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Abstract. For β > 1, let Tβ be the β-transformation on [0, 1). Let β1, . . . , βd > 1 and let
P = {Pn}n≥1 be a sequence of parallelepipeds in [0, 1)d . Define

W(P) = {x ∈ [0, 1)d : (Tβ1 × · · · × Tβd )
n(x) ∈ Pn infinitely often}.

When each Pn is a hyperrectangle with sides parallel to the axes, the ‘rectangle to
rectangle’ mass transference principle by Wang and Wu [Mass transference principle
from rectangles to rectangles in Diophantine approximation. Math. Ann. 381 (2021)
243–317] is usually employed to derive the lower bound for dimH W(P), where dimH

denotes the Hausdorff dimension. However, in the case where Pn is still a hyperrectangle
but with rotation, this principle, while still applicable, often fails to yield the desired
lower bound. In this paper, we determine the optimal cover of parallelepipeds, thereby
obtaining dimH W(P). We also provide several examples to illustrate how the rotations of
hyperrectangles affect dimH W(P).
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1. Introduction
The classical theory of Diophantine approximation is concerned with finding good
approximations of irrationals. For any irrational x ∈ [0, 1], if one can find infinitely
many rationals p/q such that |x − p/q| < q−τ with τ > 2, then x is said to be τ -well
approximable. In [10], Hill and Velani introduced a dynamical analogue of the classical
theory of τ -well approximable numbers. The study of these sets is known as the so-called
shrinking target problem. More precisely, consider a transformation T on a metric space
(X, d). Let {Bn}n≥1 be a sequence of balls with radius r(Bn) → 0 as n → ∞. The
shrinking target problem concerns the size, especially the Hausdorff dimension, of the set

W(T , {Bn}n≥1) := {x ∈ X : T nx ∈ Bn i.o.},
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where ‘i.o.’ stands for infinitely often. Since its initial introduction, W(T , {Bn}n≥1) has
been studied intensively in many dynamical systems. See, for example, [1, 2, 4, 8, 10–16,
20, 22] and reference therein.

The set W(T , {Bn}n≥1) can be thought of as trajectories which hit shrinking targets
{Bn}n≥1 infinitely often. Naturally, one would like to consider different targets, such as
hyperrectangles, rather than just balls. To this end, motivated by the weighted theory of
Diophantine approximation, the following set had also been introduced in β-dynamical
system. For d ≥ 1, let β1, . . . , βd > 1 and let P = {Pn}n≥1 be a sequence of paral-
lelepipeds in [0, 1)d . Define

W(P) = {x ∈ [0, 1)d : (Tβ1 × · · · × Tβd )
n(x) ∈ Pn i.o.},

where Tβi : [0, 1) → [0, 1) is given by

Tβi x = βix − �βix�.

Here, �·� denotes the integer part of a real number. Under the assumption that each Pn is a
hyperrectangle with sides parallel to the axes, the Hausdorff dimension of W(P), denoted
by dimH W(P), was calculated by Li et al [15, Theorem 12]. It should be pointed out
that their result crucially relies on this assumption. To see this, observe that W(P) can be
written as

∞⋂
N=1

∞⋃
n=N

(Tβ1 × · · · × Tβd )
−nPn.

In the presence of such an assumption, (Tβ1 × · · · × Tβd )
−nPn will be the union of

hyperrectangles whose sides are also parallel to the axes. Thus, the ‘rectangle to rectangle’
mass transference principle by Wang and Wu [21] can be employed to obtain the desired
lower bound of dimH W(P). However, if this assumption is removed, then (Tβ1 × · · · ×
Tβd )

−nPn is in general the union of parallelepipeds, and the mass transference principle,
while still applicable, does not work well for this case. The main purpose of this paper
is to determine dimH W(P) without assuming each Pn is a hyperrectangle. We further
show thatW(P) has large intersection properties introduced by Falconer [6], which means
that the set W(P) belongs, for some 0 ≤ s ≤ d , to the class G s([0, 1]d) of Gδ-sets, with
the property that any countable intersection of bi-Lipschitz images of sets in G s([0, 1]d)
has Hausdorff dimension at least s. In particular, the Hausdorff dimension of W(P) is at
least s.

Let

f = diag(β−1
1 , . . . , β−1

d ).

In slightly less rigorous words, the set (Tβ1 × · · · × Tβd )
−nPn consists of parallelepipeds

with the same shape as f nPn. Note that up to a translation, each Pn can be uniquely
determined by d column vectors α(n)j . In Lemma 3.3, we establish the existence of a

rearrangement f nα(n)i1 , . . . , f nα(n)id of f nα(n)1 , . . . , f nα(n)d , which ensures that upon
the Gram–Schmidt process, the resulting pairwise orthogonal vectors, denoted by
γ
(n)
1 , . . . , γ (n)d , satisfy the inequality

|γ (n)1 | ≥ · · · ≥ |γ (n)d | > 0. (1.1)
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Most importantly, this yields that up to a multiplicative constant, the optimal cover of
f nPn is the same as that of the hyperrectangle with sidelengths |γ (n)1 | ≥ · · · ≥ |γ (n)d | > 0.
To describe the optimal cover of (Tβ1 × · · · × Tβd )

−nPn, let

An = {β−n
1 , . . . , β−n

d , |γ (n)1 |, . . . , |γ (n)d |},
and define

sn := min
τ∈An

{ ∑
i∈Kn,1(τ )

1 +
∑

i /∈Kn,1(τ )

−n log βi
log τ

+
∑

i∈Kn,2(τ )

(
1 − log |γ (n)i |

log τ

)}
,

where the sets Kn,1(τ ) and Kn,2(τ ) are defined as

Kn,1(τ ) := {1 ≤ i ≤ d : β−n
i ≤ τ } and Kn,2(τ ) = {1 ≤ i ≤ d : |γ (n)i | ≥ τ }. (1.2)

THEOREM 1.1. Let P = {Pn}n≥1 be a sequence of parallelepipeds. For any n ∈ N, let
γ
(n)
1 , . . . , γ (n)d be the vectors described in equation (1.1). Then,

dimH W(P) = lim sup
n→∞

sn =: s∗.

