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Abstract

We study the fields of values of the irreducible characters of a finite group of degree not divisible by a prime p. In

the case where ? = 2, we fully characterise these fields. In order to accomplish this, we generalise the main result

of [ILNT] to higher irrationalities. We do the same for odd primes, except that in this case the analogous results

hold modulo a simple-to-state conjecture on the character values of quasi-simple groups.

Dedicated to Gunter Malle on the occasion of his 60th birthday

1. Introduction

It is of great interest to study the values of the complex irreducible characters of a finite group �. If j is

a character (not necessarily irreducible) of a finite group �, the field of values Q(j) of j is the smallest

field containing j(6) for all 6 ∈ �. Since j(6) is a sum of >(6)-th roots of unity, Q(j) is a subfield of

the cyclotomic fieldQ= = Q(exp(2c8/=)), where = = |� | and 8 =
√
−1. Among the numerical invariants

which we can associate to an arbitrary character j of a finite group, the two most important are the

degree j(1) and the conductor of j, which is the smallest positive integer 5 such that Q(j) ⊆ Q 5
(that is, the absolute or global conductor of the field Q(j)). In general, there is nothing special about

the subfield Q(j) and the irrationalities admitted by j: it is not difficult to show that given any finite

abelian extension � of Q, there is a finite group � having some j ∈ Irr(�) such that Q(j) = �.

(See Theorem 2.2.) Surprisingly, this situation changes drastically if we know that j(1) is not divisible

by some prime ?. For instance, if j(1) is odd and Q(j) = Q(
√
3) for a square-free integer 3 ≠ −1,

then 3 ≡ 1 (mod 4). This is a consequence of the recent main result of [ILNT], whose proof uses the

classification of finite simple groups: if j(1) is odd, then either Q(j) is contained in the cyclotomic

field Q< for some odd integer < or 8 ∈ Q(j).
We consider the following deep problem in representation theory: for a given prime ?, what is the

set of abelian extensions

F? =
{
Q(j)/Q | j ∈ Irr?′ (�), � a finite group

}
,

where Irr?′ (�) is the set of complex irreducible characters of � of degree not divisible by ??
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In the first two main theorems in this paper, we solve this problem for ? = 2. First, we need to vastly

generalise the main result in [ILNT] (which is the case 0 = 2 of the following theorem).

Theorem A1. Suppose that j ∈ Irr(�) has odd degree and conductor 20<, where < is odd and

0 ∈ Z≥0. Then Q20 ⊆ Q(j).

Hence, if F/Q ∈ F2, by Theorem A1 we have thatQ20 ⊆ F, where 20 is the 2-part of the conductor of

the field F. (In this paper, we simply use conductor of F to denote the smallest 5 ≥ 1 such that F ⊆ Q 5 ,

whenever F/Q is an abelian extension in C.) To complete our work, we will show that these are all the

possible extensions in F2. This is not so easy to accomplish. In Section 2 we prove that many abelian

field extensions of Q – for instance, Q(
√

57) and Q(
√

65) – cannot be achieved in solvable groups.

However, we can prove that these extensions are attained in the realms of general finite (nonsolvable)

groups. The following result, together with Theorem A1, provides a complete determination of F2:

Theorem A2. Let F/Q be an abelian extension of Q with conductor = = 20<, where < is odd and

0 ∈ Z≥0. Suppose that Q20 ⊆ F. Then there exist a finite group � and j ∈ Irr2′ (�) such that F = Q(j).

In particular, if 3 ≠ −1 is a square-free integer, then Q(j) = Q(
√
3) for some finite group � and

some odd-degree irreducible character j ∈ Irr(�) precisely when 3 ≡ 1 (mod 4).

We are able to prove Theorem A1, using the classification of finite simple groups, only because we

prove something much stronger for quasi-simple groups. Recall that j% (or j |%) is the restriction of the

character j to the subgroup %.

Theorem A3. Suppose that � is a finite quasi-simple group, and j ∈ Irr(�) has odd degree and

conductor 20<, where < is odd and 0 ∈ Z≥0. If 0 ≥ 2, then there exists a 2-element 6 ∈ � such that

j(6) ∉ Q20−1 . Furthermore, for all 0 ≥ 0, we have Q(j%) = Q20 for % ∈ Syl2(�).

Theorem A3 shows something perhaps surprising: the field of values of Q(j%), if � is quasi-simple

and j(1) is odd, is a full cyclotomic field. (This is not true if j(1) is even, as shown by 2.A6.) We will

comment more on this later.

Our second set of main results is the ?-odd version of Theorems A1, A2 and A3. We characterise F?
modulo a natural question on the values of characters of quasi-simple groups (Conjecture B3). For many

quasi-simple groups we can answer this question (see Theorem 6.1); for others we cannot: surprising as

it may seem, the character values of certain quasi-simple groups are far from understood.

Theorem B1. Let ? be any prime and suppose that Conjecture B3 holds. Let � be any finite group and

let j ∈ Irr?′ (�) have conductor ?0<, where ? does not divide < and 0 ∈ Z≥0. Then ? does not divide

[Q?0 : (Q(j) ∩ Q?0 )].

Notice that for ? = 2, the conclusion of Theorem B1 is exactly Theorem A1. In order to prove the

?-odd analog of Theorem A2 – Theorem B2 – we will need a group-theoretic construction which is

also of independent interest (Theorem 3.3).

Theorem B2. Let F/Q be an abelian extension of Q with conductor = = ?0<, where ? does not divide

< and 0 ∈ Z≥0. Suppose that [Q?0 : (F ∩Q?0 )] is not divisible by ?. Then there exist a finite group �

and a character j ∈ Irr?′ (�) such that F = Q(j).

