used to understand the

notion of an inductive framework. We consider one useful motivating metaphor,

that of the prospects of truth and falsity of a given proposition. The idea of

a prospect builds in relativity to a perspective, that is, what comes into view from

the vantage of a given body of evidence. Epistemic perspectives are described in

Section 2.1, and their connection with the rationalisation of idealised bets is made

clear in Section 2.2. Constraints on the proper evaluation of bets then constrain

legitimate measures of prospects (Section 2.3). Indeed, the constraints ensure that

every legitimate measure of prospects is an evidential probability function

(Section 2.4), so I spend some time characterising the principles governing

these probability functions, and introducing in a brief manner the mathematics

of probability. The argument from Section 2.3 is a version of a Dutch Book

Argument, and I delve into the differences betweenmy version andmore standard

versions in Section 2.5. In Section 2.6, I turn to conditional probability, the

prospects of hypotheses given other claims, which will be central to the account

of absolute evidential support and incremental confirmation (recall Section 1.3).

Finally, in Section 2.8, I turn to the epistemic question of how to choose or

rationalise a choice of epistemic perspective, and touch on the topics of epistemic

deference and the debate over permissivism in epistemology.

2.1 Prospects and Perspectives

The prospects for a hypothesis are – not wholly metaphorically –what is in view

in light of some body of evidence. (Note the related but distinct usage by

Kahneman & Tversky (1979).) A hypothesis which is supported by some

potential evidence has an improved prospect of turning out to be true when
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that potential evidence is gathered. What is visually in prospect for you depends

on where you are and on the direction you are facing: your perspective.

Likewise, what is epistemically in prospect depends on your epistemic perspec-

tive: where you find yourself evidentially as well as on the significance of that

position in the space of possibilities.

Camp characterises occupying an epistemic perspective as having ‘an open-

ended disposition to characterise: to encounter, interpret, and respond to some

parts of the world in certain ways’ (2019, p. 24). That is what it is to occupy

a perspective. A perspective itself need not be embodied, existing independ-

ently of any agent occupying it, but it must suffice to characterise such disposi-

tions. To fulfil that role, I suggest that each epistemic perspective must involve

the following:

1. A representation of a space of possibilities;

2. A representation of the total evidence currently on hand; and

3. Some policy, or set of standards (Schoenfield 2012, p. 199), that capture,

numerically, the significance of potential evidence for various entertainable

hypotheses.

Let me expand on these components. ‘A space of possibilities’ captures all

the ways that things might have turned out and might yet turn out, at least

according to that perspective. It is natural to take this space of possibilities to

have the structure of a field of propositions (Eagle 2011, pp. 1–3; Hájek &

Hitchcock 2017, p. 17). That is, for each outcome that might occur, according to

that perspective, there is a proposition in the field to the effect that the outcome

comes to pass; there is a trivial outcome, represented by a trivially true propos-

ition (i.e., that something or other comes to pass); and whenever the field of

propositions includes P and Q, it also includes :P, P∨Qð Þ, and P∧Qð Þ.
A maximally specific possibility will be represented by a logically complex

proposition that fixes, for each possible outcome, whether or not it occurs. This

will play the role of a ‘possible world’ from that perspective. I will often work

with collections of propositions P1; . . . ;Pngf such that no two of them are true

in a single possible world, and at least one is true in every possible world. Such

a collection is called a partition. The set of all possible worlds is a partition, but

so are various more coarse-grained divisions of the space of apparent possibil-

ities, for example, a complete set of possible experimental outcomes.

I will not distinguish propositions true of exactly the same possibilities;

depending on how possibilities themselves are individuated, this may or may

not mean identifying with one another those propositions that have, necessarily,

the same truth value (Stalnaker 1984, p. 2). These possibilities thus need not be

‘metaphysically possible’, nor must each metaphysical possibility be among
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those represented in a perspective – they are potential epistemic (or perhaps

doxastic) possibilities (Titelbaum 2022, pp. 27–38).

It must be acknowledged that different perspectives needn’t agree on how to

analyse any given proposition into more specific outcomes. There is no guaran-

tee that all perspectives will agree on what the most fine-grained possibilities

are, or on which propositions are possible. I will assume that there are perspec-

tives capable of representing any hypotheses or pieces of evidence we might

need to consider. Even so, some perspectives – something like those Savage

called ‘small worlds’ (Savage 1954, p. 16) – might be very limited, able to

represent only a narrow range of hypotheses and evidence. (We might consider

the possible outcomes of an experiment, and the hypotheses on which they bear,

without including any possibilities in which the experiment was never per-

formed at all.) The question of what happens when an agent manages to expand

their conception of what is possible is philosophically very rich and much

discussed – sometimes under the label of ‘partition sensitivity’ – but lies beyond

the scope of this Element (Paul 2014; Pettigrew 2020a).

An epistemic perspective must also represent a body of total evidence.

Evidence constrains which possibilities in the space of possibilities are left

open and which are excluded. Because evidence is propositional, evidence

narrows down a location in the space of possibilities by excluding those

possibilities in which propositions inconsistent with the evidence are true

(Stalnaker 1984, p. 120). So an epistemic perspective can represent the current

total evidence by indicating in some way a region of the space of possibilities

which, from that perspective, might be actual – those consistent with the

evidence.

Finally, and most importantly for inductive logic, an epistemic perspective

must represent in some way the bearing of the evidence on the remaining live

hypotheses. It must provide a way of discriminating among all those hypotheses

not ruled out by the evidence. I will assume that this discrimination is effected

numerically; so an epistemic perspective assigns numbers to hypotheses that

somehow reflect their support by the evidence. As Horwich puts it, ‘our

inductive practice may be represented by a function which specifies, for any

evidential circumstance, the permissible degrees of belief in any statement’

(1982, p. 79). Such a function will be an epistemic perspective, noting that it is

not to be identified with one’s actual attitudes (one’s ‘degrees of belief’, in

Horwich’s treatment), but circumscribes permissible attitudes.

An epistemic perspective thus represents a possible way of ‘proportion[ing]

belief to the evidence’ (Hume 1999/1748, sec. 10.4). A proportioning will in

general assign different numbers to hypotheses, even those it regards as on

balance supported by the evidence. That evidential support varies in extent is
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fairly commonsensical. Suppose that my current total evidence supports the

claim that it is raining outside my office right now, and that it also supports the

claim that the weather next weekend will be very hot. It would be foolish to

deny that it may support the former to a considerably greater extent than it

supports the latter. That this variability in evidential support can be quantified

numerically is a reasonable starting point.1

Someone’s actual attitudes may not correspond to any epistemic per-

spective. For example, they may have incoherent or indeterminate attitudes

to a hypothesis, precluding the assignment of a single number as the degree

to which the evidence supports it. Perhaps at best an imprecise range of

attitudes could be ascribed to them (Jeffrey 1983a, pp. 139–140). And an

epistemic perspective need not correspond to anyone’s actual state of

belief or knowledge. But an epistemic perspective does appear to be

something a rational agent could have as an ideal for a coherent body of

epistemic attitudes. To put it in explicitly normative terms, an epistemic

perspective has a structure that any reasonable total system of epistemic atti-

tudes must approximate, and provides a regulative ideal for such attitudes (see

Section 2.8). (If there are reasonable yet indeterminate systems of epistemic

attitudes, then perhaps the regulative norm should be that any such state can be

precisified into one or more determinate epistemic perspectives.) Epistemic

perspectives rationalise the states of belief and knowledge of any agents who

occupy them.

Given this, one way of describing the present project is that we begin from the

assumption that all epistemic perspectives are rational, and use that fact to

establish the properties that distinguish epistemic perspectives from other

purported evaluations of the prospects of hypotheses.

2.2 Prospects and Bets

If an epistemic perspective represents the prospects of hypotheses, it must be

subject to certain norms about the evaluation of prospects. One way to bring out

these norms is to consider the ideal evaluation of bets (de Finetti 1964/1937;

Pettigrew 2020b; Ramsey 1990). This is not because one is likely to be involved

in ‘betting on theories’ (Maher 1993). Rather, among the dispositions involved

in adopting a perspective are dispositions to evaluate, as favourable or other-

wise, wagers on hypotheses about how things are, given an exogenously settled

assignment of values to outcomes. If there are constraints on the acceptability of

1 Reasonable, but not obligatory: we could begin instead with comparative claims (Konek 2019;
Koopman 1940; Neth 2025; Stefánsson 2017).
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evaluations, those constraints may reveal structural features of epistemic per-

spectives that rationalise those evaluations.

At first glance, it might seem that we should assign prospects to hypotheses

by trying to elicit betting behaviour and infer an epistemic perspective from it.

Witness Kyburg’s insistence that ‘how seriously someone believes what he says

he believes’ is elicited by inviting him ‘to put his money where his mouth is’

(1983, p. 64). This is unlikely to succeed, given the confounding factors in real-

life gambling behaviour, which is psychologically and logistically complicated,

not to say morally fraught. The declining marginal utility of money (Pettigrew

2020b, pp. 17–19), the difficulty of finding parties and counterparties to every

possible bet, the fact that some outcomes will be resolved only after the agent’s

lifespan if ever, the fact of risk-averse and risk-seeking individuals (Buchak

2013; Kahneman & Tversky 1979), all make it difficult to draw direct conclu-

sions about the prospects of P from an agent’s (un)willingness to bet on P. It is

complicated to deduce an agent’s own mental state from the betting prices they

offer (Bradley & Leitgeb 2006), let alone an epistemic perspective legitimising

their attitudes.

Nevertheless, behind any reasoned decision to bet lies an epistemic perspec-

tive: some evaluation of the prospects of the propositions one is betting on,

given the evidence one has (Howson & Urbach 1993, pp. 76–77). That the

prospects of a proposition are decent can go some way towards justifying taking

a bet, without constituting, or being constituted by, anyone’s actual willingness

to bet. Doubtless that epistemic perspective justifies other dispositions too –

perhaps dispositions to assert, or to employ hypotheses in scientific explanation.

But betting has a neat connection to evaluation which makes these dispositions

of particular interest for us here, despite the suspicion that assertion and

explanation are of greater importance.

A bet on a propositionH is a right to receive s units of value ifH turns out to be

true, and nothing otherwise. The price of the bet is the value x that is assigned to

that right. (So we can imagine a bet on a coin toss as a right to receive $10 if the

coin lands tails, and a bookmaker could decide to price this right at $7.) For each

bet, there is a counterbet, which is a bet against H that yields s units if H turns

out to be false and which costs s� x units. The payout s is the total staked, the

sum of the units of value contributed jointly by the bet and counterbet,

s ¼ xþ s� xð Þ. (In the example, the bookmaker is implicitly taking the coun-

terbet, putting up $3 for the right to receive $10 if the coin does not land tails.)

For simplicity, let us restrict attention to bets where the total stake s is 1 unit. We

can treat a counterbet against H at s� x as equivalent to a bet on :H at that

same price. This is justified by this basic principle of equivalence: any bets
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which have the same payoffs in the same circumstances must rationally be

assigned the same price. A bet againstH that costs s� x to yield s pays off when

H is false; as does a bet on :H with the same cost and yield.2

Real agents only enter into bets they regard as favourable. (We have not

assumed that stakes are monetary; an agent who loves the thrill of gambling

mayfind a bet favourable while it is unfavourable in purelymonetary terms.)A bet

on H is favourable, intuitively, if the prospect of gaining the payout s more than

compensates for the risk of losing what you have staked x. We have assumed that

an epistemic perspective represents prospects numerically. Suppose that relative to

a given perspective the prospect of H is p. A bet is favourable if the payout,

weighted by the prospect of getting the payout, exceeds the cost: ps > x. A bet is

unfavourable if ps < x; a case where the prospect of gain is outweighed by the risk

of loss. An agent is epistemically justified in entering into a bet only if the bet is

favourable-from-their-perspective. (This is a necessary condition for all-things-

considered justification for a bet, but is not sufficient.)

What if the prospect of gain and the risk of loss are exactly balanced according

to some perspective? Such a bet is neutrally priced. The potential bettor lacks

positive reason to enter into a neutrally priced bet; the prospect of gain is too little.

But nor is the bet unfavourable; the prospect of loss isn’t sufficiently great to

motivate a favourable evaluation of the counterbet. It would not be reasonable to

prefer to accept a neutrally-priced bet or its counterbet over the status quo, given

the prospects involved. Thus a neutrally-priced bet will represent an accurate

evaluation of the prospects of H according to an epistemic perspective: it is a bet

on H that is calibrated to the degree to which the evidence supports H . I will say

that the numerical prospect of H , revealed in a neutrally priced bet on H from

a particular perspective, is the degree of support that perspective provides to H .

2.3 Evaluating Prospects

To assign a neutral price to a bet would involve fixing on some particular

epistemic perspective. The general structural principles on epistemic perspec-

tives we are concerned with can be uncovered without making assumptions

about neutral prices except that they exist. We uncover those general structural

constraints – constraints that, it will turn out, suffice to ensure neutral prices are

mathematically like probabilities (Section 2.4) – by noting that unless certain

constraints are placed on the numerical evaluation of prospects, certain bets

(and packages of bets) seem to yield an incoherent evaluation of their value.

2 This assumes that the logic of negation, and structure of the space of propositions, is classical;
constructing probabilistic epistemic perspectives given a non-classical logic involves several
diverting challenges (Williams 2016).
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Presented one way, the bets have a certain neutral price; presented another way,

they are assigned another non-neutral price. So a single neutral price doesn’t

exist unless we constrain the acceptable numerical representation of evidential

support in some way.

In particular, suppose an epistemic perspective could assign a prospect

�δ to a proposition H , where δ > 0. Such a perspective entails that the neutral

price for a bet on H that pays 1 unit is�δ. But at that price, there is an advantage

to purchasing the bet – the price is negative, so, win or lose, represents an

advantage over the status quo. A perspective that assigns a negative number as

the degree to which the evidence supportsH leads to a situation where the agent

cannot assign a coherent neutral price. Their assessment of the prospects of H

leads them to be indifferent to accepting this bet, while an assessment of the

possible payoff of the bet should make them positively disposed to accept it. So

this epistemic perspective turns out to be unable to assign a single value to the

bet. To assign a neutral price to a bet, no perspective could assign a degree of

support less than zero. That is, every epistemic perspective must satisfy:

Non-negativity

The degree of support provided by any body of evidence for a hypothesis H

must be greater than or equal to zero.

This argument could be resisted if the neutral price of a bet depends on how the

bet is described. If bets are individuated very finely, it might be that there is an

advantage over the status quo when the bet is described one way, and not

another. But it is not easy to see how this would work. The advantage or

disadvantage of a bet is due to the conditional rights to valuable goods they

convey. If one bet conveys at least as much as another, no matter what, one

cannot rationally prefer the second to the first, regardless how it is described.

To do so would be ‘absurd’, as Ramsey says: any account of prospects

which broke [this principle] would be inconsistent in the sense that it violated
the laws of preference between options, such as that preferability is
a transitive asymmetrical relation, and that if α is preferable to β, β for certain
cannot be preferable to α if p, β if not-p. (Ramsey 1990, p. 78; Skyrms 1987,
pp. 227–228)

Since in this case 1þ δ is preferable to δ, the bet onH that costs –δ is preferable

to δ for sure; and δ for sure is preferable to the status quo, transitivity of

preference ensures that the bet cannot be neutrally priced at �δ.

As this case shows, an epistemic perspective violating Non-negativity justi-

fies inconsistent evaluations of the very same option. That inconsistency is what

excludes it from being a genuine perspective on the prospects of H; the betting
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setup is simply a way to make this inconsistency manifest. The same sort of

argument can be given for other constraints on epistemic perspectives.

Suppose that an epistemic perspective assigned a degree of support

δ < 1 to a trivial hypothesis H – one that was necessary, according to that

perspective (obtaining in every possibility considered by that perspective).

Such an epistemic perspective would regard as neutrally priced a bet on H

priced at δ. Such a bet is certain to pay off; for such a perspective regards H as

already true. So this bet cannot be neutrally priced at δ; for there is a guaranteed

advantage to purchasing it, hence it is not to be regarded with indifference from

the status quo. So for the same reasons as previously discussed, no epistemic

perspective could assign a degree of support to a certain outcome that was less

than 1:

Normality

The degree of support provided by any body of evidence for a trivial hypothesis

(necessary in light of that evidence) is 1.

Finally, suppose that there are two hypotheses, H and H 0, such that the truth of

either one excludes the truth of the other, according to some epistemic perspec-

tive. Suppose an epistemic perspective assigns a degree of support α to H , and

degree of support β to H′, and a degree of support δ to their disjunction H ∨H 0,
but where δ 6¼ αþ β. The neutral prices for bets on these propositions H , H 0,
and H ∨H 0 are fixed by those degrees of support. Consider the book of bets

consisting of bets on H and H 0 that each pay 1 unit; its payoffs are depicted in

Table 1.

It is easy to see from the table that where H ∨H 0 is true (the top two

possibilities), the payoff is 1� αþ βð Þ, and when H ∨H 0 is false, the payoff

is� αþ βð Þ. But the neutral price for a bet on H ∨H 0 is δ, leading to a different
payoff of 1� δ when true, and �δ when false. So the book of bets pays out the

same amount, in the same circumstances, as the individual bet on the disjunction

– but has a different neutral price. Clearly, this either violates the equivalence

requirement to assign the same neutral price to bets that pay off in the same

circumstances, or violates the requirement on epistemic perspectives that we

assign a single neutral price to a given bet. Hence:

Table 1 Payoffs for the book of bets on H and H 0.

H H 0 Bet on H Bet on H 0 Total payoff H ∨H 0

T F 1�α �β 1� αþ βð Þ T
F T �α 1� β 1� αþ βð Þ T
F F �α �β � αþ βð Þ F
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Additivity

The degree of support provided by any body of evidence for a disjunction of

mutually exclusive hypotheses is the sum of the degrees of support provided to

each hypothesis individually.

One further principle is implicated in establishing Additivity as a require-

ment on epistemic perspectives: the package principle that the neutral price

for the book is the sum of the neutral prices for the bets, that is, ‘that the value

I set on them together is the sum of the values I set on them singly’ (Earman

1992, p. 42; Schick 1986, p. 113; Titelbaum 2022, pp. 326–329). This

package principle is plausible when one evaluates a package of bets offered

all at once, especially given that we are considering the price that is justified,

not the price that someone’s wallet can withstand. (Add sufficiently many

advantageously priced bets together and there will come an advantageously

priced bet that one would purchase offered alone, but cannot afford.) The

principle is less obvious when bets are offered sequentially rather than

simultaneously (Schick 1986, pp. 116–118).

2.4 Probabilities and Degrees of Support

The argument of the previous section reached the conclusion that epistemic

perspectives must satisfy Non-negativity, Normality, and Additivity to assign

a single neutral price for a bet on each proposition in their scope. A numerical

function from propositions which satisfies these constraints is, mathematically

speaking, a probability function (Eagle 2011, pp. 1–4; Hájek &Hitchcock 2017;

Kolmogorov 1956/1933). So it turns out that an epistemic perspective assigns

probabilistic prospects to every proposition in its field (Section 2.1).

Satisfying these constraints is also sufficient for justifying a single neutral price

(Kemeny 1955; Lehman 1955). Epistemic perspectives can accordingly be repre-

sented as evidential probability functions, assigning numbers to hypotheses, repre-

senting degrees of support, in light of the total evidence to which a perspective is

committed. In line with Section 2.1, the total evidence according to an evidential

probability function comprises those propositionswhich are assigned probability 1.

This usagemight be slightly revisionary, liberalising our conception of evidence so

that it includes at a given moment any proposition on which we rely in evaluating

other claims with which we are confronted. ‘Taking the evidence into consider-

ation’ doesn’t mean only taking things you happen to have learned empirically into

consideration.

The argument in Section 2.3 showed that epistemic perspectives have the

formal features common to all probability functions. Some have suggested that

epistemic perspectives might obey tighter constraints. (I discuss these proposed
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constraints in the Online Appendix B.) For example, some have suggested that

the evidential probabilities representing them should be regular (assigning zero

probability only to impossibilities, or perhaps only to contradictions). More

have suggested that evidential probabilities should obey a stronger Additivity

constraint, countable Additivity. I do not insist that these are features of every

epistemic perspective, though they may be features of some.

This approach to evidential probability has precedent in the literature. As argued

in Section 2.1, epistemic perspectives rationalise the dispositions of their occu-

pants to judge hypotheses. Thus we agree in part with Williamson (2000), who

suggests that evidential probability represents the degree to which ‘the evidence

tells for or against the hypothesis’ (2000, p. 209), rather than reflecting anyone’s

actual credences. Williamson’s own view is that evidential probability should

reflect ‘something like the intrinsic plausibility of hypotheses prior to investi-

gation’ (2000, p. 211). On the present view, this only captures some epistemic

perspectives, omitting those one can come to occupy after some investigation.

