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On the Fourier–Jacobi expansion of

the unitary Kudla lift

Atsushi Murase and Takashi Sugano

Abstract

We study a theta lift from a cusp form f on U(1, 1) to a cusp form Lf on U(2, 1)
(the unitary Kudla lift of f). We give an explicit expression of the Fourier–Jacobi
expansion of Lf in terms of periods and Hecke eigenvalues of f . As an application, we give
a criterion for the nonvanishing of Lf .

1. Introduction

1.1 Let f be a holomorphic cusp form on U(1, 1). In [Kud81], Kudla constructed a holomorphic
cusp form Lf on U(2, 1) by integrating f against a theta kernel on U(2, 1) × U(1, 1) (see also
[Kud79]). Furthermore, he showed that Lf is a Hecke eigenform if so is f , and gave a relation
between an automorphic L-function of Lf and that of f . The main object of the paper is to study
the Fourier–Jacobi expansion of Lf . In particular, we show that the primitive components of Lf
are expressed in terms of certain U(1)-periods of f , and that nonprimitive components of Lf satisfy
certain recursion relations if f is a Hecke eigenform. As an application of these results, we obtain
a criterion for the nonvanishing of Lf (for a nonvanishing criterion in a representation theoretic
setting, we refer to [GRS97] and [Tan99]; see the remark after Main Theorem III in § 1.4).

1.2 To be more precise, let K be an imaginary quadratic field of discriminant D. Let G = U(2, 1) =
U(S) and H = U(1, 1) = U(T ), where

S =

 1/
√
D

1
−1/

√
D

 , T =
(

1
−1

)
.

As is well known, (G,H) forms a dual reductive pair. Let X be the set of Hecke characters χ of K
satisfying χ|

Q
×
A

= ω, where ω denotes the quadratic Hecke character of Q corresponding to K/Q.

For χ ∈ X , let w∞(χ) be the integer such that χ(z∞) = (z∞/|z∞|)w∞(χ) for z∞ ∈ K×∞ = C×. Fix a
positive integer l divisible by w(K), the number of roots of unity inK. We also fix a character χ0 ∈ X
with w∞(χ0) = −1. The character χ0 determines a splitting Mχ0 of metaplectic representations
of GA × HA on S(K2

A) ⊗ S(KA), where S(Km
A ) denotes the space of Schwartz–Bruhat functions

on Km
A . We then construct a theta kernel

θ(g, h) = χ−1
0 (det g)χ−2

0 (deth)
∑

X∈K2, ξ∈K

Mχ0(g × h)(Φ0 ⊗ ϕ0)(X, ξ)
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with a suitably chosen test function Φ0 ⊗ ϕ0 ∈ S(K2
A) ⊗ S(KA) depending on l. Let f be a

holomorphic cusp form on HA of weight l − 1, level D and character χ̃0 (cf. § 3.3). Set

Lf(g) =
∫

HQ\HA

f(h)θ(g, h) dh (g ∈ GA).

The theta lift Lf was first studied by Kudla and we call Lf the unitary Kudla lift of f .
Kudla showed the following [Kud79, Kud81]:

(1.1) Lf is a holomorphic cusp form on GA of weight l and level 1;
(1.2) if f is a Hecke eigenform, so is Lf .

He also gave a relation between an automorphic L-function of Lf and that of f .

1.3 In [Shi79], Shintani investigated the theory of (refined) Fourier–Jacobi expansions of
automorphic forms on G. It should be noted that Piatetski–Shapiro independently developed a
similar theory from a more representation theoretic point of view (see [Pia80] and [BPR03]). In this
subsection, we briefly recall Shintani’s theory. For details, see §§ 4 and 5. Let R be an algebraic
subgroup of G given by

RQ =
{

(w, x)t :=

1
√
Dwσ x+

√
Dwwσ/2

0 1 w
0 0 1

 1
t

1

 ∣∣∣∣ w ∈ K,x ∈ Q, t ∈ K1

}
,

where σ stands for the nontrivial automorphism of K/Q and K1 = {t ∈ K× | ttσ = 1}. Denote
by ψ the additive character of QA/Q determined by ψ(x∞) = exp(2π

√
−1x∞)(x∞ ∈ R). Let F be

a holomorphic cusp form on GA of weight l on Kf =
∏

p<∞G(Zp) (cf. § 3.1). Then F admits the
Fourier–Jacobi expansion

F (g) =
∑

m∈Q, m>0

Fm(g) (g ∈ GA),

where

Fm(g) =
∫
Q\QA

ψ(−mx)F ((0, x)g) dx.

Let a be a nonzero fractional ideal of K and take an element αf of K×
A,f (the finite part

of K×
A) corresponding to a (cf. § 2.2). Let Fm

a be the function on RQ\RA given by Fm
a (r) = Fm(r ·

diag(ασ
f , 1, α

−1
f )) (r ∈ RA). Let χ ∈ X with w∞(χ) = −1 and suppose that χ satisfies certain

conditions on its Artin conductor and epsilon factor. Then there exists a nonzero theta function
Θm
a,χ : RQ\RA → C, which is primitive and an eigenfunction with respect to the action of U(1) with

eigenvalues determined by χ (for a more precise statement, see § 4.6). It is known that Θm
a,χ is unique

up to constant multiples (see Theorem 4.4). For a fractional ideal b of K with b ⊂ a, put

CF (b; Θm
a,χ) :=

∫
RQ\RA

Fm
b (r)Θm

a,χ(r) dr.

We call {CF (b; Θm
a,χ) | m, a, b, χ} the Fourier–Jacobi components of F . If b = a, the Fourier–Jacobi

component CF (a; Θm
a,χ) is said to be primitive. In his pioneering work [Shi79], Shintani showed the

following results (cf. § 5):

(1.3) F is completely determined by its Fourier–Jacobi components;
(1.4) F is a Hecke eigenform if and only if, for each (m, a, χ), {CF (b; Θm

a,χ) | b ⊂ a} satisfies certain
recursion relations;

(1.5) assume that F is a Hecke eigenform, then F �= 0 if and only if at least one of the primitive
components of F is nonzero.
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1.4 Let Lf be the unitary Kudla lift of a holomorphic cusp form f on HA of weight l− 1, level D
and character χ̃0. Let (m, a, χ) be as in § 1.3. Set

Wm
χ,f (h) =

∫
K1\K1

A

(χ/χ0)1(t−1)f(ιm(t)h) d×t (h ∈ HA),

where ιm is an embedding of K1 into H depending on m defined by (7.6) (for the definition of
(χ/χ0)1, see § 2.5). The function Wm

χ,f on HA can be seen as a spherical function for (U(1, 1), U(1)).
We now state the main results of the paper.

Main Theorem I (Theorem 7.5). The primitive Fourier–Jacobi components of Lf are given as
follows:

CLf
(a; Θm

a,χ) = c(m, a, χ) · I(Θm
a,χ) · J(m, a, χ, f),

where c(m, a, χ) is a nonzero explicit constant depending only on (m, a, χ),

I(Θm
a,χ) =

∫
K1\K1

A

Θm
a,χ(t) d×t

is the period of Θm
a,χ and J(m, a, χ, f) is a linear combination of Wm

χ,f(hj,m,a) with some hj,m,a ∈ HA.
(Note that J(m, a, χ, f) is a linear combination of ‘CM-values’ of f ; see the remark in § 7.6.)

Main Theorem II (Theorem 7.6). Suppose that f is a Hecke eigenform. Then, for each (m, a, χ),
{CLf (b; Θm

a,χ) | b ⊂ a} satisfies certain recursion relations. This implies that Lf is a Hecke eigenform
and L(Lf, ξ; s) = L(ξ; s)L(f, ξ; s) for a Hecke character ξ of K (Corollary 7.7).

Main Theorem III (Theorem 7.8). Suppose that f is a Hecke eigenform. Then Lf �= 0 if and only
if there exists a triplet (m, a, χ) such that L(χ; 1/2)J(m, a, χ, f) �= 0.

Remark. It should be noted that Gelbart, Rogawski and Soudry [GRS97] studied the nonvanishing
of a theta lift from U(2) to U(3) in a representation theoretic setting (see also [Tan99]). To be
more precise, let σ =

⊗
v σv be a cuspidal representation of U(2), and suppose that the theta lift

of σ to U(1) is zero. Then they showed that the theta lift of σ given by theta integrals is nonzero
precisely when the local Howe lift of each component σv is nonzero. On the other hand, our criterion
is concerned with the nonvanishing of the theta lift of an automorphic form (an element of the
space of the automorphic representation), and is derived from the study of the Fourier–Jacobi
expansion of the theta lift.

Remark. The inner product formula for the unitary Kudla lift has been given in [MS06].

1.5 The paper is organized as follows. The first five sections are of a preliminary nature.
After fixing the notation in § 2, we define automorphic forms on U(1, 1) and U(2, 1) in § 3. In § 4,
we recall several fundamental properties of theta functions on R after Shintani’s work [Shi79]
and our preceding papers [MS00, MS02]. In § 5, we review Shintani’s theory of the Fourier–Jacobi
expansion of holomorphic automorphic forms on U(2, 1) and reformulate Shintani’s result
mentioned above. In § 6, we study metaplectic representations of U(2, 1) × U(1, 1). We use a
mixed model of the metaplectic representation, which is more convenient in the calculation of
the Fourier–Jacobi components than the Schrödinger model. The intertwining operator between
two models is given in § 6.6. In § 7, we define the unitary Kudla lift and state the main results of
the paper (Theorems 7.5, 7.6 and 7.8), whose proofs occupy the remaining sections. The key of the
proofs is Lemma 8.3, in which we use the properties of metaplectic representations in an essential
way. By using this, we obtain a formula relating the Fourier–Jacobi components of Lf to certain
integrals of spherical functions Wm

χ,f in § 8 (Proposition 8.4). Using this and the results of § 5, we give
another proof of (1.1) in § 9. In § 10, we reduce the proof of Theorems 7.5 and 7.6 to the calculation
of certain local integrals introduced in this section (see Theorems 10.1 and 10.2). The calculations
are carried out in § 11 for the primitive case and in § 12 for the nonprimitive case.
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2. Notation

2.1 An index of notation is given in Table 1. As usual, Z,Q,R and C denote the ring of rational
integers, the rational number field, the field of real and complex numbers, respectively. For z ∈ C
and m ∈ Q, put e[z] = exp(2π

√
−1z) and em[z] = e[mz]. For a finite prime p, let Zp be the

p-adic integer ring and Qp the p-adic number field. We put Zf =
∏

p<∞ Zp. Let QA denote the
adele ring of Q. For a prime v of Q, | · |v stands for the absolute value of Q×

v . When v = p < ∞,
the normalized additive valuation ordp : Q×

p → Z is given by |a|p = p−ordpa (a ∈ Q×
p ). We denote

by |a|A =
∏

v |av|v the idéle norm of a = (av)v ∈ Q×
A. Let ψ be the additive character of QA/Q

satisfying ψ(x∞) = e[x∞] (x∞ ∈ R). For m ∈ Q, we put ψm(x) = ψ(mx) for x ∈ QA. Let ψv

(respectively ψm,v) be the restriction of ψ (respectively ψm) to Qv for each prime v of Q.
Let X be a linear algebraic group defined over Q. For a prime v of Q, Xv stands for the group

of Qv-rational points of X. Denote by XA and XA,f the adélization of X and its finite part,
respectively.

Let diag(a1, . . . , an) be the diagonal matrix of degree n with the ith diagonal component ai for
i = 1, . . . , n. For x ∈ R, we write [x] for the integer with 0 � x− [x] < 1. If P is a condition, we put
δ(P ) = 1 if P holds, and δ(P ) = 0 otherwise. For a set C, charC denotes the characteristic function
of C.

2.2 Let K be an imaginary quadratic field of discriminant D with integer ring OK . We fix an
embedding ofK into C and let κ =

√
D so that Im(κ) > 0. Denote by σ the nontrivial automorphism

of K/Q. For z ∈ K, we write Tr(z) and N(z) for TrK/Q(z) = z+zσ and NK/Q(z) = zzσ, respectively,
if there is no fear of confusion. We put ψK(z) = ψ(Tr(z)) (z ∈ KA). For a prime v of Q, let
Kv = K⊗QQv. For a finite prime p, put OK,p = OK ⊗ZZp. We set OK,f =

∏
p<∞OK,p. By an ideal

of K, we always mean a nonzero fractional ideal of K. For an ideal a of K and a finite prime p,
we put ap = a ⊗OK

OK,p. Let af = a ⊗OK
OK,f =

∏
p<∞ ap. For α = α∞αf ∈ K×

A, we denote
by id(α) the ideal a of K determined by af = αfOK,f . Let K1 = {t ∈ K× | ttσ = 1}. We put
O1

K,f = K1
A,f ∩ O×

K,f =
∏

p<∞O1
K,p, where O1

K,p = K1
p ∩ O×

K,p. When p splits in K/Q, we fix an
identification Kp with Qp ⊕ Qp, and put Πp,1 = (p, 1) and Πp,2 = (1, p). When p ramifies in K/Q
(namely p|D), we fix a prime element Πp of Kp and put πp = N(Πp). When p is inert or splits in
K/Q, we take and fix a prime element πp of Qp.

Let θ be an element of OK such that OK = Z + Zθ, θ − θσ = κ and ordp NK/Q(θ) = 1 for every
p ramified in K/Q. For example, we can take θ as

θ =
D′ +

√
D

2
, D′ =

{
D if D is odd,
D/2 if D is even.

For A ∈Mm,n(K), put A∗ = tAσ. Let A ∈Mn(K)be a hermitian (respectively an anti-hermitian)
matrix of degree n, namely A∗ = A (respectively A∗ = −A). Let W = Kn be the K-vector space
of column vectors of dimension n coefficients in K. For w,w′ ∈ W , we put A(w,w′) = w∗Aw′

and A[w] = A(w,w). If A is anti-hermitian, we define an alternating Q-form 〈·, ·〉A on W by
〈w,w′〉A = Tr(w∗Aw′) (w,w′ ∈W ).

For a prime v of Q, we denote by S(Km
v ) the space of Schwartz–Bruhat functions on Km

v .

2.3 Let

S =

 κ−1

1
−κ−1

 , T =
(

0 1
−1 0

)
.
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Table 1. Index of notation.

§ Notation

2.1 e[z], em[z], ψ, ψm, ψv , [x], δ(P ), charC

2.2 K,D,OK , κ, σ,Tr(z),N(z), ψK(z),Kv ,OK,p,OK,f , ap, af , id(α), 1,O1
K,p,O1

K,f , θ

2.3 S, T,G,H,Kp,Up,U ′
p,Kf ,Uf ,U ′

f ,D, J,K∞,H, j,dG(a, t),dG(a), (w, x), N,R,A,
nH(x),nH(x),dH (a), w0, N

H , AH

2.4 dxv, dzv , daz, dx, dz, d
×a, h(K1), w(K)

2.5 X , ω, w∞(χ),Xv , ξ
1

3.1 Al(Kf ),Sl(Kf ),Yl,Sl(Kf ; Ω−1)
3.2 HG

p , L(ξ; s), L(F, ξ; s)
3.3 χ̃0,p, χ̃0, j

′, Al−1(U ′
f , χ̃0), Sl−1(U ′

f , χ̃0), Sl−1(U ′
f , χ̃0;χ0Ω)

3.4 H̃H
p ,HH

p , L(f, ξ; s)
4.1 Tm, 〈〈, 〉〉R
4.2 L, V m

p , V m∞ , V m, V m
L2 , ρ

m

4.3 λKv(ψm,v),Mκ,m
χ

4.4 θm
χ,Φ,T

m
χ

4.5 Tm,k,Tm,k
χ ,Tm

hol

4.6 N(a)f , R(a)f ,Tm(a),Tm
hol(a),T

m
hol(a, χ),P ′

b,T
m
hol,prim(a),Tm

hol,prim(a, χ)
4.7 Ap(χ),Pp, ε(s, χ, ψm,Kp), µp(m, a), δp
4.8 Xprim(m, a),X+

prim(m, a), E
4.9 R(a)
4.10 Qp

4.11 IΘ(r), I(Θ), C(χ)
5.1 Fm, Fm

α

5.2 CF (b,Θm
a,χ)

6.2 H,T, g ⊗ h

6.3 NT ,NT, ρT , ρT
6.4 MT

χ0
,MT

χ0

6.5 i, ρ̃T,M̃T
χ0
, I

6.6 Φ0,p, ϕ0,p,Φ0,∞, ϕ0,∞,Φ0, ϕ0

7.1 MT
χ0
, θ

7.2 Lf
7.3 ηm,Hηm , ιm
7.4 Wm

χ,f

7.6 c∞, cp, E(χ), wε
0, B(χ, ε), J(m, a, χ, f)

8.3 Λm
β,Θ

9.1 Wm∞(k)
9.2 Cm

9.3 k(χ)
9.4 τ,Iβ∞(W, τ)

10.1 Xunr(K1),Wm(χ),Wm(χ;χ0Ω),T m(a, χ),Ib(W, τ)
10.2 v0, δe(χ)
10.3 C∞(H/U ′, χ̃0), φ∨
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Then S (respectively
√
−1−1

T ) is a hermitian matrix of signature (2, 1) (respectively (1, 1)).
Denote by G and H the unitary groups of S and T , respectively. By definition, GQ = {g ∈ GL3(K) |
g∗Sg = S} and HQ = {h ∈ GL2(K) | h∗Th = T}. We put

Kp = Gp ∩ GL3(OK,p), Up = Hp ∩ GL2(OK,p), U ′
p =
{(

a b
c d

)
∈ Up

∣∣∣∣ c ∈ DOK,p

}
.

Then Kp (respectively Up) is a maximal open compact subgroup of Gp (respectively Hp), and U ′
p is

an open subgroup of Up. Note that Up = U ′
p unless p|D. We set

Kf =
∏

p<∞
Kp, Uf =

∏
p<∞

Up, U ′
f =

∏
p<∞

U ′
p.

Let

D =
{(

z
w

)
∈ C2

∣∣∣∣ z − z

κ
− ww > 0

}
be a hermitian symmetric domain isomorphic to the complex two ball. The real points G∞ of G
acts on D as follows. For g ∈ G∞ and Z = t(z,w) ∈ D, there exist g〈Z〉 ∈ D and J(g, Z) ∈ C×

such that g · Z˜ = J(g, Z) · (g〈Z〉)̃ , where Z˜ = t(z,w, 1) ∈ C3. Then (g, Z) �→ g〈Z〉 defines a
holomorphic action of G∞ on D and J : G∞ × D → C× is a holomorphic automorphic factor.
Let K∞ = {g ∈ G∞ | g∞〈Z0〉 = Z0} be the stabilizer of Z0 = t(κ/2, 0) ∈ D in G∞. It is known that
K∞ = G∞ ∩ U(S0) with S0 = diag(−2/D, 1, 1/2).

