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Motivated by the industrial manufacture of organic light-emitting-diode displays, we
formulate and analyse a mathematical model for the evolution of a thin droplet in a shallow
axisymmetric well of rather general shape both before and after touchdown that accounts
for the spatially non-uniform evaporation of the fluid, perform physical experiments using
three cylindrical wells with different small aspect ratios, and validate the mathematical
model by comparing the present experimental results with the corresponding theoretical
predictions for a cylindrical well.
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1. Introduction

In recent years, organic light-emitting-diode (OLED) displays have become an
increasingly important part of the overall display market. In particular, thanks to their
superior display quality, specifically their true black state and fast response time compared
with liquid crystal displays (LCDs) (see, for example, Chen et al. 2018), OLED displays are
now preferred to LCDs for mobile and high-end television applications (see, for example,
Lee et al. 2018). Currently, the vast majority of OLED displays are manufactured using
a vacuum-coating method with a fine metal mask. However, a number of issues, notably
the difficulty of precisely controlling the distance between the mask and the display (see,
for example, Zhu et al. 2018), limit the size of displays that can be mass-produced using
this technique. As a result, there has been considerable interest in avoiding the difficulties
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associated with the mask by inkjet printing the active materials (dissolved in one or
more carrier solvents) directly into small cavities, hereafter referred to as ‘wells’, in the
substrate, the solvent thereafter evaporating to leave the desired deposit of active material
in the well (see, for example, Shimoda et al. 2003; Halls 2005; Singh et al. 2010; Madigan
et al. 2014; Levermore et al. 2016; Walker et al. 2016). While there is a substantial body of
work on the inkjet printing process and, in particular, on the ejection of the droplets from
the printheads and the subsequent dynamics of the detached droplets (see, for example,
Hoath 2016), far less work has been done on the evolution of the droplets once they have
been deposited into the wells. Of particular industrial interest is the period of time between
printing taking place and the printed substrate being placed into a drier, during which the
solvents evaporate in a diffusion-limited regime. Inkjet printing of droplets into wells also
arises in other contexts (such as, for example, the applications in biotechnology described
by Marizza, Keller & Boisen 2013).

While there is a large and rapidly growing literature on the dynamics of evaporating
droplets on planar substrates (see, for example, the review articles by Larson (2014); Lohse
& Zhang (2015); Brutin & Starov (2018) and Giorgiutti-Dauphiné & Pauchard (2018), and
the many references therein), there has been relatively little work on the evaporation of
and/or the deposition from a droplet in a well. Not only is this problem directly relevant
to the industrial manufacture of OLED displays, but it is also of interest in its own right
as a fundamental scientific problem that is key to understanding the many other situations
in which evaporating droplets on non-planar substrates occur (such as, for example, the
agrochemical spraying of plants that motivated the work of Tredenick et al. 2021).

Experimental studies have been undertaken to investigate the evolution of an
evaporating droplet in a cuboidal well by van den Doel & van Vliet (2001), and in a
cylindrical well by Rieger, van den Doel & van Vliet (2003), Chen, Tseng & Chieng
(2006); Chen, Chieng & Tseng (2007), Jung et al. (2009), Kajiya et al. (2009) and
Vlasko-Vlasov et al. (2020). van den Doel & van Vliet (2001) and Rieger et al. (2003)
studied the evolution of the free-surface profile of the droplet before it touches the bottom
of the well, hereafter referred to as ‘touchdown’, and showed that the volume of the droplet
decreases at a rate that is approximately constant in time and proportional to the length of
the contact line (rather than the surface area) of the droplet (both of which behaviours
are consistent with predictions of a diffusion-limited model such as that presented in the
present work). Chen et al. (2006) investigated evolution after touchdown and found that,
at least for the situations they investigated, the new inner contact line that appears at the
centre of the well at touchdown recedes at an approximately constant speed (behaviour that
is not, in general, either predicted by the mathematical model or seen in the experimental
results presented in the present work). Chen et al. (2007) showed that the wettability
properties of the well can have a strong effect on the evolution of the free surface,
and hence on the spatial distribution of the final deposit left in the well after a droplet
containing suspended particles has completely evaporated. Jung et al. (2009) studied the
evolution of and the final deposit from a droplet of a polymer solution whose contact line
is pinned at the lip of the well, and Kajiya et al. (2009) extended this work to investigate
the effect of adding various surfactants to the droplet. More recently, Vlasko-Vlasov et al.
(2020) performed a detailed investigation of a final deposit in the form of concentric rings
arising from a stick–slip motion of the receding inner contact line.

In addition to these primarily experimental studies, a number of theoretical
investigations of the evaporation of a droplet in a well have also been performed. Okuzono,
Kobayashi & Doi (2009) assumed the evaporative flux from the droplet to be spatially
uniform and used a thin-film approximation to analyse the evolution of and the final deposit
from a two-dimensional droplet in a rectangular well. Subsequently, Eales et al. (2015)
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Evaporation of a droplet in a well

used the same approach to investigate the final deposit from an axisymmetric droplet in an
axisymmetric (but, in general, non-cylindrical) well. However, both of these works concern
droplets of a polymer solution in which gelation (i.e. solidification) effects play a key role,
and so touchdown never occurs. Tarasevich et al. (2009) calculated the radial velocity
within an axisymmetric droplet in a cylindrical well for four different evaporative fluxes
(slightly confusingly referred to as ‘four different modes of evaporation’). Son (2012) and
Ahn & Son (2015) used a sharp-interface level-set method to simulate numerically the
impact and evolution of an evaporating droplet in a cylindrical well, and the evolution
of an evaporating droplet in both cuboidal and cylindrical wells, respectively. Wang &
Fukai (2018) used a finite-element method to calculate numerically the evaporative flux
from a droplet in a cylindrical well before touchdown. They considered the situation
in which the contact line is pinned on the vertical side of the well (rather than at the
lip of the well, as it is in the present work), and found that the confining effect of the
side of the well can significantly suppress the evaporation in the vicinity of the contact
line and lead to a substantial reduction in the total evaporative flux. In related work on
non-evaporating droplets, Kant et al. (2017, 2018) used a combination of experimental and
analytical methods to analyse the spreading of both a single droplet and a sequence of
partially overlapping droplets in a ‘stadium-shaped’ well, while Zhang et al. (2018) used
the lattice Boltzmann method to simulate numerically the impact and evolution of a droplet
in a cuboidal well.

Thus, while there have been previous investigations of various aspects of the evaporation
of a droplet in a well, there is still neither a complete mathematical model for this problem
nor a comprehensive set of experimental results against which the predictions of such
a model can be validated. The aim of the present work is to rectify these omissions.
Specifically, the outline of the remainder of the present work is as follows. Firstly, in
§§ 2–4 we formulate and analyse a mathematical model for the evolution of a thin droplet
in a shallow axisymmetric well of rather general shape both before and after touchdown
that accounts for the spatially non-uniform evaporation of the fluid. Secondly, in §§ 5 and 6
we perform physical experiments using three cylindrical wells with different small aspect
ratios. Thirdly, in §§ 7 and 8 we validate the mathematical model by comparing the present
experimental results and experimental results obtained by previous authors, respectively,
with the corresponding theoretical predictions for a cylindrical well. Finally, in § 9 we
summarise our findings and indicate some possible directions for future work.

2. Mathematical model

Consider a droplet of fluid in an axisymmetric well in the otherwise dry planar surface
of a substrate undergoing quasi-static diffusion-limited evaporation into a quiescent
atmosphere. We refer the description to polar coordinates r, φ, z with Oz along the axis of
the well, perpendicular to the surface of the substrate at z = 0, as sketched in figure 1. We
denote the maximum depth of the well, which occurs at r = 0, by H0, and the radius of its
lip by R0, so that the lip is located at r = R0, z = 0. We take the droplet to be axisymmetric,
and denote its free-surface profile by z = h(r, t), where t denotes time. The droplet is
deposited into the well at t = 0, and thereafter its volume decreases due to evaporation
until it has completely evaporated, which occurs at t = tlifetime, where tlifetime is the lifetime
of the droplet.