Climenhaga puts it well: ‘the distinctive claims of the degree-of-support inter-

pretation [of evidential probability] are that probabilities are mind-independent

relations between propositions and that probabilities constrain rational degrees

of belief’ (Climenhaga 2024, p. 3).

The tradition of objective Bayesianism that Climenhaga and Williamson repre-

sent goes back at least to Keynes (1921), Johnson (1932), and Carnap (1962). It has

however almost invariably been accompanied with an additional and not necessar-

ily welcome commitment to there being such a thing as ‘the degree to which

evidence supports a hypothesis’. While each epistemic perspective on my view

articulates a conception of how evidence bears on hypotheses, there is no commit-

ment to the existence of a ‘best’ perspective. Perspectives – for all I’ve established

so far – might disagree with one another on the space of possibilities, on the

background evidence they incorporate, or on the significance they attach to it. We

return to the question of whether there is a unique best perspective in Sections 2.8

and 4. For now, I would wish to distance the view defended here both from the

‘subjective’ Bayesian, who identifies epistemic perspectives with the actual

degrees of belief of individual agents, and from the objective Bayesian

who accepts a unique best perspective. The view I’m defending could be called

non-subjective Bayesianism.

2.5 Probabilities and the Dutch Book Argument

In Section 2.3, I presented a version of what is known as the Dutch Book

Argument (DBA) for the conclusion that degrees of support must be probabilities
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(Eagle 2011, pp. 28–32; Hájek 2008; Howson & Urbach 1993, pp. 75–81;

Pettigrew 2020b). The earliest versions of this argument were due to Ramsey

(1990) and de Finetti (1964/1937); many variants have been offered since.

The typical DBA looks rather different from the version I have presented,

however. The typical version applies to credences (degrees of belief), not to

epistemic perspectives (degrees of support). A more important difference is the

following. I argued that non-probabilistic assignments of numbers to hypotheses fail

to reflect the prospects of those hypotheses (see also Armendt 1992, p. 218;

Christensen 2004, p. 121; Titelbaum 2022, section 9.2.1). By contrast, the standard

DBA argues that non-probabilistic credences are practically unreasonable because

they subject those who act on such credences to a sure loss: ‘Dutch Book arguments

evaluate the rationality of credences by looking at the quality of the choices that they

do or should lead us to make’ (Pettigrew 2020b, p. 1). There is some connection

with choices in the argument in Section 2.3, because an epistemic perspective is

supposed to justify a neutral price for a bet, which may partly rationalise choices to

bet at non-neutral prices. But the standard DBA relies on a much stronger link with

choice, namely, that non-probabilistic credences rationally require the agent to

commit to a package of bets that guarantees a sure loss.

These features of the DBA I’ve offered may help defuse some challenges that

face more standard versions. The standard version is accused of being unrealis-

tic (because real agents don’t have sufficiently many determinate betting pref-

erences for the argument to succeed), or because probabilism is descriptively

inaccurate of real agents (Kyburg 1978). Defenders of the standard DBA have

tried to fend off the accusation that it requires us to postulate a plethora of

bookies wandering around looking to exploit incoherent agents.

Better still, however, to focus not on the action of betting, but on inputs to the

justification of betting, namely, on the evaluation of prospects. In this I follow

other presentations of ‘de-pragmatised’ DBAs (Armendt 1993; Earman 1992,

p. 42; Howson 2000, pp. 124–134; Skyrms 1984, p. 22; though see Maher 1997

for a dissenting voice), all of whom emphasise that non-probabilistic credences

involve an inconsistent evaluation of the very same options. Nevertheless, even

these authors err in focussing on credences. It may well be that there are good

reasons for an agent to evaluate options in an inconsistent way, perhaps because

of their practical situation. A risk-averse agent whose neutral price for a bet on

a fair coin landing heads is 0:49, and likewise for a bet on it landing tails,

inconsistently values the status quo, neutrally valuing the tautology H ∨:H at

0:98. If there is pragmatic encroachment on belief, such grounds for incoherent

credence might be widespread (Kim 2017; though see Jackson 2019 for an

argument that credence isn’t encroachable to the same extent as belief). So

I think it preferable to focus on the epistemic perspectives that rationalise
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credence, rather than on realised credences themselves. (How do epistemic

perspectives bear on credences? I say a little about that in Section 2.8.)

It is not mandatory to make use of justifications of betting to reveal the structure

of rational prospects, though it is a deservedly popular approach. I make use of it

here because of its accessibility, but also because it gets at something essential

to belief, namely, as Stalnaker puts it, that beliefs are ‘representational mental

states [and] should be understood primarily in terms of the role that they play in

the characterisation and explanation of action’ (Stalnaker 1984, p. 4). Betting

actions are best explained as normed by appropriately structured epistemic

perspectives, and these must be probabilistic if they are to perform this norma-

tive function.

A more general approach that still begins with preference over practical options,

and thus shares with the DBA an unavoidably decision-theoretic cast, proceeds via

representation theorems. A representation theorem begins with some axioms taken

to govern rational preference and shows that sufficiently rich rational preferences

over options can be represented as if they involved the maximisation of probabilis-

tic-expected value. Most representation theorems are framed explicitly as account-

ing for subjective credences (Jeffrey 1983b; Maher 1993; Meacham & Weisberg

2011; Neth 2025; Savage 1972; Titelbaum 2022, pp. 285–309), but can be under-

stood equally as offering norms on those credences, captured by properties of

epistemic perspectives. In this case, the idea would be that an epistemic perspective

would manifest in ideally rational preference, and must have a probabilistic struc-

ture to do so. This kind of approach has no prospect of being ‘de-pragmatised’, as

substantive assumptions about utility must be made.

Another recently popular argument aims to offer purely epistemic grounds

for probabilism, on the basis that probabilistic epistemic perspectives are closer

to representing how things are – more accurate – than non-probabilistic ways

of representing an ideal epistemic state, come what may (Joyce 1998;

Pettigrew 2016; Titelbaum 2022, pp. 338–361). I discuss this approach in

Online Appendix C.

2.6 Conditional Prospects

Frequently, one doesn’t want to know only the present prospects of a propos-

ition, the degree of support one’s current evidence provides. One wants also to

know what bearing hypothetical evidence has on hypotheses one is concerned

with: what are the prospects ofH , given E, where E is not (yet) in evidence? For

instance, we might be interested in the support for the hypothesis that some

particular die that we haven’t yet tossed is fair, given the further potential
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evidence that it lands ‘⚅’ on 100 consecutive rolls. Presumably that number will

be different from the support provided by the current background evidence for

its fairness, or from the support provided by the potential evidence that it lands

a randommixture of ‘⚀’, ‘⚁’, . . ., ‘⚅’ in roughly equal proportions in 100 rolls.

The conditional prospect ofH given E relative to some evidential probability Pr

is written Pr H ∣Eð Þ.
What is the prospect that both H and E turn out true? Intuitively, it is the

proportion among cases where E turns out true that are also cases where H

turns out true. Since H may depend in some way on E, this second quantity

involves the conditional prospect of H given E. That is, the prospect of the

conjunction of H and E is the prospect of H turning out true given E,

weighted by the prospect of E turning out true in the first place. The low

prospect of my going to the beach and getting sunburnt is the prospect that

I get sunburnt given I go to the beach (high), weighted by the prospect that

I go to the beach (low). This is captured in this rule connecting conditional

and unconditional prospects:3

Product

Pr H ∧Eð Þ ¼ Pr H ∣Eð ÞPr Eð Þ. (Jeffrey 2008, p. 12)

There is a betting-price justification of Product, given the natural idea of

a conditional bet – one that is called off when E is false (de Finetti 1964/

1937, p. 146; Howson & Urbach 1993, pp. 81–84). I will not rehearse it here for

reasons of space, but none of the issues involved go significantly beyond those

canvassed in Section 2.3. It is important to note Product is a purely synchronic

claim, and is not a rule about updating.

The Product rule isn’t a definition, because the right-hand side mixes condi-

tional and unconditional probability. Nor can it readily be turned into a defin-

ition, because we can only rearrange the equation to isolate the term ‘Pr H ∣Eð Þ’
under the assumption that Pr Eð Þ > 0.

To insist that nevertheless conditional probability is to be defined in

terms of unconditional probabilities is to adopt the ‘ratio analysis’, which

states that, provided Pr Eð Þ > 0, Pr H ∣Eð Þ≝ Pr H ∧Eð Þ=Pr Eð Þ. Cases where
the ratio analysis gives no guidance are common, since I have not insisted on

Regularity (Section 2.4); hence there will be many epistemic perspectives

which give no prospect to contingent propositions E. It is a problem for the

ratio analysis that it cannot, for example, make sense of the probabilistic

independence of the proposition that a fair coin land heads and the

3 Another hypothesis in this area is that conditional support is unconditional support of
a conditional, that is, that the degree of support of H given E is Pr E→Hð Þ for some conditional
operator →. This is surprisingly hard to defend (Hájek 2011; Lewis 1976).
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proposition that some continuous variable takes a real value (Hájek 2003,

p. 286). Because we don’t adopt the ratio analysis, we can allow conditional

prospects to be defined in many cases where traditional probability theory

says they are undefined.

Generally, however, it is only important to consider the conditional support

provided by E toH when E itself is genuinely in prospect. If the evidence has no

prospect, the support it may or may not provide is (relative to a given epistemic

perspective) irrelevant. Of course if one finds oneself frequently confronted by

evidence one regarded as having no prospect, that is probably a reason to

reconsider the epistemic perspective to which one defers; the space of possibil-

ities it depicts is misaligned with the possibilities being actualised.

A useful clarification is in order here. A conditional degree of support need

not be the unconditional degree of support you would assign toH if you were to

find out that E. It is the degree of support H has, in light of E and your current

background evidence. It could be the case that if you were to find out that E, you

would revise your background beliefs. Given an epistemic perspective that

represented a given die as fair, the conditional degree of support for the die

landing ‘⚀’ given it has landed ‘⚅’ repeatedly for the past 1,000 rolls is still 1=6.

But if you were to discover that pattern in the actual outcomes, you would be

more than reasonable in opting to consider a different epistemic perspective,

one that did not have the fairness of the die as part of its background evidence.

Perhaps this makes it clear that every evaluation of prospects is really condi-

tional in some sense, the background evidence no less important a factor in the

evaluation of an ‘unconditional’ probability as the explicit proposition E is in

the evaluation of conditional probability:

every evaluation of probability, is conditional; not only on the mentality or
psychology of the individual involved, at the time in question, but also, and
especially, on the state of information in which he finds himself at that
moment. (de Finetti 1974, p. 134)

With conditional degree of support in hand, we can establish some valuable but

straightforward results.

Suppose J ¼ J1; . . . ; Jngf is a partition of the space of possibilities (defined

in Section 2.1), relative to some epistemic perspective. Given anyH is logically

equivalent to H ∧ J1ð Þ∨ . . . ∨ H ∧ Jnð Þ, both express the same proposition and

have the same probability. Those disjuncts are mutually exclusive because the

Ji s are, so Additivity entails Pr Hð Þ ¼ Pr H ∧ J1ð Þ þ . . .þ Pr H ∧ Jnð Þ. Apply
the Product rule and we get this basic result:
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Total Probability

Pr Hð Þ ¼ Pr H ∣ J1ð ÞPr J1ð Þ þ . . .þ Pr H ∣ Jnð ÞPr Jnð Þ:

Another elementary consequence of Product is that Pr H ∣Eð ÞPr Eð Þ ¼
Pr E ∣Hð ÞPr Hð Þ. When Pr Eð Þ > 0, this can be rearranged into a theorem that

has a prominence belying its obvious proof:

Bayes

Pr H ∣Eð Þ ¼ Pr E ∣Hð ÞPr Hð Þ
Pr Eð Þ :

Applying the theorem of Total probability to ‘Pr Eð Þ’ given a partition including
H (e.g., H;H1; . . . ;Hngf ), we can reformulate Bayes’ theorem:

Pr H ∣Eð Þ ¼ Pr E ∣Hð ÞPr Hð Þ
Pr E ∣Hð ÞPr Hð Þ þ Pr E ∣H1ð ÞPr H1ð Þ þ . . . Pr E ∣Hnð ÞPr Hnð Þ :

Bayes’ theorem is important because it shows how conditional probabilities

Pr H ∣Eð Þ are fixed by other quantities we often know the value of:

• The prior probability of the hypothesis H , Pr Hð Þ;
• The likelihood of the evidence given the hypothesis, Pr E ∣Hð Þ;
• The probability of the evidence, Pr Eð Þ, which can also be expressed as the

expected likelihood of the evidence, given hypotheses spanning the space of

possibilities.

The quantity Pr H ∣Eð Þ is often called the posterior probability of the

hypothesis.

Here ‘prior’ and ‘posterior’ do not refer to temporal priority; Pr H ∣Eð Þ is
evaluated at the same time, and using the same evidential probability Pr, as

Pr Hð Þ. There is a very common idea that if one is using a probability function to

represent an agent’s state of mind at some time, and that agent was to learn

exactly E, then the agent’s new state of mind should be PrE. The rule of

Conditionalization says that the relation between this new mental state,

taking E into account, and the old mental state, is this: for any H,

PrE Hð Þ ¼ Pr H ∣Eð Þ; that is, that the new attitudes should be the old conditional

attitudes. In light of this, the genuinely posterior state of mind PrE Hð Þ is equal to
a pre-existing conditional attitude, which (by unfortunate extension) is also

called the posterior. Conditionalization allows quite radical changes between

successive unconditional probabilities, but requires ‘rigidity’: agreement on
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conditional probabilities between existing and revised assignments (Weisberg

2009, pp. 14–16).

There is considerable controversy, not unrelated to the earlier discussion of

reasoning in Section 1.2, around whether Conditionalization is required as

a condition of rationality (Hedden 2015, pp. 29–44; Lewis 1999; Talbott 1991;

van Fraassen 1989, pp. 160–182; Williamson 2000, pp. 213–221). My goal is

to offer a theory of inductive reasons – not a theory of what one ought to do

with them – so I will not pursue this issue (though see Section 3.1). (I will

retain the entrenched terms ‘prior’ and ‘posterior’; it would risk unintelligi-

bility to refrain from using them.) Still, the view adopted here that inductive

reasons are grounded in a single epistemic perspective fits naturally with

conceptions of rationality that take it to be principally a feature of a single

‘time slice’ of an individual (Hedden 2015, pp. 6–9, 28–55). What matters for

rationality is that at each moment a Bayesian agent is probabilistically coher-

ent, adopting a single epistemic perspective that matches one’s total evidence.

It may not be irrational to have radical discontinuities between successive

coherent states of opinion, and there may be no general rule on offer to govern

how newly acquired evidence should prompt revisions in the epistemic per-

spective one comes to adopt, as long as one is rational before and after the

revision.

2.7 (Degree of) Evidential Support

With conditional degrees of support, I have finally reached the third key role of

epistemic perspectives, namely, capturing the significance of potential evidence

for various hypotheses (Section 2.1). That is, an epistemic perspective serves as

an inductive framework (Section 1.4), which therefore can be represented by an

evidential probability function. Given an epistemic perspective, an uncondi-

tional probability already discriminates between hypotheses in light of the

background evidence held fixed. Conditional probabilities add a new aspect to

that evaluation: they give us some sense of the support various hypotheses

would receive from propositions perhaps not yet in evidence, given that we

retain the same inductive framework (i.e., standards of evidential significance).

So conditional and unconditional probabilities together articulate an ‘epistemic

standard’ that might be deployed in the evaluation of hypotheses (Schoenfield

2012, p. 199). That is, we may finally offer an account of the degree of

evidential support and overall evidential support (Section 1.3), relative to an

inductive framework:
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Degree of Evidential Support

The degree to which E supports H relative to Pr is Pr H ∣Eð Þ. (What Carnap

(1962, p. xvi) called firmness.)

Overall Support by Evidence

E overall supports H , relative to an epistemic perspective represented by

the evidential probability Pr, iff Pr H ∣Eð Þ > Pr :H ∣Eð Þ. (It follows that

Pr H ∣Eð Þ > 0:5.)

One limitation of these definitions is that there are cases where Pr H ∣Eð Þ is high
only because Pr Hð Þ is high. Intuitively, E may have nothing to do with H , or

might even be negatively relevant to H , as in many cases where the base rate

(prior probability of H) is important (see Section 3.3). This is a significant

limitation on the capacity of these definitions to completely track intuition about

evidential support.

Accordingly, my focus from now will largely be on the incremental notion of

confirmation, rather than on absolute support. This incremental notion is compara-

tive, looking at the difference between the prior support H receives from the

background evidence versus the posterior conditional support it receives once E

is added to that background evidence. The suggestion is that such comparisons

track confirmation or disconfirmation of hypotheses by E. This is the key idea of

Bayesian confirmation theory – ‘Bayesian’ because in comparing prior and poster-

ior degrees of support, Bayes’ theorem is often used. This is the principal focus of

Section 3.

2.8 The Plurality of Epistemic Perspectives

Previously I have only supposed that the numerical prospects assigned to

propositions given an epistemic perspective must satisfy the probability axioms.

Very many functions do this. So if epistemic perspectives are to justify actual

credences (Section 2.2), we shall need some way of deciding which epistemic

perspective(s) to adopt as normative for our own individual credences, and what

exactly adopting a perspective amounts to.

The second question is easier than the first. To adopt an epistemic perspective is

to take its verdicts on support as your own. If Cr is your credence function,

representing your degrees of belief, then you’ve adopted an epistemic perspective

Pr iff for any X, Cr Xð Þ ¼ Pr Xð Þ. The question of whether you can adopt an

epistemic perspective is another matter. Perhaps epistemic perspectives are too

cognitively demanding for us. In that case, adopting an epistemic perspective is an

idealisation of rationality, rather than a prescriptive norm (Carr 2021; Staffel 2020).
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Return to the first question. You ought not to adopt a perspective that

disagrees with you on your total evidence. There are many perspectives

meeting this requirement. Can we identify further constraints that allow us

to answer our first question as follows: one is doxastically rational in adopting

Pr iff Pr is the uniquely permitted epistemic perspective consistent with your

total evidence?

Consider an expert weather forecaster, to whom one might defer completely

about a limited subject matter, or an omniscient being, to whom one ought to

defer completely about everything. One ought, as a seeker after truth, to adopt

an (globally or locally) expert epistemic perspective – if only one knew what it

was! The literature on deference and the epistemology of chance provides

a way of proceeding: one’s attitude should be one’s expectation of the expert’s

attitude (Elga 2007, pp. 478–480; Gaifman 1988; Hall 2004, pp. 100–101;

Titelbaum 2022, pp. 133–145). An expected value is a probability-weighted

mean value of a quantity. In the much discussed case of chance (Ismael 2008;

Joyce 2007; Lewis 1986a), chance deference principles entail (given Total

probability from Section 2.6) that one’s current attitude to a chancy propos-

ition X should be its expected chance, where each possible value xi of X ’s

chance is weighted by your judgement of the probability of the hypothesis that

xi turns out to be the actual chance of X .

Since the probabilities of the hypotheses about chance are just as much

a matter of epistemic perspective as any other contingent theoretical propos-

ition, it is not plausible that chance deference principles narrow down the class

of admissible epistemic perspectives to a uniquely privileged perspective. But

deference to chance provides a model for how we might respond to that variety

of admissible epistemic perspectives: namely, we ought to set our credence in

some hypothesis H equal to the expected support H receives from the various

admissible epistemic perspectives under consideration, weighted by our judge-

ments about which epistemic perspectives will turn out to capture the degree to

which our evidence supports H .

Mathematically, let there be various epistemic perspectives Pri that assign

degrees of support pi to H , and Cr be our actual credence or degree of belief.

Next assume that the possible answers to the questionwhat is the correct degree

of support the evidence assigns to H? form a partition. LetDi be the proposition

that Pri captures the correct degrees of support for H in assigning it pi. Then

Total probability will get us this:

Cr Hð Þ ¼
X
i

Cr H ∣Dið ÞCr Dið Þ;
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and the epistemic deference principle that Cr H ∣Dið Þ ¼ pi then yields

Cr Hð Þ ¼
X
i

piCr Dið Þ:

This kind of approach works well if there is a single right degree of support or

unique evidential probability given a body of evidence – perhaps something like

Williamson’s ‘intrinsic plausibility of hypotheses’ (Section 2.4) conditional on

our total evidence – and our goal in setting our credences is to best approximate

this ideal. Some recent formulations of deference principles for rational belief in

fact seem to build in a presupposition of this sort of Uniqueness (Meacham 2019,

p. 717; cf. Greco &Hedden 2016). The question of whether Uniqueness is true of

evidential probability is the focus of Section 4.

