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A BAYESIAN GENERALIZED EXPLANATORY ITEM RESPONSE MODEL TO
ACCOUNT FOR LEARNING DURING THE TEST

José H. Lozano and Javier Revuelta

UNIVERSIDAD AUTÓNOMA DE MADRID

The present paper introduces a new explanatory item response model to account for the learning that
takes place during a psychometric test due to the repeated use of the operations involved in the items. The
proposed model is an extension of the operation-specific learning model (Fischer and Formann in Appl
Psychol Meas 6:397–416, 1982; Scheiblechner in Z für Exp Angew Psychol 19:476–506, 1972; Spada in
Spada and Kempf (eds.) Structural models of thinking and learning, Huber, Bern, Germany, pp 227–262,
1977). The paper discusses special cases of the model, which, together with the general formulation, differ
in the type of response in which the model states that learning occurs: (1) correct and incorrect responses
equally (non-contingent learning); (2) correct responses only (contingent learning); and (3) correct and
incorrect responses to a different extent (differential contingent learning). ABayesian framework is adopted
for model estimation and evaluation. A simulation study is conducted to examine the performance of the
estimation and evaluation methods in recovering the true parameters and selecting the true model. Finally,
an empirical study is presented to illustrate the applicability of the model to detect learning effects using
real data.
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1. Introduction

Learning effectsmay take place in educational and psychological testingwhen the items share
a set of solution principles that can be extrapolated from one item to another, so examinees may
learn to respond more effectively during the test. There is a wide range of settings, both research
and applied, where the detection and measurement of these learning effects may be of potential
interest, such as those related to competence acquisition in developmental and educational contexts
(e.g., Spada, 1977; Spada &McGaw, 1985) or to the substantive analysis of the learning processes
that occur during a psychometric test (e.g., Lozano & Revuelta, 2020, 2021). Additionally, the
presence of learning effects during the testmay involvemeaningful item associations beyond those
explained by conventional item response models. In that case, assuming that the responses are
locally independent would lead to incorrect parameter estimates and standard errors. Moreover,
the inherent difficulty in distinguishing local dependence frommultidimensionality (see Ip, 2010)
may lead to overestimate the number of underlying factors when there are local dependencies
between items due to learning effects. Incorporating previous practice into the models may allow
for the detection and measurement of the learning effects as well as for the obtaining of unbiased
estimates of item and person parameters while avoiding over-factoring.

A variety of models have been developed to account for the learning that takes place through-
out a test (e.g., Deonovic et al., 2018; Fischer & Formann, 1982; Hohensinn et al., 2008; Kempf,
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1977; Scheiblechner, 1972; Spada, 1977; Verguts & De Boeck, 2000; Verhelst & Glas, 1993).
These models may be classified as contingent and non-contingent learning models (Verguts &
De Boeck, 2000). Contingent learning models assume that learning depends on the correctness
of the responses given to the items (e.g., Kempf, 1977; Verguts & De Boeck, 2000; Verhelst
& Glas, 1993), whereas non-contingent learning models assume that learning occurs regardless
of the correctness of the responses (e.g., Fischer & Formann, 1982; Scheiblechner, 1972; Spada,
1977). Another distinction can be made between descriptive and explanatory learning models (De
Boeck & Wilson, 2004). Descriptive learning models are just aimed at measuring the learning
effect, whereas explanatory learning models not only measure the learning effect but also explain
it in terms of person and/or item properties. Most of the existing learning models are descriptive
(e.g., Kempf, 1977; Verguts & De Boeck, 2000; Verhelst & Glas, 1993); however, a few models
may be considered explanatory in that they account for the learning effect in terms of the opera-
tions involved in the items (e.g., Deonovic et al., 2018; Fischer & Formann, 1982; Scheiblechner,
1972; Spada, 1977). Interestingly, to date, all the explanatory learning models are non-contingent
models and, therefore, do not make any distinction between correct and incorrect responses.

In the present paper, an explanatory contingent learning model is presented that is a general-
ization of the operation-specific learning model (OSLM) introduced by Scheiblechner (1972; see
also Fischer & Formann, 1982; Spada, 1977). The OSLM accounts for the non-contingent learn-
ing that takes place during a psychometric test due to the repeated use of the cognitive operations
required by the items. In the OSLM, the learning parameter is specific to each cognitive opera-
tion, and the learning component of the model is derived from the number of times the person
has practiced in previous items each of the operations involved in the current item. The OSLM
is subsumed by the proposed model, which accounts for the possibilities that learning may be
derived from all the previous responses equally (non-contingent learning), from correct responses
only (contingent learning), or from correct and incorrect responses in different degree (differential
contingent learning). The distinction between correct and incorrect responses is reasonable in that
learning is traditionally assumed to be greater when the examinee answers the items correctly.
However, the reverse may also be true, since, according to the definition of learning implied in the
OSLM (i.e., a decrease in the difficulty associated with a specific cognitive operation throughout
the test as a function of practice), learning is potentially greater for those operations that are more
difficult and, therefore, result in a greater number of incorrect responses at the beginning of the
test.

In the next section, the new model is introduced and described in detail by discussing special
cases subsumed by the general formulation. Model identification is described in Sect. 3. Section 4
describes a Bayesian framework for model estimation and evaluation. Section 5 includes a sim-
ulation study in which the performance of the estimation and evaluation methods is examined.
Section 6 provides an empirical analysis to illustrate the applicability of the model to real data.
Finally, a summary and concluding remarks are given in Sect. 7.

2. Model Specification

The models presented in this paper are based on the Rasch model (Rasch, 1960). For a Rasch
model, the logit of a correct response for person i (i = 1, 2, . . . , I ) to item j ( j = 1, 2, . . . , J )
is given by:

logit
[
Xi j = 1

] = θi − β j , (1)

where θi is the ability of person i , and β j is the difficulty of item j . The linear logistic test model
(LLTM; Fischer, 1973, 1983, 1995; Scheiblechner, 1972) decomposes the difficulty parameter of
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the Rasch model into a linear combination that represents the weighted sum of the difficulties of
the cognitive operations involved in the item. That is:

logit
[
Xi j = 1

] = θi −
M∑

m=1

w jmαm, (2)

where αm is a basic parameter that represents the difficulty of operation m (m = 1, 2, . . . , M),
and w jm is the weight of item j on operation m. The model is completed byW, a J × M matrix
that contains the weights (w jm) of each of the J items on each of the M operations. Each weight
is given by the number of times operation m is involved in the solution of item j . The LLTMmay
be considered a restricted version (in which all the learning parameters are constrained to zero)
of each of the learning models presented in the following subsections.