Further, we have W(P) ∈ G s∗([0, 1]d).

Remark 1.2. In fact, orthogonalizing the vectors f nα(n)1 , . . . , f nα(n)d in different orders
will result in different pairwise orthogonal vectors. However, not all of them can be well
used to illustrate the optimal cover of f nPn, only those satisfying equation (1.1) do. For
example, let P be a parallelogram which is determined by two column vectors α1 = (1, 0)

and α2 = (m, m)
, m > 1. Orthogonalizing in the order of α1 and α2 (respectively α2

and α1), we get the orthogonal vectors γ1 = α1 = (1, 0)
 and γ2 = (0, m)
 (respectively
η1 = α2 = (m, m)
 and η2 = (1/2, −1/2)
). Denote the rectangles determined by γ1 and
γ2 (respectively η1 and η2) as R (respectively R̃). As one can easily see from Figure 1.
P is contained in the rectangle obtained by scaling R̃ by a factor of 2, whereas for R,
a factor of m is required. Note that |γ1| < |γ2|, while |η1| > |η2|. This simple example
partially inspires us to choose a suitable order to orthogonalize f nα(n)1 , . . . , f nα(n)d so
that the resulting vectors satisfy equation (1.1), which turns out to be crucial (see Lemma
3.3 and equations (3.2) and (3.3)).

Remark 1.3. Li et al [15, Theorem 12] studied an analogous problem, where Pn is
restricted to be the following form:

Pn =
d∏
i=1

[−ψi(n), ψi(n)],

and where ψi is a positive function defined on natural numbers for 1 ≤ i ≤ d .
They further posed an additional condition that lim supn→∞ − log ψi(n)/n < ∞
(1 ≤ i ≤ d), as their proof of lower bound for dimH W(P) relies on the ‘rectangle
to rectangle’ mass transference principle [21, Theorem 3.3], which demands a similar
condition. Their strategy is to investigate the accumulation points of the sequence
{(− log ψ1(n)/n, . . . , − log ψd(n)/n)}n≥1, and subsequently selecting a suitable
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FIGURE 1. Orthogonal in the order of α1 and α2 (left), α2 and α1 (right).

accumulation point to construct a Cantor subset of W(P), thereby obtaining the lower
bound for dimH W(P). However, if lim supn→∞ − log ψi(n)/n = ∞ for some i, they
illustrated by an example [15, §5.3] that this strategy may not achieve the desired lower
bound. This problem has been addressed in their recent paper [14]. We stress that Theorem
1.1 does not pose any similar condition on Pn, and our approach differs from [14].

To gain insight into Theorem 1.1, we present two examples to illustrate how the rotations
of rectangles affect the Hausdorff dimension of W(P).

Example 1.4. Let β1 = 2 and β2 = 4. Let {Hn}n≥1 be a sequence of rectangles with
Hn = [0, 2−n] × [0, 4−n]. For a sequence {θn}n≥1 with θn ∈ [0, π/2], let

Pn = RθnHn + (1/2, 1/2), (1.3)

where Rθ denotes the counterclockwise rotation by an angle θ . The translation (1/2, 1/2)
here is only used to ensure Pn ⊂ [0, 1)d . Suppose that θn ≡ θ for all n ≥ 1. For any n ≥ 1,
we have

|γ (n)1 | =
√

2−4n cos2 θ + 2−6n sin2 θ and |γ (n)2 | = 2−6n/|γ (n)1 |.
By Theorem 1.1, we get

dimH W(P) =
{

5/4 if θ ∈ [0, π/2),

1 if θ = π/2.

Example 1.5. Let Pn be as in equation (1.3) but with θn = arccos 2−an for some a > 0.
Then,

|γ (n)1 | =
√

2−n(4+2a) + 2−6n(1 − 2−na)2 and |γ (n)2 | = 2−6n/|γ (n)1 |.
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By Theorem 1.1, we get

dimH W(P) =
⎧⎨
⎩1 + 1 − a

4 − a
if a ≤ 1,

1 if a > 1.

The structure of the paper is as follows. In §2, we recall several notions and elementary
properties of β-transformation. In §3, we estimate the optimal cover of parallelepipeds in
terms of Falconer’s singular value function. In §4, we prove Theorem 1.1.

2. β-transformation
We start with a brief discussion that sums up various fundamental properties of
β-transformation.