This argument for how to set credences breaks down if there are multiple

epistemic perspectives consistent with the evidence. Each embodies some

standards for evaluating how the evidence supports hypotheses. There may be

no sense in which they are rival accounts of ‘the’ evidential support relation,

and we need not be required to see them as forming a partition of ways this

relation could turn out. Their relation to one another may be more like the

relation among epistemic perspectives that reflect different bodies of total

evidence. There is no one perspective that reflects the evidence one uniquely

should have, rather there are many perspectives that may reflect the various

bodies of evidence one might have. The question what is the correct degree to

which the evidence supports H may be in no better shape than the question

what is the correct body of total evidence to draw on when evaluating H . You

draw on the evidence you find yourself having; likewise, perhaps you ought

simply to draw on the epistemic standards to which you find yourself subscrib-

ing. If that is the case, it is harder to justify adopting as your credence the

weighted mean of these various epistemic perspectives. (We can only rationalise

expert deference if there is an expert, if there is a fact of the matter about getting

the degree of support right that transcends each individual evidential probability

function; and in this scenario, there is no single fact of the matter about this.)

Without a unique degree of support, there may be no way to recommend

a unique attitude in view of the plurality of epistemic perspectives. That will be

bad news for a restrictive epistemology, which aims to tell us what we must do.

But if epistemology is permissive – in the business of telling us what wemay do –

then a natural idea suggests itself: adopt an epistemic perspective consistent with

your total evidence and which reflects your standards for epistemic evaluation.

As van Fraassen puts it: ‘rationality is only bridled irrationality . . . what it is

rational to believe includes anything that one is not rationally compelled to

disbelieve’ (van Fraassen 1989, pp. 171–172). Epistemic rationality requires
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us to evaluate the prospects of hypotheses. In the absence of constraints that

delimit those prospects uniquely, we dowhat wemust bymeans of what wemay:

adopt some permissible epistemic perspective. Compare: in unrestricted sections

of the Bundesautobahn system, there is no speed limit. While cars must travel at

some speed, drivers achieve this requirement by choosing one of the many

permissible speeds. This suggests a picture of rational credence in the presence

of multiple potentially normative epistemic perspectives:

Permissive Rational Credence

An agent’s credence function at a time, Cr, is rational just in case there exists an

evidential probability Pri such that for any H, Cr Hð Þ ¼ Pri Hð Þ, where Pri
agrees with Cr on the total evidence (cf. Climenhaga 2024, p. 6; Meacham

2014, pp. 1186–1189).

Ultimately, then, the question as to which credences are rational amounts to the

question of Uniqueness of epistemic perspectives. That, as mentioned earlier, is

the focus of Section 4. So far I have identified no reason to accept that there

a single perspective compatible with each body of total evidence. Even if there

are constraints on perspectives beyond the probability axioms – such as chance

deference principles – they appear to leave open many legitimate attitudes to

evidential support, as represented in the existence of many evidential probabil-

ity functions that agree on the total evidence. Before returning to that issue,

however, I return in Section 3 to the central project: understanding incremental

inductive support using the framework of epistemic perspectives.

3 Bayesian Confirmation Theory

In Section 1.5, we briefly mentioned formal and syntactic approaches to the

logic of evidential support, and found them wanting. In Section 2, I suggested

that a better approach to evidential support was through the idea of the prospects

of hypotheses in light of a body of background evidence and assumptions about

the bearing of evidence on hypotheses, jointly encapsulated in the notion of an

epistemic perspective, normative for rational credence. I argued that epistemic

perspectives ultimately were to be identified with evidential probability func-

tions, and that those functions enable us to define a notion of overall or absolute

evidential support of a proposition.

The problem of confirmation, according to Hempel, is ‘to characterize, in

precise and general terms, the conditions under which a body of evidence can

be said to confirm, or to disconfirm, a hypothesis of empirical character’ (Hempel

1945a, p. 7). I look at a particular proposal for defining confirmation in terms of

the incremental support provided by a piece of evidence, defining it and applying

32 Philosophy and Logic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009210171
Downloaded from https://www.cambridge.org/core. IP address: 18.221.59.228, on 19 Feb 2025 at 13:09:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009210171
https://www.cambridge.org/core


it to some representative cases in Section 3.1. I turn immediately to a famous

problem for the Bayesian approach to confirmation, the problem of old evidence

(Section 3.2), and argue that it is not an insuperable objection to this approach.

Further illustrations of successes of the Bayesian approach in capturing scientific

heuristics are given in Sections 3.3 and 3.4, and I examine a famous paradox of

confirmation in Section 3.5. The fullest Bayesian treatment of the paradoxes

requires a notion of degree of confirmation, and there are a number of inequivalent

attempts to measure that, with varying degrees of plausibility; some are introduced

and compared in Section 3.6. I conclude by returning to the problem of induction

(Section 3.7).

The Bayesian approach, despite its flexibility and adaptability, has not avoided

criticism. I will touch on some significant objections as the view is developed, and

have hoped to forestall some by design. Some prominent criticisms focus on aspects

of some Bayesian views that are not representative of the variant I defend. Consider

challenges based on the supposed computational intractability of Bayesian statistics,

or the failure of scientists to assign or report probabilities in practice, or the

descriptive inaccuracy of the Bayesian picture (Kelly & Glymour 2004, pp. 95–

96). These may be telling against personalist Bayesianisms, which take the prob-

abilities involved in support and confirmation as unprocessed credences. It is harder

to see how they apply to the degree of support view developed in Section 2.4, which

posits evidential probability as a regulative ideal, perhaps not directly implemented

in practice.

Other objections are more general; Norton (2011, pp. 400–415) is keen to

emphasise ways in which the Bayesian framework appears to require a richer

structure on our attitudes than is sometimes justified by the evidence (recall

Section 2.8). That could be a problem if the Bayesian is committed to

Uniqueness (for then there must be a uniquely rational attitude ungrounded by

evidence sufficient to constrain the attitudes uniquely). It appears to be less of

a problem for the permissive Bayesian, who allows that there are many legitim-

ate perspectives that can be taken without being uniquely determined – what

matter, then, if we are permitted to believe beyond what the evidence demands

in these cases too? So this family of objections turns out to connect with what

I regard as the principal objection to Bayesianism, the ‘problem of the priors’.

This objection is the focus of Section 4.

3.1 Incremental Confirmation Defined

A theory of evidential support aims to capture a number of widely shared beliefs

about what evidence does for us. For example: that unexpected or novel

predictions should favour a hypothesis more than banal or familiar predictions;
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or that simpler hypotheses, other things being equal, are favoured by the

evidence. Behind these beliefs seems to be a persistent metaphor: evidence as

a mass stuff, something that can be gathered and, once collected, weigh in

favour of a hypothesis and against its rivals. The incremental notion of confirm-

ation aims to capture the idea that each new piece of evidence adds some weight

to the scales (or takes some off).

The resultant of all of these pieces of evidence will be a particular degree of

evidential support (relative to some background conception of what supports

what, of course). Given my conception of degree of support (Section 2.7), it is

natural to take the component weight of individual pieces of evidence to be

associated with the changes in overall degree of support those pieces of evidence

produce against a fixed background. If there is some positive weight E contributes

to H , we say E confirms H . (Whether this positive weight can be measured is

discussed in Section 3.6.) Confirmation is a three-place relation between some

piece of potential evidence E, some hypothesis H , and a background probability

model. This last is assumed to represent an epistemic perspective and hence to

capture both background knowledge and a specific inductive framework, that is,

a conception of evidential relevance (Fitelson 2005, p. 391).

Confirmation

E confirms H relative to Pr iff Pr H ∣Eð Þ > Pr Hð Þ.
E disconfirms H relative to Pr iff Pr H ∣Eð Þ < Pr Hð Þ.
E is independent4 of H relative to Pr iff Pr H ∣Eð Þ ¼ Pr Hð Þ.
This definition allows us to return to an issue raised back in Section 1.3, the

possibility of cases of overall evidential support combined with incremental

evidential undermining. In this Bayesian framework, a case like that might

involve an epistemic perspective Pr such that H is regarded as more probable

than not given some evidence E, that is, Pr H ∣Eð Þ > Pr :H ∣Eð Þ. But it is
certainly still possible that Pr H ∣Eð Þ < Pr Hð Þ – that is, for E to disconfirm H

even while H is on balance supported by E relative to Pr. A case with this

structure is discussed in Section 3.3.

This definition is at the heart of Bayesian confirmation theory (Earman 1992;

Howson & Urbach 1993; Strevens 2006). The term ‘Bayesian’ is apt because,

given this definition of confirmation and Bayes’ theorem, E confirms H iff
Pr E ∣Hð Þ
Pr Eð Þ > 1. Given that Pr Eð Þ, the degree to which the background evidence

supports the evidence, is constant for any hypotheses we may consider, this

result tells us that the confirmation of H by E is driven by the likelihood

4 There are some complications here (Fitelson & Hájek 2014); note too that this notion of
probabilistic independence neither implies nor is implied by other sorts of independence such
as causal isolation.
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Pr E ∣Hð Þ. We are often in a good position to determine this likelihood, because

it is often fixed by the content of H itself. Suppose H is a chancy theory, for

example. The Principal Principle (Section 2.8) tells us that the likelihood of the

evidence on H is its chance of coming about were H the correct theory of E’s

chance (Strevens 2004, pp. 372–374). Despite the explicit relativisation of

evidential support to a probability model, whether a hypothesis H is confirmed

turns out to depend on the likelihoods alone, which are in many scientific cases

of interest fixed by H itself, and thus common to many epistemic perspectives.

What still varies from perspective to perspective is the absolute degree of

support for a given hypothesis, whether that hypotheses for example reaches

some minimal level of credibility in light of the evidence.

Let’s consider a simple example.

Biased Die

Suppose we have background information that leaves open the hypotheses

that a die is biased towards ‘⚅’ (the chance of ‘⚅’ being 1=3), or that it is

fair, and regards these hypotheses as equally supported and exhaustive, so

Pr fairð Þ ¼ Pr ‘⚅ ’-biasedð Þ. No outcomes are yet in evidence. Against this

background, consider the proposition that the die lands ‘⚅’ 5 times consecu-

tively. That proposition confirms the hypothesis that the die is biased, and

disconfirms the hypothesis that the die is fair.

Can Bayesian confirmation theory capture this basic observation about confirm-

ation? Eventually, wemight use a theory of confirmation to decide complex cases

about which our judgements are unclear, but as usual with a philosophical

explication,we need reassurance that it gets the basics right, typically by checking

that it reproduces obvious facts about the target relation. In this case, we begin

with an appeal to the theorem of Total probability to calculate the prior of E:

Pr Eð Þ ¼ Pr E ∣ fairð ÞPr fairð Þ þ Pr E ∣ ‘⚅ ’–biasedð ÞPr ‘⚅ ’–biasedð Þ
¼ 1

65
� 1
2
þ 1

35
� 1
2

¼ 1

15; 552
þ 1

486
≈ 0:002122:

Plug this into Bayes’ theorem (Section 2.6), and we obtain

Pr fair ∣Eð Þ ≈ 0:0606 � Pr fairð Þ < Pr fairð Þ;
Pr ‘⚅ ’–biased ∣Eð Þ ≈ 1:9394 � Pr ‘⚅ ’–biasedð Þ > Pr ‘⚅ ’–biasedð Þ:

So here this proposition confirms the hypothesis of bias, and disconfirms the

hypothesis of fairness.
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The same sort of reasoning can be applied in less idealised examples.

Consider Howson and Urbach’s account of Babbage’s investigation into the

origins of tables of logarithms:

Logarithms

‘Babbage . . . was interested in whether they derived from the same source or

had been worked out independently. Babbage (1827) found the same six errors

in all but two and drew the “irresistible” conclusion that, apart from these two,

all the tables originated in a common source’. (Howson & Urbach 1993, p. 124)

Howson and Urbach offer this Bayesian reconstruction (following Jevons

(1874, pp. 278–279)):

The theoryCopy, which says of some pair of logarithmic tables that they shared
a common origin, is moderately likely in view of the immense amount of
labour needed to compile such tables ab initio, and for a number of other
reasons. The alternative, independence theory might take a variety of forms,
each attributing different probabilities to the occurrence of errors in various
positions in the table. The only one of these which seems at all likely would
assign each place an equal probability of exhibiting an error and would,
moreover, regard those errors as more-or-less independent. Call this theory
Ind and let Ei be the evidence of i common errors in the tables. The posterior
probability of Copy is inversely proportional to Pr Eið Þ, which, under
the assumption of only two rival hypotheses, can be expressed as
Pr Eið Þ ¼ Pr Ei ∣Copyð ÞPr Copyð Þ þ Pr Ei ∣ Indð ÞPr Indð Þ. . . . Since Copy
entails Ei, Pr Eið Þ ¼ Pr Copyð Þ þ Pr Ei ∣ Indð ÞPr Indð Þ. The quantity
Pr Ei ∣ Indð Þ clearly decreases with increasing i. Hence Pr Eið Þ diminishes
and approaches Pr Copyð Þ, as i increases; and so Ei becomes increasingly
powerful evidence for Copy, a result which agrees with scientific intuition.
(Howson & Urbach 1993, pp. 124–125, notation adjusted)

This reasoning contains two interesting observations. First, the observa-

tion that when a hypothesis entails some evidence, Pr E ∣Hð Þ ¼ 1 (by the

probability calculus). It follows that Pr H ∣Eð Þ ¼ Pr Hð Þ 1
Pr Eð Þ – unless the prob-

ability of the evidence is 1, therefore, evidence entailed by a theory supports it.

Second, in this case, it is argued that Pr Eið Þ approaches Pr Hð Þ as the number

of common errors goes up (because of the decreasing chance of such a coinci-

dence). So not only does Ei confirm H; the degree of support Ei provides for H

approaches 1. We see here not only an invocation of comparative relations of

confirmation, but ‘absolute’ degree of support in light of the evidence. An epistemic

perspectivewith this kind of conception of the available hypotheses, and these ideas

about likelihoods informed by background assumptions about chances, supports

the proposition that the common errors arise from plagiarism, not luck. Hence any
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rational attitude adopting such a perspective must inevitably reach the same

conclusion.

Recall the observation from Section 1.5 that evidential support is intuitively

non-monotonic and intransitive. It is an easy warm up exercise in Bayesian

confirmation theory to reproduce these verdicts.

Non-monotonicity

Relative to some Pr, there are bodies of evidence E and F such that E confirms

someH but E∧F disconfirmsH . The ball-drawing example from Section 1.5

exemplifies this structure. Suppose a prior Pr which is uniform over all 101

hypotheses about how many red balls are in the bag of 100 balls: 0 balls

are red, 1 ball is red, . . ., 100 balls are red; this last is our hypothesis H ,

so Pr Hð Þ ¼ 1=101. Because the evidence F of a black ball drawn from the

bag is inconsistent with the hypothesis H that all balls in the bag are red,

Pr H ∣E∧Fð Þ ¼ 0 (sinceH must also be inconsistent with any claim that entails

F); hence E∧F disconfirms H . But E is the evidence of 99 red balls drawn; in

light of E, the only live hypotheses are H and 99 balls are red. Pr H ∣Eð Þ will
therefore be higher than the prior, on any reasonably inductive probability

measure (all the probability that was once assigned to the other hypotheses

must go to these two, and it is not evidentially required that it all go to the

hypothesis that the next ball will be unlike all the others).

Intransitivity

There is a Pr and A;B;C such that Pr B ∣Að Þ > Pr Bð Þ, Pr C ∣Bð Þ > Pr Cð Þ, but
Pr C ∣Að Þ ≤ Pr Cð Þ. Consider a dice rolling case; let A be ‘⚀’; let B be the

disjunction that the die came up odd, that is, ‘⚀∨⚂∨⚄’ ; let C be the

disjunction ‘⚂∨⚄’. The standard die-rolling Pr gives us Pr Að Þ ¼ 1=6,

Pr Bð Þ ¼ 1=2, Pr Cð Þ ¼ 1=3. The relevant conditional probabilities are

Pr B ∣Að Þ ¼ 1 (so A confirms B); Pr C ∣Bð Þ ¼ 2=3 (so B confirms C); but

Pr C ∣Að Þ ¼ 0, so A conclusively disconfirms C.

Many Bayesians are tempted to import their views on diachronic rationality into

confirmation theory. From this perspective, ‘confirmation’ is a thing that hap-

pens to a theory when new evidence arrives; the theory is confirmed or discon-

firmed as its probability shifts around over time. Most Bayesians accept

updating upon receipt of new evidence E goes by Conditionalization, adopting

one’s old conditional credences given E as one’s new ‘unconditional’ cre-

dences. In this case, Pr H ∣Eð Þ represents the new posterior probability of H;

H is confirmed by E if it has come to be more probable once news of E is in. So

one sometimes sees Bayesians present confirmation as essentially diachronic:
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an experience provides evidence that confirms a hypothesis, for that scientist,
if . . . this evidence ‘boosts’ the scientist’s credence in the hypothesis. (Eagle
2011, p. 210)

At the core of modern Bayesianism is a rule for changing the subjective
probabilities assigned to hypotheses in the light of new evidence. . . .
where Cr �ð Þ is your subjective probability distribution before observing E
and Crþ �ð Þ is your subjective probability distribution after observing E, . . .

Crþ Hð Þ ¼ Cr E ∣Hð Þ
Cr Eð Þ Cr Hð Þ:

More or less anyone who counts themselves a proponent of BCT thinks that
this rule is the rule that governs the way that scientists’ opinions should
change in the light of new evidence. (Strevens 2004, p. 369; see also Strevens
2006, section 5.1)

But this really runs together two completely separate issues: whether

Conditionalization is the right updating rule, and under what synchronic

circumstances does one proposition support another. (Recall here

Sections 1.2 and 2.6.) It is perfectly possible to endorse the Bayesian account

of evidential support while rejecting Conditionalization. Better, then, to inter-

pret the confirmation inequality Pr H ∣Eð Þ > Pr Hð Þ as telling us the current

significance of E forH from the single perspective of Pr. That view of evidential

significance that may or may not be preserved across successive perspectives,

pre- and post-acquisition of E – if the agent adopts a non-rigid update rule, and

does not conditionalize on E, they need not in general retain their old view of the

bearing of E on H .

3.2 Old Evidence

The foregoing bears on a problem which has been seen by many as a serious

challenge to the Bayesian account of confirmation, Glymour’s problem of old

evidence

Scientists commonly argue for their theories from evidence known long
before the theories were introduced. Copernicus argued for his theory using
observations made over the course of millennia, not on the basis of any
startling new predictions derived from the theory, and presumably it was on
the basis of such arguments that he won the adherence of his early disciples.
Newton argued for universal gravitation using Kepler’s second and third laws,
established before the Principia was published. The argument that Einstein
gave in 1915 for his gravitational field equations was that they explained the

38 Philosophy and Logic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009210171
Downloaded from https://www.cambridge.org/core. IP address: 18.221.59.228, on 19 Feb 2025 at 13:09:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009210171
https://www.cambridge.org/core


anomalous advance of the perihelion of Mercury, established more than half
a century earlier. . . . Old evidence can in fact confirm new theory, but
according to Bayesian kinematics it cannot. For let us suppose that evidence
E is known before theory T is introduced at time t. Because E is known at t,
Prt Eð Þ ¼ 1 [so] the likelihood of E given T, Prt E ∣Tð Þ, is also 1. We then have

Prt T ∣Eð Þ ¼ Prt Tð Þ � Prt E ∣Tð Þ
Prt Eð Þ ¼ Prt Tð Þ:

The conditional probability of T on E is therefore the same as the prior
probability of T: E cannot constitute evidence for T in virtue of the positive
relevance condition nor in virtue of the likelihood of E on T. None of the
Bayesian mechanisms apply, and if we are strictly limited to them, we have the
absurdity that old evidence cannot confirm new theory. (Glymour 1981,
pp. 85–86)

As many have noted, the problem is not so much the antiquity of the evidence, as

the fact that evidence and hypothesis seem to come in the wrong temporal order. If

the age of the evidence were the only problem, we could solve the problem by

‘rolling back’ to an earlier state of knowledge in which the crucial evidence isn’t

included – this seems to be what Howson and Urbach have in mind when they say

‘Pr Hð Þ measures your belief in a hypothesis when you do not know the evidence’

(1993, p. 117, my emphasis). But Climenhaga (2024, section 3) sets up a simple

example in which a piece of evidence is acquired, then some crucial information

about the probability distribution over hypotheses is acquired, and then a posterior

probability over hypotheses is calculated. Roll back the credence to before the

acquisition of the evidence, and one also loses the distributional information. There

was never, in his case, a state of belief that represented the background against

which this evidence is confirmatory in the way it appears to be.