2.1. Operation-specific Learning Model

Based on the idea underlying the LLTM, Scheiblechner (1972; see also Fischer & Formann,
1982; Spada, 1977) introduced the OSLM. The OSLM is a non-contingent learning model; that
is, it considers that learning is derived from both correctly and incorrectly answered items equally.
According to this model, the logit of a correct response for person i to item j is a function of the
person ability, the difficulty of the cognitive operations involved in the item, and the practice of
said operations accumulated during previous items:

logit
[
Xi j = 1

] = θi −
M∑

m=1

w jm

⎛

⎝αm − δm

j−1∑

k=1

wkm

⎞

⎠ , (3)

where δm is a practice parameter that represents the change in the difficulty of operation m
that occurs each time the operation is practiced, and wkm is the weight of the previous item
k (k = 1, 2, . . . , j − 1) on operation m. In this model, αm represents the initial difficulty of
operation m, independently of the practice effect. As can be appreciated, the Rasch item param-
eter is decomposed into an initial-difficulty component (

∑
w jmαm), derived from the cognitive

operations involved in solving the item, and a practice component (
∑

w jmδm
∑

wkm), derived
from practicing said operations in previous items. Note that only when operation m is involved
in both the previous item and the current item is the practice effect associated with operation m
(δm) subtracted from αm . A positive sign for the δm parameter implies a decrease in difficulty
associated with operation m throughout the test as a function of practice, which may be inter-
preted as a learning effect. A negative sign, on the other hand, implies an increase in difficulty
associated with operation m as a function of practice, which may be interpreted as fatigue or loss
of attention. These fatigue effects associated with specific operations may occur, for example,
in relatively easy operations that the subjects tend to perform correctly at the beginning of the
test but that are prone to errors later on in the test due to the progressive effects of fatigue or
loss of interest and/or attention. It should be noted that, although the OSLM models the effect of
previous practice on the item response, like the LLTM and the Rasch model, it does not assume
local dependence between items.

2.2. Operation-specific Contingent Learning Model

In contrast to theOSLM, the operation-specific contingent learningmodel (OSCLM) assumes
that themere exposure to items does not contribute to learning. According to theOSCLM, learning
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takes place only when the items are answered correctly:

logit
[
Xi j = 1

] = θi −
M∑

m=1

w jm

⎛

⎝αm − δm

j−1∑

k=1

xikwkm

⎞

⎠ , (4)

where δm represents the change in the difficulty of operation m that results from practicing the
operation in a correctly answered item, and xik is the response of person i to the previous item
k. Note that only when xik = 1 is the practice effect associated with operation m (δm) subtracted
from αm . The contingent nature of the practice component implies that, unlike the OSLM, the
OSCLM assumes local dependencies between items.

2.3. Operation-specific Differential Contingent Learning Model

Finally, the operation-specific differential contingent learning model (OSDCLM) considers
that learning takes place in both correctly and incorrectly answered items, although, unlike the
OSLM, the amount of learning that is derived in both cases may differ:

logit
[
Xi j = 1

] = θi −
M∑

m=1

w jm

⎡

⎣αm − δm

j−1∑

k=1

xikwkm − γm

j−1∑

k=1

(1 − xik)wkm

⎤

⎦ , (5)

where γm is a practice parameter that represents the change in the difficulty of operation m that
results from practicing the operation in an incorrectly answered item. Note that when xik = 0,
it is γm and not δm that is subtracted from αm . A positive sign for the γm parameter indicates
that even when an item involving operation m is incorrectly answered, the difficulty of that
operation decreases in subsequent items. This may be due to the fact that many participants
perform operationm correctly (and, therefore, some amount of learning is derived from practicing
the operation), but they fail to perform other operations involved in the item and, consequently,
answer the item incorrectly. Alternatively, the positive sign may be due to the fact that, for many
participants, operation m requires successive approximations over several items in order for it to
be properly performed. A negative sign, on the other hand, indicates that answering incorrectly an
item involving operation m increases the difficulty of that operation in subsequent items, which
may be attributed to fatigue or loss of interest and/or attention. The OSDCLM generalizes both
the OSLM and the OSCLM. In this regard, the OSCLM is a restricted OSDCLM in which all
γm = 0, whereas the OSLM is a restricted OSDCLM in which δm = γm for each m.

3. Model Identification

In the LLTM, for the basic parameters (αm) to be estimated bymeans of conditionalmaximum
likelihood (CML), the matrixW+ = (W; 1) (i.e.,W supplemented with a column vector of ones)
must have full column rank; that is, rank(W+) = M + 1 (Fischer, 1983). As a result, the number
of operations is restricted to M ≤ J − 1. The full column rank condition of W+ ensures that
the Rasch item parameters (β j ) can be decomposed uniquely into the LLTM basic parameters
(αm) while fixes the scale of the latent variable (θi ). In Bayesian inference, by contrast, the θ

scale is fixed by specifying the prior distribution of the parameter, so the looser condition of full
column rank ofW, rank(W) = M , is enough to ensure the uniqueness of the relation between the
parameters of the Rasch model and the LLTM. Consequently, in Bayesian inference, the original
restriction M ≤ J − 1 is relaxed to M ≤ J .

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:03, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


998 PSYCHOMETRIKA

Mathematically, the OSLM is an LLTMwith weigh matrixQ = (W;V), whereV is a J ×M
matrix whose elements represent previous practice. More specifically, the elements inV are given
by:

v jm = w jm

j−1∑

k=1

wkm . (6)

Therefore, in the OSLM, the full column rank condition for CML estimation is rank(Q+) =
2M + 1, and the number of operations is restricted to M ≤ (J − 1)/2. In Bayesian inference,
these restrictions are relaxed to rank(Q) = 2M and M ≤ J/2.

In the OSCLM and the OSDCLM, the weigh matrices are Q = (W;Vt ) and Q =
(W;Vt ;Ut ), respectively, where Vt and Ut are J × M matrices whose elements represent the
amount of correct and incorrect previous practice for each item and operation. Specifically, the
elements in Vt and Ut are given by:

vt jm = w jm

j−1∑

k=1

xtkwkm and

ut jm = w jm

j−1∑

k=1

(1 − xtk)wkm,

(7)

where t (t = 1, 2, . . . , T ) denotes a specific response pattern, and T = 2J is the number of
different response patterns.

Let x′
t = (xt1, xt2, . . . , xt J ) be a vector of responses to the J items. Assuming that θ is a

random effect that follows a standard normal distribution, the marginal probability of xt is:

pt =
∫ ∞

−∞
exp(λt )

∑T
h=1 exp(λh)

f (θ)dθ, (8)

where λt is a parameter associatedwith response pattern t , and f (θ) is the standard normal density
function. The OSCLM and the OSDCLM impose the following structure on the parameters:

λt = stθ + r ′
tξ , (9)

where st = ∑J
j=1 xt j is the number-right score of response pattern t , r ′

t is a row-vector of

coefficients associated with response pattern t1, and ξ is the vector of structural parameters2. The
OSCLM and the OSDCLM assume that the vector of λt parameters, λ = (λt )

T
t=1, is:

λ = sθ + Rξ , (10)

where s = (st )Tt=1 is the vector of number-right scores of the T response patterns, and R is a
matrix of coefficients whose rows are the vectors r ′

t = r ′
1, r

′
2, . . . , r

′
T .