We define the action of H∞ on the upper half plane H = {z ∈ C | Im(z) > 0} and the
holomorphic automorphic factor j : H∞ × H → C× in a usual way:

h〈z〉 =
az + b

cz + d
, j(h, z) = cz + d

for h =
(

a b
c d

)
∈ H∞ and z ∈ H. Denote by U∞ the stabilizer of z0 =

√
−1 ∈ H in H∞.

We put dG(a, t) = diag(aσ, t, a−1) and dG(a) = dG(a, 1) for a ∈ K×, t ∈ K1, and

(w, x) =


1 κwσ x+

κ

2
wwσ

1 w

1

 (w ∈ K,x ∈ Q).

Note that (w, x)(w′, x′) = (w+w′, x+x′+ 1
2〈w,w′〉κ) and dG(a, t)·(w, x)·dG(a, t)−1 = (atw,N(a)x),

where 〈w,w′〉κ = Tr(κwσw′). We write nt for n · dG(1, t) if there is no fear of confusion (the scalar
matrix diag(t, t, t) is always denoted by t13 throughout the paper). Define subgroups N,R and A
of G by NQ = {(w, x) | w ∈ K,x ∈ Q}, RQ = {nt | n ∈ NQ, t ∈ K1} and AQ = {dG(a) | a ∈ K×}.
We see that Np ∩ Kp = {(w, x + xw) | w ∈ OK,p, x ∈ Zp}, where xw = 2−1 Tr θwwσ (w ∈ K).

Put

nH(x) =
(

1 x
0 1

)
, nH(x) =

(
1 0
x 1

)
(x ∈ Q)

and

dH(a) =
(
aσ 0
0 a−1

)
(a ∈ K×), w0 =

(
0 1

−1 0

)
.

Define subgroups NH and AH of H by NH
Q = {nH(x) | x ∈ Q} and AH

Q = {dH(a) | a ∈ K×}.
We have the Iwasawa decompositions:

GA = RAAAKfK∞, HA = NH
AA

H
AUfU∞.
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2.4 In this subsection, we normalize Haar measures on various groups. Let v be a prime of Q.
Let dx v be the Haar measure on Qv self-dual with respect to the pairing (xv, x

′
v) �→ ψv(xvx

′
v).

Note that
∫
Zp

dx p = 1 for p < ∞ and that dx∞ is the usual Lebesgue measure on R. Let dz v

be the Haar measure on Kv self-dual with respect to the pairing (zv, z′v) �→ ψK(zσ
v z

′
v). Note that∫

OK,p
dz p = |D|1/2

p and dz∞ = 2dLz∞, where dLz∞ is the usual Lebesgue measure on C. For an
ideal a of Kp, daz stands for the Haar measure on Kp normalized by vol(a) = 1.

Let dx =
∏

v dxv and dz =
∏

v dzv. Then dx and dz are the Haar measures on QA and KA

with vol(Q\QA) = 1 and vol(K\KA) = 1, respectively. Let d×a =
∏

v d
×av be the Haar measure

on K×
A, where d×av is the Haar measure on K×

v normalized by vol(O×
K,p) = 1 if v = p < ∞, and

d×a∞ = da∞/N(a∞). Let d×t =
∏

v d
×tv be the Haar measure on K1

A, where d×tv is the Haar
measure on K1

v normalized by vol(O1
K,p) = 1 if v = p < ∞, and vol(K1∞) = 1 if v = ∞. Under this

normalization, we have vol(K1\K1
A) = h(K1)/w(K), where h(K1) = #(K1\K1

A/K
1∞O1

K,f ) is the
class number of K1 and w(K) is the number of roots of unity in K.

The Haar measures on Nv and Rv are given as follows:

dnv = dwv dxv (nv = (wv, xv), wv ∈ Kv, xv ∈ Qv),

drv = dnv d
×tv (rv = nvtv, nv ∈ Nv, tv ∈ K1

v ).

When v = p <∞, we normalize Haar measures dgp and dhp on Gp and Hp by∫
Kp

dgp = 1,
∫
Up

dhp = 1.

When v = ∞, we normalize Haar measures dg∞ and dh∞ on G∞ and H∞ by∫
G∞

Φ(g∞) dg∞ =
∫

R∞

∫
C×

∫
K∞

|N(a∞)|−2
∞ Φ(r∞dG(a∞)k∞) dk∞ d×a∞ dr∞ (Φ ∈ L1(G∞))

and∫
H∞

ϕ(h∞) dh∞ =
∫
R

∫
C×

∫
U∞

|N(a∞)|−1
∞ ϕ(nH(x)dH(a∞)u∞) du∞ d×a∞ dx∞ (ϕ ∈ L1(H∞)).

Here dk∞ (respectively du∞) is normalized by vol(K∞) = 1 (respectively vol(U∞) = 1). Finally, let
dn =

∏
v dnv, dr =

∏
v drv, dg =

∏
v dgv and dh =

∏
v dhv be the Haar measures on NA, RA, GA

and HA, respectively.

2.5 Let X be the set of unitary Hecke characters χ of K satisfying χ|
Q×

A
= ω, where ω = ωK/Q is

the quadratic Hecke character of Q corresponding to K/Q. For χ ∈ X , let w∞(χ) be the integer
such that χ(z∞) = (z∞/|z∞|)w∞(χ) for z∞ ∈ K×∞. Note that w∞(χ) is always odd. For a prime
v of Q, let Xv be the set of the set of unitary characters χ of K×

v with χ|
Q×

v
= ωv. For a Hecke

character ξ of K trivial on Q×
A, we define a character ξ1 of K1

A/K
1 by ξ1(zσ/z) = ξ(z) (z ∈ K×

A).

3. Automorphic forms on U(2,1) and U(1,1)

3.1 Automorphic forms on U(2,1)

We henceforth fix a positive integer l divisible by w(K). We first recall the definition of holomorphic
automorphic forms on G = U(S). Let Al(Kf ) be the space of smooth functions F on GQ\GA

satisfying:

(i) F (gkfk∞) = J(k∞, Z0)−lF (g) (g ∈ GA, kf ∈ Kf , k∞ ∈ K∞);

(ii) for any gf ∈ GA,f , g∞〈Z0〉 �→ J(g∞, Z0)lF (gfg∞) is holomorphic on D.
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Denote by Sl(Kf ) the space of F ∈ Al(Kf ) satisfying∫
Q\QA

F ((0, x)g) dx = 0 (g ∈ GA).

We call Al(Kf ) (respectively Sl(Kf )) the space of holomorphic automorphic forms (respectively
holomorphic cusp forms) of weight l on Kf . It is known that F ∈ Sl(Kf ) is bounded on GA.

Let Yl be the set of unitary characters Ω of K1
A/K

1 satisfying Ω|O1
K,f

= 1 and Ω(z∞) = zl∞ for

z∞ ∈ K1∞. For Ω ∈ Yl, let Sl(Kf ; Ω−1) be the space of F ∈ Sl(Kf ) satisfying F (t13 ·g) = Ω−1(t)F (g)
for t ∈ K1

A. We then have Sl(Kf ) =
⊕

Ω∈Yl
Sl(Kf ; Ω−1).

3.2 Hecke operators and L-functions for U(2,1)
For p < ∞, let HG

p = H(Gp,Kp) be the Hecke algebra of (Gp,Kp). By definition, HG
p is the space

of compactly supported bi-Kp-invariant functions on Gp and the product is given by

(Φ ∗ Φ′)(g) =
∫

Gp

Φ(gx−1)Φ′(x) dx (Φ,Φ′ ∈ HG
p ).

The C-algebra HG
p acts on Sl(Kf ; Ω−1) by

(F ∗ Φ)(g) =
∫

Gp

F (gx−1)Φ(x) dx (F ∈ Sl(Kf ; Ω−1),Φ ∈ HG
p ).

The following facts are elementary (cf. [Shi79, Lemma 2] and [Kud81, p. 333]).

Lemma 3.1. Let F ∈ Sl(Kf ; Ω−1).

(i) Suppose that p is inert in K/Q. Then we have HG
p = C[Φ1,p] with Φ1,p = charKpdG(p)Kp

and

(F ∗ Φ1,p)(g) = F (gdG(p−1)) +
∑

x∈(Zp−pZp)/pZp

F (g(0, p−1x))

+
∑

w∈OK,p/pOK,p

∑
x∈Zp/p2Zp

F (g(w, x + xw)dG(p)).

(ii) Suppose that p ramifies inK/Q and let Π be a prime element ofKp. Then we have HG
p = C[Φ1,p]

with Φ1,p = charKpdG(Π)Kp
and

(F ∗ Φ1,p)(g) = F (gdG(Π−1)) +
∑

w∈(OK,p−ΠOK,p)/ΠOK,p

F (g(Π−1w, xΠ−1w))

+
∑

w∈OK,p/ΠOK,p

∑
x∈Zp/pZp

F (g(w, x + xw)dG(Π)).

(iii) Suppose that p splits in K/Q and put Π1 = (p, 1) and Π2 = (1, p). Then we have HG
p =

C[Φ1,p,Φ2,p,Φ±
0,p], where Φi,p = charKpdG(Πi)Kp

(i = 1, 2), Φ±
0,p = charKp(Π1/Π2)±113Kp

, and

(F ∗ Φi,p)(g) = F (gdG(Π−1
i )) +

∑
w∈OK,p/ΠiOK,p

F (g(w, xw)(Πi/Πσ
i ))

+
∑

w∈OK,p/Πσ
i OK,p

∑
x∈Zp/pZp

F (g(w, x + xw)dG(Πσ
i )) (i = 1, 2),

(F ∗ Φ±
0,p)(g) = F (g · (Π1/Π2)∓113) (= Ω±1(Π1/Π2)F (g)).

If, for every p < ∞, there exists a C-algebra homomorphism Λp of HG
p to C such that F ∗ Φ =

Λp(Φ)F holds for any Φ ∈ HG
p , we say that F is a Hecke eigenform with eigenvalues {Λp}.
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Let F ∈ Sl(Kf ; Ω−1) be a Hecke eigenform with eigenvalues {Λp} and ξ a Hecke character of K.
Let L(ξ; s) =

∏
p<∞ Lp(ξ; s) be the Hecke L-function of ξ. We define an L-function

L(F, ξ; s) =
∏
p<∞

Lp(F, ξ; s),

where the local factor Lp(F, ξ; s) is given as follows.

(i) If p is inert in K/Q, put

Lp(F, ξ; s) = Lp(ξ; s)Qp(ξp(p)p−2s)−1,

where

Qp(X) = 1 − p−2{Λp(Φ1,p) − p+ 1}X +X2.

(Here we make a convention that ξp(p) = 0 if ξ|O×
K,p

�= 1. We follow a similar convention in the

later discussions.)

(ii) If p ramifies in K/Q, put

Lp(F, ξ; s) = Lp(ξ; s)Qp(ξp(Π)p−s)−1,

where

Qp(X) = 1 − p−1{Λp(Φ1,p) − p+ 1}X +X2.

(iii) If p splits in K/Q, put

Lp(F, ξ; s) = Q1,p(ξp(Π1)p−s)−1Q2,p(ξp(Π2)p−s)−1,

where

Q1,p(X) = 1 − p−1Λ2X + p−1εΛ1X
2 − εX3,

Q2,p(X) = 1 − p−1Λ1X + p−1ε−1Λ2X
2 − ε−1X3,

with Λi = Λp(Φi,p) (i = 1, 2) and ε = Λp(Φ+
0,p) = Ωp(Π1/Π2).

3.3 Automorphic forms on U(1,1)
We next recall the definition of automorphic forms on H = U(T ). In what follows, we fix once and
for all an element χ0 of X with w∞(χ0) = −1 (cf. § 2.5). For u =

(
a b
c d

)
∈ U ′

p, put

χ̃0,p(u) =

{
χ0,p(a) if ∈ pOK,p,
χ0,p(c) otherwise.

Note that c ∈ O×
K,p if c �∈ pOK,p.

Lemma 3.2. For any p <∞, χ̃0,p is a character of U ′
p.

Proof. The lemma is easily verified when p|D. Suppose that p � |D. For u ∈ U ′
p = Up, there exists a

tu ∈ O×
K,p such that detu = tσu/tu. It is straightforward to see that χ̃0,p(u) = χ−1

0,p(tu), from which
the lemma follows.

Define a character χ̃0 of U ′
f by χ̃0 =

∏
p<∞ χ̃0,p and put

j′(h∞, z) = deth−1
∞ · j(h∞, z) (h∞ ∈ H∞, z ∈ H).

Let Al−1(U ′
f , χ̃0) be the space of smooth functions f on HQ\HA satisfying the following three

conditions:

(i) f(hufu∞) = j′(u∞, z0)1−lχ̃0(uf )f(h) (h ∈ HA, uf ∈ U ′
f , u∞ ∈ U∞);
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(ii) for any hf ∈ HA,f , h∞〈z0〉 �→ j′(h∞, z0)l−1f(hfh∞) is holomorphic on H;

(iii) f is holomorphic at each cusp.

We denote by Sl−1(U ′
f , χ̃0) the space of f ∈ Al−1(U ′

f , χ̃0) satisfying∫
Q\QA

f(nH(x)h) dx = 0 (h ∈ HA).

We call Al−1(U ′
f , χ̃0) (respectively Sl−1(U ′

f , χ̃0)) the space of holomorphic automorphic forms
(respectively holomorphic cusp forms) of weight l − 1 on U ′

f of character χ̃0. It is known that
f ∈ Sl−1(U ′

f , χ̃0) is bounded on HA.

As in § 3.1, we have Sl−1(U ′
f , χ̃0) =

⊕
Ω∈Yl

Sl−1(U ′
f , χ̃0;χ0Ω), where Sl−1(U ′

f , χ̃0;χ0Ω) is the
space of f ∈ Sl−1(U ′

f , χ̃0) satisfying f(t12 · h) = (χ0Ω)(t)f(h) for t ∈ K1
A.

3.4 Hecke operators and L-functions for U(1,1)

For p < ∞, let H̃H
p = H(Hp,U ′

p; χ̃0,p) be the space of compactly supported functions φ on Hp

satisfying φ(u1hu2) = χ̃0,p(u1u2)φ(h) (h ∈ Hp, u1, u2 ∈ U ′
p). Then H̃H

p forms a C-algebra with the
product

(φ ∗ φ′)(h) = vol(U ′
p)

−1

∫
Hp

φ(hx−1)φ′(x) dx (φ, φ′ ∈ H̃H
p , h ∈ Hp),

and acts on Sl−1(U ′
f , χ̃0;χ0Ω) by

(f ∗ φ)(h) = vol(U ′
p)

−1

∫
Hp

f(hx−1)φ(x) dx (f ∈ Sl−1(U ′
f , χ̃0;χ0Ω), φ ∈ H̃H

p ).

First suppose that p is inert in K/Q. Then H̃H
p = C[φ1,p], where φ1,p is the element of H̃H

p

satisfying Suppφ1,p ⊂ U ′
pdH(p)U ′

p and φ1,p(dH(p)) = χ−1
0,p(p) = −1.

Next suppose that p splits in K/Q. Then H̃H
p = C[φ1,p, φ2,p, φ

±
0,p], where φ1,p, φ2,p, φ

±
0,p are

the elements of H̃H
p satisfying Suppφi,p ⊂ U ′

pdH(Πi)U ′
p, φi,p(dH(Πi)) = χ−1

0,p(Πi) and Suppφ±0,p ⊂
U ′

pdH((Π1/Π2)±1)U ′
p = U ′

p(Π1/Π2)∓112, φ
±
0,p(dH((Π1/Π2)±1)) = χ−1

0,p((Π1/Π2)±1). We note that
φ1,p ∗ φ−0,p = φ2,p. In both cases, H̃H

p is commutative and we set HH
p = H̃H

p .

Finally, suppose that p ramifies in K/Q. In this case, H̃H
p is not commutative in general. Let φ±p

be the elements of H̃H
p satisfying Suppφ±p ⊂ U ′

pdH(Π±1)U ′
p and φ±p (dH(Π±1)) = χ−1

0,p(Π
±1). We let

HH
p the subalgebra of H̃H

p generated by φ+
p + φ−p . Then HH

p is commutative.

Lemma 3.3. Let f ∈ Sl−1(U ′
f , χ̃0;χ0Ω).

(i) Suppose that p is inert in K/Q. Then we have

(f ∗ φ1,p)(h) = −f(hdH(p−1)) −
∑

x∈(Zp−pZp)/pZp

f(hnH(p−1x)) −
∑

x∈Zp/p2Zp

f(hnH(x)dH(p)).

(ii) Suppose that p ramifies in K/Q. Then

(f∗(φ+
p +φ−p ))(h) = χ−1

0,p(Π)
∑

x∈Zp/pZp

f(hnH(Dx)dH(Π−1))+χ0,p(Π)
∑

x∈Zp/pZp

f(hnH(x)dH(Π)).
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(iii) Suppose that p splits in K/Q. Then we have

(f ∗ φ1,p)(h) = χ−1
0,p(Π1)

{
f(hdH(Π−1

1 )) +
∑

x∈Zp/pZp

f(hnH(x)dH(Π2))
}
,

(f ∗ φ2,p)(h) = χ−1
0,p(Π2)

{
f(hdH(Π−1

2 )) +
∑

x∈Zp/pZp

f(hnH(x)dH(Π1))
}
,

(f ∗ φ±0,p)(h) = χ−1
0,p((Π1/Π2)±1) · f(hdH(Π1/Π2)∓1) (= Ω±1

p (Π1/Π2)f(h)).

If, for every p < ∞, there exists a C-algebra homomorphism λp of HH
p to C such that f ∗ φ =

λp(φ)f holds for any φ ∈ HH
p , we say that f is a Hecke eigenform with eigenvalues {λp}.

Let f ∈ Sl−1(U ′
f , χ̃0;χ0Ω) be a Hecke eigenform with eigenvalues {λp} and ξ a Hecke character

of K. We define an L-function

L(f, ξ; s) =
∏
p<∞

Lp(f, ξ; s),

where the local factor Lp(f, ξ; s) is given as follows.