Conjecture B3. Let � be a finite quasi-simple group and ? be an odd prime, and set j ∈ Irr?′ (�).
Suppose 5 = ?0< is the conductor of j, where ? does not divide < and 0 ∈ Z≥0. Then there exists a

?-element 6 ∈ � such that Q(j(6)) ⊆ Q?0 and ? does not divide [Q?0 : Q(j(6))].

As mentioned already, if Conjecture B3 holds, then Theorems B1 and B2 completely determine the

set F? of fields of values of the ?′-degree irreducible characters in finite groups for every odd prime ?.

Some remarks are in order here. First, the conclusion of Conjecture B3 does not hold if ? divides

j(1): for example, SL6 (2) for ? = 3. More importantly, we do not know if the statement of Conjecture
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B3 holds true for every finite group; on the other hand, we have verified it for many quasi-simple groups,

as we have said, in Theorem 6.1. In fact, we have accumulated enough evidence for the following

conjecture, which would offer further new insights into the general problem of how the ?′-degree

characters of a finite group � restrict to a Sylow ?-subgroup % of �. This conjecture begins the last and

shortest part of this paper.

Conjecture C. Suppose that � is a finite group, ? is a prime and j ∈ Irr?′ (�). Suppose that j has

conductor ?0<, where ? does not divide < and 0 ∈ Z≥0. Let % ∈ Syl? (�). Then the degree of the

extension Q?0/Q(j%) is not divisible by ?.

Note that Conjecture C implies, among other results, that if j ∈ Irr(�) has odd degree and % ∈
Syl2(�), then j is 2-rational (i.e., has odd conductor) exactly when j% is rational-valued. This does

not seem to have been noticed before.

2. Solving the equation Q(j) = F

Before going into the main results of this paper, we prove in this section that given any abelian extension

�/Q, where � ⊆ C, there exist a finite group� and j ∈ Irr(�) such that � = Q(j). We also answer the

question of what are exactly the fields of values of groups of odd order (therefore generalising a classical

result of W. Burnside), and we determine the field of values of odd-degree irreducible characters of

solvable groups. We also do some preliminaries which are necessary for the rest of the paper.

Our notation for characters follows [Is2] and [N2]. If �/Q is an abelian extension of Q, then the

conductor 2(�) of � is the smallest integer = ≥ 1 such that � ⊆ Q=, where in this paper Q= denotes the

=-th cyclotomic field. In particular, 2(�) is odd or divisible by 4. Recall that the conductor 2(k) of a

character k of a group � is 2(Q(k)). If Q(k) ⊆ Q< for some integer < ≥ 1, then 2(k) divides <, by

elementary Galois theory. In particular, 2(k) divides the exponent of �. If ? is a prime, a character k is

?-rational if ? does not divide 2(k). If  ⊆ C, we denote by  (k) the smallest field containing  and

the values of k. A few times, if U and V are characters, we write  (U, V) to denote  (U) (V). If = ≥ 1

is an integer and ? is a prime, then =? is the largest power of ? dividing =. We remind the reader that

Gal(Qab/Q), where Qab is the field in C generated by all roots of unity, acts on Irr(�) for every finite

group, as well as Aut(�), and that both actions commute (see [N2, Chapters 2 and 3], for instance).

Lemma 2.1. Let � be a finite group, and let # be a normal subgroup of �. Let j ∈ Irr(�), let

\ ∈ Irr(#) be an irreducible constituent of j# , let ) be the stabiliser of \ in � and let k ∈ Irr() |\) be

the Clifford correspondent of j over \.

(i) We haveQ(j) ⊆ Q(k), and therefore 2(j) divides 2(k). Also,Q(j# ) ⊆ Q(\) andQ(\, j) = Q(k).
(ii) Let f ∈ Gal(Q(k)/Q(j)). If >(f) and |N� ())/) | are coprime, then f is trivial.

Proof. Since k� = j, by the induction formula we notice that Q(j) ⊆ Q(k). Thus Q(j) ⊆ Q2 (k) ,
and therefore 2(j) divides 2(k). Since k# is a multiple of \, notice that Q(\) ⊆ Q(k). By Clifford’s

theorem, j# is a sum of�-conjugates of \, and sinceQ(\) = Q(\6) for 6 ∈ �, we haveQ(j# ) ⊆ Q(\).
For the final part of (i), notice that if f ∈ Gal(Q(k)/Q(\, j)), then \f = \, jf = j and therefore

kf = k by the uniqueness in the Clifford correspondence.

For (ii), we have j = jf . Hence \f = \6 for some element 6 ∈ �, using Clifford’s theorem. Notice

then that 6 ∈ N� ()). As we said, recall that the action of � on Irr(#) and the Galois action commute.

Let @ = >(f). Now \ = \f
@

= \6
@

, so 6@ ∈ ) . Since |N� ())/) | and @ are coprime, it follows that

6 ∈ ) , so \f = \6 = \. Then kf = k, by the uniqueness in the Clifford correspondence, and we deduce

that f is trivial. �

Theorem 2.2. Let< ≥ 1 be an integer, and letQ ⊆ � ⊆ Q< be any subfield. Then there exists a solvable

finite group � of order < [Q< : �] having j ∈ Irr(�), of degree [Q< : �], such that Q(j) = �.

Proof. Let b be a primitive <th root of unity. Let � = 〈b〉, a cyclic group of order <. Let � =

Gal(Q</�). We have that � is naturally isomorphic to a subgroup of Aut(�). Now let � = �� be
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the semidirect product, and let _ ∈ Irr(�) be of order <. Notice that the stabiliser of _ in � is trivial.