1In the OSCLM, this vector is defined as r ′t = x′
t (W;Vt ), whereas in the OSDCLM, r ′t = x′

t (W;Vt ;Ut ).
2In the OSCLM, ξ = (α, δ), whereas in the OSDCLM, ξ = (α, δ, γ ).
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The analysis of the identifiability of ξ is based on the Jacobian matrix (Bishop et al., 2007;
Cox, 1984):

J = ∂

∂ξ
log p = (I − 1 p′)R, (11)

where I is an identity matrix of order T , 1 is a vector of ones, and p = (pt )Tt=1 is the vector of
probabilities of the T response patterns. The vector ξ is identifiable if J has full column rank. The
matrix (I− 1 p′) is deficient in rank (it has rank T − 1) because the elements in p are constrained
to sum 1. Specifically, (I − 1 p′)1 = 0. Therefore, if the vector 1 were in the column space of R,
there would be a vector τ such that (I−1 p′)Rτ = 0, and Jwould be deficient in rank. Moreover,
from the theory of multinomial maximum likelihood estimation, the information matrix for ξ can
be computed from the Jacobian matrix by the equation (Revuelta, 2012):

I = J′DJ, (12)

where D = diag( p). If J were deficient in rank, I would be so. Consequently, the identifiability
condition for ξ is that the matrix R+ = (R; 1) has full column rank. In practice, the analysis of
empirical identifiability is based on the response patterns that have been actually realized in the
sample. Let R̂+ be the matrix of coefficients based on the realized response patterns. The full
column rank of R̂+ is necessary for the observed information matrix to be of full rank. However,
since R̂+ has size N × 3M , where N can be in the order of hundreds or thousands, it is more
computationally convenient to verify the equivalent condition that the matrix R̂+′

R̂+ has full
rank.

4. Bayesian Framework

A Bayesian framework is presented for the estimation and evaluation of the proposed model.
In this work, Bayesian methods were implemented by means of Markov chain Monte Carlo
(MCMC) simulation (Brooks et al., 2011). Applications of Bayesian MCMC in the field of item
response modeling can be seen in Fox (2010) and Levy and Mislevy (2016).

4.1. Model Estimation

In Bayesian analysis, MCMC routines are usually employed to derive an empirical approx-
imation to the posterior distribution of the parameters. In the present work, MCMC simulation
was run using Stan (Carpenter et al., 2017; Gelman et al., 2015). Stan is a programming software
that implements the no-U-turn sampler (NUTS; Hoffman & Gelman, 2014), an extension of the
Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal, 1994, 2011) algorithm. HMC over-
comes some of the limitations of the traditional Gibbs sampler (Geman & Geman, 1984) and the
Metropolis algorithm (Metropolis et al., 1953), particularly in terms of computational efficiency
in exploring the posterior parameter space (Gelman et al., 2013).

4.2. Model Evaluation

In the Bayesian context, model assessment is typically based on posterior predictive model
checking (PPMC; Gelman et al., 1996). PPMC is conducted based on discrepancy measures
that are intended to capture relevant features of the data. The realized values of the model-data
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discrepancy, D(X; θ , ξ) (where θ and ξ represent the vectors of incidental and structural param-
eters, respectively), are compared to those obtained from the posterior predictive distribution,
D(Xrep; θ , ξ) (where rep stands for replicated data). The results are summarized by means of the
posterior predictive p value (PPP value; Gelman et al., 1996; Meng, 1994), the tail-area proba-
bility of the realized value of the discrepancy under the posterior predictive distribution of the
discrepancy measure:

PPP = P
[
D

(
Xrep; θ , ξ

) ≥ D (X; θ , ξ) | X]
. (13)

In the present study, the discrepancy between the data and the model was estimated via
two discrepancy statistics: the odds-ratio (OR; Chen & Thissen, 1997; Sinharay, 2005) and the
Bayesian latent residual (BLR; Albert & Chib, 1995; Fox, 2010). The OR is a measure of asso-
ciation between pairs of items that is computationally simple and does not depend on the fitted
model. The OR for items j and j ′ is defined as:

OR j j ′ = n11n00
n10n01

, (14)

where nxx ′ is the number of individuals scoring x on item j and x ′ on item j ′. The OR is useful
for identifying inter-item associations beyond those explained by the model. Given that practice
effects may elicit local dependencies between items, the OR is potentially useful for detecting the
presence of learning effects during the test. Measures of inter-item associations at the item level
and at the test level are obtained by summing the OR values over the pairs of items.

The BLR is a measure of overall fit that is not specifically tied to local dependencies. The
BLR is based on an augmented (latent) data approach and is defined as the difference between
the latent response and the expected response according to the model. For instance, for a Rasch
model, the BLR corresponding to observation Xi j is defined as:

εi j = Zi j − θi + β j , (15)

where Zi j is the latent response of person i to item j , which, conditional on person and item
parameters, follows a logistic distribution with expected value given by logit

[
Xi j = 1

]
. Com-

putational formulas for the BLR are given in Fox (2010). The squared residuals can be summed
over individuals to obtain an item-specific discrepancy statistic. A global measure of fit at the test
level is obtained by summing the values of the squared residuals over the items.

The PPP value is the proportion of draws in which the posterior predictive value of the
discrepancy statistic is equal to or higher than the realized value. PPP values close to .5 indicate
that the realized value is in the middle of the posterior predictive distribution of the discrepancy,
evidencing adequate data-model fit; whereas extreme PPP values, close to zero or one, indicate
that the realized value is in the upper or lower tail of the distribution, respectively, evidencing that
the model is underpredicting or overpredicting the features captured by the discrepancy statistic.
For instance, in the case of the OR, PPP values close to zero (one) indicate that the observed data
exhibit more (less) local dependence than expected based on the model.

4.3. Model Comparison and Selection

Complementarily, other methods can be used for model comparison and selection: the widely
applicable information criterion (WAIC; Watanabe, 2010, 2013) and the leave-one-out cross
validation (LOO; Gelman et al., 2014). These methods quantify the out-of-sample predictive
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performance of competing models using the log-likelihood evaluated at the posterior simulations
of the parameter values. WAIC and LOO adjust the log pointwise predictive density (lpd) of the
observed data by penalizing for model complexity based on the effective number of parameters.
Such penalty allows for the prevention of the over-fitting exhibited by more complex models by
virtue of their higher flexibility.