(i) If p is inert in K/Q, put

Lp(f, ξ; s) = Rp(ξp(p)p−2s)−1,

where

Rp(X) = 1 − {p−1λp(φ1,p) + 1 − p−1}X +X2.

(ii) If p ramifies in K/Q, put

Lp(f, ξ; s) = Rp(ξp(Π)p−s)−1,

where

Rp(X) = 1 − p−1/2λp(φ+
p + φ−p )X +X2.

(iii) If p splits in K/Q, put

Lp(f, ξ; s) = R1,p(ξp(Π1)p−s)−1R2(ξp(Π2)p−s)−1,

where

R1,p(X) = 1 − p−1/2λp(φ1,p)X + εX2, R2,p(X) = 1 − p−1/2λp(φ2,p)X + ε−1X2

with ε = λp(φ+
0,p) = Ωp(Π1/Π2). Note that λp(φ2,p) = ε−1λp(φ1,p) and, hence, R2,p(X) =

R1,p(ε−1X).

Remark. Suppose that K has class number 1. For f ∈ Sl−1(U ′
f , χ̃0), put fdm(h∞〈i〉) =

j′(h∞, i)l−1f(h∞)(h∞ ∈ H∞). Then f �→ fdm gives rise to an isomorphism between Sl−1(U ′
f , χ̃0)

and the space of holomorphic cusp forms of weight l − 1 and character ω on Γ0(D). Assume that
fdm(z) =

∑∞
n=0 c(n)e[nz] is a normalized newform in the sense of [Li75]. Define a twisted L-function

Z(fdm; s) =
∑
a

c(Na)αl Na−s,

a = αOK running over the nonzero integral ideals of K. A straightforward calculation shows that

L(f,1; s) = ζ(2s)Z(fdm ; s+ l − 1)
∏
p|D

(1 − p−2s)(1 − c(p)ηl
pp

−s−l+1)−1.

Here, for p|D, ηp is an element of K such that ηpOK is a prime ideal of K dividing p.
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4. Theta functions

4.1 The space of theta functions
In this section, we recall several facts about theta functions on R (for details, see [MS02, § 2]).
For m ∈ Q×, let Tm be the space of smooth functions Θ on RQ\RA satisfying:

(i) Θ((0, x)r) = ψm(x)Θ(r) (x ∈ QA, r ∈ RA);
(ii) for any r ∈ RA, t∞ �→ Θ(rt∞) is K1∞-finite.

Let ρ′ be the smooth representation of RA,f on Tm given by right translations. Define an inner
product 〈〈·, ·〉〉R on Tm by

〈〈Θ,Θ′〉〉R =
∫

RQ\RA

Θ(r)Θ′(r) dr.

4.2 Lattice model
In this and the following subsections, we recall the definition of metaplectic representations on a
lattice model (for the details, see [MVW87, ch. 2, I. 4], [MS00, § 1] and [MS02, § 2]). Let m ∈ Q×

and L = (mD)−1Z + 2−1κZ be a lattice in K. For a rational prime p, let V m
p be the space of

Φp ∈ S(Kp) satisfying

Φp(zp + lp) = ψm,p(1
2〈zp, lp〉κ + 1

4〈lp, l
σ
p 〉κ)Φp(zp)

for zp ∈ Kp and lp ∈ Lp = L⊗Z Zp. Let V m∞ be the space consisting of functions on K∞ = C of the
form P (z∞)e[2−1mκz∞z∞] (respectively P (z∞)e[−2−1mκz∞z∞]) if m > 0 (respectively if m < 0),
where P is a polynomial in z∞. Define an inner product (·, ·)v on V m

v by

(Φv,Φ′
v)v =

∫
Kv

Φv(zv)Φ′
v(zv) d

mzv (Φv,Φ′
v ∈ V m

v ),

where dmzv is the Haar measure on Kv self-dual with respect to the pairing (z,w) �→ ψm,v(〈z,w〉κ)
(note that dmzv = |N(mκ)|1/2

v dzv).
Let V m be the restricted tensor product of V m

v over primes v of Q with respect to {Φ0,p}, where
Φ0,p ∈ V m

p is given by

Φ0,p(zp) = charLp(zp)ψm,p(1
4 〈zp, z

σ
p 〉κ) (zp ∈ Kp).

We denote by V m
L2 the completion of V m with respect to the inner product

(Φ,Φ′) =
∫

KA

Φ(z)Φ′(z) dmz,

where dmz =
∏

v d
mzv. Let ρm be a unitary representation of NA on V m

L2 defined by

ρm(w, x)Φ(z) = ψm(1
2〈z,w〉κ + x)Φ(z + w) (Φ ∈ V m

L2 , (w, x) ∈ NA, z ∈ KA).

Then ρm is irreducible.

4.3 Metaplectic representation of K1
A

Let χ ∈ X and v be a prime of Q. Let λKv(ψm,v) be the Weil constant attached to (Kv/Qv, ψm,v)
(cf. [Wei64, Théorèm 2]). By definition, we have∫

Kv

ϕ(z)ψv(mzzσ) dz = λKv(ψm,v)|m|−1
v

∫
Kv

ϕ̂(z)ψv(−m−1zzσ) dz

for ϕ ∈ S(Kv). Here the Fourier transform ϕ̂ of ϕ is defined by

ϕ̂(z) =
∫

Kv

ϕ(w)ψv(Tr(wσz)) dw (z ∈ Kv).
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For tv ∈ K1
v , we define an endomorphism Mκ,m

χ (tv) of V m
L2 as follows. If tv = 1, we put Mκ,m

χ (tv) =
IdV m

L2
. Suppose that tv �= 1. For Φ ∈ V m, we put

Mκ,m
χ (tv)Φ(z) = λKv(ψm,v)−1χv

(
1 − tv
κ

)
|N(1 − tv)|−1/2

v

×
∫

Kv

ψm,v

(
1
2

Tr
(

κ

1 − tv

)
wvw

σ
v

)
ρm(wv, 0)Φ(z) dmwv (z ∈ KA).

It is known that Mκ,m
χ (tv) preserves V m and extends uniquely to a unitary operator of V m

L2 .
For t = (tv)v ∈ K1

A, we put Mκ,m
χ (t) =

⊗
v M

κ,m
χ (tv). Then Mκ,m

χ defines a unitary represen-
tation of K1

A on V m
L2 satisfying Mκ,m

χ (t)ρm(w, x)Mκ,m
χ (t−1) = ρm(tw, x) (t ∈ K1

A, (w, x) ∈ NA).
Hence, we can extend Mκ,m

χ to a unitary representation of RA on V m
L2 by

Mκ,m
χ ((w, x)t) = ρm(w, x) ◦Mκ,m

χ (t) ((w, x) ∈ NA, t ∈ K1
A).

4.4 Theta series
For χ ∈ X and Φ ∈ V m, we set

θm
χ,Φ(r) =

∑
X∈K

(Mκ,m
χ (r)Φ)(X) (r ∈ RA).

The theta series θm
χ,Φ is absolutely convergent and belongs to Tm. Let Tm

χ = {θm
χ,Φ | Φ ∈ V m}.

Proposition 4.1 ([Shi79, Proposition 2]; see also [MS02, Theorem 2.22]). We have the following.

(i) We have an orthogonal decomposition

Tm =
⊕
χ∈X

Tm
χ .

(ii) For χ ∈ X and Φ,Φ′ ∈ V m, we have 〈〈θm
χ,Φ, θ

m
χ,Φ′〉〉R = cm(Φ,Φ′) with a positive constant cm

depending only on m.

4.5 Holomorphic theta functions
For k ∈ Z, set Tm,k = {Θ ∈ Tm | Θ(rt∞) = tk∞Θ(r)(r ∈ RA, t∞ ∈ K1∞)} and Tm,k

χ = Tm
χ ∩ Tm,k.

Let Tm
hol be the space of Θ ∈ Tm,0 such that

w∞ �→ fΘ,rf
(w∞) := em

[
−κ

2
w∞w∞

]
Θ((w∞, 0)rf )

is holomorphic on C for any rf ∈ RA,f . We call Tm
hol the space of holomorphic theta functions.

Lemma 4.2. We have the following.

(i) We have

Tm
χ =


⊕

k�(w∞(χ)+1)/2

Tm,k
χ if m > 0,

⊕
k�(w∞(χ)−1)/2

Tm,k
χ if m < 0.

(ii) We have

Tm
hol =


⊕

χ∈X ,w∞(χ)=−1

Tm,0
χ if m > 0,

{0} if m < 0.
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Proof. If m > 0, the assertions (i) and (ii) are direct consequences of Lemma 2.14 and Propo-
sition 2.26 in [MS02]. Suppose that m < 0. Observe that V m = V −m and that ρm(w, x)Φ =
ρ−m(w, x)Φ for Φ ∈ V m. This implies that Mκ,m

χ (r)Φ = Mκ,−m
χ−1 (r)Φ (r ∈ RA) and, hence,

θm
χ,Φ = θ−m

χ−1,Φ
. It follows that

Tm
χ = T−m

χ−1 =
⊕

k�(−w∞(χ)+1)/2

T−m,k
χ−1 =

⊕
k�(w∞(χ)−1)/2

Tm,k
χ ,

which proves assertion (i). To show assertion (ii), let Θ ∈ Tm
hol and rf ∈ RA,f . It is easily verified

that fΘ,rf
(w∞) is holomorphic, bounded on C and tends to zero when |w∞| → ∞. This implies that

fΘ,rf
(w∞) is identically equal to zero and, hence, Θ = 0.

4.6 Primitive theta functions

Let a be an ideal of K. Define an open compact subgroup N(a)f of NA,f by

N(a)f =
{

(w, x) ∈ NA,f

∣∣∣∣ w ∈ af , x+
κ

2
wwσ ∈ afaσ

f

}
= {(w, x + xw) ∈ NA,f | w ∈ af , x ∈ afaσ

f}

(recall that xw = 2−1 Tr(θ)wwσ). We put R(a)f = {nt | n ∈ N(a)f , t ∈ O1
K,f}. Let Tm(a) =

{Θ ∈ Tm | ρ′(r0)Θ = Θ for any r0 ∈ R(a)f} and Tm
hol(a) = Tm

hol ∩ Tm(a). It is easy to see that
Tm

hol(a) = {0} unless m > 0 and mN(a) is integral. We henceforth assume that m > 0 and mN(a)
is integral. Then

Tm
hol(a) =

⊕
χ∈X ,w∞(χ)=−1

Tm
hol(a, χ),

where Tm
hol(a, χ) = Tm

hol(a) ∩Tm
χ .

To define the primitive part of Tm
hol(a), let b be an ideal ofK with a ⊂ b. Define an endomorphism

P ′
b of Tm

hol(a) by

P ′
bΘ =

∫
N(b)f

ρ′(nf )Θ dbnf (Θ ∈ Tm
hol(a)),

where dbnf is the Haar measure on NA,f normalized by vol(N(b)f ) = 1. Note that P ′
b = 0 unless

mN(b) is integral. Let

Tm
hol,prim(a) = {Θ ∈ Tm

hol(a) | P ′
bΘ = 0 for any ideal b of K with b � a}

and

Tm
hol,prim(a, χ) = Tm

hol,prim(a) ∩ Tm
χ .

We call Tm
hol,prim(a, χ) the space of holomorphic primitive theta functions with respect to (a, χ).

Theorem 4.3 (Shintani [Shi79, § 2.11] and Glaubermann–Rogawski [GR89, Theorem 4.2]; see
also [MS00, Corollary 6.5] and [MS02, Theorem 3.4]). The space Tm

hol,prim(a, χ) is at most one-
dimensional.

4.7 Artin conductor and epsilon factor

Let p <∞ and m ∈ Q×
p . For χ ∈ Xp, we put Ap(χ) = Min{a � 0 | χ|(1+Pa

p)∩O×
K,p

= 1}, where

Pp =

{
pOK,p if p splits in K/Q,
the maximal ideal of OK,p otherwise.
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Let εp(s, χ, ψm,Kp) be Tate’s epsilon factor [Tat79, § 3], where ψm,Kp = ψm ◦ TrKp/Qp
. It is known

that εp(1/2, χ, ψm,Kp) = ±χ(κ−1). Let a be an ideal of Kp such that µp(m, a) := ordpmN(a) � 0.
Denote by Xp,prim(m, a) the set of χ ∈ Xp which satisfies

Ap(χ) =


µp(m, a) if δp = 0,
2(µp(m, a) + δp) if δp > 0 and µp(m, a) > 0,
2δp or 2δp − 1 if δp > 0 and µp(m, a) = 0.

where δp = ordpD.

4.8 Epsilon dichotomy
Going back to the global situation, we let m ∈ Q×, a an ideal of K and χ ∈ X with w∞(χ) = −1.
Assume that m > 0 and mN(a) is integral. For p <∞, we write χp for the p-component of χ. Set

Xprim(m, a) = {χ ∈ X | w∞(χ) = −1, χp ∈ Xp,prim(m, ap) for every p <∞}
and

X+
prim(m, a) = {χ ∈ Xprim(m, a) | εp(1/2, χp, ψm,Kp) = χp(κ−1) for every p <∞}.

The following result gives a criterion for the existence of primitive theta functions.

Theorem 4.4 ([MS00, Corollary 6.7] and [MS02, Theorem 3.8]). For χ ∈ X , the space Tm
hol,prim(a, χ)

defined in § 4.6 is one-dimensional if and only if χ ∈ X+
prim(m, a).

Remark. Theorem 4.4 is a refined form of ‘epsilon dichotomy’ for U(1) (for epsilon dichotomy for
unitary groups, we refer to [Moe91], [Rog92] and [HKS96]).

Let E be the set of the triplets (m, a, χ), where m is a positive rational number, a an ideal of
K with mN(a) ∈ Z and χ ∈ X+

prim(m, a). By Theorem 4.4, we have dimTm
hol,prim(a, χ) = 1 for

(m, a, χ) ∈ E .

4.9 The structure of Tmhol(a)
We keep the notation and assumptions of § 4.8.

Theorem 4.5 ([Shi79, Proposition 2]; see also [MS02, Theorem 3.9]). We have a direct sum
decomposition:

Tm
hol(a) =

∑
a′∈R(a)

∑
χ∈X+

prim(m,a′)

Tm
hol,prim(a′, χ),

where R(a) is the set of ideals a′ of K containing a with mN(a′) integral.

Remark. Let a1, a2 ∈ R(a) and χ1 ∈ X+
prim(m, a1), χ2 ∈ X+

prim(m, a2). Then Tm
hol,prim(a1, χ1) and

Tm
hol,prim(a2, χ2) are orthogonal to each other if at least one of the following conditions is satisfied

(see [MS00], § 10):

(i) χ1 �= χ2;
(ii) mN(a1) �= mN(a2);
(iii) there exists a prime factor of mN(a1) which splits in K/Q.

4.10 Exceptional case
Suppose that p ramifies in K/Q and define an endomorphism Qp of Tm

hol(a) by

QpΘ(r) =
∫

Π−1
p ap

Θ(r(w, xw)) dΠ−1
p ap

w (Θ ∈ Tm
hol(a))
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(for the definition of dΠ−1
p ap

w, see § 2.4). Note that Qp coincides with P ′
Π−1

p ap
if µp(a,m) > 0. We say

that χp ∈ Xp is ordinary (respectively exceptional) if Ap(χp) � 2δp (respectively Ap(χp) = 2δp − 1).

Proposition 4.6 [MS02, Theorem 3.8]. Let χ ∈ X+
prim(m, a) and Θ ∈ Tm

hol,prim(a, χ). Suppose that
p ramifies in K/Q. Then

QpΘ =

{
0 if χp is ordinary,

Θ if χp is exceptional.

4.11 Periods of theta functions

For Θ ∈ Tm, we put

IΘ(r) =
∫

K1\K1
A

Θ(tr ) d×t (r ∈ RA)

and

I(Θ) = IΘ(1) =
∫

K1\K1
A

Θ(t) d×t.

We call I(Θ) the period of Θ. The following fact is proved by Yang [Yan97, Theorem 0.3] (see also
[MS02, Theorem 5.2]).

Theorem 4.7. Let (m, a, χ) ∈ E and Θ ∈ Tm
hol,prim(a, χ) − {0}.

(i) We have

|I(Θ)|2 = C(χ)L(χ; 1
2)〈〈Θ,Θ〉〉R,

where

C(χ) =
1

2L(ω; 1)

∏
p � |D,Ap(χp)>0

(1 + ωp(πp)p−1)−1

and 〈〈, 〉〉R is defined in § 4.1. (Recall that ω is the quadratic Hecke character of Q associated
with the extension K/Q, ωp the p-component of ω and πp a prime element of Qp.)

(ii) We have I(Θ) �= 0 if and only if L(χ; 1/2) �= 0.

4.12 The following result will be needed in the next section.

Proposition 4.8. Suppose that p splits in K/Q and µp(m, a) = 0. Let χ ∈ X+
prim(m, a) and

Θ ∈ Tm
hol,prim(a, χ). For t ∈ K1

p −O1
K,p, we have∫

ap

Θ(r(w, xw)t−1) dapw = |N(1 − t)|−1/2
p χp

(
1 − t−1

κ

)
Θ(r) (r ∈ RA).

Proof. First note that we may (and do) let θ = (1, 0) and xw = 1
2N(w). Take Φ′ = ⊗vΦ′

v ∈ V m so
that Θ = θm

χ,Φ′. It is sufficient to show that∫
ap

Mκ,m
χ ((w, xw)t−1)Φ′

p dapw = |N(1 − t)|−1/2
p χp

(
1 − t−1

κ

)
Φ′

p. (4.1)

To simplify the notation, we omit the superscript m and the subscript p, and write Mχ for Mκ,m
χ .