We consider situations in which the droplet is thin and the well is shallow, the
droplet is sufficiently small that the effect of gravity is negligible, and the surface
tension is sufficiently strong that the free surface of the droplet evolves quasi-statically.
More specifically, we consider situations in which the aspect ratio of the droplet and the
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Figure 1. Sketch of snapshots of the free-surface profile z = h(r, t) of a thin droplet evaporating in a shallow
axisymmetric well with profile z = H(r) = −H0(1 − (r/R0)

n) in the otherwise dry planar surface z = 0 of a
substrate, for (a) either H0 = 0 or n = 0 (i.e. a planar substrate with no well), (b) 0 < n < 1, (c) n = 1 (i.e. a
conical well), (d) 1 < n < 2, (e) n = 2 (i.e. a paraboloidal well), ( f ) 2 < n < ∞ and (g) in the limit n → ∞
(i.e. a cylindrical well). In (b–g) the free-surface profile at t = ttouchdown is indicated with a dashed curve. Note
that the dashed curve is not visible in (e) as touchdown occurs everywhere simultaneously within the well in
the special case n = 2.

well, ε = H0/R0 � 1, is small, as are the appropriately defined Bond number Bo and
capillary number Ca, namely

Bo = ρgR2
0

γ
� 1 and Ca = μU

ε3γ
� 1, (2.1a,b)

where ρ, γ and μ are the constant density, surface tension and dynamic viscosity of the
fluid, respectively, g denotes the magnitude of acceleration due to gravity and U is an
appropriate radial velocity scale (defined in § 7).

The mean curvature of the free surface of the droplet is spatially constant, and so at
leading order in the limit ε → 0 the free-surface profile h satisfies

∂

∂r

(
1
r

∂

∂r

(
r
∂h
∂r

))
= 0, (2.2)
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Evaporation of a droplet in a well

and hence takes the general form

h = c1r2 + c2 log r + c3, (2.3)

where the ci = ci(t) for i = 1, 2, 3 are yet to be determined.
We consider a shaped well with profile z = H(r) (≤ 0), where

H = −H0

(
1 −

(
r

R0

)n)
for 0 ≤ r ≤ R0, (2.4)

in which the exponent n (≥ 0) is a constant. The volume of the well (i.e. its volume below
the plane z = 0) is given by

Vwell = πnH0R2
0

2 + n
, (2.5)

and any three of the four quantities Vwell, R0, H0 and n may be prescribed. Cases with
either H0 = 0 or n = 0 in (2.4), sketched in figure 1(a), correspond to the familiar case of a
droplet on a planar substrate with no well. The cases n = 1, n = 2 and in the limit n → ∞,
also included in figure 1, correspond respectively to a conical well, a paraboloidal well
(which will turn out to be an important special case), and a cylindrical well with vertical
side r = R0 and flat bottom z = −H0. The latter case, which, as we have already seen,
is of particular interest from a practical point of view, is the subject of the experimental
investigation reported in the present work. At its lowest point located at r = 0, z = −H0
the profile of the well (2.4) has a cusp when 0 < n < 1, has a corner when n = 1, and
is flat when n > 1; also its curvature there is infinite when 0 < n < 2, takes the value
4H0/R2

0 when n = 2, and is zero when n > 2. The slope of the well at its lip is nH0/R0.
We assume that, at least in the first stage of the evolution, the contact line is pinned at

the lip of the well located at r = R0, z = 0. The initial volume of the droplet, V0, could
be greater than, equal to, or less than the volume of the well, Vwell, in which case the
initial free surface of the droplet would be respectively above, at, or below the plane z = 0.
Although all of these cases could be analysed by the present approach, for definiteness we
take V0 to be greater than Vwell, so that initially the well is completely filled and the free
surface is above z = 0.

At some time t = ttouchdown (0 < ttouchdown ≤ tlifetime) the free surface makes contact
tangentially (i.e. at zero contact angle) with the surface of the well. As shown by the
dashed curves in figure 1, when 0 < n < 2 touchdown occurs at the lip of the well, and
when n > 2 it occurs at the centre of the well. In the special case n = 2 touchdown occurs
everywhere simultaneously within the well, and so the dashed curve is not visible in
figure 1(e). Before touchdown the behaviour of the droplet is the same in all three cases,
which may therefore be analysed together, but after touchdown the behaviour is different,
and it is then convenient to consider the three cases separately.

In the special case n = 2 the droplet has completely evaporated at t = ttouchdown, and
so tlifetime = ttouchdown. However, in the general case n /= 2 the droplet has not completely
evaporated at t = ttouchdown, and the nature of its subsequent evolution depends on whether
0 < n < 2 or n > 2. When 0 < n < 2 we assume that, as sketched in figure 1(b–d),
the contact line de-pins from the lip of the well, and thereafter the contact line recedes
(i.e. moves inwards towards the centre of the well) with decreasing radius R = R(t) until
R(tlifetime) = 0, at which time the droplet has completely evaporated. On the other hand,
when n > 2 we assume that, as sketched in figure 1( f,g), a new inner contact line appears
at the centre of the well (i.e. at the centre of the droplet, which then becomes annular),
and thereafter the inner contact line recedes (i.e. moves outwards towards the lip of the
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well, where the outer contact line remains pinned) with increasing radius R = R(t) until
R(tlifetime) = R0, at which time the droplet has completely evaporated.

In the next two sections we analyse the evolution of the droplet before and after
touchdown, respectively.

3. Evolution before touchdown, i.e. for 0 ≤ t ≤ ttouchdown

Before touchdown, i.e. for 0 ≤ t ≤ ttouchdown, the contact line is pinned at the lip of the
well, and so the free-surface profile given by (2.3) must satisfy h(R0, t) = 0; in addition, h
must be finite at r = 0, and is therefore of the familiar paraboloidal form

h = hm

(
1 − r2

R2
0

)
, hm = θR0

2
, (3.1a,b)

where hm = hm(t) = h(0, t) is the height of the free surface at the centre of the well, and
θ = θ(t) � 1 is the (small) angle that the free surface at the lip of the well makes with
the plane z = 0, i.e. θ = −∂h/∂r at r = R0. Note that, unlike for a droplet on a planar
substrate for which both hm and θ must be non-negative, for a droplet in a well they may
be positive, zero or negative. The volume V = V(t) of the droplet is related to Vwell, R0,
H0, n and θ by

V = Vwell + πθR3
0

4
= πnH0R2

0
2 + n

+ πθR3
0

4
. (3.2)

According to the well-known quasi-static diffusion-limited model of the evaporation of a
droplet (see, for example, Picknett & Bexon 1977; Deegan et al. 1997; Hu & Larson 2002;
Popov 2005; Dunn et al. 2009; Wray, Duffy & Wilson 2020), the (static) concentration
c = c(r, z) of vapour in the atmosphere satisfies

∇2c = 0 in z > 0, (3.3)

with

c → c∞ as r2 + z2 → ∞, (3.4)

c = csat on z = 0 for 0 ≤ r ≤ R0, (3.5)

∂c
∂z

= 0 on z = 0 for r > R0, (3.6)

where csat is the constant saturation concentration and c∞ = RHcsat is the constant
ambient concentration, where RH (0 ≤ RH ≤ 1) is the relative humidity of the vapour
in the atmosphere. The local evaporative flux J = J(r) from the free surface of the droplet
is given by

J = −D
∂c
∂z

on z = 0 for 0 ≤ r ≤ R0, (3.7)

where D is the constant diffusion coefficient of vapour in the atmosphere, and the volume
V = V(t) evolves according to the global mass-conservation condition

ρ
dV
dt

= −2π

∫ R0

0
J r dr. (3.8)

Note that, in general, (3.5) and (3.7) apply on the free surface z = h, but for a thin droplet
such as that considered in the present work they can be transferred to the plane z = 0 by
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Evaporation of a droplet in a well

Taylor expanding about z = 0. We denote the initial values of θ , hm and V by θ0, hm0 and
V0, respectively, so that

θ = θ0, hm = hm0 = θ0R0

2
, V = V0 = πnH0R2

0
2 + n

+ πθ0R3
0

4
at t = 0. (3.9)

Note that for 0 ≤ t ≤ ttouchdown the concentration c and hence the local flux J are
independent of t, whereas for ttouchdown < t ≤ tlifetime both of them depend on t via their
dependence on R = R(t).