Let l (l = 1, 2, . . . , L) be a draw from the posterior distribution. In the case of WAIC, the
estimated expected log pointwise predictive density (elpd) is given by (Vehtari et al., 2016):

̂elpdwaic = l̂pd − p̂waic, (16)

where l̂pd is the computed log pointwise predictive density:

l̂pd =
I∑

i=1

J∑

j=1

log

[
1

L

L∑

l=1

p
(
xi j | θ l , ξ l

)
]

, (17)

and p̂waic is the estimated effective number of parameters, which can be obtained based on the
posterior variance of the log predictive density for each data point xi j :

p̂waic =
I∑

i=1

J∑

j=1

Var Ll=1

[
log p

(
xi j | θ l , ξ l

)]
. (18)

Thêelpdwaic is usually converted to deviance scale as follows:

WAIC = −2̂elpdwaic. (19)

In the case of LOO, the estimated elpd, obtained by Pareto smoothed importance sampling,
is given by (Vehtari et al., 2016):

̂elpdloo =
I∑

i=1

J∑

j=1

log

⎡

⎣

∑L
l=1 wl

i j p
(
xi j | θ l , ξ l

)

∑L
l=1 wl

i j

⎤

⎦ , (20)

where wl
i j is a vector of smoothed weights for each data point xi j . For LOO, the effective number

of parameters is given by:

p̂loo = l̂pd −̂elpdloo. (21)

The LOO information criterion (LOOIC), expressed on the deviance scale, is defined as:

LOOIC = −2̂elpdloo. (22)

Lower values ofWAIC and LOOIC indicate higher predictive accuracy. Compared to PPMC,
WAIC and LOO have the advantage of avoiding re-sampling and, therefore, are less computa-
tionally intensive. However, WAIC and LOO are not intended to test a hypothesis of model fit but
to compare models in order to select the one that fits the data best. In the present work, PPMC
was used for model evaluation, whereas WAIC and LOO were used complementarily for model
comparison and selection.
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5. Simulation Study

A simulation study was conducted to test whether the Bayesian estimation and model eval-
uation methods allow for the recovery of the true item parameters and the identification of the
model used to generate the data, respectively. Particular attention was paid to examine the bias of
the estimates when there were learning effects in the data that were not taken into account in the
model.

5.1. Method

In order to study different conditions of misspecification, a 4 × 5 factorial design was used
for the simulation study, resulting from the combination of generating models and fitted models
(the OSDCLM, OSCLM, OSLM, and LLTM were used as generating models, while the same
models plus the Rasch model were used as fitted models).

One hundred data sets of dichotomous responses were simulated from each generatingmodel.
The simulation was conducted with R version 3.6.1 (R Development Core Team, 2019). The
sample size, test length, weight matrix, and true values of the structural parameters (αm , δm , and
γm) were taken from the empirical study described in Sect. 6 (the weight matrix is shown in Table
4, and the structural parameters are shown in Table 9). The true values of the incidental parameters
(θi ) were generated from a standard normal distribution.

The models were estimated from each simulated data set using the RStan R package version
2.19.2 (Stan Development Team, 2019). Four Markov chains of 2,000 samples each were run.
The first half of the samples were discarded as burn-in, and the remaining samples were used to
estimate the Bayesian posterior probabilities. The potential scale reduction statistic (Gelman &
Rubin, 1992) was used to evaluate the convergence of parameter estimates. A weakly informative
prior, N (0, 100), was used for all structural parameters, whereas a standard normal distribution
was used as prior for the incidental parameters.

To assess the fit of the models to the data, a sample of predicted responses was generated for
each sample of simulated parameters, and the PPP value (Gelman et al., 1996; Meng, 1994) was
computed based on the discrepancy measures, OR (Chen & Thissen, 1997; Sinharay, 2005) and
BLR (Albert & Chib, 1995; Fox, 2010), at the test level. The hypothesis that the model fits the
data was rejected when the PPP value was less than .05 or greater than .95. The performance of
the discrepancy measures was assessed by the average PPP value over the 100 simulated samples
as well as by the empirical proportion of rejections (EPR), that is, the proportion of simulated
samples in which the fitted model is rejected. When the fitted model coincides with the model
used to generate the data, the EPR is an estimate of the false-positive error rate of the test, whereas
when the fitted model and the generating model do not coincide, the EPR is an estimate of the
sensitivity of the test.

Additionally, two information criterion measures were obtained using the loo R package
(Vehtari et al., 2016): WAIC (Watanabe, 2010, 2013) and LOOIC (Gelman et al., 2014). As
described above, these measures quantify the discrepancy between the model and the data while
taking into account model complexity. They are not intended to test a hypothesis of model fit but
to select the best model from a number of competing models. Lower values of WAIC and LOOIC
indicate better balance between fit and parsimony. In this study, for each simulated sample, WAIC
and LOOIC were used to select the best model from among the fitted models. For each condition
of the study, the performance of WAIC and LOOIC was assessed by their average value over
the simulated samples as well as by the empirical proportion of selections (EPS), that is, the
proportion of simulated samples in which the fitted model is selected.

Item parameter recovery was assessed using measures of precision, bias, and accuracy of the
estimation procedure. The standard error (SE) of the estimate was used as a measure of statistical
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variability (precision) of the estimation procedure. For instance, the SE for the α parameter is
defined as:

SE
(
α̂
) =

√√√
√√√√√√
√

1

N − 1

N∑

n=1

⎡

⎢⎢⎢⎢
⎢
⎣

M∑

m=1

(
α̂nm − α̂m

)2

M

⎤

⎥⎥⎥⎥
⎥
⎦

, (23)

where n (n = 1, 2, . . . , N ) denotes a simulated sample, N is the number of simulated samples
(in this study, N = 100), M is the number of α parameters, α̂nm is the EAP estimate of the m-th
α parameter in sample n, and α̂m is the mean of the estimates of αm over the N samples. Unlike
bias and accuracy, precision depends only on the estimates (it does not depend on the true value
of the parameter).

The bias quantifies the difference between the mean of the parameter estimates over the N
samples and the true value of the parameter. The absolute bias for the α parameter is defined as:

Bias
(
α̂
) =

M∑

m=1

∣∣∣α̂m − αm

∣∣∣

M
, (24)

where αm is the true value of the m-th α parameter.
The root-mean-square error (RMSE) combines precision and bias to provide a measure of

accuracy in parameter recovery. The RMSE quantifies the average difference between the true
and the estimated parameters over the N samples. The RMSE for the α parameter is defined as:

RMSE
(
α̂
) = 1

N

N∑

n=1

√√√√√√

M∑

m=1

(
α̂nm − αm

)2

M
. (25)

The SE, bias, and RMSE for the δ and γ parameters are defined in the same way.

5.2. Results

Table 1 shows the mean PPP value and the EPR of the discrepancy measures for each com-
bination of generating model and fitted model. As expected, for each generating model, fitting
the true or a more general model led to a mean PPP value close to .5, indicating good model-data
fit. On the contrary, fitting a more restrictive model than the one used to generate the data led to
an extreme mean PPP value, close to zero or one, indicating model misfit. Likewise, when the
true or a more general model was fitted to the data, the EPR was close to zero, indicating a low
false-positive error rate. However, fitting a more restrictive model led to an EPR close to one,
revealing the high sensitivity of the procedure in the detection of the different types of learning.
The above applies to all conditions except when there were non-contingent learning effects in the
data (i.e., when the OSLM was the generating model) and the estimated model was the LLTM.
In that condition, the BLR and, to a lesser extent, the OR showed low sensitivity. It is also worth
noting the low EPR values associated with the Rasch model when the data were generated with
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Table 1.
Average posterior predictive p-value (PPP) and empirical proportion of rejections (EPR) of the discrepancy statistics for
each combination of generating model and fitted model

Generating
model

Discrepancy
statistic

Fitted model

OSDCLM OSCLM OSLM LLTM Rasch

PPP EPR PPP EPR PPP EPR PPP EPR PPP EPR

OSDCLM OR .531 .00 .000 1.00 .000 1.00 .000 1.00 .000 1.00
BLR .420 .00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

OSCLM OR .546 .00 .526 .00 .000 1.00 .000 1.00 .000 1.00
BLR .413 .00 .441 .00 1.000 1.00 1.000 1.00 .999 1.00

OSLM OR .530 .00 1.000 1.00 .485 .02 .068 .68 .492 .03
BLR .412 .00 .013 .99 .446 .00 .231 .00 .415 .00

LLTM OR .547 .00 .517 .02 .512 .02 .506 .02 .517 .01
BLR .418 .00 .455 .00 .446 .00 .474 .00 .421 .00

the OSLM. This result was due to the fact that the OSLM, like the LLTM, is a restricted Rasch
model that does not model local dependencies between items. Consequently, as a more general
model, the Rasch model is expected to fit data generated with the OSLM.