Introduced like that, old evidence is not a problem for the Bayesian view I have

presented, which involves no ‘kinematic’/diachronic element. Though I follow the

Bayesian literature in talking of confirmation of hypotheses by evidence, and use

the suggestive variable ‘E’, I explicitly reject the idea that confirmation occurs

when evidence is newly acquired (Carnap 1962, p. 468; Hempel 1945a, section 6).

There is no sense in which the evidence considered with respect to confirmation

has to be collected at all. Recall my discussion in Section 2.1; an epistemic

perspective is associated with some body of total evidence, some body of proposi-

tions (it turned out) that are assigned probability 1 by the perspective. Nothing

temporal is involved in this characterisation. Utilise an epistemic perspective

including E as evidence, and it won’t confirm anything; utilise an epistemic

perspective not including E, and it may well have confirmatory power. This is

independent of when E is gathered, or even if it is gathered. The incremental
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confirmation relation informs us of the evidential bearing of one proposition on

another, relative to an epistemic perspective; neither needs to be ‘evidence’ in

a folk or philosophical sense for this evidential bearing to obtain. Rather,E is some

claim that might bear onH – perhapsH predicts it, or some rival ofH predicts it –

and we wish to evaluate its significance, relative to some perspective embodying

some appropriate principles of evidential bearing.

To do this, of course, one must make use of an epistemic perspective according

to which there is some bearing of E on H . Glymour’s argument certainly

emphasises that a perspective that assigns probability 1 to E is not appropriate

for this purpose. Nor for that matter is one that assigns probability 1 toH , which

would then be incapable of being confirmed. Nothing in the framework I’ve

presented requires us to make such inappropriate choices; but nothing tells us

which choices to make, either. So the synchronic problem of old evidence is to

give defensible guidance about which epistemic perspective we ought to con-

sider when we evaluate confirmation of hypotheses by claims which are already

in evidence for us.

One obvious candidate is clearly excluded because it will simply reinscribe

the problem of old evidence. This is the proposal that we ought to evaluate

claims of confirmation relative to an epistemic perspective we’ve adopted. My

account of adoption in Section 2.8 guaranteed that anything in evidence for us is

assigned probability 1 by any adoptable perspective. Hence the problem of old

evidence shows that even at a fixed point in time there is no single body of

background evidence: the background evidence relevant to the adoption of an

epistemic perspective is the evidence possessed by the adopting agent, which

may be different than the body of evidence against which that very same agent

assessed claims of confirmation. A theory of confirmation is quite distinct from

a theory of individual belief, as Glymour (1981, p. 74) pointed out; this

unworkable proposal would collapse them.

Some suggest simply removing E from the background evidence, and evalu-

ating all confirmation claims relative to an epistemic perspective that treats that

background (mutilated, from our perspective) as its total evidence:

One answer – and I think the correct one – to Glymour’s nasty problem . . . is
to deny that when assessing support according to the difference between
Pr H ∣Eð Þ and Pr Hð Þ, the probabilities should be relativized to K; rather they
should always be relativized to K\ Egf . . . And why? The answer is straight-
forward. When you ask yourself how much support E gives H, you are
plausibly asking how much a knowledge of E would increase the credibility
of H, which is the same thing as asking how much H boosts the credibility of
H relative to what else you currently know. The ‘what else’ is just K\ Egf .
(Howson 1991, p. 548)
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The proposal is an example of a more general class of counterfactual theories,

those that evaluate the confirmatoriness of Ewith respect to howmuchE ‘would

increase’ the credibility of H against a counterfactual background, what we

would have known had we not known E. Howson’s approach is, in effect, that

we would have known everything but E. Howson’s suggestion seems to give

two sorts of incorrect predictions about confirmation.

The first is this. Sometimes a generalisation is confirmed by its instances

(Section 3.5), and, in the Baconian fashion (Bacon 2000/1620), may only be

proposed after diligent apian collection of facts. We know that there is a point at

which confirmatory returns to repeated experiments must diminish to zero

(Howson & Urbach 1993, p. 120). In such a case, subtracting any particular

instance from background knowledge leaves many similar instances, and no

confirmation by that instance. The same is true, clearly, for every instance – so

no instance confirms. Howson seems blasé about this (1991, p. 550). Yet

intuitively each instance may be highly confirmatory were none of the similar

instances present, and our instincts in particular cases go with this latter

observation. In this case, the counterfactual about what the Baconian would

have believed had they not believed E seems to give us K\ Egf , as Howson

claims, but that seems to be the wrong body of background evidence to use in

evaluating confirmation.

In that case, the counterfactual yields the ‘wrong’ body of background

evidence to assess confirmation. There are other cases in which Howson’s

counterfactual account yields the right background, but predicts the wrong

epistemic perspective: it not only subtracts E from the background knowledge,

it also shifts us to an epistemic perspective in which evaluations of the bearing

of E onH are different. This is the second sort of incorrect prediction Howson’s

account makes. Maher gives this example:

Mr. Schreiber is the author of novels that are popular (P) though it is
important to him that he is making important contributions to literature (I).
Schreiber basks in his success, taking his popularity to be evidence of the
importance of his work; that is, he takes P to confirm I. . . . many aspiring
serious novelists whose work is unpopular tend to rationalize their failure by
supposing that the public taste is so depraved that nothing of true value can be
popular. . . . if Schreiber did not know of his own work’s popularity, he too
would share this opinion . . . [That is,] were he not to know P, he would have
a probability function Pr such that Pr I ∣Pð Þ ≤Pr Ið Þ. (Maher 1996, p. 156)

What we want is something like this: a surgical modification of our current

adopted epistemic perspective that preserves our dispositions to evaluate the

bearing of E on H , while removing E and evidence substantially similar to E to

predict the right judgements about confirmation. That suggests the following
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proposal (Eells & Fitelson 2000, pp. 667–669; Jeffrey 2008, pp. 44–47;

Meacham 2016, pp. 461–462):

Ur-Probability

In an assessment of confirmation, the probability function Pr must be such that

1. There is some ur-probability Pr0 that does not assign unconditional probabil-

ity 1 to any proposition that confirms or disconfirms H , such that, where V is

one’s current total evidence, Pr0 � ∣Vð Þ is an adoptable epistemic perspective;

2. There exists some ‘contextually determined background evidence’ B

(Meacham 2016, p. 462), such that B⊆V and Pr �ð Þ ¼ Pr0 � ∣Bð Þ.
This proposal, unlike Howson’s, doesn’t require the determinacy of any coun-

terfactual claim about what attitudes we might have had supposing we had

different evidence. The relativity to background evidence is made explicit in

a way that permits us to remove more than E if needed; but we preserve

judgements of evidential bearing, by requiring that the ur-probability be one

that could end up with an adoptable evidential probability.

The role of background is vital, because of a further problem with Howson’s

approach I have not yet noted: that very often, old news is no news. The example

of perihelion of Mercury is rather unusual; many pieces of evidence have no

confirmatory value at all, being so thoroughly absorbed into the perspectives on

the world that no context renders them as foreground. It is perfectly reasonable

to think that the fact that something exists, for example, is part of my total

evidence, and forms part of the base of support for various hypotheses

I entertain. It would be very strange to think of this fact as confirming any

hypotheses, since no live hypothesis is incompatible with it. So it is important to

note that our proposal does not require that E =2B, though obviously in many

cases it will be included.

This proposal tells us that whether, and to what extent, E confirms H is

relative to background assumptions in two ways. First, it is relative to some

assumption about evidential bearing, encoded in the prior conditional probabil-

ities. Second, it is relative to some selection of background evidence. Neither of

these relativities collapses into one another. If the thesis of Uniqueness is true

(Sections 2.8 and 4), then there is only one legitimate perspective on evidential

bearing, and yet there remain many possible selections of background evidence.

On the other hand, one could accept permissivism about what bears on what,

and think that epistemology proper must always consider the current total

evidence in evaluating the justification of belief. The problem of old evidence

brings the second sort of relativity to the background into a clear view: even at
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a given point in time, there is no single body of evidence that it is pertinent to

confirmation.

Can we be more specific about how context selects background evidence? General

Gricean principles governing conversation are more helpful here than special-

purpose considerations about theory testing (Grice 1989). Rather than multiply

theoretical posits beyond necessity, I will simply identify the background evidence

with a conversational context: for example, that of a discussion between scientists

about themerits of a theory, in person, or in the pages of the journals. (It could even

be a private conversation the individual has with themselves.) A context, for

Stalnaker, comprises ‘the body of information that is presumed, at that point, to

be common to the participants in the discourse’ (Stalnaker 1999/1998, p. 98). There

are a couple of ways to think about old evidence given this. One is to note the

diversity of the scientific community; perhaps the scholarly community isn’t all of

a uniform opinion about the perihelion of Mercury, for example. In that case this

old evidence, though known to some, cannot be common ground, and hence will

not be included in the background evidence.

More interesting is a second approach. Suppose you and I are talking about

a brand new hire at our company, Jack, with whom I’ve just had an unpleasant

interaction. I ask ‘why is Jack so irritable?’, and you say, ‘He’s just stopped

smoking’. I don’t know Jack at all; it is not common ground to us that Jack was

previously a smoker. The sentence however presupposes that Jack used to

smoke – saying it is only legitimate on that assumption, so perhaps it ought to

misfire if that assumption isn’t common ground. That it does not is, Lewis

suggests, due to accommodation:

If at time t something is said that requires presupposition P to be acceptable,
and if P is not presupposed just before t, then – ceteris paribus and within
certain limits – presupposition P comes into existence at t. (Lewis 1979,
p. 340)

That we accommodate the conversational moves of other speakers, I contend,

also makes sense of conversational contributions that force the retraction of

items in the common ground. Because the common ground is a set of assumed

propositions, any conversational contribution that expands the possibilities

under consideration can remove propositions from common ground. This,

Lewis thinks, is how the sceptical argument works. What we know is what

holds in all possibilities consistent with our evidence. If some new possibility is

raised to salience, then our evidence is revised –weakened – so as not to exclude

the new possibility. This is Lewis’ ‘Rule of Attention’ (Lewis 1996, p. 559):

when you attend to some new possibility, you do not ignore it, and hence do not
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know it not to obtain, and hence it can no longer be common ground. This also

looks like a kind of accommodation: ‘possibly, P’ presupposes that :P is not in

the common ground; if a speaker says it, we accommodate their utterance by

ensuring that:P isn’t in the common ground. (The same is true if a speaker says

P which we had been assuming was common ground. Stalnaker says ‘it is in

general required that the proposition which is expressed by the use of a sentence

in a context not be presupposed in that context’ (1973, p. 454); if this general

requirement is imposed, to say P demands – and automatically receives –

accommodation if your conversational partners were assuming :P.)

These sorts of examples, I contend, might play a role in confirmation by old

evidence. Ask questions about confirmation, such as ‘is the theory of relativ-

ity supported by the evidence?’, ‘does the geological record confirm

Uniformitarianism?’, and so on, and we trigger an accommodatory shift to

a context in which the common ground includes neither evidence nor hypoth-

esis. If it did, those questions would generally be trivially answerable by the

questioner already. A broadly Gricean account then says: the questioner must

not be presupposing what they are asking about, on the assumption that they

are being cooperative. And then the context shifts to accommodate the

speaker’s not presupposing E by ensuring that :E becomes (again) a live

possibility, against which conversational background we can then evaluate

Pr H ∣Eð Þ so that it is a non-trivial question whether it exceeds Pr Hð Þ.
There is doubtless more to say about how background context selects

a relevant body of evidence against which confirmation is evaluated. But saying

it is not specifically the job of a logic of confirmation. And what has been said

suffices, I think, to fend off the challenge of old evidence.

3.3 Base Rates

Some students of the scientific method analyse the cases from Section 3.1

slightly differently. They are sympathetic to the idea that probability is central

to evidential support. But they are suspicious of the apparent arbitrariness that

goes into selecting a particular epistemic perspective to assign prior probabil-

ities to evidence and hypothesis (Royall 1997, p. xiii), and unconvinced by any

of the proposals I will discuss later (Section 4) to allow the background

evidence to constrain that selection uniquely. However these philosophers are

impressed with the apparent objectivity of the likelihoods that play such an

important role in confirmation. They want to rest their whole account of

confirmation on likelihoods, and set aside prior probabilities of evidence and

hypothesis as much as they can. I take a closer look at these Likelihoodists

(Milne 1996; Royall 1997; Sober 1994) in Online Appendix D. The evidential

probability framework ameliorates to a certain extent this Likelihoodist charge
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of ‘subjectivity’: there is nothing subjective about confirmation relative to

a probability model.

This Likelihoodist impulse should probably be resisted because there are

cases where the prior probability of hypotheses seems to be confirmationally

significant. Let’s consider a simplified example.

Mammogram

Mary, a woman aged 47, attends her annual mammogram. Mary has no

other symptoms, but while she is waiting for the initial results, she worries:

what if there is something abnormal on the scan? Won’t that be evidence of

cancer?

Mary has some reason to worry, but perhaps not as much as we might ante-

cedently think. Suppose we consider an epistemic perspective that incorporates

information about the error rates for mammograms for women in Mary’s

situation. Table 2 shows some broadly indicative aggregate statistics about

mammogram results, though the actual data is rather complex.

The true positive rate, otherwise known as the sensitivity of a test, is the

likelihood of an abnormal mammogram given cancer. Given these statistics,

Pr A ∣Cð Þ ¼ TP

TPþ FN
¼ 8529

9812
¼ 0:869:

The true negative rate, or specificity, is the likelihood of a normal mammo-

gram given that the test subject doesn’t have cancer:

Pr :A ∣:Cð Þ ¼ TN

TNþ FP
¼ 1; 486; 553

1; 672; 692
¼ 0:889:

Accordingly, the likelihood of an abnormal mammogram given no cancer is

Pr A ∣:Cð Þ ¼ 1–Pr :A ∣:Cð Þ ¼ 0:111 (cf. Hendrick &Helvie 2011, p.W113).

These likelihoods tell us about the test: how reliable is it? Because of how

rare cancer actually is, the reliability of the test is not especially informative for

Table 2 Aggregate test results for 1,682,504 mammograms 2007–2013
(Lehman et al. 2017, p. 53, table 2).

Normal
mammogram

Abnormal
mammogram Total

No cancer 1,486,553 (TN) 186,139 (FP) 1,672,692 (:C)
Cancer 1,283 (FN) 8,529 (TP) 9,812 (C)
Total 1,487,836 (:A) 194,668 (A) 1,682,504
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the patient. We can see this in the overall support that an abnormal test result

provides to the hypothesis of cancer. On the data in Table 2, the cancer rate

among all screenings is Pr Cð Þ ¼ 9; 812=1; 682; 504 ≈ 0:006. This is the base

rate. Bayes’ theorem tells us that the predictive value of a positive test result is

not the sensitivity of the test, but rather the probability of cancer given an

abnormal result:

Pr C ∣Að Þ ¼ Pr A ∣Cð ÞPr Cð Þ
Pr A ∣Cð ÞPr Cð Þ þ Pr :A ∣Cð ÞPr :Cð Þ

¼ 0:869 � 0:006
0:869 � 0:006þ 0:111 � 0:994 ≈ 0:045:

In effect, this posterior probability balances the sensitivity of the test against the

number of opportunities for even a reliable test to go wrong, indicated by the

high base rate for no cancer. So while we see incremental confirmation of cancer

from the abnormal result, we see that the degree to which the total evidence

supports a cancer diagnosis is very low.

The Bayesian approach makes it easy to incorporate the evidential relevance

of the base rate. In my framing, the base rate provides a constraint on the bearing

of statistical evidence about test reliability. In a world where the base rate ofH is

low, a positive result on a sensitive test is good evidence forH. In a world where

the base rate of H is high, that same positive result need not be good evidence

forH. The Bayesian approach incorporates both a story about confirmation, and

a story about how evidential relevance is fixed by background perspective, and

cases where base rates are significant show that understanding the impact of

evidence needs both. Accounts which neglect the base rate – including

Likelihoodism, significance testing, and frequentist statistics – do not provide

an account of evidential relevance, and suffer in comparison to the unified

picture provided by Bayesianism.

3.4 The Scientific Method

That Bayesian confirmation theory can reproduce judgements about evidential

support in particular cases is promising. That it has a natural and unified

account of the relevance of base rates is also promising. But we also have an

existing body of principles and heuristics that together form a proto-theory of

evidential support, embedded in the practice of science. The success of

science indicates some value to these truisms comprising the ‘scientific

method’, so Bayesian accounts of evidential support are vindicated when

they are able to reconstruct and systematise ideal scientific practice. As

Earman notes, ‘an adequate account of confirmation is not under obligation
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to give an unqualified endorsement to all such truisms’ (Earman 1992, p. 77),

but ideally, it should explain the success of those we should endorse. For

reasons of space, my discussion here will be partial. The topic of Bayesian

philosophy of science is treated extensively elsewhere (Earman 1992, pp. 63–

86; Horwich 1982, pp. 100–130; Howson & Urbach 1993, pp. 117–164;

Schupbach 2022).

Consider the role of refutation in scientific inference. When a theory

makes a determinate prediction (relative as always to background assump-

tions) which is not borne out in experiment, that is often taken to decisively

undermine the prospects of that theory. For example, the simplest aether

theory of the propagation of light was decisively undermined by the outcome

of the Michelson–Morley experiment, which did not observe the predicted

difference in the speed of light in perpendicular directions, while back-

ground assumptions excluded rival aether-preserving explanations.5 This

sort of case is central enough to scientific practice that Popper (1959) was

able to make it the centrepiece of his ‘falsificationist’ approach to theory

choice. The correctness of this judgement is supported by a Bayesian model.

When H determinately predicts E, relative to background assumptions, that

is reflected in the likelihood Pr :E ∣Hð Þ ¼ 0 (there is no prospect of E’s

falsity). In that case,

Pr H ∣:Eð Þ ¼ Pr :E ∣Hð Þ Pr Hð Þ
Pr :Eð Þ ¼ 0:

So falsifying evidence conclusively undermines a hypothesis. The displayed

equation shows that, in general, the degree of support of a hypothesis by

evidence is proportional to increasing likelihood, the limit case being where

H entails E.

There is an asymmetry here (which Popper’s view may mesh with), in that

evidence that a theory predicts we won’t see provides conclusive disconfirm-

ation, while evidence that a theory predicts wewill see does not yield conclusive

confirmation. (H is conclusively confirmed by E only when E excludes :H ,

relative to background knowledge.) But in those cases where a hypothesis

predicts some proposition, so that Pr E ∣Hð Þ ¼ 1, we see a degree of support

5 The role of background assumptions is vital; one can always, as the Quine–Duhem thesis would
have it, save a theory by rejecting an auxiliary assumption. Normally the relative confirmation
and disconfirmation of theory and auxiliary will depend on the relative impact of the refuting
evidence on the posterior probability of each; it is possible to model, in a fairly robust way,
historically plausible choices of epistemic perspective that reproduce widely accepted judge-
ments about when theories are refuted and when auxiliaries are to be rejected (Dorling 1979;
Strevens 2001).
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of H by E that is equal to Pr Hð Þ
Pr Eð Þ. Firstly, note that if we hold the prior probability

of H fixed, the more improbable E is, the more support it provides for H. This

gives us the value of surprising evidence: other things being equal, antecedently

unexpected evidence has greater evidential impact for the hypotheses that

predict it than evidence we’d expect anyway.6

Secondly, note that Pr H ∣Eð Þ ¼ Pr Hð Þ
Pr Eð Þ entails Pr H ∣Eð Þ > Pr Hð Þ: entailed

evidence invariably confirms, just as the Entailment condition would have it

(Section 1.4). This prompts us to briefly revisit Hempel’s theory of confirmation

(Section 1.5). Hempel endorsed this principle, which superficially seems akin to

the Entailment Principle:

Special Consequence

If an observation report confirms a hypothesis H , then it also confirms every

consequence of H . (Hempel 1945b, p. 103).

This principle has intuitive counterexamples, and a Bayesian account of con-

firmation explains why. Here is an example:

There is a jar of ten marbles in front of me, five of which were made in Canada
and five of which were made in the United States. Of the five marbles made in
Canada, four are white and one is red. Of the five marbles made in the United
States, all five are red. I am blindfolded, and a friend picks a marble at random
from the bag and calls the selected marble ‘marble X ’. He tells me that marble
X is red; let E be ‘X is red’,H1 be ‘X is the (unique) red marble fromCanada’,
and H2 be ‘X is from Canada’. (Kotzen 2012, p. 63)

H2 is a logical consequence of H1. The intuitive verdict is that while E

supports H1 (along with every other hypothesis that the marble is one of the

red ones), it doesn’t support H2 (since the typical Canadian marble isn’t red).