Let V (a) = {Φ ∈ V | ρ(w, xw)Φ = Φ(w ∈ a)} = {Φ ∈ V | PaΦ = Φ}, where

PaΦ =
∫
a

ρ(w, xw)Φ daw.
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Observe that V (a) is one-dimensional since µ(m, a) = 0 (cf. [MS00, Proposition 5.10]), and that
both Φ′

p and the integral of (4.1) belong to V (a). This implies∫
a

Mχ((w, xw)t−1)Φ′
p daw = γ(t)Φ′

p

with γ(t) = Tr(PaMχ(t−1)|V (a)). To calculate γ(t), recall that Φ(z) = (ρ(z, 0)Φ,Φ0)(Φ ∈ V, z ∈ K),
where Φ0(z) = charL(z)ψm(1

4 〈z, zσ〉κ) ∈ V . It follows that Mχ(t−1)Φ(z) is equal to

(ρ(z, 0)Mχ(t−1)Φ,Φ0) = (Φ,Mχ(t)ρ(−z, 0)Φ0) = cχ(t)
∫

K
ηt(z, z′)Φ(z′) dmz′,

where

cχ(t) = λK(ψm)−1χ

(
1 − t

κ

)
|N(1 − t)|−1/2 = χ

(
1 − t−1

κ

)
|N(1 − t)|−1/2

and

ηt(z, z′) =
∫

K
ψm

(
−1

2
Tr
(

κ

1 − t

)
N(w′)

)
ρ(w′, 0)ρ(−z, 0)Φ0(z′) dmw′

=
∫

K
ψm

(
−1

2
Tr
(

κ

1 − t

)
N(w′) +

1
2
〈w′, z〉κ − 1

2
〈z′, w′ − z〉κ

)
Φ0(z′ − z + w′) dmw′.

This implies that

PaMχ(t−1)Φ(z) = cχ(t)
∫

K
ηt,a(z, z′)Φ(z′) dmz′

with

ηt,a(z, z′) =
∫
a

ψm

(
1
2
〈z,w〉κ + xw

)
ηt(z + w, z′) daw.

We thus have

γ(t) = cχ(t)
∫

K
ηt,a(z, z) dmz

= cχ(t)
∫
a

∫
K

∫
K

Φ0(w′ − w)

× ψm

(
〈z,w − w′〉κ + xw − 1

2
Tr
(

κ

1 − t

)
N(w′) +

1
2
〈w′, w〉κ

)
dmw′ dmz daw

= cχ(t)Φ0(0)
∫
a

ψm

(
1 − κ− (1 + κ)t

2(1 − t) N(w)
)
daw

= cχ(t)
∫
a

ψm

(
1 − κ− (1 + κ)t

2(1 − t) N(w)
)
daw.

Since
1 − κ− (1 + κ)t

2(1 − t)
∈ Zp for t �∈ O1

K,p,

the last integral is equal to 1 and we have proved γ(t) = cχ(t).

5. Fourier–Jacobi component

5.1 Fourier–Jacobi expansion

In this section, keeping the notation of § 4, we recall several basic facts about Fourier–Jacobi
expansion of automorphic forms on G = U(S) after [Shi79] (see also [MS02]).
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Let F be a smooth function on GQ\GA/Kf . Then F admits the Fourier–Jacobi expansion

F (g) =
∑
m∈Q

Fm(g),

where

Fm(g) =
∫
Q\QA

F ((0, x)g)ψm(−x) dx.

For α ∈ K×
A, we define a function Fm

α on RQ\RA by

Fm
α (r) = Fm(rdG(α)) (r ∈ RA).

Note that Fm
α ∈ Tm(a) with a = id(α) (for the definition of id(α), see § 2.2).

Proposition 5.1. Let F be as above. Then F is in Sl(Kf ) if and only if the following four conditions
are satisfied:

(5.1) F (gk∞) = J(k∞, Z0)−lF (g) (k∞ ∈ K∞);

(5.2) Fm = 0 if m � 0;

(5.3) for any m ∈ Q,m > 0 and α = α∞αf ∈ K×
A, we have Fm

α = αl∞em[(κ/2)(α∞α∞ − 1)]Fm
αf

;

(5.4) for any m ∈ Q,m > 0 and αf ∈ K×
A,f , we have Fm

αf
∈ Tm

hol.

Proof. The necessity is easily verified. Suppose that the conditions (5.1)–(5.4) are satisfied.
For gf ∈ GA,f , we put Fdm(g∞〈Z0〉; gf ) = J(g∞, Z0)lF (gfg∞)(g∞ ∈ G∞). It is sufficient to show
that Z �→ Fdm(Z; gf ) is holomorphic on D for any gf ∈ GA,f . We may (and do) suppose that
gf = rfdG(αf )(rf ∈ RA,f , αf ∈ K×

A,f ). For Z = t(z,w) ∈ D, put g
Z

= (w, x)dG(
√
y) with

z = x+ (κ/2)(y + ww) (x, y ∈ R, y > 0). Then gZ〈Z0〉 = Z. By (5.2) and (5.3), we obtain

Fdm(Z; gf ) = J(g
Z
, Z0)lF (gfgZ

)

= y−l/2
∑

m∈Q,m>0,m N(a)∈Z
Fm

αf
√

y(rf (w, 0))em[x]

=
∑

m∈Q,m>0,m N(a)∈Z
Fm

αf
(rf (w, 0)) · em

[
−κ

2
(ww + 1)

]
em[z].

The condition (5.4) implies that each term in the sum is holomorphic in Z and we are done.

5.2 Primitive and non-primitive components
Recall that E is the set of the triplets (m, a, χ), wherem is a positive rational number, a an ideal of K
withmN(a) ∈ Z and χ ∈ X+

prim(m, a). We put µp(m, a) = ordpmN(a). For F ∈ Al(Kf ), (m, a, χ) ∈ E
and an ideal b of K, we put

CF (b; Θm
a,χ) = 〈〈Fm

b ,Θ
m
a,χ〉〉R,

where Θm
a,χ ∈ Tm

hol,prim(a, χ) − {0} and Fm
b = Fm

βf
with βf ∈ K×

A,f , id(βf ) = b. Note that Θm
a,χ is

unique up to constant multiples by Theorem 4.4 and that Fm
b does not depend on the choice of βf .

In view of Theorem 4.5, F is determined by {CF (b; Θm
a,χ) | (m, a, χ) ∈ E , b ⊂ a}, which we call the

Fourier–Jacobi components of F . If b = a (respectively b � a), the component CF (b; Θm
a,χ) is said

to be primitive (respectively non-primitive).

Lemma 5.2. Let F ∈ Al(Kf ; Ω−1) and write Θ for Θm
a,χ.

(i) Suppose that p is inert in K/Q. Then CF (pka; Θ) = 0 unless k � 0.

(ii) Suppose that p ramifies in K/Q. Then CF (Πka; Θ) = 0 unless k � 0.
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(iii) Suppose that p splits in K/Q. If µp(m, a) > 0, we have CF (Πk1
1 Πk2

2 a; Θ) = 0 unless k1, k2 � 0.
If µp(m, a) = 0, we have CF (Πk1

1 Πk2
2 a; Θ) = 0 unless k1 + k2 � 0.

(iv) Suppose that p splits in K/Q and µp(m, a) = 0. Then we have

CF (Πk1
1 Πk2

2 a; Θ) =

{
(p1/2χ(Π2)Ω−1(Π1/Π2))k2 · CF (Πk1+k2

1 a; Θ) if k1 � 0 and k2 � 0,
(p1/2χ(Π1)Ω(Π1/Π2))k1 · CF (Πk1+k2

2 a; Θ) if k1 � 0 and k2 � 0.

Proof. The assertions (i)–(iii) are easily verified. To prove assertion (iv), we may (and do) as-
sume that k1 + k2 � 0. Suppose that k1 � 0, k2 � 0, and put t = Π−k2

1 Πk2
2 and β = Πk1+k2

1 α.
By Proposition 4.8, we have

〈〈Fm

Π
k1
1 Π

k2
2 a
,Θ〉〉R

=
∫

RQ\RA

Fm(rdG(β, t)t−113)Θ(r) dr = Ω(t)
∫

RQ\RA

Fm(rdG(β))Θ(rt−1) dr

= Ω(t)
∫

RQ\RA

dr

∫
Zp

Fm(r((0, α2y), 0)dG(β)) dy
∫
Zp

Θ(r((0, α2x), 0)t−1) dx

= Ω(t)
∫

RQ\RA

Fm(rdG(β)) dr
∫
ap

Θ(r(w, xw)t−1) dx

= Ω(t)|N(1 − t)|−1/2χ−1

(
1 − t−1

κ

)∫
RQ\RA

Fm(rdG(β))Θ(r) dr

= (p1/2χ(Π2)Ω−1(Π1/Π2))k2〈〈Fm

Π
k1+k2
1 a

,Θ〉〉R.

This proves assertion (iv) in the case where k1 � 0 and k2 � 0. The proof in the remaining case is
similar and omitted.

5.3 Shintani’s criterion
In this subsection, we recall a criterion due to Shintani [Shi79, § 3] for F ∈ Sl(Kf ; Ω−1) being a
Hecke eigenform in terms of its Fourier–Jacobi components. (For the definitions of Hecke operators
Φi,p, see § 3.2.)

Proposition 5.3. Suppose that p is inert in K/Q.

(i) We have F ∗ Φ1,p = ΛpF with Λp ∈ C if and only if the following recursion relations hold for
any (m, a, χ) ∈ E and k � 0:

p4c(k + 1) + {δ(k + µp(m, a) > 0)p − 1 − Λp}c(k) + c(k − 1) = 0,

where we put c(k) = CF (pka; Θm
a,χ).

(ii) Suppose that part (i) holds. Then we have

∞∑
k=0

c(k)Xk =
1 + δ(µp(m, a) = 0)p−3X

Qp(p−2X)
· c(0),

where Qp(X) = 1 − p−2(Λp − p+ 1)X +X2.

Proposition 5.4. Suppose that p ramifies in K/Q.

(i) We have F ∗ Φ1,p = ΛpF with Λp ∈ C if and only if the following recursion relations hold for
any (m, a, χ) ∈ E and k � 0:

p2c(k + 1) + {δ(k > 0 or χ is exceptional) · p− 1 − Λp}c(k) + c(k − 1) = 0,

where we put c(k) = CF (Πka; Θm
a,χ).
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(ii) Suppose that part (i) holds. Then we have

∞∑
k=0

c(k)Xk =
1 + δ(χ is ordinary)p−1X

Qp(p−1X)
· c(0),

where Qp(X) = 1 − p−1(Λp − p+ 1)X +X2.

Proposition 5.5. Suppose that p splits in K/Q.

(i) We have F ∗Φi,p = Λi,pF with Λi,p ∈ C (i = 1, 2) if and only if the following recursion relations
hold for any (m, a, χ) ∈ E and k1, k2 � 0:

Λ1,p · c(k1, k2) = p2c(k1, k2 + 1) + pΩ−1(Π1/Π2) · c(k1 + 1, k2 − 1) + c(k1 − 1, k2),

Λ2,p · c(k1, k2) = p2c(k1 + 1, k2) + pΩ(Π1/Π2) · c(k1 − 1, k2 + 1) + c(k1, k2 − 1),

where we put c(k1, k2) = CF (Πk1
1 Πk2

2 a; Θm
a,χ).

(ii) Suppose that part (i) holds. Then we have

∞∑
k1,k2=0

c(k1, k2)Xk1
1 Xk2

2 =
R(X1,X2)

Q1(p−1X1)Q2(p−1X2)
· c(0, 0),

where

Q1(X) = 1 − p−1Λ2,pX + p−1Ω(Π1/Π2)Λ1,pX
2 − Ω(Π1/Π2)X3,

Q2(X) = 1 − p−1Λ1,pX + p−1Ω−1(Π1/Π2)Λ2,pX
2 − Ω−1(Π1/Π2)X3,

R(X1,X2) = (1 − p−2X1X2)
∏

i=1,2

(1 − δ(µp(m, a) = 0)χ−1(Πi)p−3/2Xi).

Theorem 5.6 [Shi79, § 3]. Suppose that F ∈ Al(Kf ; Ω−1) is a Hecke eigenform. Then F = 0 if and
only if CF (a; Θm

a,χ) = 0 for any (m, a, χ) ∈ E .

Proof. This follows from Lemma 5.2, Propositions 5.3–5.5 and Theorem 4.5.

6. Metaplectic representation

6.1 In this section, we let F be either the p-adic number field Qp or the real number field R. When
F = Qp, let K be a quadratic extension of F or F ⊕ F . When F = R, let K = C. Denote by σ the
nontrivial automorphism of K/F . For z ∈ K, put Tr(z) = z + zσ and N(z) = zzσ. Denote by | · |F
the normalized valuation of F . Let ψ be the additive character of F given by

ψ(x) =

{
e[−(the fractional part of x)] if F = Qp,
e[x] if F = R.

Recall that dx (respectively dz) is the Haar measure on F (respectively K) self-dual with respect
to the pairing (x, x′) �→ ψ(xx′) (respectively (z, z′) �→ ψ(Tr(zσz′))). Denote by λK(ψ) the Weil
constant attached to (K/F,ψ) (cf. § 4.3). We have λK(ψ) =

√
−1 if F = R.

Let F = Qp. Denote by OF the integer ring of F and let

OK =

{
the integer ring of K if K is a field,
OF ⊕OF if K = F ⊕ F .

Let X be the set of characters of K× whose restriction to F× coincides with ω = ωK/F , the character
of F× corresponding to K/F by local class field theory.
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6.2 Dual reductive pair

Let H = U(T) be the unitary group of a non-degenerate anti-hermitian matrix

T =

 κ−1T
T

−κ−1T

 .
Define a homomorphism of G×H to H by

(g, h) �→ g ⊗ h := (gij12)1�i,j�3 ·

h h
h

 (g = (gij) ∈ G,h ∈ H).

Note that the kernel of the homomorphism is {(t13, t
−112) | t ∈ K1}.

6.3 Heisenberg group and representation

Let 〈·, ·〉T and 〈·, ·〉T be the F -alternating forms on W = K2 and W = K6 attached to T and T,
respectively (see § 2.2). Let NT and NT be the Heisenberg groups attached to (W, 〈·, ·〉T ) and
(W, 〈·, ·〉T), respectively:

NT = W � F, (w, x)(w′, x′) = (w + w′, x+ x′ + 1
2〈w,w

′〉T ),
NT = W � F, (w, x)(w′, x′) = (w + w′, x+ x′ + 1

2〈w,w
′〉T).

Define a smooth representation ρT (respectively ρT) of NT (respectively NT) on V = S(K)
(respectively V = S(K2) ⊗ S(K)) as follows:

ρT

((
w1

w2

)
, x

)
ϕ(z) = ψ

(
−Tr(wσ

1 z) −
1
2

Tr(wσ
1w2) + x

)
ϕ(z + w2),

for w1, w2, z ∈ K,x ∈ F,ϕ ∈ S(K);

ρT

(w1

w2

w3

 , x)(Φ ⊗ ϕ)(Z, z)

= ψ

(
−1

2
Tr(κ−1T (w1,w3)) − Tr(κ−1T (w1, Z)) + x

)
× Φ(Z + w3)(ρT (w2, 0)ϕ)(z)

for wi ∈ K2 (i = 1, 2, 3), x ∈ F,Φ ∈ S(K2), ϕ ∈ S(K), Z ∈ K2, z ∈ K. Then ρT and ρT are irre-
ducible, and any smooth irreducible representation of NT (respectively NT) with central character
(0, x) �→ ψ(x) is equivalent to ρT (respectively ρT).

6.4 Metaplectic representations

Let χ0 ∈ X . We can define a splitting MT
χ0

(respectively MT
χ0

) of metaplectic representation of
H = U(T ) (respectively H = U(T)) attached to (ρT , χ0) (respectively (ρT, χ0)) as in [Mur01].
The following two lemmas are proved by a straightforward calculation and we omit their proofs.
We note that MT

χ0
is a mixed model of the metaplectic representation of H.

Lemma 6.1. Let ϕ ∈ S(K) and z ∈ K. Then

MT
χ0

(dH(a))ϕ(z) = χ−1
0 (a)|N(a)|1/2

F ϕ(az) (a ∈ K×),

MT
χ0

(nH(b))ϕ(z) = ψ(bzzσ)ϕ(z) (b ∈ F ),

MT
χ0

(w0)ϕ(z) = λK(ψ)ϕ̂(z),
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where

ϕ̂(z) =
∫

K
ψ(Tr(wσz))ϕ(w) dw.

Lemma 6.2. Let Φ ∈ S(K2), ϕ ∈ S(K), Z ∈ K2 and z ∈ K. Then

MT
χ0

(13 ⊗ h)(Φ ⊗ ϕ)(Z, z) = χ0(deth)Φ(h−1Z)(MT
χ0

(h)ϕ)(z) (h ∈ H),

MT
χ0

((w, x) ⊗ 12)(Φ ⊗ ϕ)(Z, z) = ψ(x · κ−1T [Z])Φ(Z)(ρT (−wZ , 0)ϕ)(z) (w ∈ K,x ∈ F ),

MT
χ0

(dG(a, t) ⊗ 12)(Φ ⊗ ϕ)(Z, z) = χ−2
0 (a)χ0(t)|N(a)|F Φ(aZ)ϕ(t−1z) (a ∈ K×, t ∈ K1),

MT
χ0

( 1
1

−1

⊗ 12

)
(Φ ⊗ ϕ)(Z, z) = Φ̂(Z)ϕ(z),

where

Φ̂(Z) =
∫

K2

ψ(Tr(κ−1T (Z,Z ′)))Φ(Z ′) dZ ′.

Here dZ ′ is the Haar measure on K2 self-dual with respect to the pairing (Z,Z ′) �→ ψ(Tr(κ−1

T (Z,Z ′))).

Lemma 6.3. Suppose that F = Qp and let ϕ0,p be the characteristic function of OK . Then we have
MT

χ0
(u)ϕ0,p = χ̃0(u)ϕ0,p for u ∈ U ′

p (for the definition of χ̃0, see § 3.3).

Proof. Put V0 = {ϕ ∈ V | ρT (l, α(l))ϕ = ϕ for any l ∈ L′}, where α(w) = 1
2 Tr(wσ

1w2) for w =
t(w1, w2) ∈W and L′ = t(

√
D

−1OK ,OK) is a lattice of W . It is easily verified that V0 = Cϕ0,p and
MT

χ0
(u)V0 ⊂ V0 for u ∈ U ′

p. Thus, MT
χ0

(u)ϕ0,p = cχ0(u)ϕ0,p (u ∈ U ′
p) with cχ0(u) ∈ C×. A direct

calculation shows that cχ0(nH(b)) = 1(b ∈ OF ), cχ0(nH(b)) = 1(b ∈ DOF ) and cχ0(dH(a)) =
χ−1

0 (a)(a ∈ O×
K). This immediately implies that cχ0(u) = χ̃0(u)(u ∈ U ′

p).

Remark. This lemma gives another proof of Lemma 3.2.