Table 2 shows the mean values of WAIC and LOOIC and their corresponding EPS for each
combination of generating model and fitted model. Based on both WAIC and LOOIC, for each
condition of generatingmodel, the truemodel (followed bymore general models) led to the lowest
mean discrepancy between the data and the model as well as to the highest EPS.

Table 3 shows the SE, bias, and RMSE for each combination of estimated parameter, gen-
erating model, and fitted model. For each generating model, the SE was minimized by the most
restrictive model (the LLTM, OSCLM, and OSDCLM, for the α, δ, and γ parameters, respec-
tively), whereas the bias was minimized by the true or a more general model. As expected, for
each generating model, fitting the true model minimized the RMSE and, therefore, maximized
the accuracy of the estimates. Conversely, fitting a more restrictive model than the one used to
generate the data led to inaccurate estimates of the difficulty and practice parameters. In order to
rule out potential differential effects associated with the sign of the parameter, the SE, bias, and
RMSE were also obtained for each operation separately without evidence of differential effects.

5.3. Conclusions

The simulation study illustrates the good performance of PPMC for model evaluation and
selection as well as the accuracy of the MCMC algorithm in recovering the true parameters from
simulated data. Regarding model evaluation, PPMC based on the discrepancy statistics showed
good performance in identifying learning effects in the data. Specifically, the OR and BLR statis-
tics only showed low sensitivity in one condition. Additionally, WAIC and LOO demonstrated
relatively good performance in model comparison and selection, although they showed a cer-
tain tendency to favor complex models. Based on these results, when sufficient computational
resources are available, the use of PPMC should be preferred also for model comparison and
selection, taking as a decision rule to select the simplest model that shows an acceptable fit to
the data. Regarding parameter recovery, as expected, fitting the true model provided the most
accurate parameter estimates. On the contrary, when there were learning effects in the data that
were not taken into consideration in the model formulation, the resulting parameter estimates
were considerably inaccurate.
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Table 3.
Standard error (SE), bias, and root-mean-square error (RMSE) for each combination of estimated parameter, generating
model, and fitted model

Estimated
parameter

Generating
model

Statistic Fitted model

OSDCLM OSCLM OSLM LLTM

α OSDCLM SE 0.487 0.120 0.352 0.083
Bias 0.060 1.753 1.129 1.716
RMSE 0.413 2.398 1.610 2.054

OSCLM SE 0.488 0.121 0.401 0.085
Bias 0.008 0.009 0.340 1.072
RMSE 0.406 0.113 0.487 1.190

OSLM SE 0.473 0.115 0.476 0.074
Bias 0.008 1.639 0.010 1.731
RMSE 0.412 1.943 0.411 1.925

LLTM SE 0.516 0.125 0.491 0.103
Bias 0.040 0.010 0.004 0.016
RMSE 0.430 0.115 0.407 0.096

δ OSDCLM SE 0.134 0.068 0.089
Bias 0.014 0.523 0.407
RMSE 0.121 0.713 0.435

OSCLM SE 0.130 0.074 0.100
Bias 0.008 0.008 0.319
RMSE 0.116 0.069 0.354

OSLM SE 0.136 0.075 0.129
Bias 0.007 0.404 0.005
RMSE 0.125 0.480 0.116

γ OSDCLM SE 0.140
Bias 0.021
RMSE 0.125

6. Empirical Study

An empirical study was conducted to illustrate the performance and applicability of the
proposed framework for detecting practice effects in real data. Specifically, the models were fitted
to data from a fraction arithmetic test (Tatsuoka, 1984)whose items are based on several arithmetic
operations that are repeatedly applied throughout the test.

6.1. Method

Thedata consists of responses to 15 items involving subtraction of fractions by536 examinees.
The data setwas originally used byTatsuoka (1984) and is included in theCDMRpackage (George
et al., 2016). The matrix W used in this study was defined by de la Torre (2009) in the context
of cognitive diagnosis modeling (see Table 4). In this example, the matrix R̂+ satisfies the rank
condition, rank(R̂+) = 16, and, consequently, the vector ξ is empirically identified.

The same models, estimation method, and model evaluation procedures tested in the simula-
tion studywere usedwith the empirical data. A prior sensitivity studywas conducted to investigate
the effect of prior choice on the posterior parameter estimates.A normal prior distributionwas used
with mean set equal to zero, while the value of the variance was manipulated across conditions
(i.e., 1, 5, 10, 50, 100, 500, 1,000, 5,000, and 1,000,000).
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Table 4.
Transposed weight matrix for the fraction-subtraction items (de la Torre, 2009)

Operation Item

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
2 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1
3 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1
4 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1
5 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

Table 5.
Model evaluation statistics at the test level for the fitted models

Fitted
model

OR BLR

Observed Simulated(Sd) PPP Observed(Sd) Simulated(Sd) PPP

OSDCLM 1410.08 1272.77(175.13) .200 4624.28(114.26) 4605.08(160.77) .467
OSCLM 1410.08 570.21(45.57) .000 3996.27(85.43) 5028.52(141.22) 1.000
OSLM 1410.08 410.76(23.36) .000 3524.87(57.06) 5162.57(126.97) 1.000
LLTM 1410.08 403.21(22.49) .000 3605.48(56.42) 5185.35(127.74) 1.000
Rasch 1410.08 419.13(24.30) .000 3457.04(56.30) 5139.13(129.42) 1.000

6.2. Results

The prior sensitivity analysis revealed that the posterior parameter estimates were robust
to different prior distributions. More specifically, the average standard deviations for the α, δ,
and γ parameter estimates were .168, .042, and .040, respectively. Moreover, when removing
the estimates corresponding to N (0, 1), the average standard deviations were .017, .004, and
.004, whereas when removing the estimates corresponding to N (0, 1) and N (0, 5), the average
standard deviations were .010, .003, and .003. The results shown in this section were obtained by
using a weakly informative prior, N (0, 100), for all structural parameters and a standard normal
distribution for the incidental parameters.

Table 5 shows themodel evaluation statistics at the test level for each of the fitted models. The
PPP values of the discrepancy measures led to the rejection of the hypothesis of fit for the LLTM
and the Rasch model in all cases (PPP < .05 or PPP > .95). More specifically, the observed and
simulated values of the OR indicated that the data showed more local dependence than would be
expected based on these models. According to the OR, the OSDCLM was the only model that
reproduced the local dependencies present in the data (PPP = .200). Similarly, the PPP value of
the BLR suggested that the OSDCLM was the only model that fitted the data well (PPP = .467).