A Bayesian treatment endorses these verdicts. The evidence E supports H1:

Pr H1ð Þ ¼ 1=10 < 1=6 ¼ Pr H1 ∣Eð Þ. But E disconfirms H2: Pr H2ð Þ ¼
1=2 > 1=6 ¼ Pr H2 ∣Eð Þ. (This case also provides another counterexample to

Hempel’s Consistency Condition: E confirms both H1 and :H2, even though

they are inconsistent with one another.)

It appears to be a methodological rule that, other things being equal, the more

diverse the sources of evidence for one’s theory, the more strongly confirmed

6 An example discussed by Jeffrey (2008, section 2.3): In 1846, the French astronomer Leverrier,
on the basis of various irregularities in Uranus’ motion and Newtonian mechanics (call this H),
predicted the existence, and orbit, of a large, extra-Uranian planet. This planet was subsequently
found (call this E) and named ‘Neptune’. The prior credence in E is 1=180 – the probability of
choosing a point on a circle to within 1 degree (since all the planets are found in the ecliptic,
and that was the accuracy of Leverrier’s prediction). Pr E ∣Hð Þ ≈ 1; so Pr H ∣Eð Þ≈
Pr Hð Þ=Pr Eð Þ≈ 180 � Pr Hð Þ: a strong confirmatory boost for Newtonian mechanics. This kind of
pattern is seen also in the Babbage example from Section 3.1.
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that theory is. This can be captured in this maxim: A theory which makes

predictions in a number of disparate and seemingly unconnected areas is

more confirmed by that evidence than is a theory which is confirmed by

predictions only about a narrow and circumscribed range. This maxim is

also part of the grounds for recommending random sampling in population

inference. The Bayesian insight is that diverse evidence is not internally

correlated (Howson & Urbach 1993, p. 160; Steel 1996, pp. 667–668). If, for

example, the hypothesis is that all swans are white, then swans collected

from different countries would, if white, provide better evidence for the

hypothesis than swans collected from the same pond, as we know that if one

swan on a pond is white, it is much more likely to be related to other swans in

its pond, and those are more likely therefore to be white. If the hypothesis is

false, correlations between diverse evidence are more coincidental than

correlations between similar evidence. (From a falsificationist perspective,

diverse predictions pose a more severe test to the proposal that our hypoth-

esis is false.)

Again focussing on the case where hypothesis predicts evidence with (near)

certainty, if the evidence is diverse, it consists of at least two propositions, E1

and E2, such that truth of one is not positively relevant to the truth of the other, if

the hypothesis in question is false. (If it is true, then the evidence is all true,

so correlated.) So E1 and E2 are diverse relative to H iff the likelihood

Pr E1 ∧E2 ∣:Hð Þ is low, or at least if it is not greater than the product of the

individual likelihoods Pr E1 ∣:Hð ÞPr E2 ∣:Hð Þ.
The likelihood ratio Pr E1 ∧E2 ∣:Hð Þ

Pr E1 ∧E2 ∣Hð Þ features in this formulation of Bayes’

theorem:

Pr H ∣Eð Þ ¼ Pr Hð Þ
Pr Hð Þ þ Pr E1 ∧E2 ∣:Hð Þ

Pr E1 ∧E2 ∣Hð Þ Pr :Hð Þ
:

If the hypothesis H predicts both E1 and E2, then the likelihood Pr E1 ∧E2 ∣Hð Þ
is close to one. The likelihood ratio is therefore close to Pr E1 ∧E2 ∣:Hð Þ.
Substitute this in:

Pr H ∣E1 ∧E2ð Þ ≈ Pr Hð Þ
Pr Hð Þ þ Pr E1 ∧E2 ∣:Hð ÞPr :Hð Þ :

But if E1 and E2 are diverse (uncorrelated) evidence, then so long as neither is

certain given :H , this guarantees that the term Pr E1 ∧E2 ∣:Hð Þ < 1, and

hence that Pr H ∣E1 ∧E2ð Þ > Pr Hð Þ.
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Moreover, the more surprising each piece of independent evidence is, and the

more we have, the more confirmatory diverse evidence is. As we consider

additional pieces of diverse evidence,

lim
i→∞

Pr E1 ∧E2 ∧ . . . ∧Ei ∣:Hð Þ ¼ 0;

hence Pr H ∣E1 ∧E2 ∧ . . . ∧Eið Þ tends to 1. This result requires independent

evidence; correlated evidence doesn’t have increasing confirmatory impact the

more of it one collects.

We must bear in mind as always that judgements of diversity are relative to

theoretical background:

the notion of variety of evidence has to be relativized to the background
assumptions K, but there is no more than good scientific common sense here,
since, for example, before the scientific revolution the motions of the celestial
bodies seemed to belong to a different variety than the motions of terrestrial
projectiles, whereas after Newton they seem like peas in a pod. (Earman
1992, p. 79)

Here is another methodological rule: other things being equal, science prefers

naturally arising theories to ad hoc ones designed to predict the same evidence.

Suppose a hypothesis, springing unbidden to the scientific mind, entails a certain

piece of evidence; and another hypothesis is then designed to mimic the success of

the first theory, entailing the evidence by construction. An example is provided by

van Fraassen:

It is part of [Newton’s] theory that there is such a thing as Absolute Space, that
absolute motion is motion relative to Absolute Space, . . . . He offered in addition
the hypothesis (his term) that the centre of gravity of the solar system is at rest in
Absolute Space. But as he himself noted, the appearances would be no different
if that centre were in any other state of constant relative motion. This is the case
for two reasons: differences between true motions are not changed if we add
a constant factor to all velocities; and force is related to changes in motion
(accelerations) and to motion directly. (van Fraassen 1980, p. 46)

Consider Newton’s theory N, and the constructed alternative N þ~v, that the

centre of gravity of the solar system has constant absolute velocity ~v. These

theories will make the same empirical predictions, so from the point of view of

evidence they are indistinguishable. Yet one might think, Newton’s theory is

clearly to be preferred to each of the arbitrary variants. (Perhaps an even better

theory is neo-Newtonian, doing away with absolute space altogether.)

This sort of case has been raised as an objection to Likelihoodism (cf. Norton

2011, pp. 420–22). Considering only the likelihoods of hypotheses, what resources

does the Likelihoodist have to explain our distaste for ad hoc hypotheses? N and
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N þ~v both entail the evidence, so the likelihoods are the same, and there the

Likelihoodist account stops. To explain this methodological preference, we cannot

appeal to the likelihoods alone, but must also appeal to the disparity in prior

probability between the antecedently plausible Newtonian theory N and the

antecedently implausible N þ~v. One might offer all sorts of explanations for

why this prior disparity exists – perhaps Newton’s theory is simpler, more natural,

and less arbitrary – but that it exists and drives judgements of confirmation is

undeniable. The Bayesian view of ad hoc theories then is that theymay have some

credibility, and may be supported by evidence, but that generally the fact that they

are cooked up to preserve the empirical predictions prompts people to assign them

low probability:

people often respond immediately with incredulity, even derision, on first
hearing certain ad hoc hypotheses. . . . it is . . . likely that they are reacting to
what they see as the utter implausibility of the hypothesis. (Howson &
Urbach 1993, p. 158)

There is one kind of case that may trouble the Bayesian: when the ad hoc hypothesis

is cooked up to be entailed by the original hypothesis. SupposeN† is stipulated to be

the theory, ‘N or the empirical appearances are just as if N ’. Any evidence E

entailed by N is also entailed by N†; since N entails N†, Pr N†
� �

≥ Pr Nð Þ. So we

can’t appeal to the implausibility of ad hoc rivals to explain our decided

preference for N ; if N is probable enough to be believed, so is N†. In this

case, we might need to appeal to another broadly Gricean principle: that our

conversational contributions be as informative as they can be, subject to other

conversational norms. N is more informative than N†. Perhaps our preference

for N is about what we should saywe believe, more than about what is credible.

3.5 The Ravens Paradox

The role of background assumptions is also vital for the Bayesian treatment of

Hempel’s ‘paradox of the ravens’. Here is how Hempel introduces the problem:

if a is both a raven and black, then a certainly confirms S1: ‘8x Raven xð Þ→ð
Black xð ÞÞ’; and if d is neither black nor a raven, d certainly confirms S2:
‘8x :Black xð Þ→ :Raven xð Þ

� �
’. Let us now combine this simple stipula-

tion with the Equivalence Condition [(that evidence confirms logically
equivalent hypotheses equally)]: Since S1 and S2 are equivalent, d is confirm-
ing also for S1; and thus, we have to recognize as confirming for S1 any object
which is neither black nor a raven. Consequently, any red pencil, any green
leaf, and yellow cow, etc., becomes confirming evidence for the hypothesis
that all ravens are black. (Hempel 1945a, p. 14, notation modified)
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This conclusion appears implausible. Our judgement grows ‘out of the feeling

that the hypothesis that all ravens are black is about ravens, and not about non-

black things, nor about all things’ (Hempel 1945a, p. 17). The conclusion

Hempel draws is that Nicod’s Condition should be rejected in light of its

‘several deficiencies’ (Hempel 1945a, p. 22).

Clearly, the Bayesian will accept the Equivalence Condition; evidential support

relates propositions, given an epistemic perspective, and logically equivalent pro-

positions are identical. Existing counterexamples show that Nicod’s Condition isn’t

invariably correct (Section 1.5). But we cannot conclude that instances never

confirm generalisations; that would be overkill as a response to the paradox. The

Bayesian has an account here; indeed, they have two. For there is an account of the

circumstances under which Nicod’s Condition fails; and there is an account of how

to dissolve the paradox, even when Nicod’s Condition obtains.

How does the Bayesian account for the failures of Nicod’s Condition? By

appeal to background knowledge. Recall Good’s (1967, p. 322) example from

Section 1.5 of the two worlds, one with relatively few crows, all of which are

black, versus the other with many crows, one of which is white. Suppose our

background evidence is symmetrical between the two possible worlds, so we

adopt an epistemic perspective in which Pr Hð Þ ¼ 0:5. The evidence E is that

a black crow is selected at random: Pr E ∣Hð Þ ¼ 100
1;000;100 ≈ 0:0001, while

Pr E ∣:Hð Þ ¼ 1;000
1;001;001 ≈ 0:001.

7 Hence Pr Eð Þ ≈ 0:5 � 0:0001þ 0:5 � 0:001 ≈
0:00055, and Pr H ∣Eð Þ ≈ 0:009 < Pr Hð Þ. So we see evidence that disconfirms

the hypothesis even while being an instance of it. This example is rather

confected, but more realistic examples with the same structure are available.

Suppose an epidemiologist is thinking about a virulent illness, endemic over-

seas, which they are worrying may have begun to take root in their community.

The scenarios they are considering are two: there is no reservoir of disease in

their community, and there is a significant hitherto-undiagnosed population of

positive cases. They get word of a positive case recently diagnosed, an instance

of the generalisation ‘all cases of the disease have been identified’. But of course,

this positive case is conclusive evidence that the disease is in the community, and

hence conclusive evidence against the truth of the generalisation.

The counterexamples to Nicod’s Condition have the distinctive feature that

encountering certain instances of the generalisation indicates its falsity, rela-

tive to background knowledge. In many cases, however, whether we encoun-

ter an F is independent of any generalisation about the qualities of Fs:

Consider such a case (Earman 1992, p. 72; Howson & Urbach 1993, p. 127;

7 Here notice we must use the total evidence acquired; the evidence is not merely that there is
a black raven, but that a black raven was the result of a random selection – it is clearly that latter
aspect of the evidence that renders it so unlikely in the world where the generalization is true.
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see also Hosiasson-Lindenbaum 1940). Let the proposition that an entity a is

encountered be part of the background knowledge, and then letR be the proposition

‘a is a raven’, andB the proposition ‘a is black’. That a black raven is encountered is

then R∧B, a non-black, non-raven encountered being :B∧:R. Let A be the

hypothesis ‘all ravens are black’. R∧B confirms A iff Pr A ∣R∧Bð Þ=Pr Að Þ > 1.

Rearranging an instance of Bayes’ theorem gives us

Pr A ∣R∧Bð Þ
Pr Að Þ ¼ Pr R∧B ∣Að Þ

Pr R∧Bð Þ :

If all ravens are black, then a’s being a raven guarantees it to be black: so

Pr B ∣A∧Rð Þ ¼ 1. Hence Pr R∧B ∣Að Þ ¼ Pr R ∣Að Þ; and the independence of

encountering a raven from the hypotheses about the characteristics of ravens

entails that Pr R ∣Að Þ ¼ Pr Rð Þ. So

Pr A ∣R∧Bð Þ
Pr Að Þ ¼ Pr Rð Þ

Pr R∧Bð Þ :

Similar reasoning will show that

Pr A ∣:B∧:Rð Þ
Pr Að Þ ¼ Pr :Bð Þ

Pr :B∧:Rð Þ :

Turning now to the probability of the evidence, suppose we have various

hypotheses about the proportion of ravens that are black. Let Fi state that the

frequency of black things among the ravens is 100i per cent; thus A ¼ F1. The

probability, given one has encountered something, that it is a black raven is the

probability of encountering a raven, multiplied by the probability that the raven is

a black one: Pr Rð ÞPr B ∣Rð Þ. Given we don’t know the frequency of black ravens

among ravens, we use our background distribution over Fi to calculate

Pr B ∣Rð Þ ¼
X

i
Pr B ∣Fi ∧Rð ÞPr Fi ∣Rð Þ. In normal cases, R is admissible evi-

dence for the frequency hypothesis Fi. So Pr Fi ∣Rð Þ ¼ Pr Fið Þ. And

Pr B ∣Fi ∧Rð Þ ¼ i; this is an instance of the Principal Principle (Section 2.8).

Putting that all together:

Pr A ∣R∧Bð Þ
Pr Að Þ ¼ Pr Rð Þ

Pr Rð ÞPr B ∣Rð Þ ¼
1

Pr B ∣Rð Þ ¼
1X

i
iPr Fið Þ :

Similar reasoning gets us to this:

Pr A ∣:B∧:Rð Þ
Pr Að Þ ¼ Pr :Bð Þ

Pr :Bð ÞPr :R ∣:Bð Þ ¼
1

Pr :R ∣:Bð Þ :
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But in this case, we don’t need to consider chance hypotheses about the

frequency of non-ravens among the non-black things, because our background

evidence includes that the number of non-black things is vastly more than

the number of ravens, so almost all non-black things aren’t ravens:

Pr :R ∣:Bð Þ ¼ 1� �, hence Pr A ∣:B∧:Rð Þ ≈ Pr Að Þ. So we might get a tiny

improvement in the degree of support for A given a non-black, non-raven over

the unaugmented background information.

The same is not true for the observation of a black raven. There the improve-

ment of the prospects of A depends on the distribution over the chance hypoth-

eses Fi. Suppose we have a rough model, assigning equal probability of 0:25 to

each of F0;F1=3;F2=3;F1. Then
X

i
jiPr Fið Þ ¼ 0:5, and hence Pr A ∣R∧Bð Þ is

significantly greater than Pr Að Þ. (This is representative for any epistemic

perspective that assigns a uniform prior to each of the hypotheses about

frequency.) That is because we antecedently gave significant credence to

hypotheses stating the proportion of black ravens among the ravens is low,

and an encounter with a black raven was significantly in tension with those

hypotheses. On the other hand, had background knowledge already indicated

the proportion of black ravens was high, the confirmatory impact of the evi-

dence would have been less.

3.6 Measuring Confirmation

Howson & Urbach (1993) summarise as follows:

the fact that R∧B and :B∧:R both confirm a hypothesis does not imply
that they do so with equal force. Once it is recognised that confirmation is
a matter of degree, the conclusion [of Hempel’s paradox] is no longer so
counterintuitive, because it is compatible with :B∧:R confirming ‘All
R s are B s’, but to a minuscule and negligible degree. (Howson & Urbach
1993, p. 127)

Here, they suggest that part of the explanation for the judgements in the ravens

paradox is a confusion between no confirmation and negligible confirmation.

But their explanation invokes a notion of degree of confirmation that is as yet

unanalysed. Degree of support of a hypothesis, relative to background evidence,

there is an analysis of – that is just Pr Hð Þ. Degree of confirmation is a distinct

notion, a measure of how much incremental confirmation E provides to H over

the background evidence.8

8 This is why direct comparison of degrees of support – for example, the proposal that E favours H
over H0 if and only if Pr H ∣Eð Þ > Pr H0 ∣Eð Þ – is not a good measure of confirmation. Such
a comparison is also about background evidence and may not represent the incremental confirm-
ation contributed by E. Again the difference between degree of support and degree of
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Howson and Urbach note that when Pr H ∣Eð Þ ≈ Pr Hð Þ there is a small degree

of confirmation of H by E, while when Pr H ∣Eð Þ≫ Pr Hð Þ there is significant
degree of confirmation. These intuitions provide some fixed points to enable the

construction of a measure of how much confirmation H receives from E, which

is denoted by C H;Eð Þ. Unfortunately, there are many measures that satisfy these

basic constraints –many possible hypotheses about how C H ;Eð Þ behaves – and
yet disagree on further comparative questions of confirmation (Eells & Fitelson

2002; Fitelson 1999). I will consider one illustrative example here, the differ-

ence measure d, and relegate consideration of some other measures to the

Online Appendix E.

The difference measure explains our intuitions by proposing that the degree

of confirmation is the size of the difference between prior and posterior. Let us

use C H;Eð Þ to denote our target notion.

Difference

The difference measure is defined as d H;Eð Þ≝ Pr H ∣Eð Þ � Pr Hð Þ.
The Difference analysis says that C H ;Eð Þ ¼ d H;Eð Þ. (Earman 1992, p. 64;

Eells & Fitelson 2002, p. 131; Jeffrey 1992, p. 72).

This measure is positive when E confirmsH , zero in cases of independence, and

negative in cases where E disconfirms H . Those verdicts also seem in accord-

ance with intuition.

Suppose we adopt the Difference analysis. Let us look at how it captures the

suggestion with which we began: that while a white shoe might confirm the

hypothesis that all ravens are black to some extent, it won’t be as much as

a black raven would. The discussion in Section 3.5 gave us that

Pr A ∣:B∧:Rð Þ⪆ Pr Að Þ, so on the Difference measure we get immediately

that d A; :B∧:Rð Þ
� �

⪆ 0. The toy example in that same discussion gave us

that Pr A ∣R∧Bð Þ ¼ 2Pr Að Þ, so that d A;R∧Bð Þ > Pr Að Þ. Given some non-

negligible prior probability for A, this will entail that d A;R∧Bð Þ >
d A; :B∧:Rð Þ
� �

. So if the Difference analysis is correct, we can give

a successful Bayesian treatment of the intuitive difference in confirmatory

power of different sorts of confirming evidence in the ravens scenario.

Fitelson & Hawthorne (2010) give a full Bayesian treatment of this paradox.

How does one proceed to argue for a particular analysis of measure of confirm-

ation, such as the Difference analysis? The typical approach is to look at

particular structural constraints that we suppose confirmation ought to satisfy,

confirmation is pertinent. We can accept this principle however: that if Pr H ∣Eð Þ > Pr H0 ∣Eð Þ
then the total evidence, including E, favours H over H0.
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and check whether a proposed analysis secures those constraints. I will give

a particular example. Consider this thesis:

Commutativity Non-symmetry

For some H and E, C H;Eð Þ 6¼ C E;Hð Þ.
Intuitively, a measure of confirmation should satisfy this (Eells & Fitelson 2002,

p. 133). In the simplest case, E could be conclusive evidence for H without H

being conclusive evidence for E. A coin is to be tossed twice. That it lands heads

on the first toss (‘First’) is supportive, but inconclusive, evidence that it will

land heads on both tosses (‘Both’). But obviously, the evidence Both should

support the hypothesis First to a higher degree.

The Difference analysis gets this right. Take the standard fair coin probability

Pr, so that Pr Firstð Þ ¼ 1=2 and Pr Bothð Þ ¼ 1=4. Because Both entails First,

Pr First ∣Bothð Þ ¼ 1, so that

d First;Bothð Þ ¼ 1� Pr Firstð Þ ¼ 1=2:

But Pr Both ∣ Firstð Þ ¼ Pr Both∧Firstð Þ=Pr Firstð Þ ¼ 1=2, so that

d Both; Firstð Þ ¼ 1=2� 1=4 ¼ 1=4:

The Difference analysis successfully accommodates our intuitive verdict about

Commutativity Non-Symmetry. Indeed this analysis does pretty well in

accounting for a number of (non-) symmetries of C (Eells & Fitelson 2002,

p. 135), though it has been subject to certain criticisms (Christensen 1999; but

see Eells & Fitelson 2000). In Online Appendix E, I look at a case that poses

a particular difficulty for the Difference analysis and that might be evidence for

another view, the Log-Likelihood analysis (Fitelson 2007).

