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Abstract. It is shown that for a lattice I' in a semi-simple group of real rank 1 the
action on the boundary always admits an equivariant topological I'-factor. We also
show that there are no such factors for SL (n, Z) acting on P!, n=3.

Introduction

In his proof of the finiteness theorem in [3] and [4] Margulis classifies all measurable
T'-quotients of the maximal boundary G/P for an irreducible lattice I in a semi-
simple Lie group G (finite centre, no compact factors) of real rank at least two. In
fact, he shows that they are all of the form G/P' for some parabolic subgroup P'.
At the same time his method allows one to ‘construct’ non-trivial SL (2, Z)-quotients
of S' in the measurable sense. In fact, his method generalizes to some other rank
1 lattices.

At the end of his paper Margulis asks whether one could have topological
(Hausdorff) quotients for SL (n, Z) acting on P"~', n =2. R. Zimmer proved in [7]
that, for n >2, any such quotient is trivial. Here we first propose a geometrical
method to construct factors of the boundary for any lattice in a rank 1 group.
Measure-theoretically though, these quotients will be trivial. Then we present
another argument for the triviality for n = 2. For general I" and G the question is
still open. Our argument might essentially carry over to the case of split lattices.

1. The rank 1 case

To fix notation, let G be a connected simple Lie group without compact factors
of real rank 1. Let I be a lattice in G. H will denote the globally symmetric space
G/K for K a maximal compact subgroup of G. B will be the boundary of H. We
shall use the geometric interpretation of [2] for B, i.e. B is the set of equivalence
classes of asymptotic geodesics. Finally, M will be the locally symmetric space
ING/K.

We start with a closed geodesic @ in M. Pick a covering geodesic a in H and
an axial isometry y for @, i.e. y translates a into itself (cf. [2, § 6]). We identify a
geodesic with its pair of endpoints in B. Let (x, y) be the endpoints of a. Suppose
that v,(x, y) converges to a pair of distinct points (s, t) for some v, in I" (in the
cone topology) (cf. [2, § 2]) and let B be the geodesic joining s to ¢. Then any point
on B is a limit point of points on the vy,a’s. Since & is closed, its pre-image in H
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is closed and hence B € l'a. Since I is countable, there are at least two points on
B that lie on the same da for some § in I'. By uniqueness of geodesics in negative
curvature,

B =éa.

We summarize our discussion in:
LeEMMA 1. The orbit I'(x, y) is closed in B X B-diagonal.

Consider the equivalence relation ~ generated by A =I'(x, y): i.e. if (s5,¢) isin A
then so is (¢, s), and so on. Let I", denote the isotropy subgroup of ¢ in T

LEMMA 2. If y¢T'x and I', =T, then a ~ b iff either a = b or (a, b)e A or (b, a)€ A.

Proof. If a# b and a ~ b then a and b lie in the I'-orbit of either x or y. Hence
we assume that a = x. Now x ~ b iff there exists a chain z4, ..., z, such that

(x,z1)eA or (z1,x)eA and 2z ~zi.

If (z;, x)€ A then x €Ty, in contradiction to the assumptions. If (x, z,)€ A then
thereisa d eI s.t.

8(x, Y) = (x’ Z]).
By the assumption on the isotropy groups
y=2.

The same reasoning applies to y, and the lemma is clear. O

Suppose for the moment that a satisfies the assumptions of lemma 2. Then the
quotient space of B under ~ is Hausdorff by the two lemmas, and clearly the
action of I' on B factors through ~.

We have to see that the new action is not equivalent .to the old one. The axial
isometry <y fixes two points on B which are identified under ~. Moreover, there
are no new fixed points for v, since otherwise there is an s € B such that

(s, y8)=8(x,y) or (ys,s)=6(x,y)

for some & €. In either case this implies that y e 'x.

To verify the assumptions in lemma 2 first assume that I" does not have torsion.
{2, prop. 6.8] shows the equality of the isotropy groups (even if there is torsion).
If y =8x then 875‘1 has the geodesic through (y, 8y) as axis. On the other hand,
v fixes y and hence 8y, by [2, prop. 6.8]. Since every non-elliptic isometry of H
has at most two fixed points in B [2, prop. 6.5], § permutes x and y. If § is
non-elliptic, it has fixed points on the boundary, by the Brouwer fixed point theorem.
So 6 has at least three fixed points in B. In any case, 8° is elliptic and hence is a
torsion element, since an elliptic isometry in a lattice has finite order.

If T" has torsion not every axis a will satisfy the first assumption of lemma 2. But
most a will do.

Consider a fundamental region F for I' in H. The previous argument shows that,
if 5x =y, then 8 is elliptic. Hence 8 is a torsion element. In particular, 8> will fix
a pointwise. Since 8 is orientation preserving, é fixes a pointwise. By a conjugation
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we may assume that o goes through F. Since F is a fundamental domain, a cannot
pass through the interior of F. Therefore, an axis « that passes through the interior
of F satisfies the assumptions of lemma 2. Since the axes are dense in the geodesics
[6, lemma 8.3'], such an axis will always exist. We obtain the following:

PROPOSITION 1. Any lattice T in a non-compact real rank 1 connected semi-simple
Lie group G with finite centre has a non-trivial (Hausdorff) quotient of the action
on the boundary.