For β > 1, let Tβ be the β-transformation on [0, 1). For any n ≥ 1 and x ∈ [0, 1), define
εn(x, β) = �βT n−1

β x�. Then, we can write

x = ε1(x, β)
β

+ ε2(x, β)
β2 + · · · + εn(x, β)

βn
+ · · ·,

and we call the sequence

ε(x, β) := (ε1(x, β), ε2(x, β), . . .)

the β-expansion of x. From the definition of Tβ , it is clear that, for n ≥ 1, εn(x, β) belongs
to the alphabet {0, 1, . . . , β − 1�}, where x� denotes the smallest integer greater than
or equal to x. When β is not an integer, then not all sequences of {0, 1, . . . , β − 1�}N are
the β-expansions of some x ∈ [0, 1). This leads to the notion of β-admissible sequence.

Definition 2.1. A finite or an infinite sequence (ε1, ε2, . . .) ∈ {0, 1, . . . , β − 1�}N is said
to be β-admissible if there exists an x ∈ [0, 1) such that the β-expansion of x begins with
(ε1, ε2, . . .).

Denote by �nβ the collection of all admissible sequences of length n. The following
result of Rényi [19] implies that the cardinality of �nβ is comparable to βn.

LEMMA 2.2. [19, equation (4.9)] Let β > 1. For any n ≥ 1,

βn ≤ #�nβ ≤ βn+1

β − 1
,

where # denotes the cardinality of a finite set.

Definition 2.3. For any εn := (ε1, . . . , εn) ∈ �nβ , we call

In,β(εn) := {x ∈ [0, 1) : εj (x, β) = εj , 1 ≤ j ≤ n}
an nth level cylinder.

From the definition, it follows that T nβ |In,β(εn) is linear with slope βn, and it maps the
cylinder In,β(εn) into [0, 1). If β is not an integer, then the dynamical system (Tβ , [0, 1))
is not a full shift, and so T nβ |In,β(εn) is not necessary onto. In other words, the length of
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In,β(εn) may be strictly less than β−n, which makes describing the dynamical properties
of Tβ more challenging. To get around this barrier, we need the following notion.

Definition 2.4. A cylinder In,β(εn) or a sequence εn ∈ �nβ is called β-full if it has maximal
length, that is, if

|In,β(εn)| = 1
βn

,

where |I | denotes the diameter of I .

When there is no risk of ambiguity, we will write full instead of β-full. The importance
of full sequences is based on the fact that the concatenation of any two full sequences is
still full.

PROPOSITION 2.5. [7, Lemma 3.2] An nth level cylinder In,β(εn) is full if and only if,
for any β-admissible sequence ε′

m ∈ �mβ with m ≥ 1, the concatenation εnε
′
m is still

β-admissible. Moreover,

|In+m,β(εnε
′
m)| = |In,β(εn)| · |Im,β(ε

′
m)|.

So, for any two full cylinders In,β(εn), Im,β(ε
′
m), the cylinder In+m,β(εnε

′
m) is also full.

For an interval I ⊂ [0, 1), letnβ(I) denote the set of full sequences εn of length n with
In,β(εn) ⊂ I . In particular, if I = [0, 1), then we simply write nβ instead of nβ([0, 1)).
For this case, the cardinality of nβ can be estimated as follows.

LEMMA 2.6. [17, Lemma 1.1.46] Let β > 1 and n ∈ N.
(1) If β ∈ N, then

#nβ = βn.

(2) If β > 2, then

#nβ >
β − 2
β − 1

βn.

(3) If 1 < β < 2, then

#nβ >
( ∞∏
i=1

(1 − β−i )
)
βn.

The general case I �= [0, 1) requires the following technical lemma due to Bugeaud and
Wang [4].

LEMMA 2.7. [4, Proposition 4.2] Let δ > 0. Let n0 ≥ 3 be an integer such that
(βn0)

1+δ < βn0δ . For any interval I ⊂ [0, 1) with 0 < |I | < n0β
−n0 , there exists a full

cylinder Im,β(εm) ⊂ I such that |I |1+δ < |Im,β(εm)| < |I |.

Now, we are ready to tackle with the general case.
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LEMMA 2.8. Let δ > 0. Let n0 ≥ 3 be an integer such that (βn0)
1+δ < βn0δ . Then, for

any interval I with 0 < |I | < n0β
−n0 , there exists a constant cβ > 0 depending on β such

that for any n ≥ −(1 + δ) logβ |I |,
#nβ(I) ≥ cβ |I |1+δβn.

Proof. Since |I | < n0β
−n0 , by Lemma 2.7, there exists a full cylinder Im,β(εm) satisfying

Im,β(εm) ⊂ I and |I |1+δ < |Im,β(εm)| = β−m < |I |.
For such m, we have n ≥ m whenever n ≥ −(1 + δ) logβ |I |. By Proposition 2.5, the
concatenation of two full sequences εn−m ∈ n−mβ and εm is still full. Thus,

#nβ(I) ≥ #n−mβ ≥ cββ
n−m ≥ cβ |I |1+δβn,

where the constant cβ > 0 depending on β is given in Lemma 2.6.

3. Optimal cover of parallelepipeds
The proof of Theorem 1.1 relies on finding efficient covering by balls of the lim sup set
W(P). With this in mind, we need to study the optimal cover of parallelepipeds, which is
closely related to its Hausdorff content.

In what follows, for geometric reasons, it will be convenient to equip Rd with
the maximal norm, and thus balls correspond to hypercubes. For any set E ⊂ Rd , its
s-dimensional Hausdorff content is given by

Hs∞(E) = inf
{ ∞∑
i=1

|Bi |s : E ⊂
∞⋃
i=1

Bi where Bi are open balls
}

.