The debate over the Difference analysis, as over any ‘conceptual analysis’,

rumbles on (Crupi 2021; Titelbaum 2022, pp. 225–230). There appears to be no

unique best satisfier of all ‘intuitive’ desiderata on measures of confirmation.

A pluralist attitude might suggest itself. All measures agree on the qualitative

fact of whether E confirms H , differing only on the question how much? But

what turns on this question? What ultimately matters for belief and action is

how much the total evidence from some epistemic perspective we have adopted

supports a hypothesis. Incremental confirmation matters because a confirmed

theory will be more overall supported by the evidence, and the successes of the

Bayesian in accounting for scientific maxims depend on that notion. But it is

harder to identify scientific maxims that require a very precisely specified

measure of confirmation. In most concrete cases, the existence of some plaus-

ible measure that delivers an acceptable verdict is taken as sufficient to vindicate
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a Bayesian approach. The plurality of measures would then reflect the plurality

of our interests in quantifying confirmation; for example, sometimes we care

about the absolute size of increases, in which case d is a useful measure; but

sometimes we might care about relative size, in which case another measure

(such as the aforementioned Log-Likelihood measure) might do better.9 This

situation isn’t like the Church–Turing thesis, where radically different attempts

to characterise a pre-theoretical notion of computability ended up converging

on the same class of computable functions. That example is highly unrepresen-

tative of the process of explication. Most philosophically interesting notions

turn out upon precisification to splinter into finely distinguished but broadly

overlapping notions, and it is hardly to be suspected that measures of incremen-

tal confirmation will be different.

3.7 Inductive Logic and Inductive Framework

The best place to finish the positive Bayesian story is where we began: with

induction. Inductive inference was understood as covering all species of inference

to the best explanation, including inverse inference from a sample to a population,

or to a subsequent sample (Section 1.1). The synchronic aspect of this, the part that

could be the subject of inductive logic, is to articulate constraints that explanation

places on rational epistemic perspectives. (We emphasise the ‘best explanation’

part of ‘inference to the best explanation’.) Induction is vindicated to the extent

that a body of evidence supports the best explanation of that evidence. In Bayesian

terms, broadly speaking, we accommodate induction by showing that when H

explains E, that E confirms H; and that when H is the best explanation of E, H is

probable in light of a body of total evidence including E.

One standard view of explanation is that an explanation shows how an

otherwise puzzling event is to be accommodated and made comprehensible

within a broader framework. Van Fraassen (1980, chapter 6) suggests that

explanations are proffered as answers to ‘why’-questions; to explain an event

is to provide relevant information about an event and its participants, relative to

the background presuppositions of the questioner. Very often, though perhaps

not invariably, this will take the form of ‘information about its causal history’

(Lewis 1986b, p. 217). So to explain why the vase broke could involve citing

a cause of the vase breaking, such as its being dropped. Yet a question coming

from a different background might demand a different answer. Suppose our

9 Some have argued against d on these grounds (Schlesinger 1995; Zalabardo 2009), because
a large increase in relative risk (e.g., a thousand-fold increase in cancer risk after radiation
exposure) might be associated with a very low value of d cancer; radiationð Þ. It is actually by no
means clear that the pre-theoretical judgements about confirmation we are attempting to system-
atise are at variance with this result.
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request for explanation takes this form: ‘Yes, I know it was dropped, but why

did it break?’); in that case, the request for explanation might be satisfied by

providing information about the fragility of the vase. This is still information

about the causal history.

Very often, causal relations are manifest in relations of statistical dependence.

When C is a body of information about causes, and E some effect of those

causes, very often Pr E ∣Cð Þ > Pr Eð Þ.10 The broken vase is more probable given

it was dropped than otherwise. The background is involved in selecting

a pertinent probability function: it is more probable that the vase breaks given

it was fragile and dropped, than that it is dropped alone, given a background that

does not build in the fragility of the vase. Putting this together: very often, to

explain an event is to offer information, relative to a background body of

evidence, such that the likelihood of the event given the information is greater

than its prior probability:

where the hypotheses are specific, a hypothesis, H, explains the data better
than H 0, if true, just when H would make the data more expected than H 0. In
judging which hypothesis renders the data most understandable, we consider
nothing more than which hypothesis renders it most expected. (Henderson
2014, p. 700)

A theory is explanatory to the extent that it encapsulates such information, so

that – very often – H explains E just when it renders E more likely than

otherwise, Pr E ∣Hð Þ > Pr Eð Þ. An elementary application of Bayes’ theorem

then entails:

Bayesian Explanation

When H explains E by making it more likely than otherwise, relative to some

background evidence and conception of evidential relevance, then E confirms

H: if Pr E ∣Hð Þ > Pr Eð Þ, then Pr H ∣Eð Þ > Pr Hð Þ.
Recall an example from Section 1.1. The Channelled Scablands of western

Washington state is a complex landscape of braided channels, exhibiting the

characteristics seen in microcosm in dry gorges incised into harder rock, charac-

teristics such as potholes, gravel bars, and scoured deep grooves. Bretz hypothe-

sised that this landscape was indeed the effect of a cataclysmic flood, in which

debris-laden water was discharged on such a vast scale that an existing dissected

plateau was filled beyond the capacity of its existing drainage, so that water

spilled over the top of the plateau, removed the existing topsoil, and carved

branching and reuniting channels into the bedrock (Baker 2009, pp. 402–403).

10 Causation is not quite perfectly manifest in statistical dependence, since there may be causes that
do not raise the probability of their effects (Glynn 2010, pp. 349–353; Rosen 1978).
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The hypothesis certainly makes the evidence more probable than otherwise:

given attested geological mechanisms as the background assumptions,

a gigantic flood would produce just what is seen at the landscape scale.

Nevertheless, Bretz’ hypothesis took many years to gain acceptance, des-

pite its explanatory merits, because the source of such an extraordinary

volume of water was unknown. Subsequent evidence of an ice sheet intruding

into Idaho suggested the existence of a lake formed behind an ice dam,

containing 2,100 km3 of water and covering much of western Montana. The

collapse of the ice dam, it is hypothesised, would have resulted in the evacu-

ation of the whole of this body of water in a mere 48 hours. It was only after the

background evidence provided a remotely plausible source for the required

water (with the required erosive power) that Bretz’ hypothesis was adopted.

So part of what made it ultimately the best explanation was not only its

explanation of the data, but its prior plausibility. As before, likelihoods

alone do not suffice. To generalise:

Bayesian IBE

H is the best explanation of the dataE when (i)H explains E, Pr E ∣Hð Þ > Pr Eð Þ,
and (ii) H is most probable among competing explanations.

Bayesian inference to the best explanation also shows the limits of IBE. For it is

quite possible for H to be the best explanation of E and for some rival to be far

more credible, antecedently. A theory may exhibit many explanatory virtues,

such as simplicity, elegance, and deployment of familiar mechanisms that

enable it to generate understanding, and so on – all those features contributing

to a theory’s ‘loveliness’ (Lipton 2004, p. 59) – and yet not be probable:

‘explanatory goodness, whatever it is, looks to be at least somewhat independ-

ent of prior conditional [probability]’ (Weisberg 2009, p. 130). Moreover, it

may be quite rational to have attitudes that mirror this perspective. In the

absence of information favouring the enormous glacial lake, most geologists

were sure that (i) Bretz’ catastrophic flood hypothesis was an excellent explan-

ation of the data, and (ii) that less unified, ragged, and unfamiliar hypotheses

were to be preferred.

What we want, of course, is a story that explains the rationality of both

parties. Bretz was open to the existence of a gigantic flood, compelled by the

field evidence that seemed to demand it. For him, we may suppose, what was

vivid is just how low Pr E ∣:Hð Þ was, which ensured that relative to his

background evidence, Pr H ∣Eð Þ was sufficiently high for overall credibility.

The rival view involved a different perspective, Pr0, such that Pr0 Hð Þwas so low
that Pr0 H ∣Eð Þ could still not suffice for credibility. This difference in back-

ground perspective might accommodate the joint rationality of everyone
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involved at the earlier stages, though perhaps even Pr0 H ∣E∧Lð Þ should be

high, where L is the evidence favouring the glacial lake. If ‘inference to the best

explanation’ is understood to involve inference based on explanatory consider-

ations divorced from prior credibility and background knowledge, then it is

lucky that Bayesians cannot reconstruct IBE in that sense.11 But very often,

explanatory factors are correlated with the likelihoods of evidence given

hypotheses (Henderson 2014, p. 709), and thus the Bayesian offers an explica-

tion of the merits of IBE, when it has merit.

The Bayesian reconstruction of inference to the best explanation is a key part

of the Bayesian account of induction, alongside the more particular maxims of

inductive methodology discussed earlier (Sections 3.1, 3.3–3.5). The role of

background assumptions has been a constant refrain. And this is just as it should

be. The upshot of the earlier discussion of Hume’s problem of induction in

Section 1.6 was that a theory of the relation ‘E supports H relative to standards

S’ is needed – and I have offered a broadly Bayesian account of this notion.

This point can be sharpened. Let’s consider a highly abstracted but quite general

representation of ‘classic’ inductive inferences. A possible world is an infinite

binary sequence of outcomes (like the results of successive coin tosses); the correct

theory of a given world is simply identified with the theory that predicts each

outcome (it needn’t have more ‘abstract’ theoretical structure); hence the space of

possibilities is given by the set of all such sequences. A broadly Bayesian theory of

inductive evidential support assigns probabilities to hypotheses based on initial

subsequences; it is a classic case of inverse inference from a sample to a population.

Some Bayesian results can be established that seem to vindicate induction. Suppose

Hi is the sequence that hypothesis H predicts for the initial i outcomes. Thus

H ¼ H∞, and for each i, H ⊨Hi. It can be shown that, so long as Pr Hð Þ > 0,

lim
i→∞

Pr Hiþ1 ∣Hið Þ ¼ 1:

That is, the probability of the correct hypothesis tends to 1 as more outcomes

conformable with it accumulate (Howson 2000, p. 72). This looks like

a substantive vindication of ampliative inference.

The first limitation to note is that the requirement that Pr Hð Þ > 0, which may

look innocuous, is extremely substantive. This space of hypotheses is the Cantor

space, the set of all infinite binary sequences; that space is uncountable. If each

11 Van Fraassen offers another Bayesian argument against IBE (1989, p. 166), construed as an
inference that boosts the posterior credibility of explanatory hypotheses over and above the
extent to which the evidence favours them; so-construed, what I’ve been discussing is not IBE,
and luckily so, since the rule van Fraassen is discussing seems manifestly irrational if truth is
what is sought.
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hypothesis were given equal probability, as under the standard Lebesgue meas-

ure, each hypothesis would have prior probability zero, and the result would

apply to none of them. If some hypothesis is eventually to be maximally

supported by the total evidence, it must be assigned some initial positive

probability – indeed, there must be at most countably many hypotheses assigned

positive probability. So almost all possible hypotheses about the sequence of

outcomes need to be excluded ab initio. Of course, one might be unlucky

enough to assign probability 0 to the true hypothesis, in which case after finitely

many data points all the live hypotheses will have been refuted. At that point,

one must simply restart with a new hypotheses space, the set of all infinite

binary sequences which begin with the previously observed data. That is still an

uncountable space (it simply involves pre-pending the observed data to each

element of the Cantor space), and subject to the same worries. So the choice of

epistemic perspective already has to make substantive assumptions about which

possible hypotheses to consider ‘live’; assumptions which are required before

confirmation can occur, and even in the presence of observed data, are not fixed

by that data.

Secondly, the result tells us nothing about the speed of convergence.

Eventually, every rival hypotheses is eliminated by some data point. But

after any finite time, the data points eliminating incorrect hypotheses may be

arbitrarily far away. So to ensure robust inductive support of the correct

hypothesis, we shall have to make the further substantive assumption that

the data we have so far are a representative sample of the whole population.

That assumption seems a priori quite strong; an infinite population in which

after a certain point no F s are G can nevertheless begin with arbitrarily many

initial F s which are G s; hypotheses of that sort simply have to be excluded by

fiat. Indeed, whatever we do, we shall need to make some assumptions about

what sort of overall hypotheses are supported by a given initial sequence of the

data. For example, how quickly should we ‘learn from experience’? How

many consecutive initial 1s should it take for us to become more confident

than not that all the outcomes will be 1s? How inclined we are to judge that the

temporally initial conditions might well be unrepresentative of the whole

sequence of outcomes? For example, were we to note that in the actual

world, the early universe is very unlike the universe over most of the time,

we might be hesitant to draw any conclusions from the early data – that

naturally requires some judgement about when the data stops being early.12

12 Compare also hypotheses about pandemic spread: we should expect those who get the disease
early to be systematically different frommore cautious individuals who delay infection, in a way
that cannot be judged without assumptions about the relative proportions of these individuals in
the population.
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These kinds of assumptions are most readily understood as constraints on

conditional probabilities: what distribution over hypotheses does a given piece

of evidence license? These examples show that the Bayesian not only invokes

prior probabilities, but may well invoke conditional probabilities too that need

not be uniquely constrained.

Any actionable inductive practice must unavoidably involve some prior

assumptions; a third relatum of the evidential support relation, an epistemic

perspective encoding both antecedent judgements of hypothesis plausibility and

prior conditional judgements of evidential relevance. A virtue of the Bayesian

account I’ve developed is that it makes these assumptions explicit in the

evidential probability model of epistemic perspectives.

A challenge sometimes posed is that this explicit invocation of a probability

model shows that I haven’t really offered a theory of evidential support after

all – that this is only an ‘inductive framework’, rather than an ‘inductive logic’

that guides scientific argument:

particular inferences can almost always be brought into accord with the
Bayesian scheme by assigning degrees of belief more or less ad hoc, but
we learn nothing from this agreement. What we want is an explanation of
scientific argument; what the Bayesians give us is a theory of learning, indeed
a theory of personal learning. But arguments are more or Jess impersonal;
I make an argument to persuade anyone informed of the premisses, and in
doing so I am not reporting any bit of autobiography. . . . Alternatively, and
more hopefully, Bayesians may suggest that we give arguments exactly
because there are general principles restricting belief, principles that are
widely subscribed to, and in giving arguments we are attempting to show
that, supposing our audience has certain beliefs, they must in view of these
principles have other beliefs, those we are trying to establish. There is nothing
controversial about this suggestion, and I endorse it. What is controversial is
that the general principles required for argument can best be understood as
conditions restricting prior probabilities in a Bayesian framework.
Sometimes they can, perhaps, but I think that when arguments turn on relating
evidence to theory, it is very difficult to explicate them in a plausible way
within the Bayesian framework. (Glymour 1981, pp. 74–5; see also Strevens
2004)

The first point to make in response is that this objection seems to require too

much of logic, regardless of induction. The second is that only some Bayesians

offer theories of personal learning; not this one. The final point is to note that the

proof of Bayesian principles is in the pudding; a review of the cases discussed

previously, in which Bayesian precepts rationalise and systematise scientific

conceptions of good evidence, provides defeasible grounds favouring the

Bayesian model.

62 Philosophy and Logic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009210171
Downloaded from https://www.cambridge.org/core. IP address: 18.221.59.228, on 19 Feb 2025 at 13:09:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009210171
https://www.cambridge.org/core


4 Uniqueness and the Problem of the Priors

I begin this section by outlining various issues around the justification of prior

probabilities, and frame responses as permissivist or impermissivist (Section 4.1).

In Section 4.2, I describe some permissivist attempts to explain away the demand

for unique rational priors. In Section 4.3, I look at the Principle of Indifference and

its role in attempts at constructing a unique prior, and describe the charge of

inconsistency levelled at it. I turn to formal approaches to constructing prior

probabilities at the end of the section: to Carnap’s inductive logic in Section 4.4,

and Solomonoff’s algorithmic probability approach in the concluding Section 4.5.

Neither ultimately fares well.

4.1 The Problem of the Priors

The ‘problem of the priors’ is not one problem, but rather a cluster of issues that

circle around the plurality of coherent evidential probability functions.

1. One issue concerns belief and action: if there are many epistemic perspec-

tives, but we need to plump for a particular credence function to feed into our

deliberations, how ought we choose an epistemic perspective to adopt? This

issue was introduced in Section 2.8, but any solution will depend on what we

say in this section.

2. A second issue concerns the rationality of epistemic perspectives. We might

want to say that conspiracy theorists, cranks, and those who persist in

salvaging a preferred hypotheses by denial of auxiliary assumptions are

being unreasonable, even if, technically, they seem to accurately deploy

scientific standards. The source of such recalcitrance, on the Bayesian view,

lies in the prior distribution over hypotheses. If epistemic perspectives

provide ideals for rational belief, the space of epistemic perspectives must

be more tightly constrained than hitherto.

3. A related issue concerns procedural rationality. The vindication in Section 3

of induction, or of the canons of scientific methodology, required assump-

tions about the priors. Other priors would vindicate different methodological

maxims: counter-induction, preferences for unrepresentative samples and

biased evidence. But it would be unreasonable to use these alternative

maxims; a reasonable person wouldn’t respond to evidence in the ways

these perspectives appear to license. The Bayesian picture accommodates

rational responses to evidence, but seems unduly tolerant of other responses,

to the extent where scientists ‘may disagree on sufficiently many important

questions that the consensus required for scientific progress is undermined’

(Strevens 2006, p. 82).
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4. A further issue concerns the objectivity of science. Science is a self-

regulating community, with broad intersubjective agreement on procedures

and on the space of legitimate theorising. ‘One’s expectation, or hope if you

will, is that the explanation of the intersubjective agreement on such matters

is not merely historical or sociological but has a justificatory character’

(Earman 1992, pp. 137–138). Without robust internal constraints on the

allowable epistemic perspectives, scientific consensus looks more like the

product of exclusion than the ineluctable workings of the scientific method.

5. The Bayesian picture seems to put the cart before the horse. It puts attitudes,

whether actual or idealised, in the position that should rightly be occupied by

the evidential connections that justify those attitudes: ‘our judgment of the

relevance of evidence to theory depends on the perception of a structural

connection between the two . . . degree of belief is, at best, epiphenomenal’

(Glymour 1981, pp. 92–93).

6. Evidential probabilities must represent ignorance, to be sufficiently amen-

able to updating in light of new evidence: ‘our initial beliefs should not

unfairly favor one empirical hypothesis over another. . . . an adequate

account of how to respond to evidence should be neutral and “let the data

speak for itself”’ (Meacham 2014, pp. 1193–1194). But Bayesian priors

‘exercise a controlling influence’ over subsequent attitudes, and are insuffi-

ciently neutral (Norton 2011, pp. 428–429).

There are many ideas swirling around here, and they are not all pulling in the

same direction. A central tension is whether the priors should be neutral, open to

being guided by evidence, or instead impose rigid confines on the acceptable

responses to evidence. To ensure the rationality and objectivity of inductive

practice, we want to require epistemic perspectives to exhibit a uniformity of

response to a given piece of information, at least if they share their other

background information. That desired uniformity of response across perspec-

tives mandates a non-uniform response to hypotheses by those perspectives,

because some hypotheses will gain significant support from the evidence they

predict only if ‘unreasonable’ responses to evidence are deployed. There is

nothing incoherent about the theory Hume entertains, that while bread so far has

given us nourishment and support, from now on it will not. But in a scenario

where it is true, belief in it on the basis of the evidence can only come from

a quite different theory of evidential support than the one we actually utilise.

This is perhaps another manifestation of the phenomenon of the underdetermin-

ation of theory by evidence.

The problem of the priors, as I see it, is to resolve this tension between

treating theories fairly, not letting prejudice scupper their chances at
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confirmation, and responding to evidence in a productive way that eventually

leads to reasonable scientific consensus. Two approaches suggest themselves.

The permissive response acknowledges that there are many acceptable

responses to a given body of total evidence, and no guarantee that the true

hypotheses will be eventually favoured by the evidence regardless of which

possible epistemic standards are considered (Section 2.8). Each standard

favours some theories over others, but no one standard is singled out prior to

experience, hence no theories are disqualified ab initio. To secure scientific

progress, the permissivist allows (i) it is rational to opt for one epistemic

perspective over another, even holding fixed total evidence, and even without

its approach being favoured by some decisive epistemic reason; and (ii) shared

situational and sociological factors encourage different scientists to opt for

more or less similar perspectives. These two factors explain both the wide-

spread agreement on evidential standards, and the rationality of those standards;

the drawback many see is that the convergence on common standards isn’t

explained by their being rationally required, which seems to leave the approach

open to a charge of arbitrariness.

The impermissive response is different. Impermissivists deny that there are

alternative equally good ways of responding to evidence. I will focus on the

species of impermissivist who asserts that there is a unique acceptable epistemic

perspective for any given body of total evidence. Such an impermissivist accepts:

Uniqueness

‘There is a unique rational response to any particular body of evidence’ (Kopec

& Titelbaum 2016, p. 189); for any ‘evidential situation . . . there is a uniquely

rational state to be in right then’ (Greco & Hedden 2016, p. 392).