Therefore _� = j ∈ Irr(�) by the Clifford correspondence. By Lemma 2.1(i), we have Q(j) ⊆ Q<.

We claim that Q(j) = �. In order to prove this, it is enough to show that f ∈ Gal(Q</Q) fixes j if

and only if f ∈ �. Of course, if f ∈ �, we have that f fixes j, since f ∈ �. Conversely, if f fixes j,

then we have that _ and _f lie under j. By Clifford’s theorem, we have _f = _g for some g ∈ �. Then

f = g ∈ �, and the proof of the theorem is complete. �

(We thank B. Sambale for pointing out to us that a version of Theorem 2.2 appeared in [FG].)

In Theorem 2.2 we cannot replace ‘solvable’ with ‘nilpotent’. This easily follows from the following:

Theorem 2.3. Suppose that ? is odd and � is a ?-group. Let j ∈ Irr(�). Then Q(j) = Q?1 for some

1 ≥ 0. Thus Q(j) = Q2 (j) .

Proof. Let 0 ≥ 1, and let Q ⊆ � ⊆ Q?0 be a subfield. We notice that � = Q?1 for some 1 ≥ 1 if and

only if Q? ⊆ �. Indeed, we have that Q?0/Q? is a cyclic extension of degree ?0−1, which contains the

subfields Q? ,Q?2 , . . . ,Q?0 . Hence there are no subfields between Q? and Q?0 other than the fields of

the form Q?1 for 1 ≤ 1 ≤ 0.

In order to prove the theorem, we may assume that j is faithful. If � is trivial, the theorem is clear.

Let / = Z(�) and let I ∈ / be of order ?. Then j |〈I 〉 = j(1)_ for some _ ∈ Irr(〈I〉), and hence

_(I) ∈ Q(j). Thus Q? ⊆ Q(j), and we use the claim in the previous paragraph. �

Notice that the conclusion of Theorem 2.3 does not hold for 2-groups, and that D16 is a counterex-

ample. The question of whether, given an irreducible character j of a finite group �, there is always

some 6 ∈ � such that Q(j) = Q(j(6)), is interesting. Although this does not always happen, we have

not found any example in which j(1) is odd or j is 2-rational. A different but related question that

is sometimes asked is if any algebraic integer in Q= is the value of an irreducible character of a finite

group, and again this is true: let 0 and 1 be positive integers, and let � be the wreath product of �0
with �1 , where �0 is the cyclic group of order 0. Then � has a faithful irreducible character of degree

1 whose values on the base group of the wreath product are all possible sums of 1 roots of unity, all of

which have order dividing 0.

Our next objective is to solve the following question: Which are exactly the fields of values of the

irreducible characters of groups of odd order? It is an old theorem of Burnside that these cannot be

real unless the character is trivial, but there is more. In order to answer this, we will need two general

elementary lemmas that we use in the rest of the paper, and, at the end of the section, some nontrivial

character theory of solvable groups.

Lemma 2.4. Let � be a finite group and ? be a prime, and set % ∈ Syl? (�). Suppose that k = UV,

where U is a ?-rational character of � of ?′-degree and V is a linear character of � of order a power

of ?. Then Q(k%) = Q(V), Q(k) = Q(U, V) and 2(k) = 2(U)2(V).

Proof. Set G ∈ %. Then 0 ≠ U(G) ∈ Q, using the facts that U has ?′-degree, G is a ?-element and U

is ?-rational (see [N2, Corollary 4.20].) Thus Q(k%) = Q(V%). Since the order of V is a power of ?,

notice that Q(V) = Q(V%). We conclude that Q(V) ⊆ Q(k%) ⊆ Q(k), and therefore Q(k) = Q(U, V).
Now, since 2(U) and 2(V) are coprime, we have that the conductor of the field Q(U, V) is 2(U)2(V), by

elementary Galois theory. �

Lemma 2.5. Let � be a finite group and suppose that % ⊳ �, where % ∈ Syl? (�). Set j ∈ Irr?′ (�)
and let _ ∈ Irr(%) be a linear irreducible constituent of j% . Let ) = �_ be the stabiliser of _ in �, let

_̂ ∈ Irr()) be the unique extension of _ which has ?-power order and let U ∈ Irr()/%) be such that

(_̂U)� = j.

(i) We have that Q(j) ⊆ Q> (_) (U) and Q(_)/Q(j%) has ?′-degree. In particular, 2(j%) = >(_)
unless _? = 1.
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(ii) Let 5 be the conductor of j. If >(_) > ?, then 5? = >(_). If _? = 1, then 5? ≤ ?.

(iii) If ? = 2, then Q(j) = Q> (_) (U), 2(j) = 2(_)2(U) and Q> (_) = Q(j%).

Proof. Write >(_) = ?1 , with 1 ≥ 0. We have that such _̂ exists and >(_̂) = ?1 , by [N2, Corol-

lary 6.4]. First notice that the Clifford correspondent of j over _ can be written as _̂U by the

Gallagher correspondence [Is2, Corollary 6.17]. Write k = _̂U. By Lemmas 2.1 and 2.4, we have

Q(j) ⊆ Q(k) = Q?1 (U). Now write j% = 4
∑
6∈� _

6, and recall that Q(j%) ⊆ Q(_) by Lemma 2.1(i).

Now, if f ∈ Gal(Q(_)/Q(j%)) has ?-power order, then _f is an irreducible constituent of j% , and

therefore _f = _6 for some ?′-element 6. Since >(_) has ?-power, we conclude that _6 = _ and f is

the identity. If ? = 2, then Q21/Q has degree a power of 2, and we conclude that Q> (_) = Q(j%) (which

is part of (iii)).