6.5 Intertwining operator

We now describe a relation between our mixed model and the Schrödinger model used in [Kud81].
Define a linear isomorphism i : K3 × K3 → K6 by i(z+, z−) = t(z+

1 , z
−
1 , z

+
2 , z

−
2 , z

+
3 , z

−
3 ) (z± =

t(z±1 , z
±
2 , z

±
3 ) ∈ K3). We then have 〈i(z+, z−), i(w+, w−)〉T = Tr(S(z+, w−) − S(z−, w+)). Let ρ̃T

be the smooth irreducible representation of NT on S(K3) corresponding to a complete polarization
W = i(K3, {0}) ⊕ i({0},K3):

ρ̃T(i(w+, w−), x)f(z) = ψ(x− TrS(w+, z) − 1
2 TrS(w+, w−))f(z + w−)

for w±, z ∈ K3, x ∈ F, f ∈ S(K3). Let M̃T
χ0

: H → GL(S(K3)) be the metaplectic representation
attached to (ρ̃T, χ0). Then we have

M̃T
χ0

(g ⊗ 12)f(z) = χ0(det g)f(g−1z) (g ∈ G),

M̃T
χ0

(13 ⊗ dH(a))f(z) = χ−3
0 (a)|N(a)|3/2

F f(az ) (a ∈ K×),

M̃T
χ0

(13 ⊗ nH(b))f(z) = ψ(bS[z])f(z) (b ∈ F ),

M̃T
χ0

(13 ⊗ w0)f(z) = λK(ψ)f̂(z),

where

f̂(z) =
∫

K3

ψ(TrS(z,w))f(w) dSw
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(dSw is the Haar measure self-dual with respect to the pairing (w,w′) �→ ψ(TrS(w,w′))). Note that
M̃T

χ0
is used in [Kud81] to construct the theta kernel. Define I : S(K2) ⊗ S(K) → S(K3) by

I(Φ ⊗ ϕ)(z) =
∫

K
ψ(Tr(κ−1zσ

1 u))Φ
((

u
z3

))
du · ϕ(z2) (z = t(z1, z2, z3) ∈ K3).

We easily see that I ◦ ρT(w, x) = ρ̃T(w, x) ◦ I (w ∈ W, x ∈ F ), which directly implies

I ◦MT
χ0

(h) = M̃T
χ0

(h) ◦ I (h ∈ H).

6.6 Test functions
When F = Qp, we set Φ0,p = charO2

K
and ϕ0,p = charOK

. When F = R, we set

Φ0,∞
(
z1
z2

)
= (z1 −

√
−1z2)le

[√
−1
2

(z1z1 + z2z2)
]

(z1, z2 ∈ C),

ϕ0,∞(z) = e[
√
−1zz̄] (z ∈ C).

Set Φ0 =
⊗

v Φ0,v ∈ S(K2
A) and ϕ0 =

⊗
v ϕ0,v ∈ S(KA). A straightforward calculation shows the

following.

Lemma 6.4. We have I(Φ0,p ⊗ ϕ0,p) = |D|1/2
p charO3

K,p
for p <∞, and

I(Φ0,∞ ⊗ ϕ0,∞)(t(z1, z2, z3)) = 2
√
−1

l
(

2√
D
z1 + z3

)l

e
[√

−1
{
− 2
D
z1z1 + z2z2 +

1
2
z3z3

}]
.

Using Lemma 6.4, we obtain the following result.

Proposition 6.5. We have the following.

(i) Let F = Qp. Then we have

MT
χ0

(k ⊗ u)(Φ0,p ⊗ ϕ0,p) = χ0(det k)χ2
0(det u)χ̃0(u)−1Φ0,p ⊗ ϕ0,p (k ∈ Kp, u ∈ U ′

p).

(ii) Let F = R and put λ = w∞(χ0). Then we have

MT
χ0

(k ⊗ u)(Φ0,∞ ⊗ ϕ0,∞)

= (det k)λJ(k,Z0)−l(detu)(3λ+1)/2−lj(u, z0)l−1Φ0,∞ ⊗ ϕ0,∞ (k ∈ K∞, u ∈ U∞).

7. Main results

7.1 Theta kernel
We now go back to the global situation. Recall that we have fixed a χ0 ∈ X with w∞(χ0) = −1.
Let MT

χ0
be the metaplectic representation of HA on S(K2

A) ⊗ S(KA) given by

MT
χ0

(h) =
⊗

v

MT
χ0,v

(hv) (h = (hv)v ∈ HA),

where the local components MT
χ0,v

are defined in § 6.4. Define a theta kernel on GA ×HA by

θ(g, h) = χ−1
0 (det g)χ−2

0 (deth)
∑

X∈K2,ξ∈K

MT
χ0

(g ⊗ h)(Φ0 ⊗ ϕ0)(X, ξ)

for g ∈ GA, h ∈ HA (cf. § 6.6).

Lemma 7.1. We have

θ(γgkfk∞, γ′hufu∞) = χ̃0(uf )−1J(k∞, Z0)−lj′(u∞, z0)l−1θ(g, h)

for γ ∈ GQ, g ∈ GA, kf ∈ Kf , k∞ ∈ K∞, γ′ ∈ HQ, h ∈ HA, uf ∈ U ′
f , u∞ ∈ U∞.
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Proof. The left GQ ×HQ-invariance is proved by a Poisson summation formula in the usual way.
The remaining part directly follows from Proposition 6.5.

7.2 The unitary Kudla lift

For f ∈ Sl−1(U ′
f , χ̃0) (cf. § 3.3), we put

Lf(g) =
∫

HQ\HA

f(h)θ(g, h) dh (g ∈ GA). (7.1)

The integral is absolutely convergent since f is rapidly decreasing on HQ\HA. The theta lift (7.1)
was first studied by Kudla [Kud79, Kud81] and we call Lf the unitary Kudla lift of f . Lemma 7.1
implies

Lf(γgkfk∞) = J(k∞, Z0)−lLf(g) (7.2)

for γ ∈ GQ, g ∈ GA, kf ∈ Kf , k∞ ∈ K∞. In [Kud79], it is proved that

Lf ∈ Sl(Kf ) (7.3)

for f ∈ Sl−1(U ′
f , χ̃0) by showing that the lifts of Poincaré series in Sl−1(U ′

f , χ̃0) are holo-
morphic. Later we give another proof of (7.3) by studying the Fourier–Jacobi expansion of Lf
(see Theorem 7.4). Note that

Lf(t13 · g) = Ω−1(t)Lf(g) (t ∈ K1
A, g ∈ GA) (7.4)

for f ∈ Sl−1(U ′
p, χ̃0;χ0Ω), since θ(t13 · g, h) = χ0(t)θ(g, t12 · h) for t ∈ K1

A.

Remark. Although the realization of the metaplectic representation here is different from that
in [Kud81], the theta kernels coincide up to a constant multiple in view of §§ 6.5 and 6.6.

7.3 For m ∈ Q×, put

ηm =
(
mθσ

1

)
(7.5)

(for the definition of θ, see § 2.2). Let Hηm = {h ∈ H | hηm = ηm} be the stabilizer subgroup of ηm

in H. For t = zσ/z ∈ K1 (z = x+ yθ ∈ K×, x, y ∈ Q), we put

ιm(t) =
1
z

(
x mN(θ)y

−y/m x+ Tr(θ)y

)
. (7.6)

The following fact is easily verified.

Lemma 7.2. We have the following.

(i) For t ∈ K1, we have ιm(t) ∈ Hηm,Q and det ιm(t) = t.

(ii) The mapping ιm defines an isomorphism of K1 onto Hηm,Q.

(iii) We have {X ∈ K2 | κ−1T [X] = m} = {γ−1ηm | γ ∈ Hηm,Q\HQ}.

7.4 Spherical functions

Let f ∈ Sl−1(U ′
f , χ̃0). For m ∈ Q× and χ ∈ X , set

Wm
χ,f(h) =

∫
K1\K1

A

(χ/χ0)1(t−1)f(ιm(t)h) d×t (h ∈ HA) (7.7)

(for the definition of (χ/χ0)1, see § 2.5).
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7.5 Holomorphy and cuspidality of the unitary Kudla lift

The following fact is proved in §§ 9.2 and 9.4.

Proposition 7.3. Let f ∈ Sl−1(U ′
f , χ̃0) and F = Lf .

(i) If m � 0, we have Fm = 0.

(ii) For any m ∈ Q,m > 0 and any α = α∞αf ∈ K×
A, we have Fm

α = αl∞em[2−1κ(α∞α∞ − 1)]Fm
αf

and Fm
αf

∈ Tm
hol.

(For the definitions of Fm and Fm
α , see § 5.1.)

Theorem 7.4 [Kud79, Theorem 5.3]. For f ∈ Sl−1(U ′
f , χ̃0;χ0Ω), we have Lf ∈ Sl(Kf ; Ω−1).

Proof. This follows from Propositions 5.1 and 7.3 and (7.4).

7.6 Main results: primitive components

Let (m, a, χ) ∈ E (cf. § 4.8). Take and fix an element hmθ,∞ of H∞ with hmθ,∞〈z0〉 = mθ. Set

c∞ = 4π
√
−1

l
(m|κ|)l−2e

[
mκ

2

]
j′(hmθ,∞, z0)l−1,

cp = pµp(m,a)−δp/2 ×


1 if δp = 0, µp(m, a) = 0,

1 − ωp(πp)p−1 if δp = 0, µp(m, a) > 0,
2p

1 + p
if δp > 0.

Note that cp = 1 except for a finite number of p. Denote by E(χ) the set of finite primes p such
that p|D and χp is exceptional (cf. § 4.10). For ε = (εp)p∈E(χ) ∈ {0, 1}E(χ), we put

wε
0 =

∏
p∈E(χ)

w
εp

0,p

(
w0,p =

(
0 1

−1 0

)
∈ Hp

)
, B(χ, ε) =

∏
p∈E(χ)

(p−1/2χ−1
p (mθ))εp .

We set

J(m, a, χ, f) =
∑

ε∈{0,1}E(χ)

B(χ, ε)Wm
χ,f (dH(α−1

f )wε
0hmθ,∞),

where we choose αf ∈ K×
A,f so that id(αf ) = a.

Remark. Suppose that K has class number 1. Let fdm be as in the remark in § 3.4. Then we have,
for any hf ∈ HA,f ,

Wm
χ,f (hfhmθ,∞) =

N∑
j=1

ajfdm(τj),

where aj ∈ C (depending only on m,χ, hf ) and τj ∈ K∩H (depending only on m,hf ). It follows that
J(m, a, χ, f) is a linear combination of CM-values of fdm. A similar assertion holds (with suitable
modifications) when hK > 1.

Theorem 7.5 (Main Theorem I). Let (m, a, χ) ∈ E ,Θ ∈ Tm
hol,prim(a, χ) and f ∈ Sl−1(U ′

f , χ̃0).
Then the primitive component (cf. § 5.2) of the unitary Kudla lift Lf is given by

CLf (a; Θ) = c∞
∏
p<∞

cp · χ−1
0 (αf )|N(αf )|3/2 · I(Θ) · J(m, a, χ, f).
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7.7 Main results: non-primitive components
Theorem 7.6 (Main Theorem II). Let f ∈ Sl−1(U ′

p, χ̃0;χ0Ω) be a Hecke eigenform with eigenvalues
{λp}. Let p be a finite prime, (m, a, χ) ∈ E and Θ ∈ Tm

hol,prim(a, χ). We write µp for µp(m, a).

(i) Suppose that p is inert in K/Q. Set c(k) = CLf (pka; Θ). Then

p4c(k + 1) + {δ(k + µp > 0)p − p2 − pλp(φ1,p)}c(k) + c(k − 1) = 0

holds for k � 0.
(ii) Suppose that p ramifies in K/Q. Set c(k) = CLf (Πka; Θ). Then

p2c(k + 1) − {p1/2λp(φ+
p + φ−p ) + p · δ(k = 0 and χ is ordinary)}c(k) + c(k − 1) = 0

holds for k � 0.
(iii) Suppose that p splits in K/Q. Set c(k1, k2) = CLf (Πk1

1 Πk2
2 a; Θ). Then

p2c(k1, k2 + 1) − (p1/2λp(φ2,p) + p)c(k1, k2) + pΩ−1(Π1/Π2)c(k1 + 1, k2 − 1) + c(k1 − 1, k2) = 0

and

p2c(k1 + 1, k2) − (p1/2λp(φ1,p) + p)c(k1, k2) + pΩ(Π1/Π2)c(k1 − 1, k2 + 1) + c(k1, k2 − 1) = 0

hold for k1, k2 � 0.

Combining Theorem 7.6, Propositions 5.3–5.5 and Theorem 5.6, we obtain the following results.

Corollary 7.7. Let f ∈ Sl−1(U ′
p, χ̃0;χ0Ω) be a Hecke eigenform with eigenvalues {λp}.

(i) The unitary Kudla lift Lf is a Hecke eigenform with eigenvalues {Λp}, where Λp is given as
follows.

(a) If p is inert in K/Q, we have Λp(Φ1,p) = pλp(φ1,p) + p2 − 1.
(b) If p ramifies in K/Q, we have Λp(Φ1,p) = p1/2λp(φ+

p + φ−p ) + p− 1.
(c) If p splits in K/Q, we have Λp(Φ1,p) = p1/2λp(φ2,p) + p and Λp(Φ2,p) = p1/2λp(φ1,p) + p.

(ii) For a Hecke character ξ of K, we have

L(Lf, ξ; s) = L(ξ; s)L(f, ξ; s).

(For the definition of L-functions, see §§ 3.2 and 3.4.)

Remark. Corollary 7.7 was proved by Kudla [Kud81, Corollary 1] by using Eichler commutation
relations.

Theorem 7.8 (Main Theorem III). Let f ∈ Sl−1(U ′
p, χ̃0;χ0Ω) be a Hecke eigenform. The unitary

Kudla lift Lf does not vanish if and only if there exists (m, a, χ) ∈ E such that

L(χ; 1
2) · J(m, a, χ, f) �= 0.

Proof. This follows from Theorems 5.6, 7.5 and 4.7.

8. Integral expression of the Fourier–Jacobi components

8.1 Let f ∈ Sl−1(U ′
f , χ̃0). The object of this section is to give an integral expression of the Fourier–

Jacobi components of Lf . By Lemma 6.2, we have

Lf((w, x)tdG(α)) = χ−1
0 (t)|N(α)|A

∫
HQ\HA

∑
X∈K2,ξ∈K

χ−1
0 (deth)ψ(κ−1T [X]x)

× Φ0(αh−1X)(MT
χ0

(h)ρT (−wh−1X, 0)MT
χ0

(t12)ϕ0)(ξ)f(h) dh

for (w, x) ∈ NA, t ∈ K1
A and α ∈ K×

A (for the definition of MT
χ0

and ρT , see §§ 6.4 and 6.3).
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8.2 The constant term

Proposition 8.1. We have (Lf)0 = 0.

Proof. Let η′ = t(1, 0) ∈ K2 and N ′ = NH . Since {X ∈ K2 | T [X] = 0} = {γ−1η′ | γ ∈ N ′
Q\HQ},

we have

(Lf)0((w, 0)tdG(α)) = χ−1
0 (t)|N(α)|A

∫
HQ\HA

∑
γ∈N ′

Q
\HQ

χ−1
0 (det γh)Φ0(α(γh)−1η′)

×
∑
ξ∈K

(MT
χ0

(h)ρT (−w(γh)−1η′, 0)MT
χ0

(t12)ϕ0)(ξ)f(h) dh.

Since h �→
∑

ξ∈K MT
χ0

(h)ϕ(ξ) is left HQ-invariant for any ϕ ∈ S(K), we obtain

(Lf)0((w, 0)tdG(α))

= χ−1
0 (t)|N(α)|A

∫
N ′
Q
\HA

χ−1
0 (deth)Φ0(αh−1η′)

∑
ξ∈K

(ρT (−wη′, 0)MT
χ0

(th)ϕ0)(ξ)f(h) dh

= χ−1
0 (t)|N(α)|A

∫
N ′
Q
\HA

χ−1
0 (deth)Φ0(αh−1η′)

∑
ξ∈K

ψ(Tr(wσξ))(MT
χ0

(th)ϕ0)(ξ)f(h) dh

= χ−1
0 (t)|N(α)|A

∫
N ′

A\HA

χ−1
0 (deth)Φ0(αh−1η′)

∑
ξ∈K

ψ(Tr(wσξ))(MT
χ0

(th)ϕ0)(ξ)cf (−N(ξ);h) dh.

Here we set

cf (b;h) =
∫
Q\QA

ψ(−bx )f(nH(x)h) dx (h ∈ HA)

for b ∈ Q and h ∈ HA. We have cf (−N(ξ);h) = 0 for ξ ∈ K by holomorphy and cuspidality of f .
This implies that (Lf)0((w, 0)tdG(α)) = 0 and we are done.

8.3 Non-constant terms

Let m ∈ Q× and β ∈ K×
A. Then (Lf)mβ ∈ Tm(b) ∩ Tm,0 with b = id(β). Let χ ∈ X . For Θ ∈ Tm

χ ,
we set

Λm
β,Θ(h) = |N(β)|Aχ−1

0 (deth)Φ0(βh−1ηm)
∫

KA

(MT
χ0

(h)ϕ0)(−w)IΘ(w, xw) dw (8.1)

(for the definition of IΘ, see § 4.11).

Lemma 8.2. For Θ ∈ Tm
χ , we have

〈〈(Lf)mβ ,Θ〉〉R =
∫

Hηm,Q\HA

Λm
β,Θ(h)f(h) dh.

Proof. By Lemma 7.2 and an argument similar to that in § 8.2, we have

(Lf)mβ ((w, 0)t) = χ−1
0 (t)|N(β)|A

∫
Hηm,Q\HA

χ−1
0 (deth)Φ0(βh−1ηm)

×
∑
ξ∈K

ψ(Tr(mθξwσ) −mxw)(MT
χ0

(th)ϕ0)(ξ − w)f(h) dh

for w ∈ KA and t ∈ K1
A. The left RQ-invariance of Θ implies that

Θ((w, 0)t) = ψ(1
2 Tr(mκξwσ))Θ((w − ξ, 0)t)

27

https://doi.org/10.1112/S0010437X06002491 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002491


A. Murase and T. Sugano

for ξ ∈ K. We thus have

〈〈(Lf)mβ ,Θ〉〉R

= |N(β)|A
∫

Hηm,Q\HA

∫
K\KA

∫
K1\K1

A

χ−1
0 (t deth)Φ0(βh−1ηm)f(h)

×
∑
ξ∈K

ψ

(
−mTr(θ)

2
(w − ξ)(w − ξ)σ

)
(MT

χ0
(th)ϕ0)(ξ −w)Θ((w − ξ, 0)t) d×t dw dh

= |N(β)|A
∫

Hηm,Q\HA

∫
KA

∫
K1\K1

A

χ−1
0 (t deth)Φ0(βh−1ηm)f(h)

× (MT
χ0

(th)ϕ0)(−w)Θ((w, xw)t) d×t dw dh

= |N(β)|A
∫

Hηm,Q\HA

∫
KA

∫
K1\K1

A

χ−1
0 (deth)Φ0(βh−1ηm)f(h)

× (MT
χ0

(h)ϕ0)(−t−1w)Θ(t(t−1w, xt−1w)) d×t dw dh

=
∫

Hηm,Q\HA

Λm
β,Θ(h)f(h) dh.