In other words, the optimal cover of a Borel set can be characterized by its Hausdorff
content, which is generally estimated by putting measures or mass distributions on it,
following the mass distribution principle described below.

PROPOSITION 3.1. (Mass distribution principle [3, Lemma 1.2.8]) LetE be a subset of Rd .
If E supports a strictly positive Borel measure μ that satisfies

μ(B(x, r)) ≤ crs

for some constant 0 < c < ∞ and for every ball B(x, r), then Hs∞(E) ≥ μ(E)/c.

Following Falconer [5], when E is taken as a hyperrectangle R, its Hausdorff content
can be expressed as the so-called singular value function. For a hyperrectangle R ⊂ Rd

with sidelengths a1 ≥ a2 ≥ · · · ≥ ad > 0 and a parameter s ∈ [0, d], the singular value
function ϕs is defined by

ϕs(R) = a1 · · · amas−mm+1, (3.1)

where m = �s�.
The next lemma allows us to estimate the Hausdorff content of a Borel set inside a

hyperrectangle. Denote the d-dimensional Lebesgue measure by Ld .
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LEMMA 3.2. Let E ⊂ Rd be a bounded Borel set. Assume that there exists a
hyperrectangle R with sidelengths a1 ≥ a2 ≥ · · · ≥ ad > 0 such that E ⊂ R and
Ld(E) ≥ cLd(R) for some c > 0, then for any 0 < s ≤ d ,

c2−dϕs(R) ≤ Hs∞(E) ≤ ϕs(R).

Proof. The second inequality simply follows from E ⊂ R and equation (3.1). So, we only
need to prove the first one. Let ν be the normalized Lebesgue measure supported on E,
that is,

ν = Ld |E
Ld(E) .

For any 0 < s ≤ d , let m = �s� be the integer part of s. Now we estimate the ν-measure
of arbitrary ball B(x, r) with r > 0 and x ∈ E. The proof is split into two cases.

Case 1: 0 < r < ad . Then,

ν(B(x, r)) = Ld(E ∩ B(x, r))
Ld(E) ≤ Ld(R ∩ B(x, r))

cLd(R) ≤ (2r)d

ca1 · · · ad
= 2drs · rd−s
ca1 · · · amas−mm+1a

m+1−s
m+1 am+2 · · · ad

≤ 2drs

ca1 · · · amas−mm+1
.

Case 2: ai+1 ≤ r < ai for 1 ≤ i ≤ d − 1. It follows that

ν(B(x, r)) ≤ Ld(R ∩ B(x, r))
cLd(R) ≤ (2r)i · ai+1 · · · ad

ca1 · · · ad = 2i ri

ca1 · · · ai .

If i > m = �s�, then the right-hand side can be estimated in a way similar to Case 1,

2i ri

ca1 . . . ai
= 2i rs · ri−s
ca1 . . . ama

s−m
m+1a

m+1−s
m+1 am+2 · · · ai

≤ 2i rs

ca1 . . . ama
s−m
m+1

.

If i ≤ m = �s�, then i − s ≤ 0, and so

2i ri

ca1 . . . ai
= 2i rs · ri−s
ca1 . . . ai

≤ 2i rs · ai−si+1

ca1 . . . ai
= 2i rs

ca1 . . . aia
s−i
i+1

≤ 2i rs

ca1 . . . ama
s−m
m+1

,

where the last inequality follows from the fact that ai+1 ≤ · · · ≤ am+1.
With the estimation given above, by the mass distribution principle, we have

Hs∞(E) ≥ c2−da1 . . . ama
s−m
m+1 = c2−dϕs(R),

as desired.

By the above lemma, to obtain the optimal cover of a parallelepiped P, it suffices to find
a suitable hyperrectangle containing it. Since the optimal cover of P does not depend on
its location, we assume that one of its vertices lies in the origin. With this assumption, P is
uniquely determined by d column vectors, say α1, . . . , αd . Moreover, we have

P = {x1α1 + · · · + xdαd : (x1, . . . , xd) ∈ [0, 1]d}.
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LEMMA 3.3. Let P be a parallelepiped given above. There exists a hyperrectangle R such
that

P ⊂ R and Ld(P ) = 2−d(d+1)Ld(R).

Proof. We will employ the Gram–Schmidt process to α1, . . . , αd in a proper way to obtain
d pairwise orthogonal vectors that yield the desired hyperrectangle.

First, let γ1 = αi1 with αi1 = max1≤l≤d |αl |. For 1 < k ≤ d , let γk be defined
inductively as

γk = αik −
k−1∑
j=1

(αik , γj )
(γj , γj )

γj , (3.2)

where αik is chosen so that∣∣∣∣αik −
k−1∑
j=1

(αik , γj )
(γj , γj )

γj

∣∣∣∣ = max
l �=i1,...,ik−1

∣∣∣∣αl −
k−1∑
j=1

(αl , γj )
(γj , γj )

γj

∣∣∣∣. (3.3)

This is the standard Gram–Schmidt process and so γ1, . . . , γd are pairwise orthogonal. In
addition,

(αi1 , . . . , αid ) = (γ1, . . . , γd)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − (αi2 , γ1)

(γ1, γ1)
· · · − (αid , γ1)

(γ1, γ1)

0 1 · · · − (αid , γ2)

(γ2, γ2)
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.4)

Denote the rightmost upper triangular matrix by U. For any x = xi1αi1 + · · · + xid αid ∈ P
with (xi1 , . . . , xid ) ∈ [0, 1]d , we have

x = (αi1 , . . . , αid )

⎛
⎜⎝
xi1
...
xid

⎞
⎟⎠ = (γ1, . . . , γd)U

⎛
⎜⎝
xi1
...
xid

⎞
⎟⎠ .