The natural time scale for the evaporation of a thin droplet is ρθ0R2
0/[D(csat − c∞)]

(see, for example, Dunn et al. 2008; Schofield et al. 2018), and so we non-dimensionalise
and scale the variables according to

r = R0r∗, z = θ0R0z∗, h = θ0R0h∗, hm = θ0R0h∗
m, t = ρθ0R2

0
D(csat − c∞)

t∗,

θ = θ0θ
∗, R = R0R∗, H = θ0R0H∗, H0 = θ0R0H∗

0 , V = θ0R3
0V∗,

c = c∞ + (csat − c∞)c∗, J = D(csat − c∞)

R0
J∗

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.10)

for the droplet, and similarly for the atmosphere except that z = R0ẑ. With the stars and
the hat immediately dropped for clarity, (3.1a,b) and (3.2) give

h = hm

(
1 − r2

)
, hm = θ

2
, V = πnH0

2 + n
+ πθ

4
, (3.11a–c)

Laplace’s equation (3.3) is unchanged, and (3.4)–(3.9) become

c → 0 as r2 + z2 → ∞, (3.12)

c = 1 on z = 0 for 0 ≤ r ≤ 1, (3.13)

∂c
∂z

= 0 on z = 0 for r > 1, (3.14)

J = −∂c
∂z

on z = 0 for 0 ≤ r ≤ 1, (3.15)

dV
dt

= −2π

∫ 1

0
J r dr, (3.16)

θ = 1, hm = 1
2
, V = πnH0

2 + n
+ π

4
at t = 0, (3.17)

respectively. The solution for the concentration c may be written in the form (see, for
example, Fabrikant 1995)

c = 2
π

sin−1 2
[(1 + r)2 + z2]1/2 + [(1 − r)2 + z2]1/2 , (3.18)

which, using (3.15), leads to the solution for the local flux J, namely

J = 2
π(1 − r2)1/2 , (3.19)

which exhibits the familiar (integrable) square-root singularity in J at the contact line
r = 1 even when the free surface is below the plane z = 0.
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Substituting the expression for V given by (3.11c) and the expression for J given by
(3.19) into (3.16) yields

dV
dt

= π

4
dθ

dt
= −4, (3.20)

and so the evolution of the droplet before touchdown is given by

h = hm(1 − r2), θ = 1 − 16t
π

, hm = 1
2

− 8t
π

, V = πnH0

2 + n
+ π

4
− 4t. (3.21a–d)

The free surface is instantaneously flat (i.e. θ = 0, hm = 0 and V = Vwell) at some time
t = tflat given by

tflat = π

16
	 0.1963. (3.22)

As well as being of some interest in its own right, the occurrence of a flat free surface is
relatively easy to observe experimentally.

When 0 < n < 2 touchdown occurs when θ = −H′(1) = −nH0, where a dash denotes
differentiation with respect to argument, showing that

t = ttouchdown = π(1 + nH0)

16
, hm = −nH0

2
, V = πn(2 − n)H0

4(2 + n)
(3.23a–c)

at touchdown. As we have already seen, in the special case n = 2 touchdown occurs
everywhere simultaneously within the well, and so tlifetime = ttouchdown = π(1 + 2H0)/16.
When n > 2 touchdown occurs when hm = −H0, showing that

t = ttouchdown = π(1 + 2H0)

16
, θ = −2H0, V = π(n − 2)H0

2(n + 2)
(3.24a–c)

at touchdown. Setting either H0 = 0 or n = 0 in (3.23a) or H0 = 0 in (3.24a) gives
tlifetime = ttouchdown = tflat = π/16, recovering the familiar expression for the lifetime of
a pinned droplet on a planar substrate (see, for example, Stauber et al. 2014, 2015).

4. Evolution after touchdown, i.e. for ttouchdown < t ≤ tlifetime

4.1. The case 0 < n < 2
When 0 < n < 2 the free surface touches down at the lip of the well located at
r = 1, z = 0 at t = ttouchdown, and after touchdown, i.e. for ttouchdown < t ≤ tlifetime, the
non-annular droplet has a receding circular contact line of radius R = R(t) which satisfies
R(ttouchdown) = 1 and R(tlifetime) = 0. We must specify a condition in addition to h = H at
the moving contact line. Since the (paraboloidal) free surface (3.21a) for 0 ≤ t ≤ ttouchdown
touches down with zero contact angle at r = 1, we make the natural modelling assumption
that the contact angle at the receding contact line remains at the value zero throughout the
subsequent evolution. Thus we have the boundary conditions

h = H = −H0(1 − Rn),
∂h
∂r

= H′ = nH0Rn−1 at r = R, (4.1)

where again a dash denotes differentiation with respect to argument. The solution (2.3) for
h satisfying (4.1) with h finite at r = 0 takes the form

h = H(R) − nH0Rn−2

2

(
R2 − r2

)
, (4.2)
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Evaporation of a droplet in a well

or, equivalently,

h = hm + nH0Rn−2r2

2
, where hm = −H0 + (2 − n)H0Rn

2
, (4.3)

for 0 ≤ r ≤ R, and V is given by

V = πn(2 − n)H0R2+n

4(2 + n)
. (4.4)

The (now quasi-static) concentration c = c(r, z, t) of vapour in the atmosphere still
satisfies Laplace’s equation (3.3) and the boundary condition (3.12), but (3.13)–(3.17) must
be replaced with

c = 1 on z = 0 for 0 ≤ r ≤ R, (4.5)

∂c
∂z

= 0 on z = 0 for r > R, (4.6)

J = −∂c
∂z

on z = 0 for 0 ≤ r ≤ R, (4.7)

dV
dt

= −2π

∫ R

0
J r dr, (4.8)

R = 1, V = πn(2 − n)H0

4(2 + n)
at t = ttouchdown, (4.9)

respectively, where J = J(r, t) is again the local evaporative flux. In addition, we have

R = 0, V = 0 at t = tlifetime. (4.10)

As in § 3, for a thin droplet (4.5) and (4.7) are applied on z = 0 rather than on z = h, and
similarly for a shallow well (4.6) for R < r ≤ 1 is also applied on z = 0 rather than on
z = H. The solution for the concentration c of the problem defined by (3.3), (3.12), (4.5)
and (4.6) is analogous to (3.18) and is given by

c = 2
π

sin−1 2R
[(R + r)2 + z2]1/2 + [(R − r)2 + z2]1/2 , (4.11)

which, using (4.7), leads to the solution for the local flux J analogous to (3.19), namely

J = 2
π(R2 − r2)1/2 . (4.12)

Substituting (4.4) and (4.12) into (4.8) yields

Rn dR
dt

= − 16
πn(2 − n)H0

, (4.13)

leading to an explicit solution for R after touchdown, namely

R =
[

1
n(2 − n)H0

(
1 + n + 3nH0 − 16(1 + n)t

π

)]1/(1+n)

, (4.14)

with h given by (4.2) and V given by (4.4), i.e.

V = π

4(2 + n) [n(2 − n)H0]1/(1+n)

(
1 + n + 3nH0 − 16(1 + n)t

π

)(2+n)/(1+n)

. (4.15)

Figure 2 shows the evolution of the free-surface profile h for n = 1 and n = 2 with
H0 = 1. Figure 3 shows plots of R and V as functions of t for a range of values of n,
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Figure 2. Evolution of the free-surface profile h given by (3.21a) for 0 ≤ t ≤ ttouchdown and by (4.2) for
ttouchdown < t ≤ tlifetime for (a) a conical well with n = 1 and H0 = 1, and (b) a paraboloidal well with n = 2
and H0 = 1. In (a) the curves are drawn at intervals of ttouchdown/16 = π/128 	 0.0245, and the lifetime is
tlifetime = 5π/32 	 0.4909, while in (b) the curves are drawn at intervals of ttouchdown/15 = π/80 	 0.0393,
and the lifetime is tlifetime = ttouchdown = 3π/16 	 0.5890.
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Figure 3. Plots of (a) the radius R of the receding contact line given by (4.14), and (b) the volume V of
the droplet given by (3.21d) for 0 ≤ t ≤ ttouchdown and by (4.15) for ttouchdown < t ≤ tlifetime as functions of t for
n = 0, 1/10, 1/5, . . . , 2 in the case H0 = 1. The vertical dashed lines in (a) correspond to the limits n → 0+ and
n → 2−, and the dots in (b) correspond to touchdown (at the lip of the well) at t = ttouchdown = π(1 + nH0)/16.

again with H0 = 1. Note that dR/dt → ∞ and (although not very easy to see in figure 3b)
dV/dt → 0+ in the limit t → t−lifetime.