Lemma 8.3 (Key lemma). Let v be a prime of Q. Let ϕ ∈ S(Kv) and Θ ∈ Tm
χ . Then, for t ∈ K1

v

and r ∈ RA, we have∫
Kv

(MT
χ0

(ιm(t))ϕ)(−w)Θ(r(w, xw)) dw = (χχ0)1(t−1)
∫

Kv

ϕ(−w)Θ(rt(w, xw)) dw.

Proof. If t = 1, the assertion is trivial. Suppose that t �= 1. Take Φ ∈ V m such that Θ = θm
χ,Φ

(cf. § 4.4). It is sufficient to show the equality∫
Kv

(MT
χ0

(ιm(t))ϕ)(−w)Mκ,m
χ (r(w, xw))Φ dw = (χχ0)1(t−1)

∫
Kv

ϕ(−w)Mκ,m
χ (rt(w, xw))Φ dw. (∗)

Take an element x+yθ of K×
v with x, y ∈ Qv (y �= 0) such that t = (x+yθ)σ/(x+yθ). Observe that

T (ιm(t) − 12) =
y

x+ yθ

(
−m−1 θσ

θ −mN(θ)

)
=

y

x+ yθ
(A∗)−1

(
0 0
0 mκ2

)
A−1

with

A =
(
mθσ mθ

1 1

)
,

and that we can take {ζm = t(mθ, 1)} as a basis of K2
v/Ker(ιm(t) − 12). Note that ιm(t)ζm = tζm.

In view of [Mur01, Theorem 1.8], we have

(MT
χ0

(ιm(t))ϕ)(−w)

= γ(t)
∫

Kv

ψ

(
1
2
〈zζm, zιm(t)ζm〉T

)
ρT (z(12 − ιm(t))ζm, 0)ϕ(−w) dz

= γ(t)
∫

Kv

ψm

(
−1

2
Tr(κt)zzσ + Tr(θσ(1 − tσ)zσw) − x(1−t)z

)
ϕ(−w + z(1 − t)) dz,

where

γ(t) = |N(mκ(1 − t))|1/2
v λKv(ψv)−1χ0

(
y

x+ yθ
mκ2

)
= |N(mκ(1 − t))|1/2

v λKv(ψm,v)−1χ0

(
1 − t

κ

)
.
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It follows that the left-hand side of (∗) is equal to

γ(t)
∫

Kv

∫
Kv

ψm

(
−1

2
Tr(κt)zzσ + Tr(θσ(1 − tσ)zσw) − x(1−t)z − xw

)
× ϕ(−w + z(1 − t))Mκ,m

χ (r(w, 0))Φ dz dw

= χ0

(
1 − t

κ

)
|N(mκ(1 − t))|1/2

v

∫
Kv

ϕ(−w)

× λKv(ψm,v)
∫

Kv

ψm

(
1
2
〈z, tz〉κ

)
Mκ,m

χ (r((1 − t)z, 0)(w, xw))Φ dz dw

= (χχ0)
(

1 − t

κ

)∫
Kv

ϕ(−w)Mκ,m
χ (rt(w, xw))Φ dw.

Since (χχ0)((1 − t)/κ) = (χχ0)1(t−1)(t ∈ K1
A), we are done.

Proposition 8.4. Let m ∈ Q×, β ∈ K×
A, χ ∈ X and Θ ∈ Tm

χ .

(i) We have Λm
β,Θ(ιm(t)h) = (χ/χ0)1(t−1)Λm

β,Θ(h) (t ∈ K1
A, h ∈ HA).

(ii) For f ∈ Sl−1(U ′
f , χ̃0), we have

〈〈(Lf)mβ ,Θ〉〉R =
∫

Hηm,A\HA

Λm
β,Θ(h)Wm

χ,f (h) dh,

where Wm
χ,f is defined by (7.7) and the Haar measure dx on Hηm,A is normalized by∫

Hηm,A

ϕ(x) dx =
∫

K1
A

ϕ(ιm(t)) d×t (ϕ ∈ L1(Hηm,A)).

Proof. The proposition is a direct consequence of Lemmas 8.2 and 8.3.

9. Holomorphy and cuspidality

9.1 Real spherical functions
For m ∈ Q× and k ∈ Z, let Wm∞(k) be the space of smooth functions W on H∞ satisfying:

(i) W (ιm(t)hu) = tkj′(u, z0)1−lW (h) (t ∈ K1∞, h ∈ H∞, u ∈ U∞);

(ii) W̃ (h〈z0〉) := j′(h, z0)l−1W (h) is holomorphic on H.

9.2 Inverse Cayley transform
Let D = {w ∈ C | |w| < 1} be the unit disc in C. We define the inverse Cayley transform Cm : D → H

by

Cm(w) =


m(θ − θσw)

1 − w
if m > 0,

m(θσ − θw)
1 − w

if m < 0

(w ∈ D). The following fact is easily verified.
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Lemma 9.1. Let t ∈ K1∞, w ∈ D and W ∈ Wm∞(k). Then we have

ιm(t)〈Cm(w)〉 =

{
Cm(t−1w) if m > 0,
Cm(tw) if m < 0,

j′(ιm(t), Cm(w)) =


1 − t−1w

1 − w
if m > 0,

t−1 − w

1 − w
if m < 0,

W̃ (ιm(t)〈Cm(w)〉) =


tk
(

1 − t−1w

1 −w

)l−1

W̃ (Cm(w)) if m > 0,

tk−l+1

(
1 − tw

1 − w

)l−1

W̃ (Cm(w)) if m < 0.

Lemma 9.2. Let W ∈ Wm∞(k) and z ∈ H.

(i) If m > 0, we have

W̃ (z) =

{
c(z −mθ)−k(z −mθσ)k−l+1 if k � 0,
0 if k > 0

with c ∈ C.

(ii) If m < 0, we have

W̃ (z) =

{
c(z −mθ)−k(z −mθσ)k−l+1 if k � l − 1,
0 if k < l − 1

with c ∈ C.

Proof. First assume that m > 0. Put W ∗(w) = (1 − w)1−lW̃ (Cm(w)) for w ∈ D. Then W ∗ is
holomorphic on D and satisfies W ∗(t−1w) = tkW ∗(w) for t ∈ K1∞ by Lemma 9.1. It follows that
W ∗(w) = c′δ(k � 0)w−k with c′ ∈ C. Since w = (z−mθ)/(z−mθσ) and 1−w = m(θ−θσ)/(z−mθσ),
we have proved assertion (i). The assertion (ii) can be proved similarly.

9.3 Global spherical functions
In this subsection, we let f ∈ Sl−1(U ′

f , χ̃0) and m ∈ Q×. Recall that, for χ ∈ X , Wm
χ,f is defined by

(7.7).

Proposition 9.3. We have the following.

(i) If m > 0 and w∞(χ) < −1, we have Wm
χ,f = 0.

(ii) If m < 0 and w∞(χ) > 1 − 2l, we have Wm
χ,f = 0.

Proof. Observe that h∞ �→ Wm
χ,f (hfh∞) belongs to Wm∞(−(w∞(χ) + 1)/2) for any hf ∈ HA,f .

Then the proposition directly follows from Lemma 9.2.

Proposition 9.4. We have the following.

(i) If m > 0, we have (Lf)mβ ∈ Tm
hol (β ∈ K×

A).
(ii) If m < 0, we have (Lf)m = 0.

Proof. By (7.2), we have (Lf)mβ ∈ Tm,0. Suppose that m > 0. By Lemma 4.2(i), we have
Tm,0 =

⊕
χ∈X ,w∞(χ)�−1 Tm,0

χ . On the other hand, Propositions 8.4 and 9.3 imply that (Lf)mβ ∈⊕
χ∈X ,w∞(χ)�−1 Tm,0

χ . We thus have (Lf)mβ ∈
⊕

χ∈X ,w∞(χ)=−1 Tm,0
χ = Tm

hol (see Lemma 4.2(ii)).
The assertion (ii) can be proved similarly.
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9.4 Calculation of local integrals at ∞
From now on, we assume that m > 0. Let Θ ∈ Tm

hol and fix an rf ∈ RA,f . We put τ(r∞) = IΘ(rfr∞)
for r∞ ∈ R∞.

Lemma 9.5. For z ∈ H, we have∫
C

e[zN(w)]τ(w, xw) dw =
√
−1

z +mθ
τ(1).

Proof. Since

w �→ τ̃(w) := e
[
−mκ

2 N(w)
]
τ(w, 0)

is holomorphic on C, the integral of the lemma is equal to∫
C

e[(z +mθ)N(w)]τ̃ (w) dw = τ̃(0)
∫
C

e[(z +mθ)N(w)] dw =
√
−1

z +mθ
τ(1)

and we are done.

For β∞ ∈ K×∞ and W ∈ Wm∞(0), set

Iβ∞(W, τ)

= N(β∞)
∫

Hηm,∞\H∞

∫
C

χ−1
0 (deth)Φ0,∞(β∞h−1ηm)(MT

χ0
(h)ϕ0,∞)(−w)W (h)τ(w, xw) dw dh.

Here we note that

h �→ χ−1
0 (deth)Φ0,∞(β∞h−1ηm)W (h)

∫
C

(MT
χ0

(h)ϕ0,∞)(−w)τ(w, xw) dw

is left Hηm,∞-invariant. This fact is verified by using Lemma 8.3 and the fact that τ is left
K1∞-invariant.

Proposition 9.6. We have

Iβ∞(W, τ) = c∞ · βl
∞em

[
κ

2
(N(β∞) − 1)

]
τ(1) W (hmθ,∞)

(for the definitions of c∞ and hmθ,∞, see § 7.6).

Proof. To simplify the notation, we suppress ∞ from the notation. Since Hηm is compact and
vol(Hηm) = 1, Iβ(W, τ) is equal to

N(β)
∫

H

∫
C

χ−1
0 (deth)Φ0,∞(βh−1ηm)(MT

χ0
(h)ϕ0,∞)(−w)W (h)τ(w, xw) dw dh.

Observe that the integrand of the above integral is, as a function of h, right U∞-invariant, since
Φ0,∞(u−1Z) = j′(u, z0)lΦ0,∞(Z) and MT

χ0
(u)ϕ0,∞ = j(u, z0)−1ϕ0,∞ for u ∈ U∞. Thus, Iβ(W, τ) is

equal to

2πN(β)
∫
R

∫ ∞

0

∫
C

y−1Φ0,∞(βdH(
√
y−1)nH(−x)ηm)

× (MT
χ0

(nH(x)dH(
√
y))ϕ0)(−w)W (nH(x)dH(

√
y))τ(w, xw) dw d×y dx

= 2πN(β)βl

∫
R

∫ ∞

0

∫
C

y−1{√y−1(−x+mθσ) −
√
−1

√
y}l

× e
[√

−1
2 N(β){y + y−1 N(−x+mθσ)}

]
· y1/2e[(x+

√
−1y)N(w)]

× y(l−1)/2W̃ (x+
√
−1y)τ(w, xw) dw d×y dx.
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By Lemma 9.2, we have W̃ (x+
√
−1y) = (mκ)l−1W̃ (mθ) · (x+

√
−1y −mθσ)−l+1 and, hence,

Iβ(W, τ) = 2πN(β)βl(mκ)l−1W̃ (mθ)
∫
R

∫ ∞

0
y−1(x+

√
−1y −mθσ)

× e
[√

−1
2 N(β){y + y−1 N(−x+mθσ)}

] ∫
C

e[(x+
√
−1y)N(w)]τ(w, xw) dw d×y dx.

Using Lemma 9.5, we obtain

Iβ(W, τ) = 2π
√
−1(mκ)l−1 N(β)βl · τ(1)W̃ (mθ) · I,

where

I =
∫
R

∫ ∞

0
y−1e

[√
−1
2 N(β)(y + y−1 N(−x+mθσ))

]
d×y dx =

(
mN(β)|κ|

2

)−1

em

[
κ

2 N(β)
]
.

Since W̃ (mθ) = j′(hmθ,∞, z0)l−1W (hmθ,∞), we have

Iβ(W, τ) = 2π
√
−1(mκ)l−1(m|κ|/2)−1j′(hmθ,∞, z0)l−1e[mκ/2]βlem

[
κ

2
(N(β) − 1)

]
τ(1)W (hmθ,∞),

which proves the proposition.

By Propositions 8.4 and 9.6, we have proved the following result, from which Proposition 7.3
follows.

Proposition 9.7. For m > 0, β = βfβ∞ ∈ K×
A and Θ ∈ Tm

hol, we have

〈〈(Lf)mβ ,Θ〉〉R

= c∞ · βl
∞em

[
κ

2
(N(β∞) − 1)

]
|N(βf )|A

∫
(Hηm )A,f\HA,f

χ−1
0 (dethf )Φ0,f (βfh

−1
f ηm)Wm

χ,f (hfhmθ,∞)

×
∫

KA,f

(MT
χ0

(hf )ϕ0,f )(−w)IΘ(w, xw) dw dhf .

10. Local integrals at finite primes

10.1 Local integrals
In this section, we reduce the calculation of the Fourier–Jacobi components of Lf to that of certain
local integrals. Until the end of the paper, we fix a finite prime p and often suppress the subscript p.
We write F and K for Qp and Kp, respectively. Let ordF : F× → Z be the additive valuation of
F normalized by ordF (π) = 1. Let pF = πOF be the maximal ideal of OF and put δ = ordF D.
We denote by X the set of characters of K× with χ|F× = ωK/F . Let E be the set of (m, a, χ), where
m ∈ F×, a is an ideal of K with µ := ordF (mN(a)) � 0 and χ ∈ X satisfying the following two
conditions:

(i) A(χ) = Ap(χ) =


µ if δ = 0,
2(µ+ δ) if δ > 0 and µ > 0,
2δ or 2δ − 1 if δ > 0 and µ = 0,

where Ap(χ) is defined in § 4.7;
(ii) ε(1/2, χ, ψm,K ) = χ(κ−1).

Let Xunr(K1) be the group of unitary characters Ω of K1 = {t ∈ K× | ttσ = 1} with Ω|O1
K

= 1.

For χ ∈ X , let Wm(χ) be the space of C-valued smooth functions W on H satisfying

W (ιm(t)hu) = (χ/χ0)1(t)χ̃0(u)W (h) (10.1)
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for t ∈ K1, h ∈ H,u ∈ U ′ = {
(

a b
c d

)
∈ U | c ∈ DOK} (for the definition of ιm, see (7.6)).

For Ω∈Xunr(K1), let Wm(χ;χ0Ω) be the space ofW ∈ Wm(χ) satisfyingW (t12·h) = (χ0Ω)(t)W (h)
for t ∈ K1.

For (m, a, χ) ∈ E , let T m(a, χ) be the space consisting of C-valued functions τ on R satisfying
the following four conditions.

(10.2) We have τ(trr0(0, x)) = ψm(x)τ(r) (t ∈ K1, r ∈ R, r0 ∈ R(a), x ∈ F ).

(10.3) If a′ is an ideal of K with a′ � a, then∫
N(a′)

τ(rn) dn = 0.

(Recall that N(a′) = {(w, x + xw) ∈ N | w ∈ a′, x ∈ a′a′σ}.)
(10.4) Suppose that K/F is ramified. Then∫

Π−1a

τ(r(w, xw)) dΠ−1aw =

{
0 if χ is ordinary,
τ(r) if χ is exceptional.

(For the definition of dΠ−1aw, see § 2.4.)

(10.5) There exists a lattice L0 of K such that, for any lattice L of K with L ⊃ L0, we have

τ(rt) = λK(ψm)−1χ

(
1 − t

κ

)
|N(1 − t)|1/2

F

∫
L
ψm

(
1
2
〈w, tw〉κ

)
τ(r((1 − t)w, 0)) dmw

for t ∈ K1 − {1}.

Let (m, a, χ) ∈ E and b be an ideal of K. For W ∈ Wm(χ) and τ ∈ T m(a, χ), we set

Ib(W, τ) = |N(β)|F
∫

Hηm\H

∫
K
χ−1

0 (deth)Φ0(βh−1ηm)(MT
χ0

(h)ϕ0)(−w)W (h)τ(w, xw) dw dh,

where β is an element of K× such that b = βOK . Note that the right-hand side of Ib(W, τ) does
not depend on the choice of β.

Remark. Going back to the global situation, let (m, a, χ) ∈ E , f ∈ Sl−1(U ′
f , χ̃0) and Θ ∈

Tm
hol,prim(a, χ) (cf. § 7.6). Then, for every p, the restriction of Wm

χ,f to Hp belongs to Wm(χp).
If f ∈ Sl−1(U ′

f , χ̃0;χ0Ω), we have Wm
χ,f |Hp ∈ Wm(χp; (χ0Ω)p). We also note that the restriction of

IΘ to Rp belongs to T m(ap, χp).

10.2 Local main results

The proofs of Theorems 7.5 and 7.6 are reduced to those of the following results.

Theorem 10.1. Let (m, a, χ) ∈ E . Then, for W ∈ Wm(χ) and τ ∈ T m(a, χ), we have

Ia(W, τ) = χ−1
0 (α)|N(α)|3/2

F |D|1/2
F v0 · τ(1)

× {W (dH(α−1)) + δe(χ) · p−1/2χ−1(mθ)W (dH(α−1)w0)}.

Here α is an element of K× with a = αOK ,

v0 = pµ ×


1 if δ = 0 and µ = 0,

1 − ωK/F (p)p−1 if δ = 0 and µ > 0,
2p

1 + p
if δ > 0
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and

δe(χ) =

{
1 if p|D and χ is exceptional,

0 otherwise.