The proof of Lemma 3.3 will be completed with the help of the following lemma.

LEMMA 3.4. The absolute value of each entry of U is not greater than 2.

Proof. For any 1 < k ≤ d , by the orthogonality of γ1, . . . , γk−1,

|γk|2 = (γk , γk) =
(
αik −

k−1∑
j=1

(αik , γj )
(γj , γj )

γj , αik −
k−1∑
j=1

(αik , γj )
(γj , γj )

γj

)

=
(
αik −

k−2∑
j=1

(αik , γj )
(γj , γj )

γj − (αik , γk−1)

(γk−1, γk−1)
γk−1, αik

−
k−2∑
j=1

(αik , γj )
(γj , γj )

γj − (αik , γk−1)

(γk−1, γk−1)
γk−1

)
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=
(
αik −

k−2∑
j=1

(αik , γj )
(γj , γj )

γj , αik −
k−2∑
j=1

(αik , γj )
(γj , γj )

γj

)
− (αik , γk−1)

2

(γk−1, γk−1)
≤ |γk−1|2,

where the last inequality follows from the definition of γk−1 (see equation (3.3)). This
gives

|γ1| ≥ |γ2| ≥ · · · ≥ |γd | > 0. (3.5)

By the above inequality and equation (3.3), for any 1 ≤ l ≤ k, it follows that

|γl−1| ≥ |γl | ≥
∣∣∣∣αik −

l−1∑
j=1

(αik , γj )
(γj , γj )

γj

∣∣∣∣ ≥
∣∣∣∣ (αik , γl−1)

(γl−1, γl−1)
γl−1

∣∣∣∣ −
∣∣∣∣αik −

l−2∑
j=1

(αik , γj )
(γj , γj )

γj

∣∣∣∣
≥

(∣∣∣∣ (αik , γl−1)

(γl−1, γl−1)

∣∣∣∣ − 1
)

|γl−1|,

which implies that ∣∣∣∣ (αik , γl−1)

(γl−1, γl−1)

∣∣∣∣ ≤ 2.

Now we proceed to prove Lemma 3.3.
Let (Ui1, . . . , Uid) be the ith row of U. Since 0 ≤ xik ≤ 1, by Lemma 3.4, we have∣∣∣∣∣∣∣(Ui1, . . . , Uid)

⎛
⎜⎝
xi1
...
xid

⎞
⎟⎠

∣∣∣∣∣∣∣ =
∣∣∣∣
d∑
k=1

Uikxik

∣∣∣∣ ≤ 2d ,

and so

x ∈ R := {x1γ1 + · · · + xdγd : (x1, . . . , xd) ∈ [−2d , 2d ]d}. (3.6)

Therefore, P ⊂ R which finishes the proof of the first point.
However, by an elementary result of linear algebra,

Ld(P ) = the absolute value of the determinant |(αi1 , . . . , αid )|
= the absolute value of the determinant |(γ1, . . . , γd)U |
= |γ1| · · · |γd | = 2−d(d+1)Ld(R), (3.7)

where the third equality follows from the fact that γ1, . . . , γd are pairwise orthogonal and
U is upper triangular with all diagonal entries equal to 1, and the last equality follows from
equation (3.6).

4. Proof of Theorem 1.1
Throughout, we write a � b if c−1 ≤ a/b ≤ c, and a � b if a ≤ cb for some unspecified
constant c ≥ 1.

4.1. Upper bound of dimH W(P). Obtaining upper estimates for the Hausdorff dimen-
sion of a lim sup set is usually straightforward, as it involves a natural covering argument.
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For 1 ≤ i ≤ d and any εin = (εi1, . . . , εin) ∈ �nβi , we always take

z∗i = εi1
βi

+ εi2

β2
i

+ · · · + εin

βni
(4.1)

to be the left endpoint of In,βi (ε
i
n). Write z∗ = (z∗1, . . . , z∗d). Then, W(P) is contained in

the following set:
∞⋂
N=1

∞⋃
n=N

⋃
ε1
n∈�nβ1

· · ·
⋃

εdn∈�nβd

(f nPn + z∗) =:
∞⋂
N=1

∞⋃
n=N

En. (4.2)

For any n ≥ 1, let f nα(n)1 , . . . , f nα(n)d be the vectors that determine f nPn. By Lemma 3.3
and equation (3.2), there is a hyperrectangle Rn with sidelengths 2d+1|γ (n)1 | ≥ · · · ≥
2d+1|γ (n)d | > 0 such that f nPn ⊂ Rn.

Recall that An = {β−n
1 , . . . , β−n

d , |γ (n)1 |, . . . , |γ (n)d |}, and for any τ ∈ An,

Kn,1(τ ) := {1 ≤ i ≤ d : β−n
i ≤ τ } and Kn,2(τ ) = {1 ≤ i ≤ d : |γ (n)i | ≥ τ }.

Let τ ∈ An. We now estimate the number of balls of diameter τ needed to cover the setEn.
We start by covering a fixed parallelepiped P := f nPn + z∗. In what follows, one can
regard P as a hyperrectangle, since P = f nPn + z∗ ⊂ Rn + z∗. It is easily verified that
we can find a collection Bn(P ) of balls of diameter τ that covers P with

#Bn(P ) �
∏

i∈Kn,2(τ )

|γ (n)i |
τ

.