Suppose now that ?2 is the conductor of j% . ThenQ(j%) ⊆ Q?2 ⊆ Q?1 . ThenQ?1/Q?2 has degree

not divisible by ?, and the proof of (i) easily follows.

Next we prove (ii). Write 5? = ?0, for some 0 ≥ 0. SinceQ(U) ⊆ Q |) /% | , we haveQ(j) ⊆ Q?1 |) /% | ,

and therefore 5 divides ?1 |)/% |. Hence ?0 ≤ ?1 . SinceQ(j%) ⊆ Q(j), we have that 2(j%) divides 5 .

Hence if >(_) > ?, we have ?0 = ?1 by (i). The rest easily follows.

Finally, assume that ? = 2. We know by (i) and (ii) thatQ> (_) = Q(j%) ⊆ Q(j) ⊆ Q> (_) (U). Thus if

f ∈ Gal(Q> (_) (U)/Q(j), then it fixes j and therefore j% . Hence f fixes _ and _̂. By the uniqueness in

the Clifford correspondence, f also fixes U, so f is the identity. For the last part, Q> (_) (U) = Q(_̂, U),
and we apply Lemma 2.4. �

We record the following useful fact:

Lemma 2.6. Suppose that �/ is a finite field extension, and � and ! are subfields of � such that

� = 〈�, !〉 and � ∩ ! =  . Assume that �/ is Galois.

(i) If  ⊆ � ⊆ ! is a subfield and " = 〈�, �〉, then " ∩ ! = �.

(ii) If !/ is Galois and � ⊆ " ⊆ � is any subfield, then " = 〈�, " ∩ !〉.

Proof. (i) Let � ′ = " ∩ !. Then � ⊆ � ′, and � ′ ∩ � =  . By natural irrationalities [We, Corollary

3.4.5], [" : �] = [� :  ]. Now " = 〈�, �〉 ⊆ 〈�, � ′〉 ⊆ " . Thus 〈�, � ′〉 = " , and again by natural

irrationalities, [" : � ′] = [� : � ′ ∩ �] = [� :  ] = [" : �]. Since � ⊆ � ′, the result follows.

(ii) Let � = " ∩ ! and " ′ = 〈�, �〉 ⊆ " . By (i) we have " ′ ∩ ! = �. Now � = 〈" ′, !〉 and !/� is

Galois, so [� : " ′] = [! : �] by natural irrationalities. But we also have � = 〈", !〉, which similarly

implies [� : "] = [! : �]. Thus [� : "] = [� : " ′]. Since " ′ ⊆ " , we have " = " ′. �

Now we are ready to describe the fields of values of irreducible characters of groups of odd order and

the fields of values of the irreducible odd-degree characters of solvable groups. The next three results

will not be used in the rest of the paper.

In the next theorem, we use ?-special characters. We refer the reader to [Is3] for their main properties.

We will use the fact that in a solvable group �, restriction defines an injection from the set X? (�) of

?-special characters of � into Irr(%), where % is a Sylow ?-subgroup of �, and therefore that Q(j) =
Q(j%). (Using the uniqueness of the restriction map, we easily prove that the group Gal(Q(j)/Q(j%))
is trivial, and hence the result.) In particular, 2(j) = 2(j%). Also, a quasi-primitive character j of a

solvable group is fully factorable – that is, it uniquely factors as a product
∏
?∈P j? , where P is the set

of all prime numbers and j? is ?-special (see [Is3, Theorem 2.17] and [Is2, Berger’s Theorem 11.33]).

In this case, Q(j) = 〈Q(j?) | ? ∈ P〉 (by [Is3, Lemma 2.19]).

Theorem 2.7. Let �/Q be an abelian extension and assume that the conductor = of � is odd. Then

there exist a group of odd order� and j ∈ Irr(�) such thatQ(j) = � if and only if the extensionQ=/�
has odd degree.

Proof. If = = 2(�) is odd and Q=/� has odd degree, then Theorem 2.2 produces a solvable group � of

odd order, with a character j ∈ Irr(�) such that Q(j) = �.
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Conversely, suppose that j ∈ Irr(�), where � has odd order. We argue by induction on |� | that

Q2 (j)/Q(j) has odd degree. Suppose that k� = j, where k ∈ Irr()) is some Clifford correspondent

and ) is the stabiliser of some normal irreducible constituent. Notice that [Q(k) : Q(j)] is odd

by Lemma 2.1(ii). If ) < �, then by induction, Q2 (k)/Q(k) has odd degree, and we conclude that

Q2 (k)/Q(j) has odd degree. Thus Q2 (j)/Q(j) has odd degree using Lemma 2.1(i). Hence, we may

assume that j is quasi-primitive, and therefore j is fully factorable. Then, using Theorem 2.3, we have

Q(j) = 〈Q(j?) | ? ∈ P〉 = 〈Q((j?) |%) | ? ∈ P〉 = 〈Q2 (j?) | ? ∈ P〉 = Q2 (j) ,

by elementary Galois theory, and the result follows. �

Using Theorem 2.7 (and the main result of [Is1]), we can fully characterise the extensions Q(j)/Q
whenever j ∈ Irr2′ (�) and � is solvable:

Theorem 2.8. Let �/Q be an abelian extension and suppose that 2(�) = =. Then there exist a finite

solvable group � and a character j ∈ Irr(�) of odd degree such that Q(j) = � if and only if Q=/�
has odd degree.

Proof. IfQ=/� has odd degree, then Theorem 2.2 produces a solvable group with the desired conclusion.

