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Abstract. It is shown that for a lattice F in a semi-simple group of real rank 1 the
action on the boundary always admits an equivariant topological F-factor. We also
show that there are no such factors for SL (n, Z) acting onP""1, n > 3 .

Introduction
In his proof of the finiteness theorem in [3] and [4] Margulis classifies all measurable
F-quotients of the maximal boundary G/P for an irreducible lattice F in a semi-
simple Lie group G (finite centre, no compact factors) of real rank at least two. In
fact, he shows that they are all of the form G/P' for some parabolic subgroup P'.
At the same time his method allows one to 'construct' non-trivial SL (2, Z)-quotients
of S1 in the measurable sense. In fact, his method generalizes to some other rank
1 lattices.

At the end of his paper Margulis asks whether one could have topological
(Hausdorff) quotients for SL (n, Z) acting on P""1, n >2. R. Zimmer proved in [7]
that, for n > 2, any such quotient is trivial. Here we first propose a geometrical
method to construct factors of the boundary for any lattice in a rank 1 group.
Measure-theoretically though, these quotients will be trivial. Then we present
another argument for the triviality for n > 2. For general F and G the question is
still open. Our argument might essentially carry over to the case of split lattices.

I. The rank 1 case
To fix notation, let G be a connected simple Lie group without compact factors
of real rank 1. Let F be a lattice in G. H will denote the globally symmetric space
G/K for K a maximal compact subgroup of G. B will be the boundary of H. We
shall use the geometric interpretation of [2] for B, i.e. B is the set of equivalence
classes of asymptotic geodesies. Finally, M will be the locally symmetric space
Y\G/K.

We start with a closed geodesic a in M. Pick a covering geodesic a in H and
an axial isometry y for a, i.e. y translates a into itself (cf. [2, § 6]). We identify a
geodesic with its pair of endpoints in B. Let (x, y) be the endpoints of a. Suppose
that yn(x, y) converges to a pair of distinct points (s, t) for some yn in F (in the
cone topology) (cf. [2, § 2]) and let /3 be the geodesic joining s to t. Then any point
on /3 is a limit point of points on the y«a's. Since a is closed, its pre-image in H
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is closed and hence /3 E Fa. Since F is countable, there are at least two points on
P that lie on the same 5a for some 8 in F. By uniqueness of geodesies in negative
curvature,

P=8a.

We summarize our discussion in:

LEMMA 1. The orbit T(x, y) is closed in B x B-diagonal.

Consider the equivalence relation ~ generated by A = F(x, y): i.e. if (s, t) is in A
then so is (t, s), and so on. Let F, denote the isotropy subgroup of t in F.

LEMMA 2. Ify£Tx and F* = Fy then a~b iff either a -b or {a, b)eA or (b, a)e A.
Proof. If a # b and a ~ b then a and b lie in the F-orbit of either x or y. Hence

we assume that a = x. Now x ~ b iff there exists a chain z\,...,zn such that

(x, zi)eA or (zi,x)eA and z,~z,+i.

If (zi,x)eA then xeFy, in contradiction to the assumptions. If (x, z{)eA then
there is a 5 e F s.t.

S(x, y) = (x, zx).

By the assumption on the isotropy groups

y = zx.

The same reasoning applies to y, and the lemma is clear. •

Suppose for the moment that a satisfies the assumptions of lemma 2. Then the
quotient space of B under ~ is Hausdorff by the two lemmas, and clearly the
action of F on B factors through ~ .

We have to see that the new action is not equivalent to the old one. The axial
isometry y fixes two points on B which are identified under ~ . Moreover, there
are no new fixed points for y, since otherwise there is an s e B such that

(s, ys) = S(x, y) or (ys, s) = S(x, y)

for some 8 E F. In either case this implies that y e Yx.
To verify the assumptions in lemma 2 first assume that F does not have torsion.

[2, prop. 6.8] shows the equality of the isotropy groups (even if there is torsion).
If y = 8x then SyS'1 has the geodesic through (y, 8y) as axis. On the other hand,
y fixes y and hence 8y, by [2, prop. 6.8]. Since every non-elliptic isometry of H
has at most two fixed points in B [2, prop. 6.5], 8 permutes x and y. If 8 is
non-elliptic, it has fixed points on the boundary, by the Brouwer fixed point theorem.
So 82 has at least three fixed points in B. In any case, 82 is elliptic and hence is a
torsion element, since an elliptic isometry in a lattice has finite order.

If F has torsion not every axis a will satisfy the first assumption of lemma 2. But
most a will do.

Consider a fundamental region F for F in H. The previous argument shows that,
if 8x = y, then 82 is elliptic. Hence 8 is a torsion element. In particular, 82 will fix
a pointwise. Since 8 is orientation preserving, 8 fixes a pointwise. By a conjugation
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we may assume that a goes through F~. Since F is a fundamental domain, a cannot
pass through the interior of F. Therefore, an axis a that passes through the interior
of F satisfies the assumptions of lemma 2. Since the axes are dense in the geodesies
[6, lemma 8.3'], such an axis will always exist. We obtain the following:

PROPOSITION 1. Any lattice F in a non-compact real rank 1 connected semi-simple
Lie group G with finite centre has a non-trivial {Hausdorff) quotient of the action
on the boundary.