Observe that the collection Bn(P ) will also cover other parallelepipeds contained in En
along the direction of the ith axis with i ∈ Kn,1(τ ). Namely, the collection of balls Bn(P )
simultaneously covers

�
∏

i∈Kn,1(τ )

τ

β−n
i

parallelepipeds. Since the number of parallelepipeds contained in En is � βn1 · · · βnd , one
needs at most

�
( ∏
i∈Kn,2(τ )

|γ (n)i |
τ

)
· (βn1 · · · βnd )

/ ∏
i∈Kn,1(τ )

τ

β−n
i

=
∏

i∈Kn,1(τ )

τ−1
∏

i /∈Kn,1(τ )

βni

∏
i∈Kn,2(τ )

|γ (n)i |
τ

(4.3)

balls of diameter τ to cover En.
Now suppose that s > s∗ = lim sup sn, where

sn := min
τ∈An

{ ∑
i∈Kn,1(τ )

1 +
∑

i /∈Kn,1(τ )

n log βi
− log τ

+
∑

i∈Kn,2(τ )

(
1 − log |γ (n)i |

log τ

)}
.
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Let ε < s − s∗. For any large n, we have s > sn + ε. Let τ0 ∈ An be such that the
minimum in the definition of sn is attained. In particular, equation (4.3) holds for τ0. The
s-volume of the cover of En is majorized by

�
( ∏
i∈Kn,1(τ0)

τ−1
0

∏
i /∈Kn,1(τ0)

βni

∏
i∈Kn,2(τ0)

|γ (n)i |
τ0

)
· τ s0

= exp
( ∑
i∈Kn,1(τ0)

− log τ0 +
∑

i /∈Kn,1(τ0)

n log βi +
∑

i∈Kn,2(τ0)

(log |γ (n)i | − log τ0)+ s log τ0

)

= exp
(

− log τ0

( ∑
i∈Kn,1(τ0)

1 +
∑

i /∈Kn,1(τ0)

n log βi
− log τ0

+
∑

i∈Kn,2(τ0)

(
1 − log |γ (n)i |

log τ0

)
− s

))

= exp(− log τ0(sn − s)) ≤ exp(ε log τ0).

Since the elements of An decay exponentially, the last equation is less than e−nδε for some
δ > 0 independent of n and ε. It follows from the definition of s-dimensional Hausdorff
measure that for any s, δ > 0 and ε given above,

Hs(W(P)) ≤ lim inf
N→∞

∞∑
n=N

e−nδε = 0.

Therefore, dimH W(P) ≤ s. Since this is true for all s > s∗, we have

dimH W(P) ≤ s∗ = lim sup
n→∞

sn.

4.2. Lower bound of dimH W(P). The proof crucially relies on the following lemma.

LEMMA 4.1. [9, Corollary 2.6] Let {Fn}n≥1 be a sequence of open sets in [0, 1]d and
F = lim sup Fn. Let s > 0. If for any 0 < t < s, there exists a constant ct such that

lim sup
n→∞

Ht∞(Fn ∩D) ≥ ct |D|d (4.4)

holds for all hypercubes D ⊂ [0, 1]d , then F ∈ G s([0, 1]d). In particular, dimH F ≥ s.

Remark 4.2. A weaker version by Persson and Reeve [18, Lemma 2.1] also applies to the
current proof, but is not adopted here because it results in a more complex proof.

Let

En =
⋃

ε1
n∈�nβ1

· · ·
⋃

εdn∈�nβd

(In,β1(ε
1
n)× · · · × In,βd (ε

d
n)) ∩ (f nPn + z∗),

where z∗ = (z∗1, . . . , z∗d) is defined as in equation (4.1).

LEMMA 4.3. For any 0 < t < s∗ = lim sup sn,

lim sup
n→∞

Ht∞(En ∩D) � |D|d
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holds for all hypercubes D ⊂ [0, 1]d , where the unspecified constant depends on d only.
Therefore, W(P) ∈ G s∗([0, 1]d) and, in particular,

dimH W(P) ≥ s∗.

Proof. Fix 0 < t < s∗. Write ε = s∗ − t . By definition, there exist infinitely many n such
that

sn > t . (4.5)

In view of Lemma 2.8, let D ⊂ [0, 1]d be a hypercube with |D| ≤ n0β
−n0
d , where n0 is

an integer such that (βin0)
1+ε/d < β

n0ε/d
i for 1 ≤ i ≤ d . Let n be an integer such that

equation (4.5) holds and for any 1 ≤ i ≤ d ,

n ≥ −(1 + ε/d) logβi |D| and β−n
i /2 ≤ |D|d+ε. (4.6)

Obviously, there are still infinitely many n that satisfy these conditions. Write D =
I1 × · · · × Id with |I1| = · · · = |Id |. The first inequality in equation (4.6) ensures that
Lemma 2.8 is applicable to bound #nβi (Ii) from below for 1 ≤ i ≤ d .