Given Uniqueness and the discussion in Section 3.7, it will turn out that many

hypotheses are guaranteed not to be supported by the evidence, having been

excluded from the start by the unique epistemic perspective compatible with null

evidence (Meacham 2014, p. 1213). So not every hypothesis is treated fairly, and

(depending on the interaction of Uniqueness with modality) it could turn out that

in some scenarios the truth cannot be rationally supported by the evidence. The

defenders of Uniqueness are sensitive to this concern, and the concrete imple-

mentations of Uniqueness that have been put forward, and that I will discuss, all

attempt to build in neutrality between possible hypotheses as a desideratum. The

objectivity and rationality of science is secured, as a more than sociological

matter, so long as the scientific method follows the dictates of the uniquely

rational epistemic perspective – but again, defenders of Uniqueness have used

conformity with standard scientific maxims as constraints on the construction of
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the unique function. Uniqueness may hold out the promise of resolving the

problems of the priors.

The principal problems for Uniqueness are two:13 the manifest implausibil-

ity of denying that there can ever be reasonable disagreements about the

significance of a piece of evidence (Rosen 2001, p. 71); and the challenge of

constructing or defining the uniquely rational epistemic perspective. Some

defenders of Uniqueness have wanted to dodge the second challenge, suggest-

ing that while there is a uniquely rational perspective to take, given any body

of evidence, it is not in general easily known to us (White 2009, section 3).

Whether that is viable or not, everyone can agree that the actual provision of

a uniquely rational prior would show permissivism to be false, so I will

concentrate on constructive proposals in what follows. Proponents of particu-

lar constructive projects are known as objective Bayesians, and so I will focus

on the rivalry between Bayesian permissivists and extant objective Bayesians

in what follows. I wish to resist the appropriation of the terminology of

‘objective Bayesianism’ by proponents of Uniqueness however; the permis-

sivist theory of epistemic perspectives defended in Section 2 is not

a subjectivist account, but it is compatible with permissivism. I make no secret

below of the fact that I have a great deal of sympathy for the project of

permissivist objective Bayesianism.

4.2 Permissivism and Priors

One popular early broadly permissivist approach was to try and argue that while

permissivism was true of ‘informationless’ priors, all such priors end up con-

verging to a Unique shared conditional probability when given the same evi-

dence – the priors wash out, as it is sometimes put: ‘empirical evidence will

bring together any two points of view provided they are not dogmatic with

respect to each other’ (Gaifman & Snir 1982, p. 498). The mathematical

elegance of these convergence-of-opinion theorems is undeniable, but they

have strong assumptions and rather weak conclusions (Earman 1992, pp. 141–

154). The requirement that the perspectives to be merged not be dogmatic with

respect to each other requires that they assign probability zero to the same

13 Permissivism and impermissivism, in my usage, are theses about epistemic perspectives, not
individual attitudes. Kopec & Titelbaum (2016, pp. 190–192) note that ‘Uniqueness’ has been
used to label many different claims. This creates an opportunity to deflect certain challenges. For
example, perhaps the uniqueness of ideal rationality is compatible with permissivism about
individual credence – maybe you can be rational if your credence suitably approximates the
ideal, subject to your cognitive limitations. Perhaps permissiveness about evidential standards is
practically inert, because individual rationality requires deference to peers in a way that secures
credal agreement.
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outcomes. In the absence of Regularity, and in the presence of very rich spaces

of possible hypotheses, very many pairs of acceptable perspectives will there-

fore not meet the preconditions to be reconcilable with one another. The

convergence results also give no indication of the time frame for the priors to

wash out, rendering them ineffective as an explanation of current scientific

consensus on evidential support.

Recalling that evidential support and confirmation have been defined relative

to an epistemic perspective (evidential probability model), the permissivist can

argue that rationality and objectivity have been secured. It is an objective fact

that Pr H ∣Eð Þ > Pr0 H ∣Eð Þ, for suitable Pr and Pr0; that is the kind of fact that

inductive logic yields. The choice as to whether Pr and Pr0 ought to feature in

scientific inference is a matter that goes beyond inductive logic.

One might respond at this point by asking, Where do the probability modelsM
come from? and how does one choose an ‘appropriate’ probability model in
a given inductive logical context? These are good questions. However, it is not
clear that they must be answered by the inductive logician qua logician. . . . It is
not the business of the inductive logician to tell people which probability
models they should use (presumably, that is an epistemic or pragmatic ques-
tion), but once a probabilitymodel is specified, the inductive logical relations in
that model . . . are determined objectively and non-contingently. In the present
approach, the duty of the inductive logician is (simply) to explicate the
[confirmation]-function—not to decide which probability models should be
used inwhich contexts. (Fitelson 2005, pp. 391–392; cf. Earman 1992, p. 159)

Onemight follow the discussion of Section 3.2 and appeal to context as supplying

evidential standards, just as it supplies other parameters to complete overtly

unsaturated expressions. It has been argued that natural language quantifier

phrases like ‘every person’ and ‘some plant’ must involve reference to domains

of quantification, supplied automatically by context when no overt domain is

specified (Stanley 2000; Stanley & Szabó 2000). While epistemic contextualism

about ‘knows’ is fiercely contested, that ‘is confirmed’ or ‘is supported’ are

gradable adjectives is quite plausible. On the present view natural language

uses of ‘supports’ or ‘confirms’ will pick up some contextually supplied prob-

ability model in order to have a semantic content at all; it is unsurprising that in

the course of a single conversation the same model will be supplied for all

occurrences of ‘E confirms H’ where no epistemic perspective is explicitly

mentioned. The contextualist approach needn’t require that any explicit calcula-

tion take place to generate an appropriate probability model; it will be one that

‘fits’ the general background beliefs of speakers and makes the claims they make

about confirmation and evidence broadly true. (Again accommodation will play
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a role here: say ‘E supports H’ and you thereby make your context one in which

the relevant standards make that true, other things being equal.)

Invoking context may seem to have all the advantages of theft over honest

toil. So the permissivist may wish to bemore specific about why some epistemic

perspective might be a candidate for contextual selection. Permissivists have

a story to tell about this. It will be one that, like Hume’s own account of

induction, aims to explain where it cannot justify. There is no pre-given ideal

to which we must conform; the explanation of our shared epistemic standards

then must appeal to factors that might plausibly produce the phenomenon.

Hume appealed to both ‘custom or habit’(1999/1748, para. 5.5) and ‘instinct’

(1999/1748, para. 9.6), and doubtless both, in updated forms, may play a role in

explaining our inductive practice. (Nowadays we might well explain instinct in

its turn as the product of natural selection.) The inclination towards having

certain priors that produce relatively swift ‘learning from experience’ (or per-

haps, ‘jumping to inductive conclusions’) is certainly evident in practice. The

rational critique of such priors will generally proceed not from selecting some

other prior a priori, but selecting some rival prior, more cautious or responsible,

that resembles the hasty prior in many ways. (Perhaps it will be one that takes the

same evidence to be confirmatory of the same hypotheses, but where the degree

of confirmation is lower, and hence any approach to inductively-based confi-

dence in a generalisation will be slower.) The point is that the scientific method

might involve a refinement of our habits, not the heroic creation of a theory of

evidential support out of whole cloth.

Another factor must be sociological – Hume’s ‘custom’. Scientists are

trained, not born. They are enculturated into the scientific mindset, learning

through exposure to their mentors and the literature which hypotheses are seen

as viable, what sort of evidence is taken to provide a compelling test, and so on.

If the scientific method can be captured by some constraints on epistemic

perspectives, and those constraints are widely endorsed, and there is consider-

able benefit to being in line with community opinion on confirmation (as there is

in actual scientific communities), that is a prudential reason for budding scien-

tists to respect those constraints in the evaluation of evidence.

The permissivist who appeals to sociological or instinctual factors does open

themselves up to a charge of arbitrariness (Feldman 2007, pp. 204–205; White

2005, pp. 451–452). Had the background factors been different – had you been

differently trained – different epistemic perspective would have been open to

you to adopt. While your current standards suggest that E is evidence for H,

other standards you could easily have had (had you gone to graduate school

elsewhere and had a different mentor) would suggest that E undermines H .

Suppose you chose your graduate school for epistemically irrelevant reasons.
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(Perhaps, like me, you wanted to be close to New York City.) Can you really

think your current attitudes about evidential support are defensible given their

fragility?

But the counterfactual about evidential support in no way suggests that you

have to dissociate yourself from your current standards once you acknowledge

permissivism. What it is to adopt some standards as your own is to regard them

as conducing to rational belief. If your response to cases is to be open to thinking

those standards might not be reliable, then one hasn’t fully adopted those

standards. Once one has adopted them, however, one is committed ex cathedra

to judging that other standards are defective. After all, while H is likely to be

true given E, those other standards say it is likely to be false! So those standards

will probably get things wrong. One might, as a permissivist, think that one is

lucky to have been trained in such a way as to have reliable standards, unlike

one’s peers elsewhere, who are rational but unlucky. But one cannot take their

rationality to be a reason to abandon reliable standards, either by suspending

judgement on the verdicts of one’s own standards, or plumping for rival

standards. There is no standpoint-independent ‘meta-perspective’ that gives

one neutral standards for evaluating epistemic standards (Schoenfield 2012,

p. 202; cf. Horowitz 2014, pp. 42–45); there is only where you are.14

Whatever the merits of this response to the worry about arbitrariness, it

remains unsettling to think that scientific rationality could involve any element

of luck or convention. And a compelling answer to any sort of permissivism

would be the provision of a rational prior that supported our inductive practice

while meeting the desiderata of neutrality and non-arbitrariness implicit in the

problem of the priors. In the remainder of this section, I will consider a number

of attempts to carry out this task.

4.3 Constructing Priors: the Principle of Indifference

All prominent attempts to construct neutral priors take as their starting point the

Leibnizian idea that probability is graded possibility. The uniquely best measure

of the degree of possibility – the best probability function – is the one that

reflects the natural structure of the space of possibilities. Various proposals have

been offered that claim to discern this natural structure. The classical theory of

probability is a good place to start.

The theory of chance consists in reducing all the events of the same kind to
a certain number of cases equally possible, that is to say, to such as we may be

14 Similar things might be said about other standards – perhaps the right thing to say about aesthetic
standards is broadly permissivist, but acknowledging that others can be rational in deploying
different aesthetic standards doesn’t require you to change your evaluation of artwork.
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equally undecided about in regard to their existence, and in determining the
number of cases favorable to the event whose probability is sought. The ratio
of this number to that of all the cases possible is the measure of this
probability, which is thus simply a fraction whose numerator is the number
of favorable cases and whose denominator is the number of all the cases
possible. (Laplace 1995/1825, pp. 6–7)

The classical theory says that ‘equal possibilities’ should be assigned equal

probabilities, and that every probability is reducible to some combination of

equal probabilities. The theory was presented as an account of physical prob-

ability. It was inadequate to that task, as it could not handle infinite outcome

spaces, and excluded the possibility of basic cases with unequal probabilities,

such as a biased die.15 But it is more promising as an account of prior

probability. Laplace talks of cases about which ‘we may be equally undecided

about in regard to their existence’ (my emphasis), and this can be read as

suggesting a lack of evidence either way. In that case, Laplace is offering an

early version of the:

Principle of Indifference (POI)

‘if there is no known reason for predicating of our subject one rather than

another of several alternatives, then relatively to such knowledge the assertions

of each of these alternatives have an equal probability’ (Keynes 1921, p. 42; cf.

White 2009, sections 1–2).

The POI is more modest than the classical theory because it doesn’t purport to

assign probabilities to all outcomes. It is also a principle that takes an explicitly

epistemic attitude, of indifference between possibilities and yields a determin-

ate probability distribution. The POI, as constructed, is designed to ensure the

neutrality of initial probabilities over hypotheses. It works well in many toy

examples. What is the rational probability that a goat is behind a given door of

the three before you, if two of them have a goat? You have no reason to suppose

a goat is behind any particular door; you shouldn’t be more confident for no

reason, so you should be as neutral as possible, assigning 2=3 probability to

each proposition of the form ‘a goat is behind door n’. This is an implementation

of Uniqueness, because POI says the uniquely rational perspective in a situation

of equipollence is the indifferent one.

From the perspective of inductive logic, this enforcement of neutrality

makes other problems of the priors worse. For the indifferent prior distribu-

tion seems to make very poor predictions about inductive support. A binary

A/B process of unknown bias will occur 9 times (Weisberg 2011, p. 507).

15 Or, if ‘⚀’, ‘⚁’, and so on, are not basic cases in the case of a weighted die, then what are the basic
cases that allow, for example, a 1=5 chance of getting a ‘⚅’?
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You have no reason to think it fair; nor to think it biased; nor, if biased, that

the bias is in any specific direction. The POI mandates, it seems,16 a uniform

distribution over each hypothesis, that is, over all 29 possible outcome

sequences. What is the conditional probability that all outcomes are Bs,

given the first 8 are Bs?

Pr 9 Bs ∣ 8 Bsð Þ ¼ Pr BBBBBBBBBð Þ
Pr BBBBBBBBB∨BBBBBBBBAð Þ ¼

1=29

2=29
¼ 1

2
:

The POI has generated not just uniformity over hypotheses about outcomes prior

to experience, but also posterior to experience. Given a process of previously

unknown bias, inductive plausibility strongly suggests that 8 (or 88, or 888, . . .)

consecutive Bs is strong support for a particular hypothesis about bias.We should

at least be able to adopt priors that permit us to ignore anti-inductive hypotheses,

such as regarding BBBBBBBBA as less plausible than BBBBBBBBB. But

indifference mandates that we give undue regard to such hypotheses. Neutrality

trumps inductive plausibility.

Some might challenge this. In a process of unknown bias, we ought to

be indifferent not over individual sequences, but over the frequencies those

sequences exhibit. Then we should be indifferent over the space of hypoth-

eses ‘9 As’, ‘8 As, 1 B’, . . . , ‘9 Bs’. I will return to the merits of this

particular proposal in Section 4.4, but there is a worry before we even

work out the details: what mandates our representing the problem this way,

rather than the first way? This brings out the fact that every application of

the POI involves – just as the classical theory does – a classification of the

space of all possibilities into ‘basic cases’ or ‘alternatives’ between which

we are indifferent. We have to do this; there are so many possible worlds

that the only indifference measure over them assigns every possibility no

probability at all. So we have to partition the space of possible worlds into

basic alternatives in order to get a non-trivial indifference measure. But

there are different ways of carving up the very same possibilities

(Meacham 2014, pp. 1193–1198). Consider this example.

Mystery Cube (van Fraassen 1989, p. 303)

A tool factory produces metal cubes with edge length x, where x lies in the

interval ½1; 3� (i.e., 1 ≤ x ≤ 3). What is the probability that a cube has edge length

≥ 2 cm, given that it was produced by that factory?

16 Keynes (1921, chapter 4) suggests that in a case of unknown bias like this, ideal rationality
forbids any numerical assignment of probability; that saves the POI at the cost of drastically
reducing its concrete role in fixing the priors.
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The issue is that there are logically equivalent ways of dividing up the same

possibilities which seem to give different answers. For we could also represent

the possible outputs of the cube factory in terms of their face area, or their

volume. Let L be the proposition ‘a cube has side length ≥ 2’. The possible

cases, and favourable-to-L cases, are detailed in Table 3.

Apply the POI naively, and we get inconsistent probability assignments.

Hesitate to apply it, on the grounds that different partitions give rise to different

judgements of epistemic symmetry (White 2009, section 3), and we get no

probability assignment at all, even though the POI ‘is supposed to fill the gap

left by missing information’ (van Fraassen 1989, p. 304).

One might have the sense that the POI has been applied incorrectly. In the

mystery cube case, we have a problem with multiple representations.

Given a representation, for example, that areas were between 1 and 9

cm2, POI was applied to the ½1; 9� interval to generate the probabilities.

But this is manifestly implausible, since it applies indifference to features

of the representation, rather than features of the problem represented.

A better model would be to identify which representations are merely

‘modes of presentation’ of the original problem, using those to define

a class of transformations that preserve the structure of the original

problem. As Rosenkrantz puts it:

The needed invariances, however, are not obtained by looking at parameter
transformations per se, but at transformations of the problem itself into
equivalent form. Given the statement of the problem, it may for example,
be indifferent in what scale units the data are expressed. Such ‘indifference
between problems’ determines what parameter transformations are admis-
sible – not the other way around. (Rosenkrantz 1977, p. 63; see also Jaynes
1968, p. 128)

Then POI must be applied in a way that is invariant under those transform-

ations; in practice, to some measure over ½1; 3� cm that is equivalent to ½1; 9� cm2.

In the mystery cube case, the allowable transformations are dilations, so the

Table 3 Applying the POI to different partitions
of Mystery Cube.

Possible cases Favourable-to-L Pr Lð Þ
edge length 2 ½1; 3� length 2 ½2; 3� 1=2
face area 2 ½1; 9� area 2 ½4; 9� 5=8
cube volume 2 ½1; 27� volume 2 ½8; 27� 19=26
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right measure μ on the intervals is μ½x; y� ¼ log y� log x. Then we get the

‘right’ answer (van Fraassen 1989, p. 310):17

Pr Lð Þ ¼ μ½2; 3�
μ½1; 3� ¼

log 3� log 2

log 3� log 1
¼ 2log 3� 2log 2

2log 3� 2log 1
¼ log 9� log 4

log 9� log 1
¼ μ½4; 9�

μ½1; 9� :

This kind of move requires some substantive knowledge about which formal

transformations of descriptions of the space of possibilities are those that

preserve the ‘essential’ symmetries of the problem. So this cannot be

a purely neutral ignorance prior. Once we have recognised that most circum-

stances in which we’d wish to apply POI actually involve some background

knowledge, the POI turns out to be inapplicable. But there is a generalisation

of the POI that might apply:

Uniqueness (Maximum Entropy)

Given a set ℂ of probability functions meeting certain constraints imposed by

the evidence, the uniquely determined evidential probability in light of that

evidence is the Pr 2 ℂ such thatH Prð Þ ¼ �
X

ω
Pr ωð Þlog Pr ωð Þ is maximised,

assuming there is exactly one (Jaynes 1957).

The rationale for the Maximum Entropy principle is that entropy is a measure of

uninformativeness; so maximum entropy subject to constraints is a way of maxi-

mising neutrality given those constraints (Seidenfeld 1986; Williamson 2011, sec-

tion 8). The Maximum Entropy approach does hold out the prospect, unlike the

original POI, of both satisfying our desire for neutrality and our desire to have

probability functions that are responsive to potential experience (Williamson

2011, section 9).

Unfortunately, it would be too hasty to think this gives us a case for Uniqueness.

Whenever the uniform distribution is consistent with the background evidence, it

always has maximum entropy. But there is no guarantee, if the constraints rule out

the uniform distribution, that there is a unique entropy maximising distribution

(Shackel & Rowbottom 2020); maximum entropy may turn out to be a moderate

permissivist view. This non-uniqueness, as in the original problem cases for the

POI, turns out to depend on how the problem scenario is represented. (In

Williamson’s (2011, section 10) approach, this is manifest in an explicit language-

relativity – see also Weisberg 2011, p. 508.)

Ultimately, the POI and Maximum Entropy proposals are plausible because

they answer, if we are lucky, the twin demands of Uniqueness and neutrality.

But once permissivism is brought into view, a view that generates unique

17 Even this fails for some cases where there is no neat class of allowable transformations, for
example, those involving both translation and dilation (Milne 1983).
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probability distributions doesn’t look neutral. For example, the original POI

mandated a policy of taking any new evidence to be irrelevant to confirmation;

while this may be a permissible attitude, it hardly looks mandatory. The most

natural maximum entropy distribution that permits responsiveness to experi-

ence is one that determines a very specific rule about how responsive to be

(Weisberg 2011, p. 508) – yet, intuitively, there is room for variation in appetites

for epistemic risk, from Jamesian boldness to Cliffordian timidity. Enforced

neutrality between hypotheses leads to overly determinate prescriptions about

responsiveness to evidence. (In the Bayesian framework, the fact that uncondi-

tional probabilities of hypotheses are expectations of conditional probabilities

given possible evidence – that is, policies for responding to evidence – yokes

these two quantities together.) If instead we are not prescriptive about Pr H ∣Eð Þ,
remaining neutral to the extent we can over its value, then we won’t be as

interested in prescriptivism about Pr Hð Þ, and we can secure indifference, where
appropriate, by substantive assumptions about the problem scenario at hand.

These observations apply also to the remaining attempts to construct explicit

unique priors I will consider.