Tables 6 and 7, respectively, show the OR and BLR statistics at the item level for the fitted
models. Based on the PPP value of both the OR and the BLR, the OSDCLM was the model that
fitted the data best, showing the lowest proportion of non-fitting items (PPP < .05 or PPP > .95).

Table 8 shows the WAIC and LOOIC values for the fitted models. As can be observed, both
indices coincided in selecting the OSDCLM as the model that showed the best balance between
fit and parsimony.
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Table 6.
Odds-ratio at the item level for the fitted models

Item Observed OSDCLM OSCLM OSLM LLTM Rasch

Simulated(Sd) PPP Simulated(Sd) PPP Simulated(Sd) PPP Simulated(Sd) PPP Simulated(Sd) PPP

1 184.13 85.79(13.86) .000 71.85(8.53) .000 54.17(5.47) .000 53.88(5.60) .000 54.87(5.50) .000
2 111.53 89.67(13.17) .062 66.75(7.93) .000 54.08(5.24) .000 53.32(5.27) .000 55.12(5.43) .000
3 201.61 120.94(30.48) .022 84.72(11.24) .000 54.85(5.92) .000 53.82(5.70) .000 57.90(7.75) .000
4 174.98 133.93(22.88) .050 75.87(9.72) .000 54.78(5.56) .000 53.82(5.49) .000 55.69(5.80) .000
5 45.50 29.09(4.48) .002 26.37(3.29) .000 54.29(5.45) .960 53.11(5.14) .941 55.20(5.72) .964
6 199.64 119.51(18.62) .000 68.73(8.35) .000 54.40(5.43) .000 53.40(5.23) .000 56.14(6.04) .000
7 258.48 136.47(22.12) .000 70.16(8.49) .000 54.28(5.28) .000 53.37(5.29) .000 55.18(5.47) .000
8 154.30 249.75(78.48) .932 81.04(14.00) .000 55.75(6.52) .000 53.84(5.61) .000 56.47(6.55) .000
9 204.39 159.63(48.81) .154 54.10(8.28) .000 55.79(6.61) .000 54.81(6.16) .000 56.23(6.19) .000
10 193.02 224.32(46.90) .743 109.51(13.79) .000 54.51(5.45) .000 53.95(5.40) .000 55.48(5.59) .000
11 147.40 161.75(43.40) .580 48.16(7.24) .000 54.64(5.70) .000 54.76(6.30) .000 55.68(5.98) .000
12 251.13 195.70(36.18) .072 108.95(13.32) .000 54.18(5.24) .000 53.39(5.23) .000 55.51(5.70) .000
13 170.65 227.53(45.68) .932 86.04(10.40) .000 54.84(5.60) .000 53.40(5.29) .000 55.36(5.40) .000
14 251.01 332.97(68.58) .907 98.15(12.95) .000 56.02(6.39) .000 54.09(5.57) .000 57.38(6.72) .000
15 272.40 278.47(58.14) .479 90.02(11.12) .000 54.94(5.66) .000 53.44(5.33) .000 56.04(5.93) .000

Table 9 shows the expected a posteriori (EAP) estimates, posterior standard deviations, and
posterior probability intervals of the parameters of the OSDCLM. According to the magnitude
of the estimates, the second operation defined in the matrix W was the most difficult operation
at the beginning of the test, followed by the fifth, the fourth, the first, and finally the third. It is
interesting to note that the EAP estimates obtained by fitting the LLTM led to a different order
of difficulty3: α̂1 = −1.009, α̂2 = 0.002, α̂3 = −0.420, α̂4 = 1.810, and α̂5 = 0.355. These
estimates represent the marginal difficulty associated with each cognitive operation; that is, its
difficulty confounded with the practice effect.

The positive sign of the estimates of the δ1, δ2, δ5, and γ2 parameters, together with the
absence of zero in their corresponding posterior probability intervals, indicated the existence of
learning associated with correct responses in operations 1, 2, and 5, and learning associated with
incorrect responses in operation 2. Note that the second operation was the most difficult operation
at the beginning of the test and, therefore, the most prone to require successive approximations
for it to be properly performed. The magnitude of the estimates of the parameters suggested a
greater learning effect for the second operation, followed by the first, and finally the fifth. The
interpretation of these estimates is straightforward. For instance, responding correctly (incorrectly)
to an item in which operation 2 was involved provided a decrease of 0.724 (0.676) in the difficulty
of this operation.

The negative sign of the estimate of δ3, together with the absence of zero in its posterior
probability interval, indicated an increase in difficulty during the test associated with operation 3
as a function of correct practice, which may be interpreted in terms of progressive fatigue or loss
of attention during the test. The negative sign of the estimates of γ3, γ4, and γ5, together with
the absence of zero in their corresponding posterior probability intervals, indicated an increase in
difficulty during the test associated with operations 3, 4, and 5 as a function of incorrect practice.
These results suggested that those individuals who failed in applying these operations at the

3The circumflex represents the EAP estimates.
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Table 8.
Comparison indices for the fitted models

Fitted
model

WAIC LOO

elpdwaic pwaic WAIC elpdloo ploo LOOIC

OSDCLM −3379.2 325.4 6758.5 −3381.0 327.2 6762.1
OSCLM −3424.6 300.1 6849.3 −3426.2 301.7 6852.4
OSLM −3442.3 286.1 6884.6 −3443.9 287.7 6887.7
LLTM −3497.0 285.7 6994.0 −3498.5 287.2 6997.0
Rasch −3389.2 287.8 6778.4 −3390.8 289.3 6781.5

Table 9.
Expected a posteriori (EAP) estimates, posterior standard deviations (SD), and posterior probability intervals (2.5% −
97.5%) of the difficulty (αm ) and practice parameters (δm and γm ) of the operation-specific differential contingent learning
model

αm δm γm

EAP SD 2.5% 97.5% EAP SD 2.5% 97.5% EAP SD 2.5% 97.5%

α1 −0.564 0.099 −0.762 −0.370 δ1 0.680 0.048 0.586 0.776 γ1 0.040 0.042 −0.043 0.121
α2 3.527 0.780 2.006 5.070 δ2 0.724 0.201 0.333 1.121 γ2 0.676 0.186 0.303 1.049
α3 −2.014 0.197 −2.405 −1.629 δ3 −0.851 0.085 −1.018 −0.684 γ3 −0.548 0.073 −0.688 −0.403
α4 −0.443 0.772 −1.964 1.065 δ4 −0.222 0.186 −0.582 0.134 γ4 −0.490 0.172 −0.829 −0.148
α5 1.073 0.139 0.799 1.344 δ5 0.329 0.129 0.076 0.577 γ5 −0.695 0.171 −1.030 −0.364

Table 10.
Expected a posteriori (EAP) estimates, posterior standard deviations (SD), and posterior probability intervals (2.5% −
97.5%) of the differences (dm ) by operation (m) between the practice parameters (δm and γm ) of the operation-specific
differential contingent learning model

dm EAP SD 2.5% 97.5%

d1 0.640 0.050 0.543 0.735
d2 0.048 0.069 −0.088 0.183
d3 −0.303 0.066 −0.430 −0.179
d4 0.268 0.075 0.124 0.416
d5 1.024 0.189 0.646 1.403

beginning of the test increased their failure rate in subsequent items, which may be interpreted as
loss of interest and/or attention.