Suppose now that � is solvable, j ∈ Irr2′ (�) and Q(j) = �. Write = = 20<, where < is odd and

0 ≥ 0. We want to show that Q=/� has odd degree. By the main result of [Is1], if % ∈ Syl2(�), then

there is a natural correspondence ∗ : Irr2′ (�) → Irr2′ (N� (%)) that commutes with Galois action (as

can be checked). Thus Q(j) = Q(j∗) = �, and we may assume that % ⊳ �. By Lemma 2.5(iii), we have

Q(j) = Q21 (U), where U is an irreducible character of a group of odd order, 1 ≥ 0 and 21 = >(_),
where _ ∈ Irr(%) lies below j. Also, 2(j) = 2(_)2(U) = 20<, and thus 2(U) = <. Also, 0 = 0 if

>(_) = 2 and 0 = 1 if 0 ≥ 2. In any case, Q20 = Q21 . Notice that Q21 (U) ∩Q< = Q(U), by Lemma 2.6.

We have that Q=/� and Q</Q2 (U) have the same degree by natural irrationalities, and the proof of the

theorem is complete by Theorem 2.7. �

Corollary 2.9. Let � be a finite solvable group, set j ∈ Irr2′ (�) and let 3 ≠ ±1 be a square-free

integer. Assume that Q(j) = Q(
√
3). Then 3 = −?, and ? ≡ 3 (mod 4) is a prime.

Proof. Write = for the conductor of the field Q(
√
3). It is well known that = = |3 | if 3 ≡ 1 (mod 4),

and = = 4|3 | otherwise. By Theorem 2.8, we have that i(=)/2 is odd, where i is the Euler function.

Hence we deduce that = = |3 | and 3 ≡ 1 (mod 4), and hence = is odd. As = is square free, we can write

= = ?1 · · · ?: , where 2 < ?1 < ?2 < · · · < ?: are prime. Since 4 ∤ i(=), we must have : = 1, and

= = ? ≡ 3 (mod 4) is a prime. Thus 3 = −?. �

Using quadratic Gauss sums, it is easy to prove that if ? is a prime ? ≡ 3 (mod 4), then the semidirect

product of �? with � ?−1
2

is a group of odd order with an irreducible character j of (odd) degree
?−1

2

whose field of values is Q(√−?).

3. Proofs of Theorems A2 and B2

We begin with a simple observation.

Lemma 3.1. Let� be a finite group, set j ∈ Irr(�) and let F := Q(j). Let � be a subgroup of Gal(F/Q)
and let d :=

∑
U∈� j

U. Then Q(d) = F� is the fixed field by �.

Proof. Recall that F/Q is a finite abelian Galois extension. Clearly, Q(d) ⊆ Q(j) = F and dW =∑
U∈� j

UW =
∑
U∈� j

U = d for all W ∈ �, and soQ(d) ⊆ F�. Conversely, suppose that dV = d for some

V ∈ Gal(F/Q). Then ∑

U∈�
jUV = dV = d =

∑

U∈�
jU .
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Since each jU is an irreducible character, it follows that jV = jU for some U ∈ �, and so jVU
−1

= j and

j is VU−1-fixed. As Q(j) = F, we see that VU−1 acts trivially on F, whence V = U ∈ �. Thus the Galois

automorphisms of F ⊇ Q(d) are precisely the elements in �, and we conclude that Q(d) = F�. �

The next two theorems provide the key group-theoretic constructions to realise various abelian

extensions of Q.

Theorem 3.2. Let ? be any prime, # ∈ Z≥1 be coprime to ?, Z ∈ C be a primitive #th root of unity

and F be any subfield of Q(Z). Then there exist a finite group � and an irreducible character j of � of

?′-degree with Q(j) = F.

Proof. Let � ≤ Gal(Q(Z)/Q) be such that F = Q(Z)� by Galois correspondence, and set = = |�| =
[Q(Z) : F]. Write

� =
{
f:8 : Z ↦→ Z :8 | :8 ∈ (Z/#Z)×, 1 ≤ 8 ≤ =

}
.

As ? ∤ # , we can find a smallest < ∈ Z≥1 such that # | (?< − 1). Now let @ := ?< and � := GL= (@).
Then we can identify the Langlands dual group �∗ with �. Let Y ∈ F×@ be of order # . Consider the

semisimple element

B := diag(Y:1 , Y:2 , . . . , Y:= ) ∈ �∗ (3.1)

and j = jB the semisimple character of � labelled by B, of degree |� : C� (B) |?′ (compare [C, §8.4]).

We may assume that :1 = 1 (so that f:1
is the trivial automorphism). Since |B | = |Y | = # , the proof of

[NT1, Lemma 9.1] shows that

Q(j) ⊆ Q(Z). (3.2)

Furthermore, for any element fC : Z ↦→ Z C in Gal(Q(Z)/Q), the same proof shows that jfC = jBC , the

semisimple character of � labelled by BC . In particular, if j is fC -fixed, then BC is conjugate to B in �∗.
In this case, the eigenvalue YC of BC (acting on F=@) is also an eigenvalue of B, whence YC = Y:8 for some

1 ≤ 8 ≤ = by formula (3.1), and so

fC (Z) = Z C = Z :8 = f:8 (Z)

(that is, fC = f:8 ∈ �). Conversely, as � is a subgroup, for any fC ∈ � the set {:1, :2, . . . , :=} of =

pairwise distinct elements in (Z/#Z)× is stable under multiplication by C. Hence definition (3.1) of B

ensures that BC is conjugate to B in �∗, whence jfC = jBC = j and j is fC -fixed.