The lifetime of the droplet, tlifetime, which corresponds to R = 0 and V = 0, is given by

tlifetime = π(1 + n + 3nH0)

16(1 + n)
, (4.16)

which is linear in H0. Figure 4 includes a plot of tlifetime given by (4.16) as a function
of n for 0 ≤ n ≤ 2 (i.e. to the left of the dots) for a range of values of H0. For a given
value of H0, the shortest lifetime is π/16, corresponding to n = 0, and the longest lifetime
is π(1 + 2H0)/16, corresponding to n = 2; also the longest life after touchdown (i.e. the
largest value of tlifetime − ttouchdown) is (2 − √

3)πH0/8 	 0.1052H0, corresponding to a
well with n = √

3 − 1 	 0.7321.

4.2. The case n > 2
When n > 2 the free surface touches down at the centre of the well located at r = 0,
z = −H0 at t = ttouchdown, and after touchdown, i.e. for ttouchdown < t ≤ tlifetime, the annular
droplet has a pinned circular outer contact line r = 1 and a receding circular inner contact
line of radius R = R(t) which satisfies R(ttouchdown) = 0 and R(tlifetime) = 1. We must
again specify a condition in addition to h = H at the moving contact line. Since the
(paraboloidal) free surface (3.21a) for 0 ≤ t ≤ ttouchdown touches down with zero contact
angle at r = 0, we again make the natural modelling assumption that the contact angle at
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Figure 4. Plot of the lifetime of the droplet, tlifetime, given by (4.16) for 0 ≤ n ≤ 2 and by (4.28) for n > 2, as a
function of n for H0 = 0, 1/10, 1/5, . . . , 1. The dots denote the values tlifetime = ttouchdown = π(1 + 2H0)/16 for
n = 2. The curves approach the asymptotic values tlifetime = π[1 + 2(1 + 8α∞)H0]/16 	 0.1963 + 0.8228H0
in the limit n → ∞.

the receding contact line remains at the value zero throughout the subsequent evolution,
and so the boundary conditions (4.1) again hold. The solution (2.3) for h satisfying (4.1)
and h = 0 at r = 1 takes the form

h = H0
[(−2R2 + nRn − (n − 2)Rn+2) log r − (1 − Rn + nRn log R)(1 − r2)

]
1 − R2 + 2R2 log R

(4.17)

for R ≤ r ≤ 1, and V is given by

V = πH0f (R), (4.18)

where we have defined the function f = f (R) by

f = n
[
4 − (n + 2)Rn−2 + (n − 2)Rn+2]

4(n + 2)
−
(
1 − R2)2 [(n − 2)Rn − nRn−2 + 2

]
4
(
1 − R2 + 2R2 log R

) .

(4.19)
It is useful to note that f → (n − 2)/[2(n + 2)] in the limit R → 0+ (in agreement with the
expression for V at touchdown given by (3.24c)), and that f ∼ n2(n − 2)(1 − R)4/36 →
0+ in the limit R → 1−.

The (again quasi-static) concentration c = c(r, z, t) of vapour in the atmosphere still
satisfies Laplace’s equation (3.3) and the boundary condition (3.12), but in this case
(3.13)–(3.17) must be replaced with

c = 1 on z = 0 for R ≤ r ≤ 1, (4.20)

∂c
∂z

= 0 on z = 0 for 0 ≤ r < R and for r > 1, (4.21)

J = −∂c
∂z

on z = 0 for R ≤ r ≤ 1. (4.22)

dV
dt

= −F, where F = 2π

∫ 1

R
J r dr, (4.23)

R = 0, V = π(n − 2)H0

2(n + 2)
at t = ttouchdown, (4.24)

respectively, where J = J(r, t) is again the local evaporative flux, and F = F(R) (which
depends on t via its dependence on R = R(t)) is the total evaporative flux from the droplet.
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In addition, we have
R = 1, V = 0 at t = tlifetime. (4.25)

As in § 4.1, (4.20), (4.22) and (4.21) for 0 ≤ r < R are applied on z = 0.
Perhaps surprisingly, no simple closed-form solution of the problem for c defined by

(3.3), (3.12), (4.20) and (4.21) is available (see § 10.1.1 of Popov, Hess & Willert 2019 for
an overview of previous work on this problem in the context of contact mechanics). The
problem was reformulated as equivalent integral equations by, for example, Cooke (1963),
Williams (1963) and Fabrikant (1993), and the last-mentioned also gave an iteration-based
infinite-series solution to their formulation. Since our primary concern is with the total flux
F, we obtained this numerically in two independent ways, namely by solving the integral
equation of Cooke (1963) by means of Chebyshev–Gauss quadrature with typically 200
nodes, and by solving Laplace’s equation for c using the finite-element package COMSOL
Multiphysics 5.3a (COMSOL Inc.), from which J and hence F were obtained; the values
of F obtained using these two different approaches were found to be in good agreement.

Figure 5 shows an example of contours of c in the r–z plane for an annular droplet
obtained using COMSOL Multiphysics, figure 6 shows a plot of the local flux J from an
annular droplet as a function of r (R ≤ r ≤ 1) for a range of values of R, as well as that
from a non-annular droplet given by (3.19), and figure 7 shows the total flux F from an
annular droplet as a function of R (0 ≤ R ≤ 1). Intriguingly, as figure 6 shows, the local
flux J from a non-annular droplet is smaller than that from an annular droplet with the
same outer radius, though, of course, the former is effective over a larger area than the
latter (i.e. over 0 ≤ r ≤ 1 rather than R ≤ r ≤ 1), and so leads to a larger value of the total
flux F. Figure 6 also shows that J → ∞ as r → R+ and r → 1−, and a local analysis
shows that J has square-root singularities at both contact lines (i.e. the same singularity
as a non-annular droplet). This is true even in the limit R → 0+, showing that the local
flux J due to an annular droplet with a vanishingly small hole at its centre is different from
that due to a non-annular droplet (for which J is well behaved at r = 0); the difference is,
however, confined to a small region near to r = R → 0+ whose contribution to the total
flux F is small, leading to F → 4− as R → 0+, in agreement with the value F = 4 in
the case of a non-annular droplet which appears in (3.20). Note that, as figure 6 shows,
J is asymmetric about the midpoint (R + 1)/2 between the contact lines, and, as figure 7
shows, F → 0+ as R → 1−, i.e. as the width of the annulus approaches zero.

As figure 7 shows, the total flux F is nearly independent of R until R gets close to 1,
showing that the increase of the perimeter 2πR of the receding inner contact line (where J
is singular), which tends to increase the total flux, almost compensates for the decrease of
the surface area π(1 − R2) of the annular droplet, which tends to decrease the total flux,
for most of the lifetime of the droplet. It is only near to the complete evaporation of the
droplet, i.e. when R gets close to 1, that F rapidly decreases to zero.

With the total flux F now known, (4.18) and (4.23) give

πH0f ′(R)
dR
dt

= −F(R), (4.26)

where again a dash denotes differentiation with respect to argument, leading to an implicit
solution for R after touchdown, namely

t = ttouchdown − πH0

∫ R

0

f ′(R̂)

F(R̂)
dR̂, (4.27)

with h given by (4.17) and V given by (4.18).
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Figure 5. Plot of contours of the concentration c in the r–z plane for an annular droplet in the case R = 1/2.
The contours are drawn at intervals of 0.04.
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Figure 6. Plot of the local flux J from an annular droplet as a function of r (R ≤ r ≤ 1) in the cases R = 0.2,
0.4, 0.6 and 0.8, as well as that from a non-annular droplet given by (3.19).

Figure 8(a) shows the evolution of the free-surface profile h for n = 9 with H0 = 1.
Figure 9 shows plots of R and V as functions of t for a range of values of n, again with
H0 = 1. The nearly linear dependence of V on t for ttouchdown < t ≤ tlifetime evident in
figure 9(b) is a consequence of the fact that the total flux F is nearly independent of R
until R gets close to 1 discussed above. Note that dR/dt → ∞ and (although impossible
to see in figure 9b) dV/dt → 0+ in the limit t → t−lifetime (i.e. the same behaviour as when
0 < n < 2).