Recall from Lemma 3.3 and equation (3.2) that for any n ≥ 1, f nPn + z∗ is contained
in some hyperrectangle with sidelengths 2d+1|γ (n)1 | ≥ · · · ≥ 2d+1|γ (n)d | > 0. For any
n ∈ N satisfying equations (4.5) and (4.6), define a probability measure μn supported on
En ∩D by

μn =
∑

ε1
n∈nβ1

(I1)

· · ·
∑

εdn∈nβd (Id )

νz∗

#nβ1
(I1) · · · #nβd (Id)

, (4.7)

where νz∗ is defined by

νz∗ := Ld |f nPn+z∗

Ld(f nPn + z∗)
= Ld |f nPn+z∗

|γ (n)1 | · · · |γ (n)d |
. (4.8)

The equality Ld(f nPn + z∗) = |γ (n)1 | · · · |γ (n)d | can be deduced from equation (3.7).
Let x ∈ En ∩D and r > 0. Suppose that x ∈ f nPn + y∗ ⊂ En ∩D. Now, we estimate

μn(B(x, r)), and the proof is divided into four distinct cases.
Case 1: r ≥ |D|. Clearly, since t < s ≤ d ,

μn(B(x, r)) ≤ 1 = |D|d
|D|d ≤ rd

|D|d ≤ rt

|D|d .

Case 2: r ≤ |γ (n)d |. Note that in the definition of μn, all the cylinders under consider-
ation are full. We see that the ball B(x, r) intersects at most 2d parallelepipeds with the
form f nPn + z∗. For any such parallelepiped, by the definition of νz∗ (see equation (4.8))
and Lemma 2.8, we have

νz∗(B(x, r))
#nβ1

(I1) · · · #nβd (Id)
� 1
βn1 · · · βnd |D|d+ε · rd

|γ (n)1 | · · · |γ (n)d |

= rd−
∑d
i=1(log βni +log |γ (n)i |)/ log r

|D|d+ε . (4.9)
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Since f nPn + z∗ is contained in some In,β1(ε
1
n)× · · · × In,βd (ε

d
n), by a volume argument,

we have
∑d
i=1(log βni + log |γ (n)i |) < 0. This combined with r ≤ |γ (n)d | < 1 gives

d −
d∑
i=1

(log βni + log |γ (n)i |)/ log r ≥ d −
d∑
i=1

(log βni + log |γ (n)i |)/ log |γ (n)d |

=
d∑
i=1

n log βi
− log |γ (n)d |

+
d∑
i=1

1 − log |γ (n)i |
log |γ (n)d |

. (4.10)

One can see that the right-hand side of equation (4.10) is just the one in equation (1.2)
defined by choosing τ = |γ (n)d |, since

Kn,1(|γ (n)d |) = ∅ and Kn,2(|γ (n)d |) = {1, . . . , d}.

This means that the quantity in equation (4.10) is greater than or equal to sn, and so by
equation (4.9), one has

μn(B(x, r)) � 2d · rsn

|D|d+ε � rsn−ε

|D|d ≤ rt

|D|d .

Case 3: β−n
1 < r ≤ |D|. In this case, the ball B(x, r) is sufficiently large so that for any

hyperrectangle R := In,β1(ε
1
n)× · · · × In,βd (ε

d
n),

B(x, r) ∩ R �= ∅ �⇒R ⊂ B(x, 3r).

A simple calculation shows that B(x, r) intersects at most � rdβn1 · · · βnd hyperrectangles
with the form In,β1(ε

1
n)× · · · × In,βd (ε

d
n). By the definition of μn, one has

μn(B(x, r)) � 1
#nβ1

(I1) · · · #nβd (Id)
· rdβn1 · · · βnd

� rd

|D|d+ε ≤ rd−ε

|D|d ≤ rt

|D|d .

Case 4: Arrange the elements in An in non-descending order. Suppose that τk+1 ≤ r <

τk with τk and τk+1 being two consecutive terms in An. Let

Kn,1(τk+1) := {1 ≤ i ≤ d : β−n
i ≤ τk+1} and Kn,2(τk) = {1 ≤ i ≤ d : |γ (n)i | ≥ τk}

be defined in the same way as in equation (1.2). It is easy to see that B(x, r) can intersects
at most

�
∏

i∈Kn,1(τk+1)

rβni
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parallelepipeds with positive μn-measure. Moreover, the μn-measure of the intersection
of each parallelepiped with B(x, r) is majorized by

� 1
|D|d+εβn1 · · · βnd

· 1

|γ (n)1 | · · · |γ (n)d |
·

∏
i∈Kn,2(τk)

r ·
∏

i /∈Kn,2(τk)

|γ (n)i |

= 1
|D|d+εβn1 · · · βnd

·
∏

i∈Kn,2(τk)

r

|γ (n)i |
.

Therefore,

μn(B(x, r)) �
( ∏
i∈Kn,1(τk+1)

rβni

)
·
(

1
|D|d+εβn1 · · · βnd

·
∏

i∈Kn,2(τk)

r

|γ (n)i |

)

= 1
|D|d+ε ·

∏
i∈Kn,1(τk+1)

r ·
∏

i /∈Kn,1(τk+1)

β−n
i ·

∏
i∈Kn,2(τk)

r

|γ (n)i |

= rs(r)

|D|d+ε ,

where

s(r) =
∑

i∈Kn,1(τk+1)

1 +
∑

i /∈Kn,1(τk+1)

−n log βi
log r

+
∑

i∈Kn,2(τk)

(
1 − log |γ (n)i |

log r

)
.