Theorem 10.2. Let (m, a, χ) ∈ E and Ω ∈ Xunr(K1). For W ∈ Wm(χ;χ0Ω) and τ ∈ T m(a, χ),
we have the following.

(i) If K/F is an unramified quadratic extension, we have

p2Ipk+1a(W, τ) − p−1Ipka(W ∗ φ1, τ)

+ {δ(k + µ > 0)p−1 − 1}Ipka(W, τ) + p−2Ipk−1a(W, τ) = 0

for k � 0.

(ii) If K/F is a ramified quadratic extension, we have

pIΠk+1a(W, τ) − p−1/2IΠka(W ∗ (φ+ + φ−), τ)

− δ(k = 0 and χ is ordinary)IΠka(W, τ) + p−1IΠk−1a(W, τ) = 0

for k � 0.

(iii) If K = F ⊕ F , we have

pI
Π

k1+1
1 Π

k2
2 a

(W, τ) − p−1/2I
Π

k1
1 Π

k2
2 a

(W ∗ φ1, τ)

− I
Π

k1
1 Π

k2
2 a

(W, τ) + I
Π

k1−1
1 Π

k2+1
2 a

(W ∗ φ+
0 , τ) + p−1I

Π
k1
1 Π

k2−1
2 a

(W, τ) = 0

and

pI
Π

k1
1 Π

k2+1
2 a

(W, τ) − p−1/2I
Π

k1
1 Π

k2
2 a

(W ∗ φ2, τ)

− I
Π

k1
1 Π

k2
2 a

(W, τ) + I
Π

k1+1
1 Π

k2−1
2 a

(W ∗ φ−0 , τ) + p−1I
Π

k1−1
1 Π

k2
2 a

(W, τ) = 0

for k1, k2 � 0.

10.3 We close this section with an elementary fact, which is needed in the proof of Theorem 10.2.
Let C∞(H/U ′, χ̃0) be the space of smooth functions f on H satisfying f(hu) = χ̃0(u)f(h) (h ∈ H,
u ∈ U ′). Then the Hecke algebra HH (cf. § 3.4) acts on C∞(H/U ′, χ̃0) on the right in a natural
manner. For φ ∈ HH , put φ∨(h) = χ0(deth)φ(h−1). Note that φ∨ is also in HH .

Lemma 10.3. For f, f ′ ∈ C∞(H/U ′, χ̃0) and φ ∈ HH , we have∫
H
χ−1

0 (deth)(f ∗ φ)(h)f ′(h) dh =
∫

H
χ−1

0 (deth)f(h)(f ′ ∗ φ∨)(h) dh.

11. Calculation of local integrals at finite primes: primitive case

11.1 Until the end of the paper, we keep the notation of § 10, and let (m, a, χ) ∈ E ,W ∈ Wm(χ)
and τ ∈ T m(a, χ). Take and fix an α ∈ K× such that a = αOK . To simplify the notation, we write
η and ι for ηm and ιm, respectively. We also write d(a),n(x) and n(x) for dH(a),nH (x) and nH(x)
respectively, if there is no fear of confusion. Let Hη = {h ∈ H | hη = η} and put Lk = OF + θpk

F

for k ∈ Z, k � 0. In this section, we prove Theorem 10.1.

11.2 Inert case
In this subsection, we consider the case where K/F is inert. Note that U = U ′ in this case.
Set hl = d(π−lα−1) (l ∈ Z). We need the following Cartan-type decomposition of H.
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Lemma 11.1. We have the following.

(i) We have H =
⋃

l�−[µ/2]HηhlU (disjoint union).

(ii) For l ∈ Z with l � −[µ/2], we have

vl := vol(HηhlU) = p2l+µ ×
{

1 if 2l + µ = 0,
0 if 2l + µ > 0.

Proof. The first assertion is easily verified. To prove the second, observe that

HηhlU =
⋃

z∈O×
K/(O×

K∩L2l+µ)

ι(zσ/z)hlU (disjoint union).

Since [O×
K : (O×

K ∩ Lk)] is equal to pk(1 + p−1) if k � 1 and 1 if k = 0, we are done.

Lemma 11.2. For W ∈ Wm(χ), we have Supp (W ) ⊂
⋃

l�0HηhlU .

Proof. There is nothing to prove if µ � 1. Assume that µ � 2 and −[µ/2] � l < 0. It is sufficient to
show that W (hl) = 0. Since A(χ) = µ, there exists an x ∈ OF such that χ(1 + πµ−1xθ) �= 1. Put

tx =
1 + πµ−1xθσ

1 + πµ−1xθ
∈ K1.

Then ι(tx)hl = hlu, where

u =
1

1 + πµ−1xθ

(
1 mN(α)πµ+2l−1 N(θ)x

−(mN(α))−1πµ−2l−1x 1 + Tr(θ)πµ−1x

)
.

Since u = (uij) ∈ U and u21 ∈ πOK , we have

(χ/χ0)(1 + πµ−1xθ)W (hl) = W (ι(tx)hl) = W (hlu) = χ̃0(u)W (hl) = χ−1
0 (1 + πµ−1xθ)W (hl).

This implies that W (hl) = 0.

In view of Lemmas 11.1 and 11.2, Ia(W, τ) is equal to

|N(α)|F
∞∑
l=0

vlW (hl)χ0(ασ/α)Φ0

(
πlmN(α)θσ

π−l

)
χ0(πlα)|N(π−lα−1)|1/2

F

∫
K
ϕ0(π−lα−1w)τ(w, xw) dw

= v0χ
−1
0 (α)|N(α)|1/2

F W (h0)
∫
a

τ(w, xw) dw

= v0χ
−1
0 (α)|N(α)|3/2

F W (d(α−1))τ(1).

This completes the proof of Theorem 10.1 in the inert case.

11.3 Ramified case
In this subsection, we consider the case where K/F is a ramified quadratic extension. Recall that θ
is a prime element of K. Set hl = d(Π−lα−1) for l ∈ Z.

Lemma 11.3. We have the following.

(i) We have

H =
⋃

l�−µ

HηhlU ′ ∪
⋃

l�−µ

⋃
a∈pF /DOF

Hηhln(a)w0U ′,

where w0 =
(

0 1
−1 0

)
.

(ii) We have Hηh−µn(a)w0U ′ = Hηh−µw0U ′ for a ∈ pF .
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Proof. For h, h′ ∈ H, we write h ∼ h′ if h′ ∈ HηhU ′. It is easily verified that H =
⋃

l�−µHηhlU
and HηhlU = {h ∈ H | Πlα · h−1η ∈ O2

K − ΠO2
K}. Let h = hlu(l � −µ, u = (uij) ∈ U). To prove

part (i), it suffices to show that

h ∼
{
hl if u11 ∈ O×

K ,
hln(a)w0 for some a ∈ pF otherwise.

(11.1)

First suppose that u11 ∈ O×
K . Then h ∼ hln(c) with c = u−1

11 u21 ∈ OF . If we put

z = 1 + yθ with y =
cmN(α)πl

1 − cTr(θ)mN(α)πl
∈ OF ,

we have

h ∼ ι(zσ/z)hln(c)hl
1
z

(
1 + cmN(αθ)πly mN(αθ)πly

0 1 + Tr(θ)y

)
∼ hl.

Next suppose that u11 ∈ ΠOK (and, hence, u21 ∈ O×
K). Then hn(−u−1

21 u22)d(−(uσ
21)

−1) = hln(a)w0

with a = u11u
−1
21 ∈ pF , which completes the proof of (11.1). To prove part (ii), let a ∈ pF and put

z = 1 + yθ with y = − aπµ

mN(αθ)
.

We then have y ∈ OF and

ι(zσ/z)h−µn(a)w0 = h−µw0

(
zσ m−1 N(α)−1πµyz−1

0 z−1

)
,

which implies h−µn(a)w0 ∼ h−µw0.

Lemma 11.4. We have the following.

(i) For l � −µ, we have

vol(HηhlU ′) =
2p

1 + p
pl+µ.

(ii) We have

vol(Hηh−µw0U ′) =
2

1 + p
.

Proof. It is easily verified that

HηhlU ′ =
⋃

z∈O×
K/(O×

K∩Lµ+l+δ)

(ι(zσ/z)hlU ′ ∪ ι((Πz)σ/(Πz))hlU ′) (disjoint union)

for l � −µ, and

Hηh−µw0U ′ =
⋃

z∈O×
K/(O×

K∩Lδ−1)

(ι(zσ/z)h−µw0U ′ ∪ ι((Πz)σ/(Πz))h−µw0U ′) (disjoint union).

The lemma now follows from [O×
K : (O×

K ∩ Lk)] = pk (k � 0) and [U : U ′] = pδ(1 + p−1).

Lemma 11.5. Let W ∈ Wm(χ).

(i) If χ is ordinary, we have

Supp (W ) ⊂
⋃
l�0

HηhlU ′ ∪
⋃
l�1

⋃
a∈pF /DOF

Hηhln(a)w0U ′.

(ii) If χ is exceptional, we have

Supp (W ) ⊂
⋃
l�0

HηhlU ′ ∪
⋃
l�1

⋃
a∈pF /DOF

Hηhln(a)w0U ′ ∪Hηh0w0U ′.
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Proof. There is nothing to prove when χ is exceptional. Assume that χ is ordinary. We first show
that W (hl) = 0 if −µ � l < 0. Take a y ∈ OF such that ordF y = µ + δ − 1 and χ(z) �= 1 with
z = 1 + θy. Then ι(zσ/z)hl = hlu, where

u =
1
z

(
1 πlmN(αθ)y

−y/πlmN(α) 1 + Tr(θ)y

)
.

If −µ � l < 0, we have u ∈ U ′ and, hence, (χ/χ0)(z)W (hl) = χ−1
0 (z)W (hl). This implies that

W (hl) = 0. A similar argument shows that W (hln(a)w0) = 0 if −µ � l � 0 and a ∈ pF .

To prove Theorem 10.1, we first observe that Φ0(αh−1η) = 0 if h = hl (l � 1) or h =
hln(a)w0 (l � 1, a ∈ πOF ). In view of Lemmas 11.4 and 11.5, we obtain Ia(W, τ) = I1 + δe(χ)I2,
where

I1 = |N(α)|Fχ0(ασ/α)
2

1 + p
pµ+1W (h0)

∫
K
MT

χ0
(h0)ϕ0(−w)τ(w, xw) dw,

I2 = |N(α)|Fχ0(ασ/α)
2

1 + p
W (h0w0)

∫
K
MT

χ0
(h0w0)ϕ0(−w)τ(w, xw) dw.

Since MT
χ0

(h0)ϕ0(−w) = χ0(α)|N(α)|−1/2
F ϕ0(α−1w) and vol(a) = |N(α)|F p−δ/2, we have

I1 =
2

1 + p
pµ+1χ0(ασ/α)W (h0)χ0(α)|N(α)|1/2

F

∫
a

τ(w, xw) dw

=
2

1 + p
pµ+1−δ/2χ−1

0 (α)|N(α)|3/2
F W (h0)τ(1).

We next have MT
χ0

(h0w0)ϕ0(−w) = χ0(α)|N(α)|−1/2
F p−δ/2λK(ψ)ϕ0(Πδα−1w) and, hence,

I2 =
2

1 + p
χ−1

0 (α)|N(α)|1/2
F p−δ/2λK(ψ)W (h0w0)

∫
Π−δa

τ(w, xw) dw.

To complete the proof of Theorem 10.1, it now remains to show the following.

Lemma 11.6. Suppose that χ ∈ X+
prim(m, a) is exceptional. For τ ∈ T m(a, χ), we have∫

Π−δa

τ(w, xw) dw = λK(ψm)χ(θ)|N(α)|F p1/2τ(1). (11.2)

Proof. Put tθ = θσ/θ ∈ K1. By (10.5), taking a sufficiently large lattice L′ of K, we have

τ(rtθ) = λK(ψm)−1χ

(
1 − tθ
κ

)
|N(1 − tθ)|1/2

F

∫
L′
ψm

(
1
2
〈w, tθw〉κ

)
τ(r(w(1 − tθ), 0)) dmw

= λK(ψm)−1χ−1(θ)|N(mθ)|1/2
F

∫
L
ψ

(
m

2
Tr
(

κ

1 − tθ

)
wwσ

)
τ(r(w, 0)) dw

= λK(ψm)−1χ−1(θ)|m|F p−1/2

∫
L
τ(r(w, xw)) dw,

where L = (1 − tθ)−1L′. We may (and do) suppose that L ⊃ Π−δa. Since χ is exceptional, the last
integral is equal to∫

L

∫
Π−1a

τ(r(w, xw)(w′, xw′)) dΠ−1aw
′ dw

=
∫

L
τ(r(w, xw))

∫
Π−1a

ψm(−Tr(θσwσw′)) dΠ−1aw
′ dw =

∫
Π−δa

τ(r(w, xw)) dw.

We thus have∫
Π−δa

τ(w, xw) dw = λK(ψm)χ(θ)|m|−1
F p1/2τ(tθ) = λK(ψm)χ(θ)|N(α)|F p1/2τ(1),

which proves the lemma.
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Remark. When δ = 1, the left-hand side of (11.2) is independent of the choice of θ and equal to
|N(α)|F p1/2τ(1) by the assumption that χ is exceptional. This implies that λK(ψm)χ(θ) = 1 (we can
show this fact directly). Note that, if δ � 2, the left-hand side of (11.2) depends on the choice of θ.

11.4 Split case

In this subsection, we consider the case where K = F ⊕F , and let Π1 = (π, 1),Π2 = (1, π). We may
(and do) take θ = (1, 0). Then xw = 1

2 N(w) for w ∈ K. Let Z = {t12 | t ∈ K1} be the center of H.
For l ∈ Z, we put hl = d(Π−l

1 α−1).

Lemma 11.7. We have H =
⋃

l�−µZHηhlU .

Proof. For h, h′ ∈ H, we write h ∼ h′ if h′ ∈ ZHηhU . We first show that, for any h ∈ H, there
exists an l ∈ Z such that h ∼ hl. By Iwasawa decomposition of H, we have h = n(x)d(a)u for some
x ∈ F, a ∈ K×, u ∈ U . We may (and do) assume that x �= m−1. Putting y = (1 − mx)−1 ∈ F×,
we have

n(x) = ι((y, y−1))d((1, y−1)) (11.3)

and, hence, h ∼ d(a′) for some a′ ∈ K×. Our claim immediately follows from this. It is now sufficient
to show that hl ∼ h−µ if l < −µ. Put y′ = (1 − πlmN(α))−1 ∈ F×. Note that ordF y

′ = −(l + µ).
By (11.3), we have hl∼hln(1)=n(πl N(α))hl ∼d((1, 1/y′))hl∼d((1/y′, 1))hl ∼d(Πl+µ

1 )hl =h−µ.

Lemma 11.8. For l � −µ, we have

vl := vol(ZHη\ZHηhlU) =

{
1 if l = −µ,

pl+µ(1 − p−1) if l > −µ.

Proof. Let l � −µ and put X = Z0Hη,0hlU , where Z0 = {t12 | t ∈ O1
K} and Hη,0 = {ι(t) | t ∈ O1

K}.
Then vl = vol(X). Since ι(t)ησ = t · ησ (t ∈ K1), we have

X = {h ∈ H | Πl
1α · h−1η,Πl

1α · h−1ησ ∈ O2
K − (Π1O2

K ∪ Π2O2
K)}.

It follows that X = Y ∪
⋃l+µ

k=1 Yk (disjoint union), where

Y = {n(x)d(y)u | x ∈ π−l N(α)−1OF , y ∈ Π−l
1 α−1O×

K , u ∈ U},
Yk = {n(x)d(y)u | x,−x+m ∈ πk−l N(α)−1O×

F , y ∈ Πk−l
1 Πk

2α
−1O×

K , u ∈ U}.

The lemma now follows from

vol(Y ) = 1, vol(Yk) = pk ×
{

1 − p−1 if 1 � k � l + µ− 1,
1 − 2p−1 if k = l + µ.

Lemma 11.9. For W ∈ Wm(χ), we have Supp(W ) ⊂
⋃

l�0 ZHηhlU .

Proof. This is proved by an argument similar to the proof of Lemma 11.2.

By Lemma 11.9, we have

Ia(W, τ) = |N(α)|F
∑
k∈Z

∞∑
l=0

vlχ
−1
0 (detd(Π−k−l

1 Πk
2α

−1))Φ0(αd(Πk+l
1 Π−k

2 α)η)

×W (d(Π−k−l
1 Πk

2α
−1))

∫
K

(MT
χ0

(d(Π−k−l
1 Πk

2α
−1))ϕ0)(−w)τ(w, xw) dw.
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For k ∈ Z and l � 0, we have Φ0(αd(Πk+l
1 Π−k

2 α)η) = δ(k = l = 0). By this and Lemma 11.8,
we obtain

Ia(W, τ) = χ−1
0 (α)|N(α)|1/2

F v0 ·W (d(α−1))
∫

K
ϕ0(α−1w)τ(w, xw) dw

= χ−1
0 (α)|N(α)|3/2

F τ(1)W (d(α−1)) × pµ

{
1 − p−1 if µ > 0,
1 if µ = 0.

This completes the proof of Theorem 10.1 in the split case.

12. Calculation of local integrals at finite primes: non-primitive case

12.1 In this section, we let Ω ∈ Xunr(K1) and W ∈ Wm(χ;χ0Ω) (cf. § 10.1), and prove
Theorem 10.2. We keep the notation of § 11.

12.2 Inert case
In this subsection, we consider the case where K/F is inert. For k ∈ Z, we have

Iπka(W, τ) = |N(πkα)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)Ak(w, h)τ(w, xw) dw dh,

where Ak(w, h) = Φ0(πkαh−1η)(MT
χ0

(h)ϕ0)(−w). In view of Lemma 10.3 and the fact that φ∨1 = φ1,
we have

Iπka(W ∗ φ1, τ) = |N(πkα)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)A′
k(w, h)τ(w, xw) dw dh,

where

A′
k(w, h) = −Φ0(πkαd(π)h−1η)(MT

χ0
(hd(π−1))ϕ0)(−w)

−
∑

a∈(OF −πOF )/πOF

Φ0(πkαn(−π−1a)h−1η)(MT
χ0

(hn(π−1a))ϕ0)(−w)

−
∑

a∈OF /π2OF

Φ0(πkαd(π−1)n(−a)h−1η)(MT
χ0

(hn(a)d(π))ϕ0)(−w).