The lifetime of the droplet, which corresponds to R = 1 and V = 0, is given by

tlifetime = ttouchdown + παH0 = π

16
[1 + 2 (1 + 8α) H0] , (4.28)

927 A43-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.772


H.-M. D’Ambrosio and others

0.2
0

1

2

3

4

F

0.4 0.6 0.8 1.0

R

Figure 7. Plot of the total flux F from an annular droplet as a function of R (0 ≤ R ≤ 1).
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Figure 8. Evolution of the free-surface profile h given by (3.21a) for 0 ≤ t ≤ ttouchdown and by (4.17) for
ttouchdown < t ≤ tlifetime for (a) a well with n = 9 and H0 = 1, and (b) a cylindrical well (i.e. in the limit
n → ∞) with H0 = 1. In (a) the curves are drawn at intervals of ttouchdown/10 	 0.0589, and the lifetime
is tlifetime 	 0.8454, while in (b) the curves are drawn at intervals of ttouchdown/10 	 0.0589, and the lifetime is
tlifetime 	 1.0193.
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Figure 9. Plots of (a) the radius R of the receding inner contact line given by (4.27), and (b) the volume V of
the droplet given by (3.21d) for 0 ≤ t ≤ ttouchdown and by (4.18) for ttouchdown < t ≤ tlifetime as functions of t for
n = 2, 3, 4, . . . , 10, 20, 40, 60, 80 and 100, and in the limit n → ∞, in the case H0 = 1. The vertical dashed
line in (a) corresponds to the limit n → 2+, and the dots in (b) correspond to touchdown (at the centre of the
well) at t = ttouchdown = π(1 + 2H0)/16 	 0.5890.

where the function α = α(n) (≥ 0) is given by

α = −
∫ 1

0

f ′(R)

F(R)
dR, (4.29)

927 A43-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.772


Evaporation of a droplet in a well

10

0.02

0

0.04

0.06

0.08

0.10

0.12

0.14

20 30 40 50

n

α

Figure 10. Plot of α given by (4.29) as a function of n for n ≥ 2. The dashed line shows the asymptotic value
α = α∞ 	 0.1369 in the limit n → ∞.

which varies monotonically from α = 0 when n = 2 to α = α∞ 	 0.1369 in the limit
n → ∞. Note that, like the corresponding expression for 0 < n < 2 given by (4.16), tlifetime
given by (4.28) is linear in H0. Figure 10 shows a plot of α as a function of n for n ≥ 2,
and figure 4 includes a plot of tlifetime given by (4.28) as a function of n for n > 2 (i.e. to
the right of the dots) for a range of values of H0.

4.3. The limit n → ∞
In the limit n → ∞, corresponding to a cylindrical well with vertical side r = 1 and flat
bottom z = −H0, after touchdown the annular droplet again has a pinned circular outer
contact line r = 1 and a receding circular inner contact line r = R. The solution for h
given by (4.17) reduces to

h = −H0
(
1 − r2 + 2R2 log r

)
1 − R2 + 2R2 log R

(4.30)

for R ≤ r ≤ 1, and V is again given by (4.18), where the function f reduces to

f = 1 − R4 + 4R2 log R
2
(
1 − R2 + 2R2 log R

) . (4.31)

The evolution of the droplet in this limit is as described in § 4.2, with, in particular, the
lifetime of the droplet given by (4.28) with α = α∞, namely

tlifetime = π

16
[1 + 2(1 + 8α∞)H0] 	 0.1963 + 0.8228H0. (4.32)

Figure 8(b) shows the evolution of the free-surface profile h in the limit n → ∞ with
H0 = 1.

4.4. The critical times tflat, ttouchdown and tlifetime

Figure 11 shows a plot of the critical times tflat, given by (3.22), ttouchdown, given by
(3.23a) and (3.24a), and tlifetime, given by (4.16) and (4.28), as functions of n in the
case H0 = 1. In particular, figure 11 illustrates that tflat is independent of n, ttouchdown
increases linearly with n for 0 ≤ n ≤ 2 but is independent of n for n > 2, tlifetime increases
nonlinearly with n, tlifetime = ttouchdown = tflat = π/16 when n = 0, tlifetime = ttouchdown =
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Figure 11. Plot of the critical times tflat, given by (3.22) (dotted line), ttouchdown, given by (3.23a) for 0 ≤ n ≤ 2
and by (3.24a) for n > 2 (dash-dotted line), and tlifetime, given by (4.16) for 0 ≤ n ≤ 2 and by (4.28) for n > 2
(solid line), as functions of n in the case H0 = 1. The dashed line shows the asymptotic value tlifetime = π[1 +
2(1 + 8α∞)H0]/16 	 1.0191 in the limit n → ∞.

π(1 + 2H0)/16 when n = 2, and tlifetime → π[1 + 2(1 + 8α∞)H0]/16 in the limit
n → ∞.

5. Experimental procedure

The experimental procedure employed involved depositing single droplets of the volatile
solvent methyl benzoate into shallow axisymmetric cylindrical wells and observing their
behaviour as they evaporated. Methyl benzoate is sufficiently volatile that the experiments
could be conducted within a reasonable time frame, and its physical properties are
consistent with the assumptions of the mathematical model. A schematic diagram of the
experimental set-up used is shown in figure 12.

The experiments were carried out under ambient conditions with a relative humidity
of methyl benzoate vapour of RH = 0 (and a relative humidity of water vapour of RH =
0.34 ± 0.10). The atmospheric pressure was uncontrolled and the ambient temperature was
controlled only to within 1 ◦C of 22 ◦C. The temperature of the substrate was accurately
maintained at 22 ◦C by means of a proportional-integral-derivative Peltier controller.

The experiments were performed using three shallow wells with radii 29 μm,
50 μm and 75 μm and depths 2.38 μm, 1.87 μm and 2.39 μm, respectively. The wells
were fabricated in spin-cast films of photo-resist deposited onto glass substrates coated
with indium tin oxide (ITO). Further details of the fabrication of the wells are given in
Appendix A. Because of the nature of the manufacturing process, the sides of the wells
are not perfectly vertical, but, given their small aspect ratios, it is reasonable to regard the
wells as being cylindrical for the purpose of comparison with the theoretical predictions
of the mathematical model described in §§ 2–4.

Picolitre droplets of methyl benzoate were ejected into the wells from a MicroFab
print head (MJABP-01, Microfab Technologies Inc.) with a circular orifice of diameter
50 μm under a bipolar waveform generated by a MicroFab controller (JetDrive III
CT-M3-02, Microfab Technologies Inc.). The droplet was illuminated from underneath
by a cold LED at a wavelength of 470 nm (M470L3, Thorlabs Inc.). The reflected light
from the sample was collected by a 50× objective lens (TU Plan ELWD, Nikon) with an
image resolution of 0.4 μm pixel−1, and captured through a bandpass filter (bandwidth
10 ± 2 nm, Thorlabs Inc.) with a high-speed camera (FASTCAM SA4, Photron).
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Figure 12. Schematic diagram of the experimental set-up used.

The experiments were performed six times for each well to verify the reproducibility of
the results.

6. Experimental results

Thin-film interferometry was used to measure the evolution of the free surface of the
droplet during its evaporation. Figure 13 shows a typical interferometric pattern observed
during the present experiments. In particular, the high degree of axisymmetry shown
in figure 13 was found in all of the experiments. Further details of the image-analysis
procedure used are given in Appendix B. The initial time, t = 0, was arbitrarily chosen to
be a time at which well-resolved interference fringes were observed and the contact line of
the droplet coincided with the lip of the well (taken to be at the boundary of the outermost
bright fringe, as indicated by the circle in figure 13), i.e. no fluid overflow.

Table 1 shows experimental values of the radius R0, the depth H0 and the aspect ratio
ε = H0/R0 of the three wells investigated, together with values of the initial angle θ0 and
the initial evaporation rate dV/dt|t=0, and the critical times tflat, ttouchdown and tlifetime,
for a representative droplet in each well. Note that since the experimental values of the
critical times depend on the arbitrarily chosen initial time, t = 0, as well as on the values
of the ambient temperature and the atmospheric pressure, we give representative (rather
than average) results for each well. We will discuss a parameter-free quantity involving the
relative values of the critical times in § 7.