The posterior probability interval of the difference between the δm and γm parameters
(Table 10) indicated that this difference was credibly different from zero for operations 1, 3,
4, and 5. These results explain why the OSDCLM fitted the data better than the OSLM, which
assumes no difference between δm and γm for each m. Moreover, the fact that the γm parameter
was credibly different from zero for operations 2, 3, 4, and 5 explains why the OSDCLM fitted
the data better than the OSCLM, which assumes that γm equals zero for all m.
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Figure 1.
Difficulty of the five cognitive operations as a function of previous practice for subjects i = 1 (left) and i = 2 (right)

Figure 1 shows the difficulty of the cognitive operations as a function of previous practice
for the first two subjects in the response matrix (i = 1 and i = 2), whose response patterns were
010101111110111 and 111111111111111, respectively. It should be noted that previous practice
equals zero the first time an operation appears in the test. The figure illustrates the decrease in
difficulty during the test in operations 1, 2, and 5 for the two subjects. Note that the difficulty
throughout the test of operation 2, as well as that of operation 5, was the same for both subjects
because their response patterns to the items involving said operation were the same. By contrast,
the difficulty of operation 1, as well as that of operations 3 and 4, evolved slightly differently for
the two subjects because their response patterns to the items involving said operation were not
the same.

6.3. Conclusions

This study illustrates the utility of the proposed model for investigating a variety of practice
effects in real data. The best fitting model was the OSDCLM, which suggests the presence of
different practice effects in the data derived from correct and incorrect responses. Specifically,
learning effects associatedwith correct responseswere observed for operations 1, 2, and 5,whereas
a learning effect associated with incorrect responses was observed for operation 2. Additionally,
a fatigue effect associated with correct responses was observed for operation 3, whereas fatigue
effects associated with incorrect responses were observed for operations 3, 4, and 5.

7. Discussion

The purpose of the present work was to introduce a new explanatory item response model
for the detection and measurement of differential contingent learning effects during psychometric
tests due to the repeated use of the operations involved in the items. To that end, a Bayesian
approach was adopted for model estimation and evaluation. The performance of the proposed
framework was illustrated with a simulation study and an empirical application. The simulation
studydemonstrated the accuracyof theMCMCalgorithm inparameter recovery aswell as the good
performance of PPMC and the information criterion indices in model evaluation and selection.
The empirical study demonstrated the presence of differential contingent practice effects in real
assessment data, which illustrates the utility of incorporating previous practice into item response
models for correct and incorrect responses, separately. The proposed framework, therefore, has
proved its usefulness when there is a suspicion of practice effects during the test and the goal of the
researcher is to adopt an explanatory approach to account for the cognitive processes underlying
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the item responses. The R and RStan scripts used in this work for model estimation and evaluation
are available as supplementary material to this paper.

Nevertheless, it is worth highlighting that the proposed model, as presented in this paper,
is based on strong assumptions that might not always be justified. The main assumptions are
inherited from the LLTM and the OSLM. Specifically, the LLTM assumes that item difficulty
can be linearly decomposed into the difficulties of a well-defined set of operations, and that
said difficulties are constant throughout the test and equal for all examinees. In the OSLM, by
contrast, the difficulties are allowed to vary linearly as a function of practice, although they are
still assumed to be equal for all examinees. These assumptions are highly restrictive and may lead
to incorrect results when the assumed operations do not truly reflect the way in which individuals
actually solve the items, when the practice effects have a more complex pattern, or when there
are individual differences in the practice effects.

The proposed model is more flexible in that it accounts for differential contingent practice
effects. In this regard, the model allows for different patterns of change in the difficulty associated
with the cognitive operations throughout the test as a function of the persons’ particular response
patterns. However, the model still assumes that item difficulty is exclusively determined by the
cognitive operations involved in the item, an assumption that may not hold in all cases. For
instance, other item properties, such as those related with drawing features in figural items, may
also have an influence on item difficulty in certain types of tests. Nevertheless, provided that the
researcher is able to operationalize these features, they could be incorporated into the matrix W
to account for their associated effects (e.g., Lozano & Revuelta, 2020). Likewise, learning effects
during the test are still assumed to be completely explained by the accumulated practice in the
assumed operations, which may be a strong assumption for tests where there are other learning
sources to consider (e.g., becoming familiar with test instructions, item response format, item
time limit, etc). Additionally, the practice effects are still assumed to be linear throughout the
test, which must not necessarily be the case. For instance, a learning effect may show a quadratic
trend, with a smaller effect at the beginning of the test and a more pronounced effect toward the
end, or vice versa. In such a case, a nonlinear variant of the model, such as that proposed by Spada
(1977) and Spada and McGaw (1985) for the OSLM, may be useful.

The model also makes the assumption that practice effects do not differ across items as a
function of itemdifficulty. In this regard, the amount of learning or fatigue derived fromperforming
an operation in a difficult item or in an easy one is assumed to be the same. Although this
assumption may be true for many educational and psychological tests in which the items do not
show a wide range of difficulty (such as the fraction arithmetic test used in the present study:
Range = .310− .795, Var = 0.023, Sd = 0.151), it may not hold for tests with greater variability
in item difficulty. In such cases, if there is a suspicion of interaction effects between operations
combined in the same items, it may be useful to incorporate the corresponding product terms into
the matrixW to account for the extra difficulty and practice effects derived from said interactions
instead of using an additive model.

Finally, unlike the OSLM, the model accounts for individual learning patterns based on
the persons’ particular response patterns to the items. However, the model still assumes that
the learning effects are the same for all examinees, which may be a too restrictive assumption
for particular sets of data. In this regard, future studies may be directed to extend the proposed
framework to incorporate individual differences in learning (e.g., Embretson, 1991; Rijmen et
al., 2002). Regarding future research, it would also be interesting that future studies investigate
the influence of practice effects on dimensionality assessment and, more particularly, on over-
factoring.

In summary, the proposed model has demonstrated its usefulness in detecting and measuring
learning effects during a psychometric test, providing a promising range of applicability. In this
regard, the model may be useful in a variety of settings. For instance, the model allows for the
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assessment of competence acquisition in developmental and educational contexts (e.g., Spada,
1977; Spada & McGaw, 1985), for the substantive analysis of the processes underlying the item
responses (e.g., Lozano &Revuelta, 2020, 2021), or for the study of differences in learning ability
between populations (e.g., normal vs impaired, children at different developmental stages, etc.).
However, the model may also bring novel and interesting methodological applications in the field
of adaptive testing.Based on a prior assessment of the difficulty andpractice effects associatedwith
each cognitive operation, the model allows for on-the-fly estimation of the difficulty that an item
would show in any position within the test as a function of the operations involved in the item and
the person’s response pattern to previous items. This opens the door for future studies to investigate
the applicability of the model to deal with practice effects in computerized adaptive testing.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Albert, J. H., & Chib, S. (1995). Bayesian residual analysis for binary response regression models. Biometrika, 82,
747–769.