Proof. Consider the projection p:G-> G', where G' does not have compact factors.
Then p(T) is a lattice in G'. So we can apply the construction above. •

PROPOSITION 1'. Let M be a manifold of non-positive curvature whose universal
cover H satisfies: any two boundary points are joined by a unique geodesic. Then
there always exists a non-trivial (Hausdorff) quotient of the action of v\(M) on the
boundary.

Proof. In the construction above we only used [2, props. 6.5, 6.8] which hold for
TT\(M) for M satisfying our conditions (cf. [2]). Since TT\(M) does not have torsion
(cf. [5, cor. 19.3]), any closed geodesic gives rise to a quotient. •

II. SL (n, Z) acting on P"'1

Let T = SL (n, Z) for short.

PROPOSITION 2. All (Hausdorff) quotients of F acting on P"~\ n > 2, are trivial.

We first observe:

LEMMA 3. Let a group F act on a compact Hausdorff space M. If the diagonal
action of F on Mx M-diagonal is minimal, then all equivariant T-quotients of M
are trivial. (Recall that an action of a group is called minimal if every orbit is dense.)

Proof. Let Y be such a quotient and let C c C(M) = continuous functions on M
be the pullback of C(Y) to M. Then C is F-invariant. If C#constants, pick / e C
such that

for some x0, yo in M Pick neighbourhoods U, V of x0, yo such that f(U) is disjoint
from /(V). If x\ # y i is any other pair of points in M, there exists a y s T such that

y*i e U and -yyi € V.

Hence

f(xi)*f(yi)

and C separates points. By Stone-Weierstrass

C = C(M).

Gelfand duality yields

Y = M. •
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Proposition 2 follows from the stronger:

PROPOSITION 3. F acts minimally on P""1 x P""1 -diagonal.

Proof. First, on the level of P""1 itself, we have:

LEMMA 4. F acts minimally on P""1, n > 1.

Note. This is completely general: i.e. any lattice F in a semi-simple Lie group G
without compact factors acts minimally on G/P, P any parabolic (cf. [6, lemma
8.5]). Of course, the case at hand is standard and follows from elementary arguments.

Now the proof of proposition 3 develops in two stages. For notation let x be
the line through x for any xeW.

(1) Let d be the standard basis of R". Let x eR", x * ex. We claim that Y{eux)
is dense in P""1 x P""1-diagonal. The stabilizer subgroup Fo of F at ex looks like

/* *
0 * • • •

\ o *
In particular, embed SL (n — 1, Z) into Fo in the obvious way. Clearly, it suffices to
prove that F(ei, y) is dense in P"~1xP"~1-diagonal for any y in the closure of
ro(x). By lemma 4 and the above, we may assume that the coordinates
x2,...,xn of x are linearly independent over Q. Let y ^ z be two lines and V, W
neighbourhoods of them. By lemma 4 there is a y e F such that y{e\) is in W.
Hence it suffices to find y0 such that yo(-£)6 y~l(Y)- Let 7=y~1(y). We can find
yi e SL (n - 1 , Z) such that

, x2,.. • , xn)

is close to

( 0 , t2,..., tn)

by lemma 4. Let x2,..., x'n be coordinates of

y i ( 0 , x2, •. •, xn)

and pick coordinates U for t such that /, is close to x\ for / > 1. The x'2,... ,x'n
are clearly linearly independent over Q. The group generated by them is dense in
R and we can find

\m2

0

0

mn

id
e F 0

such that x'i + m2x2 + • • • mnx'n is close to t\. Since y2 leaves the other coordinates
alone we have finished.

(2) Consider any two lines y ^ z. We claim that the closure of their F-orbit
contains (x, e\) or {eu x). We consider two cases:
(a) z is rational. Then we have the well-known result:
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LEMMA 5. Yei = rational lines (i.e. all coprime n-tuples of integers lie in Y(l, 0,...)).
Proof. For n = 2 this is clear. For n > 2 let (mi , . . . , mn) be a point on a given line
/ with integer entries. Then / lies in the plane spanned by

(mu ..., mn-u 0) and en.

By induction, pick y e SL (n -1, Z) such that

yet = (mi , . . . , mn_i, 0).

Then y~l(l) lies in the plane spanned by e\ and en and we can use the case
n=2. •
(A) z is irrational. Then there are /, / such that z, and z, are rationally independent,
say / = 2, / = 3. In particular, Zz2 + Zz3 is dense in U. Hence there are matrices

lm2m30 ••• 0\
0

7"= ': id
0

such that

ynz ^(0, z 2 , . . . , zn)
as n -* oo while

If (z2, z3) 5̂  (y2, y3), then

gy 3 ^y 2 | ^n y3

Z z 2 m

since the denominator stays bounded and w.l.o.g.

|m3|-»+oo,

unless the slopes and so the lines are the same. We find that

yBy-*(l,0,.. .)
and we have finished.

If (z2, z3) = (y2, y3), we can still pick yn as above. Let

a(z2, z3) = (y2, y3).
Then

If

(zi,z2, z3)#(yi,y2, y3)

then
def

yi =yi-azi^0.

Notice that y2 and y3 are rationally independent, so one of (y\, y2) or (y3, y3) is
rationally independent, say the first. Since
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we can apply the previous argument to (y[, y2). Instead of z\ we could have used
any z,-, i > 3. We are left with the case

(z2, z3, Zi) = (y2, y3, yd
for all i, i.e.

This is the final contradiction. •
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