Figure 14 shows experimental results for the free-surface profile h of a droplet before
touchdown and paraboloidal fits to these values as functions of r for all three wells at
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10 µm

Figure 13. A typical interferometric pattern observed during the present experiments. The circle indicates the
lip of the well, the cross the centre of the well, and the line the cross-section along which the fringes are
analysed.

R0 H0 ε = H0

R0
θ0

dV
dt

∣∣∣∣
t=0

tflat ttouchdown tlifetime

(μm) (μm) (rad) (pl s−1) (s) (s) (s)

29 2.38 0.083 5.59 × 10−3 −1.58 0.060 1.888 3.976
50 1.87 0.037 6.73 × 10−3 −2.86 0.210 2.838 5.438
75 2.39 0.032 5.78 × 10−3 −4.38 0.408 5.056 10.392

Table 1. Experimental values of the radius R0, the depth H0 and the aspect ratio ε = H0/R0 of the three wells
investigated, together with values of the initial angle θ0 and the initial evaporation rate dV/dt|t=0, and the
critical times tflat, ttouchdown and tlifetime, for a representative droplet in each well.

equally spaced times. All of the paraboloidal fits intersect to within 	r = ±1 μm and
	h = ±0.05 μm of each other, indicating that the contact line of the droplet remains
pinned at the lip of the well before touchdown, and the position of the average intersection
point was used to determine the radius R0 and the depth H0 of each well. The initial angle
θ0 of the droplet was calculated from the average of the derivatives of the paraboloidal fit
to the initial free-surface profile at the lip of the well.

Figure 15 shows experimental results for the free-surface profile h of a droplet as
functions of t for a range of values of r for the 50 μm well. The time at which the free
surface is instantaneously flat, tflat, was calculated from the average intersection point of
the curves shown in figure 15. The uncertainty in the measurement of tflat is ±0.006 s.

Figure 16 shows experimental results for the normalised height of the free surface
at the centre of the well, hm/H0, and linear fits to these values as functions of t for
all three wells. For each well, the time at which the free surface touches down at the
centre of the well, ttouchdown, was calculated from the intersection point of the linear
fit shown in figure 16 with the bottom of the well. However, note that whereas for the
29 μm well the behaviour of hm is nearly linear until very close to touchdown, and hence
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Figure 14. Experimental results for the free-surface profile h of a droplet before touchdown (symbols) and
paraboloidal fits to these values (solid black lines) as functions of r for wells of radius 29 μm at times
t = 0, 0.18, . . . , 1.62 s, 50 μm at times t = 0, 0.26, . . . , 2.34 s and 75 μm at times t = 0, 0.56, . . . , 4.48 s. The
experimental values are denoted by circles, diamonds and squares for the 29 μm, 50 μm and 75 μm wells,
respectively. The dashed lines correspond to the radius R0, the depth H0, and the position of the dry substrate
for each well.
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Figure 15. Experimental results for the free-surface profile h of a droplet as functions of t for r = 0, 4.29, 8.57,
12.86, 17.68, 20.90, 26.79, 30.01, 32.15, 34.83 and 38.04 for the 50 μm well. The arrow indicates the direction
of increasing r. The dashed line corresponds to the depth H0 = 1.87 μm of the well.
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–1.0

–0.5

2 4 6 8 10
0 t (s)

hm/H0

Figure 16. Experimental results for the normalised height of the free surface at the centre of the well, hm/H0,
(symbols) and linear fits to these values (solid black lines) as functions of t for wells of radius 29 μm at times
t = 0, 0.12, . . . , 3.96 s, 50 μm at times t = 0, 0.12, . . . , 5.40 s and 75 μm at times t = 0, 0.16, . . . , 10.24 s.
The experimental values are denoted by circles, diamonds and squares for the 29 μm, 50 μm and 75 μm wells,
respectively. The dashed line corresponds to the normalised depth of the wells.

V/V0

0.2

2 4 6 8 10

0.4

0.6

0.8

1.0

0

t (s)

Figure 17. Experimental results for the normalised volume of a droplet, V/V0, (symbols) and linear fits to
these values (solid black lines) as functions of t for wells of radius 29 μm at times t = 0, 0.20, . . . , 2.00 s,
50 μm at times t = 0, 0.16, . . . , 3.84 s and 75 μm at times t = 0, 0.32, . . . , 6.40 s. The experimental values are
denoted by circles, diamonds and squares for the 29 μm, 50 μm and 75 μm wells, respectively. The symbols on
the t-axis correspond to t = tlifetime.

the value of ttouchdown calculated from the linear fit will be very close to the true value,
for the 50 μm and 75 μm wells the behaviour of hm shows a pronounced slowing down as
touchdown is approached, and so the values of ttouchdown calculated from the linear fits will
be underestimates of the true values.

After touchdown, the interference fringes become increasingly closely spaced, making
it increasingly difficult to resolve the free-surface profile near to the lip of the well. The
resulting lack of experimental results for the free surface means that we cannot accurately
determine it for very long after touchdown, and, in particular, that we cannot be certain
that the contact line remains pinned at the lip of the well after touchdown (as assumed in
the mathematical model). However, given the good agreement between the experimental
results and the theoretical predictions of the mathematical model which will be described
in § 7, we hypothesise that the effect of any de-pinning that does occur is minimal.

Figure 17 shows experimental results for the normalised volume of a droplet, V/V0,
obtained by calculating the volumes of the paraboloidal fits to the free-surface profiles,
and linear fits to these values as functions of t for all three wells. Note that the difficulty
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Figure 18. Experimental results for the normalised radius of the inner contact line, R/R0, as functions of t
for wells of radius 29 μm at times t = 2.32, 2.38, . . . , 3.76 s, 50 μm at times t = 3.38, 3.46, . . . , 5.30 s and
75 μm at times t = 6.24, 6.40, . . . , 10.24 s. The experimental values are denoted by circles, diamonds and
squares for the 29 μm, 50 μm and 75 μm wells, respectively. The symbols on the t-axis correspond to t =
ttouchdown, and those at R/R0 = 1 to t = tlifetime.

of resolving the free-surface profile near to the lip of the well after touchdown means that
the experimental values shown in figure 17 stop shortly after t = ttouchdown for each well.
However, figure 17 does show that the behaviour of V is nearly linear until shortly after
touchdown.

Despite the interference fringes becoming increasingly closely spaced after touchdown,
we were still able to measure accurately the radius of the inner contact line. This was
accomplished by applying an appropriate threshold value to the intensity of the images of
the droplets captured during the experiments. However, it should be noted that when the
slope of the free surface is very small, this method is sensitive to the value of the threshold
used and tends to overestimate the true value of R. As previously noted, further details of
the image-analysis procedure used are given in Appendix B. The receding inner contact
line was occasionally observed to pin temporarily on a defect in the bottom of the well,
but this distorted the contact line only in the immediate vicinity of the defect, and only
for a time that was short compared with the time scale for the evaporation of the droplet.
Figure 18 shows experimental values for the normalised radius of the inner contact line of
a droplet, R/R0, as functions of t for all three wells.

The lifetime of the droplet, tlifetime, was determined visually from the images of the
droplet captured during the experiments as the time at which no further change is observed
in the contrast at the contact line. The uncertainty in the measurement of tlifetime is ±0.02 s.

7. Comparison between theory and experiment

We now present comparisons between the theoretical predictions of the mathematical
model described in §§ 2–4 in the case of a cylindrical well (i.e. in the limit n → ∞)
and the experimental results presented in § 6. Specifically, we compare the evolution of
the free-surface profile h, the volume of the droplet V and the radius of the inner contact
line R, as well as the critical times tflat, ttouchdown and tlifetime. The theoretical predictions
were calculated using the parameter values ρ = 1.087 × 103 kg m−3, csat = 2.251 ×
10−3 kg m−3 and D = 6.899 × 10−6 m2 s−1 for methyl benzoate at the temperature 22 ◦C.
The values of ρ and vapour pressure pv , the latter of which was used to obtain csat, were
calculated from Perry, Green & Maloney (1997) (tables 2-30 and 2-6, respectively), and
the value of the diffusion coefficient D was calculated from Fuller, Schettler & Giddings
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Figure 19. Comparison between the experimental results (symbols) and the theoretical predictions (solid black
lines) for the free-surface profile h of a droplet as functions of r for wells of radius (a) 29 μm at times t =
0, 0.18, . . . , 2.70 s, (b) 50 μm at times t = 0, 0.26, . . . , 4.16 s and (c) 75 μm at times t = 0, 0.56, . . . , 7.84 s.
The experimental values are denoted by circles, diamonds and squares for the 29 μm, 50 μm and 75 μm wells,
respectively. The dashed lines correspond to the radius R0, the depth H0, and the position of the dry substrate
for each well.