Bishop, Y. M., Fienberg, S. E., & Holland, P. W. (2007). Discrete multivariate analysis: Theory and practice. New York,
NY: Springer.

Brooks, S., Gelman, A., Jones, G. L., & Meng, X.-L. (2011). Handbook of Markov chain Monte Carlo. Boca Raton, FL:
Chapman and Hall/CRC.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... & Riddell, A. (2017). Stan: A
probabilistic programming language. Journal of Statistical Software, 76, 1–32.

Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educa-
tional and Behavioral Statistics, 22, 265–289.

Cox, C. (1984). An elementary introduction to maximum likelihood estimation for multinomial models: Birch’s theorem
and the delta method. The American Statistician, 38, 283–287.

De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach.
New York, NY: Springer.

de la Torre, J. (2009). DINAmodel and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics,
34, 115–130.

Deonovic, B., Yudelson, M., Bolsinova, M., Attali, M., & Maris, G. (2018). Assessment meets learning: On the relation
between item response theory and Bayesian knowledge tracing. Behaviormetrika. arXiv preprint arXiv:1803.05926.

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–222.
Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56,

495–515.
Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 3,

359–374.
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3–26.
Fischer, G. H. (1995). The linear logistic test model. In G. H. Fischer & I.W.Molenaar (Eds.),Rasch models: Foundations,

recent developments, and applications (pp. 131–155). New York, NY: Springer.
Fischer, G. H., & Formann, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the

parameters. Applied Psychological Measurement, 6, 397–416.
Fox, J. P. (2010). Bayesian item response modeling: Theory and applications. New York, NY: Springer.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd

ed.). Boca Raton, FL: Chapman & Hall/CRC Press.
Gelman, A., Hwang, J., &Vehtari, A. (2014). Understanding predictive information criteria for Bayesianmodels. Statistics

and Computing, 24, 997–1016.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:03, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1803.05926
https://www.cambridge.org/core


J. H. LOZANO, J. REVUELTA 1015

Gelman, A., Lee, D., & Guo, J. (2015). Stan. A probabilistic programming language for Bayesian inference and optimiza-
tion. Journal of Educational and Behavioral Statistics, 40, 530–543.

Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies.
Statistica Sinica, 6, 733–807.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7,
457–472.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

George, A. C., Robitzsch, A., Kiefer, T., Groß, J., & Ünlü, A. (2016). The R package CDM for cognitive diagnosis models.
Journal of Statistical Software, 74, 1–24.

Hoffman, M. D., & Gelman, A. (2014). The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15, 1593–1623.

Hohensinn, C., Kubinger, K. D., Reif, M., Holocher-Ertl, S., Khorramdel, L., & Frebort, M. (2008). Examining item-
position effects in large-scale assessment using the Linear Logistic Test Model. Psychology Science Quarterly, 50,
391–402.

Ip, E. H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response
models. British Journal of Mathematical and Statistical Psychology, 63, 395–416.

Kempf, W. F. (1977). Dynamic models for the measurement of traits in social behavior. In W. F. Kempf & B. H. Repp
(Eds.), Mathematical models for social psychology (pp. 14–58). London, UK: Wiley.

Levy, R., & Mislevy, R. J. (2016). Bayesian psychometric modeling. Boca Raton, FL: Chapman and Hall/CRC.
Lozano, J. H., &Revuelta, J. (2020). Investigating operation-specific learning effects in the Raven’s Advanced Progressive

Matrices: A linear logistic test modeling approach. Intelligence, 82, 101468.
Lozano, J. H., & Revuelta, J. (2021). Bayesian estimation and testing of a linear logistic test model for learning during

the test. Applied Measurement in Education, 34.
Meng, X.-L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 1142–1160.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations

by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.
Neal, R. M. (1994). An improved acceptance procedure for the hybrid Monte Carlo algorithm. Journal of Computational

Physics, 111, 194–203.
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, & X.-L. Meng (Eds.),

Handbook of Markov chain Monte Carlo (pp. 116–162). Boca Raton, FL: Chapman and Hall/CRC.
R Development Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foun-

dation for Statistical Computing. https://www.R-project.org/.
Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen, Denmark: Danish Institute

for Educational Research.
Revuelta, J. (2012). Logistic response models with item interactions. British Journal of Mathematical and Statistical

Psychology, 65, 32–55.
Rijmen, F., De Boeck, P., & Leuven, K. U. (2002). The random weights linear logistic test model. Applied Psychological

Measurement, 26, 271–285.
Scheiblechner, H. (1972). Das lernen und lösen komplexer denkaufgaben. Zeitschrift für Experimentelle und Angewandte

Psychologie, 19, 476–506.
Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a Bayesian approach. Journal of

Educational Measurement, 42, 375–394.
Spada, H. (1977). Logistic models of learning and thought. In H. Spada & W. F. Kempf (Eds.), Structural models of

thinking and learning (pp. 227–262). Bern, Germany: Huber.
Spada, H., & McGaw, B. (1985). The assessment of learning effects with linear logistic test models. In S. Embretson

(Ed.), Test design: New directions in psychology and psychometrics (pp. 169–194). New York, NY: Academic Press.
Stan Development Team (2019). Stan modeling language: user’s guide and reference manual. Version 2.19.2. http://mc-

stan.org.
Tatsuoka, K. K. (1984).Analysis of errors in fraction addition and subtraction problems. Final Report for NIE-G-81-0002,

University of Illinois, Urbana-Champaign.
Vehtari, A., Gelman, A., & Gabry, J. (2016). loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models.

R package version 0.1.6. Available online at: https://github.com/jgabry/loo/
Verguts, T., & De Boeck, P. (2000). A Rasch model for detecting learning while solving an intelligence test. Applied

Psychological Measurement, 24, 151–162.
Verhelst, N. D., & Glas, C. A. W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in

singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.
Watanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14,

867–897.

Manuscript Received: 19 AUG 2019
Accepted: 17 JUN 2021
Published Online Date: 30 AUG 2021

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:03, subject to the Cambridge Core terms of use.

https://www.R-project.org/
http://mc-stan.org
http://mc-stan.org
https://github.com/jgabry/loo/
https://www.cambridge.org/core

	A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test
	Abstract
	1 Introduction
	2 Model Specification
	2.1 Operation-specific Learning Model
	2.2 Operation-specific Contingent Learning Model
	2.3 Operation-specific Differential Contingent Learning Model

	3 Model Identification
	4 Bayesian Framework
	4.1 Model Estimation
	4.2 Model Evaluation
	4.3 Model Comparison and Selection

	5 Simulation Study
	5.1 Method
	5.2 Results
	5.3 Conclusions

	6 Empirical Study
	6.1 Method
	6.2 Results
	6.3 Conclusions

	7 Discussion
	References