4.4 Constructing Priors: Carnap’s Inductive Logic

Treating Carnap at this point is anachronistic; his contributions to inductive

logic really kicked off the field, along with Hempel’s, and everyone working on

the topic since is indebted to their framing. But Carnap offered a particular

recipe for constructing unique priors, one that would – if successful – vindicate

the idea of an inductive logic. For just as deductive logic gives us relations on

sentences in virtue of logical form, so Carnap proposed to give a purely formal

account of evidential support:

While a statement of statistical probability asserts a matter of fact, a statement
of inductive probability is of a purely logical nature. If hypothesis and
evidence are given, the probability can be determined by logical analysis
and mathematical calculation. (Carnap 1955, p. 3)

Given the preceding discussion, it seems the prospects for such a proposal are

fairly dim, but it is nevertheless worth going through the details, for complete-

ness’ sake and because it allows us to bolster some earlier conclusions against

purely formal treatments of epistemic support (Section 1.5). It also feeds nicely

into the upcoming treatment of algorithmic probability (Section 4.5) and allows

us to touch on some issues, like ‘gruesome’ predicates, that have been implicit

so far (see also Titelbaum 2022, pp. 208–221).

Suppose we have a predicate language, with the connectives of sentential

logic, constant terms, and predicates (leaving quantifiers aside). A very simple
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language might have a single monadic predicate F, and constants denote

successive observations in which F might be observed. Evidence consists in

a finite binary sequence indicating the presence or absence of F, and our

problem is to figure out what evidence sequences provide support for hypoth-

eses about subsequent observations. An ‘inductive method’ (Carnap 1955,

p. 10) is a procedure for assigning probabilities to hypotheses about the total

sequence of outcomes – what Carnap calls a ‘state description’. (Every propos-

ition expressible in this language is a Boolean combination of state descrip-

tions.) An example of this sort came up in the previous section, where I noted

that a probability assignment that assigns each finite binary A/B sequence of

a given length equal probability fails to be inductively rational.

Carnap – and before him, Johnson (1932) – proposed another inductive

method than that of the naive POI. A structure description is a class of state

descriptions which share the same frequencies; that is, they share that structural

aspect which is preserved under permutation of outcome order. Carnap opts for

this account of structure as particularly appropriate for statistical inference,

because such structures preserve frequencies, which are vital for probabilistic

theories. In the previous case, as noted in Section 4.3, there are 10 possible

structures of the 29 possible state descriptions. Carnap’s ‘method II’ says: we

ought to be indifferent between structures first, then states (Carnap 1955, pp. 8–

14; Zabell 2011, pp. 271–274). Assign equal probability to each structure, then

divide that probability equally over each state compatible with a given structure.

That gives us the probability distribution in Table 4.

Carnap’s m� can be extended to a full probability function on the space of

possibilities c�. This enables us to evaluate the prior probabilities of hypotheses,
as well as conditional probabilities of hypotheses given evidence. The prior

probability assigned to 9 Bs is 1=10; the prior probability assigned to

BBBBBBBBA is 1=90. So the probability that the last outcome is a B, given

that the 8 preceding outcomes have been Bs, is 1=10=1=10þ 1=90 ¼ 9=10.

Half of all states terminate in a B, so the prior probability is 1=2; so the

observation of 8 Bs strongly supports the hypothesis that the last item will be

a B, and confirms it over its initial probability. This method does allow for

responsiveness to potential evidence. And it does yield Uniqueness: given

a language, purely formal syntactic features of state and structure descriptions

yield a probability assignment to all hypotheses.

It’s bound to be too good to be true. How could syntactic considerations

determine a probability assignment over propositions, when the very same

proposition can be expressed by sentences with differing syntactic structure?

Inconsistency seems unavoidable.
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Suppose some speakers have introduced a word, ‘grue’, the usage of which

turns out to be best systematised by the following: something is grue iff it is

green and examined before 31 December 2030, or blue and not examined before

that date (Goodman 1954, chapter 3). At the time of writing, and probably of

your reading, everything previously observed is green iff it is grue, so there has

been a green/grue regularity in the data so far. If we are to learn from experience

in line with Carnap’s c�, we should be confident that green things are grue, and
vice versa, going forward. But the first green thing observed on 1 January 2031

will not be grue. So this inductively supported expectation will not be fulfilled.

Carnap’s theory cannot accommodate this fact, because the syntactic form of

the ‘grue’ hypotheses and observations is exactly the same as that of the parallel

hypotheses and observations including ‘green’. ‘Grue’ was introduced on the

basis of a false inductive hypothesis, but having been introduced, it is a fit

predicate for use in the construction of state descriptions and structure descrip-

tions, and for the construction of a rational prior. The problem with ‘grue’ arises

once we look at the consequences of applying this syntactic procedure, together

with our grasp on the meaning of ‘grue’.

To avoid this consequence, we shall have to appeal to some syntactically

available feature to exclude ‘grue’ from our inductive practice. It will be very

hard to do so, at least without making unwarranted presumptions about the

range of permissible hypotheses (Godfrey-Smith 2003, pp. 578–583). Many

things behave differently when observed: people and other social entities,

certainly. So there cannot be a general ban of mentioning ‘observation’ in the

hypotheses we consider. Likewise, some data series exhibit discontinuities due

to a change in measurement procedure on a certain date; hypotheses that

Table 4 Carnap’s ‘Method II’ for determining inductive probability.

Structure
Structure
probability

Open state
descriptions State probability m�

9 As, 0 Bs 1=10 1 1=10
8 As, 1 B 1=10 9 1=90
7 As, 2 Bs 1=10 36 1=360
6 As, 3 Bs 1=10 84 1=840
5 As, 4 Bs 1=10 126 1=1;260
4 As, 5 Bs 1=10 126 1=1;260
3 As, 6 Bs 1=10 84 1=840
2 As, 7 Bs 1=10 36 1=360
1 A, 8 Bs 1=10 9 1=90
0 As, 9 Bs 1=10 1 1=10
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account for the data need to explicitly recognise that date in explaining the

slightly different characteristics of the data before and after it. So there cannot

be a general ban on mentioning specific dates in hypotheses. ‘Grue’ is distinct-

ive in including both of these non-forbidden expressions, but we can perhaps

see a use case for a similar predicate – for example, when a social science data

series changes from using an overt to covert measurement technique, changing

the impact of observation on the experimental subjects from a particular date.

The problem with ‘grue’ isn’t intrinsic to the word. The problem is what it

means. Our background knowledge suggests to us that ‘grue’ is not a good way

of describing reality – it is not a property that captures the structure of how

things are. For example, unlike a genuine property, satisfying ‘grue’ needn’t

make for genuine resemblance between things which do so (Lewis 1983,

p. 345). But this distinction in ‘naturalness’ between ‘green’ and ‘grue’ isn’t –

cannot be – present in the syntax. The flipside is that any robust theory of

confirmation and evidential support will have to make initial presumptions that

treat structurally identical claims differently:

A favoring relation that fails to treat [structurally indistinguishable] identi-
cally plays favorites among properties. That is, it responds differently to
a hypothesis involving one property than it does to a hypothesis that is
identical except that it involves a different property. For instance, suppose
we have a piece of evidence that mentions greenness and grueness in exactly
the same ways, but that evidence favors a hypothesis involving the property
of being green over a hypothesis that involves the property of being grue in
structurally identical ways. If the evidential favoring relation behaves in this
way, it fails to treat predicate permutations identically. And notice that this
property favoritism precedes the influence of the evidence. It’s not that the
difference occurs because the evidence indicates that greenness is a property
worthy of special consideration; we stipulated that the evidence says exactly
the same things about (or using) greenness that it says about (/using) grue-
ness. If we could behold the [evidential favouring] relation itself before any
evidence had been plugged in, we could already see that plugging in evidence
and hypotheses involving certain properties would cause it to react differently
than plugging in evidence and hypotheses that differed only in the properties
that appeared. (Titelbaum 2011, pp. 482–483)

4.5 Constructing Priors: Algorithmic Randomness

Carnap’s theory is historically important. But it is also of interest because of the

rise of digital computation, where many problems thought to be the exclusive

province of human intelligence have shown themselves to be amenable to being

handled by systems applying syntactic rules of computation. Carnap does not

seem himself to have been particularly interested in formulating an inductive
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algorithm, but the principal intellectual inheritors of his project in computer

science have been. Their story is not as well known among philosophers, so

I choose it as my final attempt at the explicit construction of a unique prior. It

will not be immune to the problems besetting earlier accounts (Sections 4.3,

4.4). I will simplify some of the mathematical details in the interest of accessi-

bility (Eagle 2016; Li & Vitanyi 2008, chapter 2).

Suppose we had some string of sample data about a population and a monadic

property F: that the first three items sampled had F, the fourth and fifth lacked it,

the sixth has it, and so on: F;F;F;:F;:F;F;:F;:F;:F;:F;:F;

F;:F;:F;F; . . . : Or, as a binary sequence: 1; 1; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1; 0;

0; 1; . . . : The question we face is one of sequence prediction (Solomonoff

1964, p. 2): what should we say about the next element in this sequence,

given the sample so far? Carnap’s preferred method took the frequency of Fs

into consideration, the balance of F as against ¬F. But it paid no overt attention

to the internal structure of the sequence of outcomes.

Laplace observed that, when tossing a coin,

if heads comes up a hundred times in a row, then this appears to us extraor-
dinary, because the almost infinite number of combinations that can arise in
a hundred throws are divided in regular sequences, or those in which we
observe a rule that is easy to grasp, and in irregular sequences, that are
incomparably more numerous. (Laplace 1995/1825, pp. 16–17)

Laplace notes that an orderly sequence is extraordinary if thought to have come

about by chance, less extraordinary if it is explicable. As it happens, Carnap’s

approach respects Laplace’s intuition, because it allows orderly data to strongly

support orderly hypotheses. The structure descriptions are equiprobable, but

there are lots of ways of satisfying the structure ‘about half 1s’ and only one way

of satisfying the structure ‘all 1s’, so the latter highly orderly sequence gets

relatively high probability compared to any one of the many sequences satisfy-

ing the former, most of which are random and disorderly.

Carnap has stumbled upon something here: simplicity. Orderly sequences

obey simple rules; disorderly sequences do not. And since orderly sequences are

strongly confirmed by data in agreement with them, we get a preference for

simplicity built in to Carnap’s inductive methods. But Carnap hasn’t latched

onto the right mathematical approach. There are still some orderly sequences in

the ‘about half’ structure: 1; 0; 1; 0; 1; 0; . . ., for example. This has the frequen-

cies of a disorderly sequence, but isn’t disorderly. Carnap’s conception is that

order is uniformity. But in fact, order is exhibited whenever a sequence has

a pattern. Carnap’s framework favours the orderly sequence ‘all 1s’ over the

equally orderly sequence ‘alternate 1 and 0’; intuitively, however, that latter
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pattern is just as indicative of some non-chance theory of the outcomes. This

gives the wrong verdict about some straightforward cases. Suppose we’d seen

the sequence 0; 1; 0; 1; 0; 1; 0; 1; 0, and we wonder what comes next. There are

slightly more 0s than 1s in the sample data; so c� slightly favours a prediction of
0 for the next outcome. But the pattern is clear: we ought to predict 1.

A better approach would not overlook regular patterns, including but not

limited to uniform outcomes. Solomonoff (1964, p. 3) made a bold proposal: to

get a prior that learns from data, assign prior probabilities to sequences that are

inversely proportional to how much internal complexity they have. A complex

sequence doesn’t have readily theorised regularities; a simpler sequence is

amenable to a theoretical explanation. Solomonoff argues that the best predic-

tion of the next in a sequence of outcomes is that outcome which would make

the resulting sequence simpler.18

Solomonoff implements his proposal by linking complexity to compressibility

(Kolmogorov 1963; Li & Vitanyi 2008, pp. 339–370). Fix on a general-purpose

computable function f that maps certain binary input sequences to binary output

sequences.When f δð Þ ¼ σ, say that δ is an f -description of σ, or that f decodes δ

into its unencoded form σ. A sequence is compressible to the extent that the

length of its shortest f -description is considerably shorter than it. This can be

used to construct a probability function that favours compressible hypotheses,

which is to say, it favours hypotheses that posit orderly structure over those that

posit randomness. Where ‘jxj’ is the length of x, the f -probability of σ is defined
(Rathmanner & Hutter 2011, pp. 1119–1121; Solomonoff 1997, p. 2):

Prf σð Þ≝
X

δi2 δ:f δð Þ¼σf g
2�jδij ≈ 2�min jδj:f δð Þ¼σg:f

The f -probability of a sequence is determined by the overall brevity of

sequences encoding it, which is dominated by the shortest encoding. The

Kolmogorov complexity Cf σð Þ is the length of the shortest input to f encoding

σ, so the f -probability of σ is approximately 2�Cf σð Þ. Because the probability that
a binary sequence of length l is produced by a binary random process is 2�l, we

can say that while disorderly sequences, which cannot be compressed, have an

algorithmic probability roughly equal to the probability they were produced by

chance, orderly sequences have a probability very much greater than the

probability they were produced by chance; they are, under this measure over

the space of all outcomes, substantially favoured by the prior. But this is still

18 This is a mirror image of the ‘best systems’ analysis of laws of nature, which proposes that laws
are those regularities that most simply and powerfully systematise the pattern of events (Lewis
1994, p. 480).
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a probability function, summing to 1 over all hypotheses; this shows the orderly

sequences must be very scarce.

There is a potentially troubling dependence on f here, but Kolmogorov (and

Solomonoff) show that there is a universal or ‘asymptotically optimal’ function

μ such that

8f ∃ kf 8σ Cμ σð Þ ≤Cf σð Þ þ kf :

Given that kf is chosen independently of the sequences, for all sequences

beyond a certain length, most decoding functions broadly agree: Cμ σð Þ ≈Cf σð Þ.
Algorithmic probability has many desirable qualities. From the perspective of

induction, prediction using it can be shown to converge to the ‘real’ probabil-

ities generating a sequence, in the sense that the distance between the algorith-

mic posterior probability given the evidence and the real hypothesis converges

to zero, so long as the true hypothesis has a non-zero prior (Ortner & Leitgeb

2011, p. 736; Rathmanner & Hutter 2011, pp. 1124–1125; Solomonoff 1997,

p. 11). If there is a rule generating the outcomes, the prior bias of algorithmic

probability towards hypotheses that invoke a rule to explain a given sequence of

outcomes leads the observation of rule-governed outcomes to quickly favour

the hypothesis that computably generates those outcomes.

Early attempts to justify [algorithmic probability] were based on heuristic
arguments involving Occam’s razor, as well as many examples in which it
gave reasonable answers. At the present time, however, we have a much
stronger justification than any heuristic argument. [Algorithmic probabil-
ity] is the only induction technique known to be complete. By this we mean
that if there is any describable regularity in a body of data, [algorithmic
probability] will discover it using a relatively small sample of the data.
(Solomonoff 1997, p. 2)

This result might seem striking. However, Sterkenburg argues that assuming the

true hypothesis has a non-zero prior is a very strong assumption, for it requires

the true hypothesis to mirror the inductive assumptions that go into constructing

the prior. The conditions on the convergence theorem assume, in fact, that the

true hypothesis is equivalent to a particular strategy of making predictions on

the basis of data, and that the inductive presuppositions about which hypotheses

to favour are just the ones it also adopts. Then convergence isn’t so surprising: if

nature produces outcomes by deploying a function it has induced from the data

in the way we would, then our ‘discovering’ that function by induction is hardly

surprising. ‘We got out what we put in, after all’ (Sterkenburg 2016, p. 476).

Moreover, the convergence result might seem in danger of showing too much.
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For finite data there is always a regularity, even if the mechanism is completely

random. The hypothesis that a sequence lacks inductive regularity is ante-

cedently disfavoured; but surely neutrality between hypotheses requires that

we are open to learning a sequence is incompressible?

Even if its justification on the basis of convergence results was too good to be

true, perhaps we can still adopt algorithmic probability as a prior because we

think the assumption that nature will obey a computable rule is a reasonable one.

The theory then promises to turn an inductive assumption about computability

into a prior we could deploy.

The first piece of bad news about this idea is that algorithmic probability isn’t

itself computable; we can’t determine how complex a description of the total

data is, so we cannot determine what the prior probability of the hypothesis

which predicts it with certainty is.19

The second piece of bad news is that the robustness of the compressibility

results, designed to reassure us that dependence on a particular decoding algorithm

was inessential, is in practice a major difficulty. The constant kf by which each

decoder differs from the universal decoder is arbitrarily large – in effect, it may be

thought of as instructions telling the universal machine how to pretend to be f .

While these instructions may be small in the limit as sequences to be decoded grow

arbitrarily, it may completely swamp sequences on the scale we normally treat, so

that choice of decoding function will matter a great deal for particular applications.

Sterkenburg (2016, pp. 472–474) argues that the choice here is like the choice of

prior for the permissive Bayesian – the existence of the universal machine is like

the convergence of opinion theorems (Section 4.2), and like them gives no

guarantee that the convergence is quick enough for practical use.

while Solomonoff’s framework . . . may offer a theoretical solution to the
problem of induction, it cannot be directly applied to practical problems.
(Ortner & Leitgeb 2011, p. 736)

The framework is also subject to more general worries that are at some distance

from the technical details. Most obviously, a sequential prediction framework

cares only about patterns in the observed data that permit useful compression.

The sequence of successive green emeralds is no more or less compressible than

the sequence of successive grue emeralds, because only the form of the data

19 Suppose you could compute Cμ σð Þ: maybe you enumerate all the sequences of length shorter
than σ, feed them sequentially into μ, and see if σ pops out. But sometimes μwon’t halt on a given
input, so this isn’t an effective procedure; for all you know you have input a short description of σ
and you are just waiting for an unboundedly long decoding process to conclude. There are
computable approximations that converge to Kolmogorov complexity; but the error at each stage
of convergence is unknown, so they are not approximate in the normal sense of ‘close’ (Rissanen
1997; Solomonoff 1997, p. 2).
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matters. So if are to avoid inconsistent predictions, some ‘green’-favouring

constraint must be imposed before applying Solomonoff’s recipe. Solomonoff

induction, no less than Carnapian inductive methods, satisfy the pre-conditions

for generalised language-relativity results (Titelbaum 2011, pp. 482–484). This

should temper some of the bolder claims made about the approach, for example,

that ‘through Solomonoff, . . . the problem of formalizing optimal inductive

inference is solved’ (Rathmanner & Hutter 2011, p. 1078).

Solomonoff himself seems to have come to appreciate this sort of observa-

tion, about grue and about the prior choice of hypotheses to be considered, and

connected it to the practical differences between different universal hypotheses:

choosing a reference machine we are given the opportunity to insert into the
a priori probability distribution any information about the data that we know
before we see the data. (Solomonoff 1997, p. 4)

There is another difficulty: how do we turn events distributed across space and

time into a sequence of data that can be input to Solomonoff induction?

Suppose that I am tossing a coin on a train that is moving back and forth on
tracks that point in a generally easterly direction. . . .Moving from left to right
(west to east), we see the pattern: HTHTHTHTH . . . . Moving upwards
(earlier to later), we see the pattern: HHTHHTHHT . . . . Imagine, as we
can, that these patterns persist forever. What is the limiting relative frequency
of Heads? Taking the results in their temporal order, the answer is 2=3 . . . .
But taking them in their west-east spatial order, the answer is 1=2. Now, why
should one answer have priority over the other? In other words, we have more
than one limiting relative frequency, depending on which spatio-temporal
dimension we privilege. (Hájek 2009, pp. 218–219)

If the events are spread out sufficiently over spacetime, theremay be no determinate

frame-invariant fact about temporal order of outcomes (Maudlin 2012, chapter 5),

even if induction is understood as essentially temporal in a way not presumed here.

Carnap’s maligned C� does a little better here, at least for finite sequences, because
the statistical properties on which he relies are invariant under data permutations.

Assumptions about the structure of datamust clearly come before one can formulate

a space of hypotheses about sequences of data, and is substantively dependent in

this example on non-formal views about space and time.

4.6 Conclusion

The upshot, as I see it, of Sections 4.3–4.5 is that substantive philosophical

assumptions about prior probabilities are unavoidable. The hope that there is

only one rational way to think about evidential support, even though it cannot be

articulated in any generally compelling way, starts to lookmore like an article of
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faith than a reasonable guess. Technical advances may help us formulate prior

assumptions, and distributions derived from maximum entropy or Kolmogorov

complexity may well have appealing properties as explications of our prefer-

ence for neutrality or simplicity. But they cannot function without prior assump-

tions, and do not let us avoid making them. When the mathematical complexity

goes up, and the results start looking more like magic, assumptions are no less

present than in the case of permissivism, just slightly better disguised. This

lesson generalises well beyond this area of philosophy.
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