(1966) (table 1). Note that there are no free parameters in the mathematical model, and no
‘tuning’ of the parameter values has been performed in order to improve the agreement
between the experimental results and the theoretical predictions.

As described in § 2, the mathematical model is based on the assumptions that both the
Bond number Bo and the capillary number Ca are small (so that the effect of gravity
is negligible and the free surface of the droplet evolves quasi-statically, respectively).
Taking the radial velocity scale to be U = D(csat − c∞)/(ρθ0R0), and using the values
μ = 1.851 × 10−3 Pa s and γ = 3.720 × 10−2 N m−1 for methyl benzoate at 25 ◦C given
by Sheu & Tu (2005), confirms that the values of Bo and Ca are indeed small for all of
the experimental results presented in § 6. Specifically, the values of Bo are approximately
10−4, 10−3 and 10−3 for the 29 μm, 50 μm and 75 μm wells, respectively, and the values
of Ca are approximately 10−2 for all three wells.

Figure 19 shows a comparison between the experimental results and the theoretical
predictions for the free-surface profile h of a droplet as functions of r for all three wells,
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Figure 20. Comparison between the experimental results (symbols) shown in figure 17 and the theoretical
predictions (solid black lines) for the normalised volume of a droplet, V/V0, as functions of t for all three wells.
The experimental values are denoted by circles, diamonds and squares for the 29 μm, 50 μm and 75 μm wells,
respectively.

2
0

0.2

0.4

0.6

0.8

1.0

4 6 8 10

t (s)

R/R0

Figure 21. Comparison between the experimental results (symbols) shown in figure 18 and the theoretical
predictions (solid black lines) for the normalised radius of the inner contact line, R/R0, as functions of t for all
three wells. The experimental values are denoted by circles, diamonds and squares for the 29 μm, 50 μm and
75 μm wells, respectively.

while figures 20 and 21 show comparisons between the experimental results and the
theoretical predictions for the normalised volume of a droplet, V/V0, and the normalised
radius of the inner contact line, R/R0, respectively, as functions of t for all three wells.
In particular, figures 19–21 show that, while the theoretical predictions are generally
in good agreement with the experimental results (especially for the 50 μm well), the
theoretical predictions lag slightly behind the experimental results for the 29 μm and
75 μm wells. This slight lag is due to the sensitivity of the theoretical predictions to the
precise values of csat and D used, as well as to the calculated values of θ0. In particular,
as already mentioned, the ambient temperature was controlled only to within 1 ◦C and
the value of csat is rather sensitive to the precise value of the temperature at which it is
evaluated; specifically, csat changes by 6–8 % for a 1 ◦C change in temperature. Fitting the
value(s) of csat, D and/or θ0 would eliminate the lag between the theoretical predictions and
the experimental results, especially given that the same values of csat and D are currently
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R0 tflat ttouchdown tlifetime T
(μm) (s) (s) (s)

29 Experimental Values 0.060 1.888 3.976 2.142
Theoretical Prediction 0.065 1.962 4.039 2.095

Percentage Error 8 % 3.9 % 1.6 % −2.2 %

50 Experimental Values 0.210 2.838 5.438 1.989
Theoretical Prediction 0.231 2.801 5.615 2.095

Percentage Error 10 % −1.3 % 3.3 % 5.3 %

75 Experimental Values 0.408 5.056 10.392 2.148
Theoretical Prediction 0.447 5.373 10.769 2.095

Percentage Error 10 % 6.3 % 3.6 % −2.5 %

Table 2. Comparison between the experimental values and the theoretical predictions for the critical times
tflat, ttouchdown and tlifetime, and the parameter-free quantity T given by (7.1) for all three wells.

used across all of the experiments, but we deliberately chose not to do this in order to
provide a sterner test for the mathematical model.

In addition, note that the mathematical model assumes that a new inner contact line
appears at the centre of the well at touchdown, and so does not capture the very thin
film left briefly on the bottom of the well in the experiments, which is most visible in
the experimental results for the 75 μm well shown in figure 19(c). However, the good
agreement between the theoretical predictions and the experimental results shown in
figures 19–21 indicates that the presence of this film has very little effect on the overall
evolution of the droplet. At first sight, it might seem surprising that the most noticeable
deviations from the quasi-static free-surface profiles predicted by the mathematical model
occur for the shallowest well (i.e. for the well with the smallest value of ε). However, while,
as already mentioned, the values of Ca are small for all three wells, the capillary number
is inversely proportional to ε3, and so larger values of Ca, and hence more significant
deviations from quasi-static free-surface profiles, are to be expected for wells with smaller
values of ε.

As previously noted in § 6, the experimental values of the critical times depend
on the arbitrarily chosen initial time, t = 0, as well as on the values of the ambient
temperature and the atmospheric pressure. Moreover, as also previously noted, the
theoretical predictions for the critical times are sensitive to the precise values of csat, D
and θ0. In order to remove all of these dependencies, we consider a parameter-free quantity
involving the relative values of the critical times, namely

T = tlifetime − tflat

ttouchdown − tflat
, (7.1)

which, using the theoretical values of the critical times given by (3.22), (3.24a) and (4.32),
takes the same (purely numerical) value, namely T = 1 + 8α∞ 	 2.095, regardless of the
values of the parameters. Table 2 shows a comparison between the experimental values and
the theoretical predictions for tflat, ttouchdown, tlifetime and T for all three wells. Table 2 shows
that the theoretical predictions are in good agreement with the experimental values, with
average absolute errors of approximately 9 %, 3.8 %, 2.8 % and 3.3 % in tflat, ttouchdown,
tlifetime and T , respectively.

The comparisons presented in this section show that, despite the inevitable experimental
errors and uncertainties about the precise values of the parameters, the mathematical
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model captures the evolution of a thin droplet in a shallow cylindrical well rather well.
The agreement is especially good given that, as already mentioned, there are no free
parameters in the mathematical model, and no tuning of the parameter values has been
performed in order to improve the agreement.

8. Comparison with previous experimental results

While the experimental results presented in § 6 provide the most comprehensive test for
the theoretical predictions of the mathematical model, it is also of interest to consider how
well the present model is able to capture experimental results reported by previous authors.
Making these comparisons is, unfortunately, hampered by a lack of complete information
about the experiments.

Rieger et al. (2003) studied the evaporation of ethylene glycol droplets in cylindrical
nanolitre wells of various radii. In particular, they reported the evolution of the free-surface
profile of a droplet before touchdown in a well with radius 100 μm and depth 6.13 μm,
and concluded that it was a quasi-static spherical cap that was pinned at the lip of the
well. Rieger et al. (2003) gave the experimental values tflat = 20 s and ttouchdown = 160 s,
but not the experimental value of tlifetime, for this droplet, and so, unfortunately, we
cannot calculate the experimental value of the parameter-free quantity T given by (7.1).
The authors also did not give the value of the initial angle θ0, but if we calculate it
in essentially the same way as we did in § 6, we obtain θ0 = 0.0144. The value of
the ambient temperature was also not reported, but if we assume that it was 20 ◦C,
then using the parameter values ρ = 1.114 × 103 kg m−3, csat = 2.042 × 10−4 kg m−3

and D = 1.098 × 10−5 m2 s−1 calculated from Perry et al. (1997) (tables 2-30 and 2-6,
respectively) and Fuller et al. (1966) (table 1) in exactly the same way as we did in
§ 7, the theoretical predictions are tflat = 14.05 s and ttouchdown = 133.7 s, which are in
error by 30 % and 16 %, respectively, compared with the experimental values. It should,
however, be noted that, in addition to the uncertainties about the precise values of csat
and D already mentioned, some of this discrepancy may be due to the fact that ethylene
glycol is hygroscopic, and so the droplet will absorb water vapour from the atmosphere,
which will presumably lead to longer critical times than those predicted by the present
mathematical model. Rieger et al. (2003) did not investigate the evolution of the droplet
after touchdown.