We have shown that the Galois automorphisms of Gal(Q(Z)/Q) that stabilise j are precisely the

elements of �. By Galois correspondence, this implies that Q(j) = Q(Z)� = F, as desired. �

Theorem 3.3. Let F be a finite abelian extension of Q and suppose that F = Q(U) for some irreducible

character U of a finite group �. Then for any subfield E of F with F/E a cyclic extension of degree 3,

there exist a finite group � and an irreducible character j of � of degree 3U(1)3 with Q(j) = E.

Proof. View E as the fixed field F� for a subgroup � = 〈0〉 ≤ Gal(F/Q) of order 3. Now we take � to

be the wreath product � = � ≀ � = �3 ⋊ �, where

�3 = {(G1, G2, . . . , G3) | G8 ∈ �}

is a direct product of 3 = |�| copies of �. Furthermore, conjugation by any 1 ∈ � cyclically permutes

the 3 entries G1, . . . , G3 of any element G = (G1, G2, . . . , G3) ∈ �3 , sending G to (G3 , G1, G2, . . . , G3−1).
Consider the irreducible character

\ = U0 × U02 × · · · × U03
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of �3 , so that

\ ((G1, G2, . . . , G3)) =
3∏

8=1

U0
8 (G8). (3.3)

The arguments in the proof of Lemma 3.1 show that the 3 irreducible characters U0
8

, 1 ≤ 8 ≤ 3, are

pairwise distinct. The described action of � on �3 now implies that the stabiliser �� (\) = �3 . (Indeed,

any 1 ≠ 0 9 ∈ � sends \ to an outer tensor product, with the first factor now being U0
9+1

≠ U0, whence

\0
9

≠ \.)

By Clifford’s theorem, j := \� is irreducible, of degree 3U(1)3 . Note that j vanishes outside of

�3 . Next, any �-conjugate \1 with 1 ∈ � takes values in Q(U) = F, whence Q(j) ⊆ F. Moreover, the

described �-action on �3 and equation (3.3) show that for any element G = (G1, . . . , G3) ∈ �3 ,

\ (G0) = \ ((G3 , G1, G2, . . . , G3−1)) = U0 (G3)U0
2 (G1)U0

3 (G2) · · · U0
3 (G3−1) = (\ (G))0,

whence \ (G08 ) = (\ (G))08 for all 1 ≤ 8 ≤ 3. Thus j(G) = ∑3
8=1 \ (G0

8 ) = ∑3
8=1(\ (G))0

8

is 0-fixed, and

so Q(j) ⊆ F� = E.

Now taking H = (I, 1, 1, . . . , 1) ∈ �3 for any I ∈ �, we have j(H) = U(1)3−1d(I), with d :=∑3
8=1 U

08 . In particular, Q(j) ⊇ Q(d). By Lemma 3.1, Q(d) = F� = E. Consequently, Q(j) = E. �

We note that an inductive argument allows one to remove the cyclic assumption in Theorem 3.3.

Now we are ready to prove Theorems A2 and B2.

Proofs of Theorems A2 and B2 Define � := Q?0< and � := Q?0 (with ? = 2 in Theorem A2), and let

" ⊆ � be any subfield such that ? ∤ [� : " ∩ �] – equivalently, " contains the unique subfield E?0−1

of � that has degree ?0−1 over Q. Then the subfield "̃ := 〈",Q?〉 of � contains 〈E?0−1 ,Q?〉 = �.

First we show how to attain "̃ as the value field of some ?′-degree character. Note that � := 〈�, !〉
for ! := Q<, and � ∩ ! = Q because ? ∤ <. By Lemma 2.6(ii), "̃ = 〈�, �〉 = � (Z), where � := "̃ ∩ !
and Z = exp(2c8/?0). Applying Theorem 3.2, we can find a finite group � and an irreducible character

\ ∈ Irr(�) of ?′-degree such thatQ(\) = �. Now we consider �̃ = �?0×� and the irreducible character

\̃ = _×\ of �̃, where _ ∈ Irr(�?0 ) is faithful. Then \̃ (1) = \ (1) is coprime to ?, andQ(\̃) = � (Z) = "̃ .

Now, if ? = 2, then Q2 = Q and "̃ = " , and so we have completed the proof of Theorem A2.

Assume ? > 2. Then � ∩ "̃ ⊇ E?0 (where E?0 is the only extension of Q?0+1 of degree ?0 over the

rationals), and so �/(� ∩ "̃) is a cyclic Galois extension, of degree 3 | (? − 1). As "̃ = 〈", �〉, by

[We, Theorem 3.4.3] we have that "̃/" is a cyclic Galois extension of the same degree 3. Applying

Theorem 3.3, we obtain a finite group � = �̃ ≀ �3 and an irreducible character j ∈ Irr(�) of degree

3\ (1)3 with Q(j) = " . �

4. Proofs of Theorems A1 and B1

As we have seen in the previous sections, it is not completely trivial to work with conductors of fields

of values. Although our results are on conductors, it is convenient to express them, and to work, using

certain Galois automorphisms which are fundamental when studying values of characters. We shall see

that these are the automorphisms that control the prime powers dividing the conductor of a character. As

usual, let us fix a prime ? for the rest of the section. If 4 ≥ 1 is an integer, then we let f4 ∈ Gal(Qab/Q)
be the automorphism that fixes roots of unity of order not divisible by ? and sends any ?-power root of

unity b to b1+?4 . Hence, a ?-power root of unity b is fixed by f4 if and only if its order >(b) divides

?4. Thus Q?4 is contained in the fixed field of f4. If ? is odd, in this paper we will denote by E?4 the

unique subfield E with [E : Q] = ?4 in the cyclotomic field Q?4+1 , whenever 4 ≥ 1.