It follows that

p2Iπk+1a(W, τ) − p−1Iπka(W ∗ φ1, τ) + {δ(k + µ > 0)p−1 − 1}Iπka(W, τ) + p−2Iπk−1a(W, τ)

= |N(πkα)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)Bk(w, h)τ(w, xw) dw dh,

where

Bk(w, h) = Ak+1(w, h) − p−1A′
k(w, h) + {δ(k + µ > 0)p−1 − 1}Ak(w, h) +Ak−1(w, h).

Set

Bk,l =
∫

K
Bk(w, hl)τ(w, xw) dw.

To prove Theorem 10.2, it suffices to show the following result in view of Lemma 11.2.

Proposition 12.1. For k, l � 0, we have Bk,l = 0.

Proof. For l ∈ Z, set φl(w) = ϕ0(π−lα−1w). Let l � 0 and k ∈ Z. Observe that

Ak(w, hl) = δ(k � l)(−p)lχ0(α)|N(α)|−1/2
F φl(w)
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and that

A′
k(w, hl) = (−1)lpl+1χ0(α)|N(α)|−1/2

F {δ(k � l + 1)φl+1(w) − p−1δ(k � l + 1)I1(w) + p−2I2(w)},
where

I1(w) =
∑

a∈(OF−πOF )/πOF

ψ(−π−2l−1 N(α)−1 N(w)a)φl(w),

I2(w) =
∑

a∈OF /π2OF

Φ0

(
πk+l−1mN(α)θσ − πk−l−1a

πk+1−l

)
ψ(−π−2l N(α)−1 N(w)a)φl−1(w).

A straightforward calculation shows that

I1(w) = pφl+1(w) − φl(w),

I2(w) = δ(k + l + µ > 0)[δ(k � l + 1)p2φl(w) + δ(k = l)pφl(w) + δ(k = l − 1)φl−1(w)]

and, hence, that

A′
k(w, hl) = (−1)lpl+1χ0(α)|N(α)|−1/2

F × δ(k + l + µ > 0)[δ(k = l)p−1φl(w)

+ δ(k � l + 1)(1 + p−1)φl(w) + δ(k = l − 1)p−2φl−1(w)].

This implies that, for k, l � 0,

Bk(w, hl) = (−p)lχ0(α)|N(α)|−1/2
F δ(l = k + 1){φl(w) − p−2φl−1(w)}

and, hence,

Bk,l = (−p)lχ0(α)|N(α)|−1/2
F δ(k = l − 1)(Jl − p−2Jl−1),

where

Jl =
∫

K
φl(w)τ(w, xw) dw.

Since Jl = p−2l|N(α)|F τ(1) for l � 0, we have proved that Bk,l = 0.

12.3 Ramified case
In this subsection, we consider the case where K/F is a ramified quadratic extension. For k ∈ Z,
we have

IΠka(W, τ) = p−k|N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)Ak(w, h)W (h)τ(w, xw) dw dh,

where Ak(w, h) = Φ0(Πkαh−1η)(MT
χ0

(h)ϕ0)(−w) (w ∈ K,h ∈ H). By Lemma 10.3 and the fact
that (φ±)∨ = φ∓, we obtain

IΠka(W ∗ (φ+ + φ−), τ) = p−k|N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)A′
k(w, h)W (h)τ(w, xw) dw dh,

where

A′
k(w, h) = χ0(Π)

∑
c∈OF /πOF

Ak(w, hn(c)d(Π)) + χ−1
0 (Π)

∑
c∈OF /πOF

Ak(w, hn(Dc)d(Π−1)).

It follows that

pIΠk+1a(W, τ) − p−1/2IΠka(W ∗ (φ+ + φ−), τ)

− δ(k = 0 and χ is ordinary)IΠka(W, τ) + p−1IΠk−1a(W, τ)

= p−k|N(α)|
∫

Hη\H
dh

∫
K
dw χ−1

0 (deth)W (h)Bk(w, h)τ(w, xw),

40

https://doi.org/10.1112/S0010437X06002491 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002491


On the Fourier–Jacobi expansion of the unitary Kudla lift

where

Bk(w, h) = Ak+1(w, h) − p−1/2A′
k(w, h) − δ(k = 0 and χ is ordinary)Ak(w, h) +Ak−1(w, h).

Set φl(w) = ϕ0(Π−lα−1w) for l ∈ Z.

Lemma 12.2. Let k � 0.

(i) For l � 0, we have

Bk(w, hl) = χ0(Πlα)pl/2|N(α)|−1/2
F [δ(k = l or l − 1){φl(w) − p−1φl−1(w)}

− δ(l = k = 0 and χ is ordinary)φ0(w)].

(ii) For l � 0 and a ∈ pF , we have

Bk(w, hln(a)w0) =

{
−βl · ψ(aN(Π−lα−1w))φl−δ(w) if k = l = 0 and χ is ordinary,

0 otherwise,

where βl = p(l−δ)/2|N(α)|−1/2
F χ0(Πlα)λK(ψ).

Proof. First observe that Ak(w, hl) = δ(l � k)χ0(Πlα)pl/2|N(α)|−1/2
F φl(w). Using the formulas∑

c∈OF /πOF

MT
χ0

(n(π−1c))ϕ0(w) = pϕ0(Π−1w)

and ∑
c∈OF /πOF

MT
χ0

(n(π−1Dc))ϕ0(w) = ϕ0(Πw),

we obtain

A′
k(w, hl) = χ0(Π)

∑
c∈OF /πOF

Φ0

(
Πk+(l−1)σmN(α)θσ − Πk−l−σc

Πk+1−l

)
MT

χ0
(hl−1n(π−1c))ϕ0(−w)

+ χ−1
0 (Π)

∑
c∈OF /πOF

Φ0

(
Πk+(l+1)σmN(α)θσ

−Πk−1+lσmN(α)Dcθσ + Πk−l−1

)
MT

χ0
(hl+1n(π−1Dc))ϕ0(−w)

= χ0(Πlα)
{
δ(k � l − 1)|N(Π−l+1α−1)|1/2

F φl−1(w)

+ δ(k � l + 1)|N(Π−l+1α−1)|1/2
F

∑
c∈O×

F /πOF

MT
χ0

(n(π−1c))ϕ0(−Π−l+1α−1w)

+ δ(k � l + 1)|N(Π−l−1α−1)|1/2
F

∑
c∈OF /πOF

MT
χ0

(n(π−1Dc))ϕ0(−Π−l−1α−1w)
}

= χ0(Πlα)p(l+1)/2|N(α)|−1/2
F {δ(k = l or l − 1)p−1φl−1(w) + 2 · δ(k � l + 1)φl(w)}.

The assertion (i) is now proved by a straightforward calculation. Next let h = hln(a)w0 (l � 0,
a ∈ pF ). A similar argument as above shows that Ak(w, h) = δ(k � l)βl · ψ(aN(Π−lα−1w))φl−δ(w)
and A′

k(w, h) = {δ(k � l+1)+ δ(k � l− 1)}p1/2βl ·ψ(aN(Π−lα−1w))φl−δ(w). The second assertion
immediately follows from these.

Proposition 12.3. Let τ ∈ T m(a, χ).

(i) For k, l � 0, we have ∫
K
Bk(w, hl)τ(w, xw) dw = 0.
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(ii) For k � 0, l � 1 and a ∈ pF , we have∫
K
Bk(w, hln(a)w0)τ(w, xw) dw = 0.

(iii) Assume that χ is exceptional. Then, for k � 0, we have∫
K
Bk(w, h0w0)τ(w, xw) dw = 0.

Proof. For l ∈ Z, set

Jl =
∫

K
φl(w)τ(w, xw) dw.

In view of (10.2) and (10.4), we have

Jl =

{
p−l−δ/2|N(α)|F τ(1) if l � 0 or ‘µ = 0, χ is exceptional and l = −1’,
0 otherwise

for l � −1. By Lemma 12.2, for k, l � 0, we have∫
K
Bk(w, hl)τ(w, xw) dw

= χ0(Πlα)pl/2|N(α)|−1/2
F {δ(k = l or l − 1)(Jl − p−1Jl−1) − δ(l = k = 0 and χ is ordinary)J0}

= 0,

which shows assertion (i). The assertions (ii) and (iii) directly follow from Lemma 12.2(ii).

In view of Lemma 11.5 and Proposition 12.3, we have completed the proof of Theorem 10.2 in
the ramified case.

12.4 Split case
In this subsection, we consider the case where K = F ⊕ F and use the notation of § 11.4.

Lemma 12.4. Let k1, k2 ∈ Z.

(i) We have

I
Π

k1
1 Π

k2
2 a

(W, τ) = p−k1−k2|N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)Ak1,k2(w, h)τ(w, xw) dw dh,

where Ak1,k2(w, h) = Φ0(Πk1
1 Πk2

2 αh
−1η)(MT

χ0
(h)ϕ0)(−w).

(ii) We have

I
Π

k1
1 Π

k2
2 a

(W ∗ φ1, τ) = p−k1−k2 |N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)A1
k1,k2

(w, h)τ(w, xw) dw dh,

where

A1
k1,k2

(w, h) = χ−1
0 (Π2)

{
Φ0(Πk1

1 Πk2
2 αd(Π2)h−1η)(MT

χ0
(hd(Π−1

2 ))ϕ0)(−w)

+
∑

c∈OF /πOF

Φ0(Πk1
1 Πk2

2 αd(Π−1
1 )n(−c)h−1η)(MT

χ0
(hn(c)d(Π1))ϕ0)(−w)

}
.

(iii) We have

I
Π

k1
1 Π

k2
2 a

(W ∗ φ2, τ) = p−k1−k2 |N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)A2
k1,k2

(w, h)τ(w, xw) dw dh,
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where

A2
k1,k2

(w, h) = χ−1
0 (Π1)

{
Φ0(Πk1

1 Πk2
2 αd(Π1)h−1η)(MT

χ0
(hd(Π−1

1 ))ϕ0)(−w)

+
∑

c∈OF /πOF

Φ0(Πk1
1 Πk2

2 αd(Π−1
2 )n(−c)h−1η)(MT

χ0
(hn(c)d(Π2))ϕ0)(−w)

}
.

(iv) We have

I
Π

k1
1 Π

k2
2 a

(W ∗ φ±0 , τ) = p−k1−k2 |N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)A±
k1,k2

(w, h)τ(w, xw) dw dh,

where

A±
k1,k2

(w, h) = χ0(Π1/Π2)±1Φ0(Πk1
1 Πk2

2 (Π1/Π2)±1αh−1η)(MT
χ0

(hd((Π1/Π2)±1))ϕ0)(−w).

(v) We have

pI
Π

k1+1
1 Π

k2
2 a

(W, τ) − p−1/2I
Π

k1
1 Π

k2
2 a

(W ∗ φ1, τ) − I
Π

k1
1 Π

k2
2 a

(W, τ)

+ I
Π

k1−1
1 Π

k2+1
2 a

(W ∗ φ+
0 , τ) + p−1I

Π
k1
1 Π

k2−1
2 a

(W, τ)

= −p−k1−k2|N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)Bk1,k2(w, h)τ(w, xw) dw dh,

where

Bk1,k2(w, h)

= p−1/2A1
k1,k2

(w, h) +Ak1,k2(w, h) −Ak1+1,k2(w, h) −Ak1,k2−1(w, h) −A+
k1−1,k2+1(w, h).

(vi) We have

pI
Π

k1
1 Π

k2+1
2 a

(W, τ) − p−1/2I
Π

k1
1 Π

k2
2 a

(W ∗ φ2, τ) − I
Π

k1
1 Π

k2
2 a

(W, τ)

+ I
Π

k1+1
1 Π

k2−1
2 a

(W ∗ φ−0 , τ) + p−1I
Π

k1−1
1 Π

k2
2 a

(W, τ)

= −p−k1−k2|N(α)|F
∫

Hη\H

∫
K
χ−1

0 (deth)W (h)B′
k1,k2

(w, h)τ(w, xw) dw dh,

where

B′
k1,k2

(w, h)

= p−1/2A2
k1,k2

(w, h) +Ak1,k2(w, h) −Ak1,k2+1(w, h) −Ak1−1,k2(w, h) −A−
k1+1,k2−1(w, h).

Proof. The first assertion is obvious from the definition. The assertions (ii)–(iv) follow from
Lemma 10.3 and the fact that φ∨1 = φ2, φ

∨
2 = φ1 and (φ±0 )∨ = φ∓0 . The last two assertions are

direct consequences of assertions (i)–(iv).

By Lemma 11.9, we have

Supp (W ) ⊂
⋃

l1,l2∈Z,l1+l2�0

Hηhl1,l2U ,

where hl1,l2 = d(Π−l1
1 Π−l2

2 α−1). Set

Bk1,k2,l1,l2 =
∫

K
Bk1,k2(w, hl1,l2)τ(w, xw) dw,

B′
k1,k2,l1,l2 =

∫
K
B′

k1,k2
(w, hl1,l2)τ(w, xw) dw.

To prove Theorem 10.2, it suffices to show the following.
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Proposition 12.5. For k1, k2, l1, l2 ∈ Z with k1 � 0, k2 � 0, l1 + l2 � 0, we have Bk1,k2,l1,l2 = 0 and
B′

k1,k2,l1,l2
= 0.

12.5 Proof of Proposition 12.5

To simplify the notation, we set

φl1,l2(w) = ϕ0(Π−l1
1 Π−l2

2 α−1w),

J(l1, l2) =
∫

K
φl1,l2(w)τ(w, xw) dw,

J ′(l1, l2) =
∫

K
φl1,l2(w)ψm(N(w))τ(w, xw) dw =

∫
K
φl1,l2(w)τ(w,−xw) dw

for l1, l2 ∈ Z. Note that J(l1, l2) = J ′(l1, l2) if l1 + l2 + µ � 0.

Lemma 12.6. For k1, k2, l1, l2 ∈ Z with k1 � 0, k2 � 0, l1 + l2 � 0, we have

Bk1,k2,l1,l2 = p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F

×


−J(l1, l2) + p−1J(l1 − 1, l2) if k1 = l1 − 1, k2 � l2,

−J(l1 − 1, l2 + 1) + p−1J ′(l1 − 1, l2) if k1 � l1, k2 = l2,

0 otherwise

and

B′
k1,k2,l1,l2 = p(l1+l2)/2χ0(Πl1

1 Πl2
2 α)|N(α)|−1/2

F

×


−J(l1, l2) + p−1J ′(l1, l2 − 1) if k1 � l1, k2 = l2 − 1,
−J(l1 + 1, l2 − 1) + p−1J(l1, l2 − 1) if k1 = l1, k2 � l2,

0 otherwise.

Proof. By the definitions of Ak1,k2 and A±
k1,k2

, we have

Ak1,k2(w, hl1,l2) = δ(k1 � l1, k2 � l2)p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F φl1,l2(w),

A+
k1,k2

(w, hl1,l2) = δ(k1 � l1 − 1, k2 � l2 + 1)p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F φl1−1,l2+1(w),

A−
k1,k2

(w, hl1 ,l2) = δ(k1 � l1 + 1, k2 � l2 − 1)p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F φl1+1,l2−1(w)

for k1, k2, l1, l2 ∈ Z. Next suppose that k1, k2, l1 + l2 � 0. By using the formula∑
c∈OF /πOF

MT
χ0

(n(π−1c))ϕ0(w) = p{ϕ0(Π−1
1 w) + ϕ0(Π−1

2 w) − ϕ0(π−1w)},

we obtain

A1
k1,k2

(w, hl1,l2)

= p(l1+l2+1)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F × [δ(k1 � l1, k2 � l2 + 1){φl1,l2(w) + φl1−1,l2+1(w)}

+ p−1δ(k1 = l1 − 1, k2 � l2)φl1−1,l2(w) + p−1δ(k1 � l1, k2 = l2)ψm(N(w))φl1−1,l2(w)]

and

A2
k1,k2

(w, hl1 ,l2)

= p(l1+l2+1)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2
F × [δ(k1 � l1 + 1, k2 � l2){φl1,l2(w) + φl1+1,l2−1(w)}

+ p−1δ(k1 = l1, k2 � l2 − 1)φl1,l2−1(w) + p−1δ(k1 � l1 + 1, k2 = l2 − 1)ψm(N(w))φl1,l2−1(w)].
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A straightforward calculation shows that

Bk1,k2(w, hl1,l2) = p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2

× [δ(k1 = l1 − 1, k2 � l2){−φl1,l2(w) + p−1φl1−1,l2(w)}
+ δ(k1 � l1, k2 = l2){−φl1−1,l2+1(w) + p−1ψm(N(w))φl1−1,l2(w)}]

and

B′
k1,k2

(w, hl1,l2) = p(l1+l2)/2χ0(Πl1
1 Πl2

2 α)|N(α)|−1/2

× [δ(k1 � l1, k2 = l2 − 1){−φl1,l2(w) + p−1ψm(N(w))φl1,l2−1(w)}
+ δ(k1 = l1, k2 � l2){−φl1+1,l2−1(w) + p−1φl1,l2−1(w)}].

These immediately show the lemma.

To complete the proof of Proposition 12.5, it is sufficient to show the following.

Lemma 12.7. Let l1, l2 ∈ Z with l1 + l2 � 0.

(i) If l1 � 1, we have J(l1, l2) = p−1J(l1 − 1, l2).
(ii) If l2 � 1, we have J(l1, l2) = p−1J ′(l1, l2 − 1).

Proof. Suppose that l1 + l2 � 0 and l2 � 1. Take α = (α1, α2) ∈ K× such that a = αOK . We then
have

J(l1, l2) =
∫

Π
l1
1 Π

l2
2 a

τ(w, xw) dw

= |πl2−1α2|−1
F

∫
Π

l1
1 Π

l2
2 a

∫
πl2−1α2OF

τ((w, xw)((0, u), 0)) du dw

= |πl2−1α2|−1
F

∫
Π

l1
1 Π

l2
2 a

∫
πl2−1α2OF

τ

(
w + (0, u),

1
2
w1w2 −

1
2
w1u

)
du dw

= |πl2−1α2|−1
F

∫
Π

l1
1 Π

l2
2 a

∫
πl2−1α2OF

τ

(
(w1, w2 + u),−1

2
w1(w2 + u)

)
du dw

= p−1

∫
Π

l1
1 Π

l2−1
2 a

τ(w,−xw) dw

= p−1J ′(l1, l2 − 1),

which proves assertion (ii). The proof of assertion (i) is similar and we omit it.
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