Subsequently, Chen et al. (2006) studied the evaporation of water droplets in cylindrical
nanolitre wells of various radii. The experiments were carried out in an atmosphere of
air with relative humidity of water vapour of RH = 0.60 and an ambient temperature of
25 ◦C. Chen et al. (2006) reported quantitative data for the evolution of the radius of the
inner contact line R, but not for the evolution of the free-surface profile h or the volume
of the droplet V . Furthermore, they did not report the values of the initial angle θ0. They
did, however, give the critical times for a droplet in a well with radius 250 μm and depth
65 μm to be tflat = 9 ± 1 s (estimated from their figure 9), ttouchdown = 31 s and tlifetime =
55 s. In the absence of the value of θ0, the only theoretical prediction that can be compared
with these experimental results is that for T for the well with radius 250 μm, for which
we find that the experimental value T = 2.09 ± 0.05 is in very good agreement with the
theoretical value T 	 2.095.

9. Conclusions

Motivated by the industrial manufacture of OLED displays, in the present work we
formulated and analysed a mathematical model for the evolution of a thin droplet in a

927 A43-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.772


H.-M. D’Ambrosio and others

shallow axisymmetric well with profile z = H(r) = −H0(1 − (r/R0)
n) both before and

after touchdown that accounts for the spatially non-uniform evaporation of the fluid,
performed physical experiments using three cylindrical wells with different small aspect
ratios, and validated the mathematical model by comparing the present experimental
results with the corresponding theoretical predictions for a cylindrical well (i.e. in the
limit n → ∞).

The mathematical model describes how as the droplet evaporates its free surface
becomes instantaneously flat at t = tflat and then touches down at t = ttouchdown before the
droplet completely evaporates at t = tlifetime. In the special case n = 2 (i.e. a paraboloidal
well) touchdown occurs everywhere simultaneously within the well, and so tlifetime =
ttouchdown = π(1 + 2H0)/16. However, in the general case n /= 2 the droplet has not
completely evaporated at t = ttouchdown, and the nature of its subsequent evolution depends
on the shape of the well. If the slope of the well at its lip is sufficiently small, specifically
when 0 < n < 2, then touchdown occurs at the lip of the well at t = ttouchdown given by
(3.23a), at which instant the contact line de-pins from the lip of the well, and thereafter
recedes towards the centre of the well, finally reaching it at t = tlifetime given by (4.16).
On the other hand, if the slope of the well at its lip is sufficiently large, specifically when
n > 2, then touchdown occurs at the centre of the well at t = ttouchdown given by (3.24a),
at which instant a new inner contact line appears at the centre of the well, and thereafter
recedes towards the lip of the well (where the outer contact line remains pinned), finally
reaching it at t = tlifetime given by (4.28). In particular, we found that tflat is independent of
H0 and n, ttouchdown increases linearly with H0 and with n for 0 ≤ n ≤ 2 but is independent
of n for n > 2, and tlifetime also increases linearly with H0 but nonlinearly with n.

The physical experiments involved depositing single droplets of methyl benzoate in
three cylindrical wells with different small aspect ratios. Thin-film interferometry was
used to determine the subsequent evolution of the free-surface profile of the fluid in the
well. We found good agreement between the experimental results and the corresponding
theoretical predictions for a cylindrical well. While the present mathematical model does
not capture the very thin film left briefly on the bottom of the well in the experiments, the
good agreement between the theoretical predictions and the experimental results indicates
that the presence of this film has very little effect on the overall evolution of the droplet.

It should, of course, be emphasised that all of the experiments reported in the present
work were in the parameter regime described by the mathematical model, namely thin
droplets in shallow wells (i.e. ε = H0/R0 ∼ θ0 � 1) with negligible gravity (i.e. Bo � 1)
and strong surface tension (i.e. Ca � 1). Experiments outwith this regime can be expected
to reveal additional behaviours not captured by the present model. For example, larger
droplets with Bo = O(1) will no longer have spatially constant mean curvature, while, as
we have already mentioned, the free-surface profiles of thinner droplets and/or droplets of
more volatile fluids with Ca = O(1) will no longer evolve quasi-statically, and capturing
such behaviours will require generalisations of the present model. Nevertheless, the results
of the present work suggest that the present model is an excellent starting point for future
work of this nature. Other interesting extensions of the present work include evaporation
from wells with more complicated axisymmetric or non-axisymmetric profiles, other
modes of evaporation, the final deposit left in the well after a droplet containing suspended
particles has completely evaporated, and the interactions between droplets in neighbouring
wells, with the latter two issues particularly relevant to the industrial manufacture of OLED
displays. Moreover, in industrial applications a variety of additional physical effects which
do not play a significant role in the present experiments, and hence are not included
in the present mathematical model, may be important. For example, in situations in
which significant evaporative cooling occurs, temperature-dependent surface tension (see,
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for example, Hu & Larson 2005; Ristenpart et al. 2007) and/or temperature-dependent
saturation concentration (see, for example, Dunn et al. 2009; Sefiane et al. 2009; Schofield
et al. 2021) effects can be important, while in other situations buoyancy effects within
the droplet (see, for example, Edwards et al. 2018 and Li et al. 2019) and/or within the
atmosphere (see, for example, Shahidzadeh-Bonn et al. 2006; Dunn et al. 2009) may play
an important role.
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Appendix A. Fabrication of the wells

The wells used in the present experiments were fabricated in the Department of
Engineering at Durham University. Polished glass (50 × 50 × 1.1 mm) coated with ITO
(50 nm thickness) was used as the substrate. The ITO-coated glass was cleaned in an
ultrasound bath, using, in sequence, acetone, isopropyl alcohol (IPA) and deionised water.
It was then dried with a nitrogen stream and warmed on a hot plate for 5 min. A negative
photo-resist, SU-8 2002, was spin coated onto the substrate in two steps: a pre-spin at
500 r.p.m. for 10 seconds to spread and cover the entire surface of the ITO-coated glass,
followed by a spin at 3000 r.p.m. for 1 min. After a soft-bake step at 95 ◦C for 1 min on
a hot plate, the substrate was exposed in hard-contact mode to UV light at 140 mJ cm−2

using a photomask (Micro Lithography Services Ltd) which was designed according to the
desired final pattern on the substrate. A post-exposure bake at 95 ◦C for 1 min was used
to cross-link the exposed film selectively. Then the SU-8 was developed with an ethylene
carbonate developer solvent in a 1 min immersion process. Finally, the substrate was rinsed
in IPA and dried with a nitrogen stream. Some samples were subjected to a hard bake at
200 ◦C for 10 min to seal cracks in the patterned surface.

Appendix B. Image-analysis procedure

Interference microscopy images were processed using a MATLAB (The Mathworks Inc.)
code that was developed in-house to obtain the free-surface profile of the droplet during
evaporation (Kazmierski 2018). Interference between the reflected light from the fluid–air
and fluid–solid interfaces is observed when the height of the film is less than the coherence
length of the light source. The bright and the dark fringes shown in figure 13 represent
constructive and destructive interference, respectively. Two neighbouring bright or dark
fringes correspond to a height difference of λ/(2k) 	 155 nm, where λ is the wavelength
of the light in a vacuum and k is the refractive index of the fluid.

In view of the axisymmetry of the well and the droplet, it was sufficient to analyse the
fringes along a cross-section through the centre of the well (as indicated by the line in
figure 13). In order to avoid problems caused by closely spaced fringes near to the lip
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of the well which occur towards the end of the evaporation, we began by calculating the
free-surface profile at a time t < tflat at which the interference fringes were co-axial and
the profile decreased monotonically in the radial direction. The evolution of the height
of the free surface at the centre of the well, hm, was determined by tracking the video
frame-by-frame backwards in time from t = tlifetime (at which the height of the film is
assumed to be zero) to the chosen initial frame. The initial free-surface profile was then
calculated from the maxima and minima in the intensity along the cross-section of the
image. The fringes near to the centre of the droplet were typically quite far apart, and
so an additional 4 to 6 points on the profile were obtained by the backward-time-tracing
method using a sinusoidal interpolation. A forward-time-tracing method was then used to
track the frames forward in time, determining the free-surface profile of the droplet for the
remainder of the evaporation in the same way as we calculated the initial profile. After
touchdown, we set an appropriate threshold value of the intensity of the images and fitted
a circle to the region of the image with intensity below this value in order to determine the
radius of the receding inner contact line.
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