In this section we prove Theorem A1 (assuming a weaker version of Theorem A3 – Theorem 5.1

– whose proof is deferred until Section 5), and Theorem B1. We begin with the following elementary

result:

https://doi.org/10.1017/fmp.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.1


Forum of Mathematics, Pi 9

Lemma 4.1. Let ? be a prime and let 4 ≥ 1 be an integer. If ? = 2, assume that 4 ≥ 2.

(i) If 5 ≥ 4, then the restriction g 5 of f4 to Q? 5 has order ? 5 −4 and generates Gal(Q? 5 /Q?4 ). In

particular, if = = ? 5 < ≥ 1 is an integer, with < not divisible by ?, then the restriction of f4 to Q=
is the identity if 5 ≤ 4, and has order ? 5 −4 and fixed field Q?4< if 5 ≥ 4.

(ii) Let j ∈ Irr(�), where � is a finite group. If j is f4-invariant, then j is f4+1-invariant.

(iii) Set j ∈ Irr(�), where � is a finite group, and let 2 be the conductor of j. Let ? be a prime and

write 2 = ?0<, where < is not divisible by ? and 0 ≥ 1. If ? > 2, then 0 is the smallest positive

integer 4 such that j is f4-invariant. If ? = 2, then 0 is the smallest integer 4 ≥ 2 such that j is

f4-invariant.

Proof. If < ∈ Z is congruent to 1 mod ?4 but not to 1 mod ?4+1, using the binomial theorem we easily

have that <? is congruent to 1 mod ?4+1 but not to 1 mod ?4+2. Therefore, for every B ≥ 1, we have that

<?
B

is congruent to 1 mod ?4+B but not to 1 mod ?4+B+1. Hence, if 5 ≥ 4 we have that the restriction

g 5 of f4 to Q? 5 has order ? 5 −4. In particular, g 5 is a generator of Gal(Q? 5 /Q?4 ). This proves the first

part of (i). If = is any integer, then write = = ? 5 <, where < is not divisible by ? and 5 ≥ 0. Let g now

be the restriction of f4 to Q=. We have g ∈ Gal(Q=/Q<). If 5 < 4, then g is the identity. Otherwise, g

has order ? 5 −4. This easily concludes the proof of (i).

We prove (ii). Suppose that j ∈ Irr(�) is f4-invariant, and set 3 ≥ 4. We want to show that j is

f3-invariant. We may assume that Q(j) ⊆ Q=, where ? 5 := =? ≥ ?4. Notice that the restriction W of

f3 to Q? 5 fixes the ?4-roots of unity, and therefore W ∈ 〈g 5 〉, where g 5 is as in the previous paragraph.

Let W0 be the restriction of f3 to Q? 5 <, and let g0 be the restriction of f4 to Q? 5 <. Using the notation

in the previous paragraph, we have W0 ∈ 〈g0〉, since W is a power of g 5 and both fix ?′-roots of unity.

Now, since j is g0-invariant, it is also W0-invariant. This proves (ii).

To prove (iii), notice that f0 fixes Q?0 and Q<, and therefore j is f0-fixed. Assume that j is f4-

fixed for some 1 ≤ 4 < 0, and furthermore, 4 ≥ 2 if ? = 2. By (i), we have that the fixed field of the

restriction of f4 to Q2 is exactly Q?4<. Hence Q(j) ⊆ Q?4<, which contradicts the definition of the

conductor 2. �

Notice therefore that we can reformulate Theorems A1 and A3 and Conjecture B3 in terms of the

Galois action of the automorphisms f4, using Lemma 4.1.

Lemma 4.2. Let � be a finite group and # be a normal subgroup of �. Suppose that �/# has order

not divisible by ?. Set j ∈ Irr(�) and let \ ∈ Irr(#) be an irreducible constituent of j# .

(i) Suppose that 4 ≥ 1. Then j is f4-fixed if and only if \ is f4-fixed.

(ii) Suppose that ?0 is the ?-part of the conductor of j and that ?1 is the ?-part of the conductor of \.

If 0, 1 ≥ 1 or ? = 2, then 0 = 1.

Proof. Let g be the restriction of f4 to Q |� | . Then g has order a power of ?, by Lemma 4.1(i). We have

that j (or \) is f4-invariant if and only if it is g-invariant.

If \ is g-invariant, then j is g-invariant, by [NT4, Lemma 5.1]. If j is g-invariant, then \ is g-invariant

by Lemma 2.1. This proves (i).

If ? = 2, we claim that \ is 2-rational if and only if j is 2-rational. Indeed, suppose that j is 2-

rational. Write |� | = 2 5 <, where < is odd, and set f ∈ Gal(Q |� |/Q<). Then f has 2-power order and

therefore \f = \ by Lemma 2.1. If \ is 2-rational, then j is 2-rational by [ILNT, Lemma 2.1]. Hence,

if ? = 2, we may assume that 0, 1 ≥ 2. Now (ii) follows easily from (i) and Lemma 4.1(iii). �

We remark that in Lemma 4.2(ii), we need 0, 1 ≥ 1, even if the characters have degree not divisible

by ?. For instance, if 0 = 0, then 1 can be 1, as shown by S3 with ? = 3, and # = A3. If 1 = 0, 0 can be

1, as shown by SmallGroup(24, 4) [GAP], again with ? = 3.