Proof. Consider the projection p : G » G', where G’ does not have compact factors.
Then p(T') is a lattice in G'. So we can apply the construction above. O

PrROPOSITION 1'. Let M be a manifold of non-positive curvature whose universal
cover H satisfies: any two boundary points are joined by a unique geodesic. Then
there always exists a non-trivial (Hausdorff) quotient of the action of w,(M) on the
boundary.

Proof. In the construction above we only used [2, props. 6.5, 6.8] which hold for
m1(M) for M satisfying our conditions (cf. [2]). Since (M) does not have torsion
(cf. [8, cor. 19.3)), any closed geodesic gives rise to a quotient. O

1. SL (n, Z) acting on P"™*
Let I'=SL (n, Z) for short.

PROPOSITION 2. All (Hausdorff) quotients of T acting on P"', n>2, are trivial.
We first observe:
LEMMA 3. Let a group T act on a compact Hausdorff space M. If the diagonal

action of T on M x M-diagonal is minimal, then all equivariant T-quotients of M
are trivial. (Recall that an action of a group is called minimal if every orbit is dense.)

Proof. Let Y be such a quotient and let C = C(M) = continuous functions on M
be the pullback of C(Y) to M. Then C is I'-invariant. If C # constants, pick fe C
such that

f(xo) # f(yo)

for some xo, yo in M. Pick neighbourhoods U, V of x,, yo such that f(U) is disjoint
from f(V). If x, # y, is any other pair of points in M, there exists a y € I" such that

YX1€ U and Yy1 € V.

Hence
fGer) # f(y1)
and C separates points. By Stone-Weierstrass
C=CM).
Gelfand duality yields
Y=M. O
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Proposition 2 follows from the stronger:

PROPOSITION 3. T acts minimally on P" ™' x P" " -diagonal.

Proof. First, on the level of P" ! itself, we have:

LeEMMA 4. T acts minimally on P" ™', n > 1.

Note. This is completely general: i.e. any lattice I" in a semi-simple Lie group G
without compact factors acts minimally on G/P, P any parabolic (cf. [6, lemma
8.5)). Of course, the case at hand is standard and follows from elementary arguments.
Now the proof of proposition 3 develops in two stages. For notation let ¥ be
the line through x for any x e R".
(1) Let ¢; be the standard basis of R". Let x eR", ¥ # &,. We claim that I'(é,, ¥)
is dense in P" ' x P"'-diagonal. The stabilizer subgroup I', of I at &; looks like

In particular, embed SL (n — 1, Z) into I, in the obvious way. Clearly, it suffices to
prove that I'(¢;, 7) is dense in P"~' xP"'-diagonal for any y in the closure of
I'o(¥). By lemma 4 and the above, we may assume that the coordinates
X2,..., X, of x are linearly independent over Q. Let § # Z be two lines and V, W
neighbourhoods of them. By lemma 4 there is a y eI such that y(é;) is in W,
Hence it suffices to find yo such that yo(¥)€ vy (V). Let £ =y '(§). We can find
v1€SL (n —1, Z) such that

v1(0, x2, ..., X,)
is close to
©0,2,...,t)
by lemma 4. Let x5, ..., x, be coordinates of

‘YI(O’ X250 00 xn)

and pick coordinates # for ¢ such that ¢ is close to x| for i>1. The x5,..., x,
are clearly linearly independent over Q. The group generated by them is dense in
R and we can find

1m2 “as m,

0

Y2 = id el
0

such that xi +m,x5+ -+ - m,x,, is close to t;. Since vy, leaves the other coordinates
alone we have finished.

(2) Consider any two lines y # Z. We claim that the closure of their I'-orbit
contains (X, €,) or (é,, ¥). We consider two cases:
(a) Z is rational. Then we have the well-known result:
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LEMMA 5. T'é, = rational lines (i.e. all coprime n-tuples of integers lie in I'(1, 0, . . .)).

Proof. For n =2 this is clear. For n>2 let (m, ..., m,) be a point on a given line
! with integer entries. Then [ lies in the plane spanned by

(my,...,m,_1,0) and é,.
By induction, pick y € SL (n — 1, Z) such that
Yél = (mh ey My, 0)
Then y '(I) lies in the plane spanned by €; and &, and we can use the case
n=2. (]
(b) Zisirrational. Then there are i, j such that z; and z; are rationally independent,
say i =2, j = 3. In particular, Zz,+ Zz3 is dense in R. Hence there are matrices
1msm30 --- 0

0
Yu =1 : . el

0
such that
Yoz >0, 22,...,2,)
as n -» oo while
Yy =(1+m3y,+m3ys, ys, y3,...).
If (23, 25) # (y2, y3), then

-1
m2y2tM3ys Y2 Y3~ Z3y222

3 - +00
myz,+miszs 2z msz,+m3zs

s

since the denominator stays bounded and w.l.0.g.
Im3|~>+0o,
unless the slopes and so the lines are the same. We find that
vy >(1,0,...)
and we have finished.
If (z2, z3) = (y2, y3), we can still pick v, as above. Let

a(zz, z3) = (y2, y3).

Then

Yy > (y1—azy, yz, .. ).
If

(z1, 22, 23) # (Y1, 2, ¥3)
then

,def
y1 = yl—azl;éO.

Notice that y, and y; are rationally independent, so one of (yi, y2) or (y3, y3) is
rationally independent, say the first. Since

(¥, y2) # (0, z2)
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we can apply the previous argument to (y}, y»). Instead of z; we could have used
any z; i > 3. We are left with the case

(22, 23, 2) = (y2, y3, ¥))
for all j, i.e.

Ny
Il
<

This is the final contradiction. O
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