Clearly, as a function of r, s(r) is monotonic on the interval [τk+1, τk]. So the minimal
value is attained when r = τk+1 or τk . First, suppose that the minimum is attained at r =
τk . If Kn,1(τk) = Kn,1(τk+1), then there is nothing to be proved. So we may assume that
Kn,1(τk) �= Kn,1(τk+1). Since Kn,1(τk+1) � Kn,1(τk), one can see that τk = β−n

j for some
j and

Kn,1(τk) = Kn,1(τk+1) ∪ {j}.
It follows that∑

i∈Kn,1(τk+1)

1 +
∑

i /∈Kn,1(τk+1)

−n log βi
log τk

=
∑

i∈Kn,1(τk)

1 +
∑

i /∈Kn,1(τk)

−n log βi
log τk

,

which implies that

s(r) ≥ sn.

By a similar argument, one still has s(r) ≥ sn if the minimum is attained at r = τk+1.
Therefore,

μn(B(x, r)) � rsn

|D|d+ε ≤ rsn−ε

|D|d ≤ rt

|D|d .

Summarizing the estimates of the μn-measures of arbitrarily balls presented in
Cases 1–4, we get

μn(B(x, r)) � rt

|D|d for all r > 0,
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where the unspecified constant does not depend on D. Finally, by the mass distribution
principle,

Ht∞(En ∩D) � |D|d .

This is true for infinitely many n, and the proof is completed.

Acknowledgements. This work was supported by NSFC (No. 1240010704). The author
would like to thank Prof. Lingmin Liao for bringing this problem to his attention.
Additionally, the author is grateful to the anonymous referees for their patience and efforts
to improve the quality of the manuscript.

REFERENCES

[1] D. Allen and B. Bárány. On the Hausdorff measure of shrinking target sets on self-conformal sets.
Mathematika 67 (2021), 807–839.

[2] B. Bárány and M. Rams. Shrinking targets on Bedford–McMullen carpets. Proc. Lond. Math. Soc. (3) 117
(2018), 951–995.

[3] C. J. Bishop and Y. Peres. Fractals in Probability and Analysis. Cambridge University Press, Cambridge,
2017.

[4] Y. Bugeaud and B. Wang. Distribution of full cylinders and the Diophantine properties of the orbits in
β-expansions. J. Fractal Geom. 1(2) (2014), 221–241.

[5] K. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103(2)
(1988), 339–350.

[6] K. Falconer. Sets with large intersection properties. J. Lond. Math. Soc. (2) 49(2) (1994), 267–280.
[7] A. Fan and B. Wang. On the lengths of basic intervals in beta expansions. Nonlinearity 25(5) (2012),

1329–1343.
[8] Y. He. Path-dependent shrinking target problems in beta-dynamical systems. Nonlinearity 36 (2023),

6991–7006.
[9] Y. He. A unified approach to mass transference principle and large intersection property. Preprint, 2024,

arXiv:2402.00513.
[10] R. Hill and S. Velani. Metric Diophantine approximation in Julia sets of expanding rational maps. Publ.

Math. Inst. Hautes Études Sci. 85 (1997), 193–216.
[11] R. Hill and S. Velani. The shrinking target problem for matrix transformations of tori. J. Lond. Math. Soc.

(2) 60 (1999), 381–398.
[12] M. Hussain and W. Wang. Higher-dimensional shrinking target problem for beta dynamical systems. J. Aust.

Math. Soc. 114(3) (2023), 289–311.
[13] H. Koivusalo, L. Liao and M. Rams. Path-dependent shrinking targets in generic affine iterated function

systems. Preprint, 2022, arXiv:2210.05362.
[14] B. Li, L. Liao, S. Velani, B. Wang and E. Zorin. Diophantine approximation and the Mass Transference

Principle: incorporating the unbounded setup. Preprint, 2022, arXiv:2410.18578.
[15] B. Li, L. Liao, S. Velani and E. Zorin. The shrinking target problem for matrix transformations of tori:

revisiting the standard problem. Adv. Math. 421 (2023), Paper no. 108994.
[16] B. Li, B. Wang, J. Wu and J. Xu. The shrinking target problem in the dynamical system of continued

fractions. Proc. Lond. Math. Soc. (3) 108(1) (2014), 159–186.
[17] Y. Li. Some results on beta-expansions and generalized Thue–Morse sequences. PhD Thesis, Sorbonne

Université; South China University of Technology, 2021.
[18] T. Persson and H. Reeve. A Frostman type lemma for sets with large intersections, and an application to

Diophantine approximation. Proc. Edinb. Math. Soc. (2) 58(2) (2015), 521–542.
[19] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957),

477–493.
[20] L. Shen and B. Wang. Shrinking target problems for beta-dynamical system. Sci. China Math. 56 (2013),

91–104.
[21] B. Wang and J. Wu. Mass transference principle from rectangles to rectangles in Diophantine approxima-

tion. Math. Ann. 381 (2021), 243–317.
[22] B. Wang and G. Zhang. A dynamical dimension transference principle for dynamical Diophantine

approximation. Math. Z. 298 (2021), 161–191.

https://doi.org/10.1017/etds.2024.90 Published online by Cambridge University Press

https://arxiv.org/abs/2402.00513
https://arxiv.org/abs/2210.05362
https://arxiv.org/abs/2410.18578
https://doi.org/10.1017/etds.2024.90

	1 Introduction
	2 β-transformation
	3 Optimal cover of parallelepipeds
	4 Proof of Theorem 1.1
	4.1 Upper bound of dimH W(P)
	4.2 Lower bound of dimH W(P)

	Acknowledgements
	References