Lemma 4.3. Suppose that � is a finite group and # ⊳ �. Let _, \ ∈ Irr(#) be �-invariant, and assume

that _\ is irreducible and extends to �. If \ extends to �, then _ extends to �.
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Proof. This is [ILNT, Lemma 2.2]. �

Lemma 4.4. Let ? be a prime. Suppose that � is a finite group and # ⊳ �. Let _, \ ∈ Irr(#) be �-

invariant, and assume that _ is linear and _\ extends to �. Suppose that j ∈ Irr(�) has ?′-degree and

lies over \ ∈ Irr(#). Let g ∈ Gal(Qab/Q) fix ?′-roots of unity.

(i) If ` = _?′ , then `\ extends to a character k ∈ Irr(�). Also, we can write j = kb, where

b ∈ Irr(� |`−1).
(ii) If �/# is perfect and \ is g-invariant, then k is g-invariant.

Proof. Part (i) is [ILNT, Lemma 2.3(i)].

(ii) By hypothesis, \ is g-invariant, and since ` = _?′ is also g-invariant, we see that i = `\ is

g-invariant. We are assuming that �/# is perfect, so by Gallagher’s theorem [Is2, Corollary 6.17] we

deduce that k is the unique extension of i to �. The Galois group Gal(Q(k)/Q(i)) thus fixes k, so the

Galois group is trivial, and thus Q(k) = Q(i). We conclude that k is g-fixed, as required. �

The next result is standard.

Theorem 4.5. Set # ⊳ �, where � is a finite group, and let \ ∈ Irr(#) be �-invariant. Then there is a

finite group � and a surjective homomorphism c : � → � such that / = ker(c) ⊆ Z(�). Furthermore,

if  = c−1 (#) and \̂ ∈ Irr( //) corresponds to \ via the induced isomorphism  // → # , then \̂ is

�-invariant and there is a linear �-invariant character _ ∈ Irr( ) such that _\̂ extends to �.

Proof. This is the content, for instance, of [N2, Theorem 5.6]. �

The following is a suitable modification of [ILNT, Theorem 2.6] for our present situation:

Theorem 4.6. Let ? be a prime and � a finite group, set # ⊳ � and let \ ∈ Irr?′ (#) be �-invariant

and f4-fixed. Suppose that �/# is a nonabelian simple group, and let j ∈ Irr(� |\) have ?′-degree.

Suppose that j is not f4-fixed.

(a) If ? is odd and Conjecture B3 holds, then there exists a ?-element G ∈ � such that E?4 ⊆ Q(j(G)).
(b) Assume that ? = 2, 4 ≥ 2, % ∈ Syl2 (�) and Q24 ⊆ Q(j%). Then Q(j%) = Q20 for some 0 ≥ 4 + 1.

Proof. (i) By Theorem 4.5, there is a finite group � with a central subgroup / such that �// = �

(where we identify � with �//). Furthermore, if  // = # , then there is a linear �-invariant character

_ ∈ Irr( ) such that _\ extends to �, and \ is �-invariant. Notice that now we view \ as an irreducible

character of  with / in its kernel. Also, j ∈ Irr(�) contains / in its kernel. By Lemma 4.4, if ` = _?′ ,

we know that `\ extends to a f4-invariant character k ∈ Irr(�). Furthermore, we can write j = kb

for some character b ∈ Irr(� |`−1). Notice that b and k have ?′-degree, since j(1) is ?′. Also, b is not

f4-invariant, since k is f4-invariant and j is not.

Write ! = ker(`−1), so  /! is a central ?′-subgroup of �/!, because `−1 is invariant in � and has

?′-order. Let ,/! be the final term of the derived series of �/!, so ,/! is perfect. Now  , = �,

because �/ is a nonabelian simple group, and since,/( ∩,) � �/ is simple and ( ∩,)/! is

central in,/!, we see that,/! is quasi-simple.

Now b, is irreducible, because  , = � and  /! is central in,/!. Also, |� : , | = | : ( ∩,) |,
which divides | : ! |, so |� : , | is ?′. It follows that b, is not f4-invariant, because otherwise b

would be f4-invariant by Lemma 4.2, which is not the case.

(ii) Suppose first that ? is odd and that Conjecture B3 holds. By Conjecture B3 applied to the

character b, of ,/!, we deduce that there exists an element F ∈ , such that F has ?-power order

modulo !, and E?4 ⊆ Q(b (F)). Also, observe that we can assume that F has ?-power order ? 5 . Since

E?4 ⊆ Q(b (F)), we have 5 ≥ 4 + 1. Now j(F) = k(F)b (F), and k(F) ∈ Q?4 because F has ?-power

order and k is f4-invariant. Furthermore, k(F) ≠ 0 by [N2, Lemma 4.19(ii)], because F is a ?-element

and k(1) is ?′.
Since Q(j(F)) ⊆ Q? 5 , we can write [Q(j(F)) : Q] = ?0C, where C divides ? − 1 and 0 ≤ 5 .

Suppose that ?4 divides [Q(j(F)) : Q]. Then E?4 ⊆ Q(j(F)), because E?4 is the only extension of Q
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inside Q? 5 that has degree ?4 (using the fact that Q? 5 /Q is cyclic). Hence we may assume that ?4 does

not divide [Q(j(F)) : Q], and thus 0 < 4. Then [Q(j(F)) : Q] divides ?4−1 (? − 1), and therefore

Q(j(F)) ⊆ Q?4 , becauseQ?4 is the unique extension of its degree insideQ? 5 (again using the fact that

Q? 5 /Q) is cyclic). Then b (F) = j(F)/k(F) ∈ Q?4 , but this is a contradiction, since E?4 ⊆ Q(b (F)).
(iii) Assume now that ? = 2 and 4 ≥ 2. Since b, is not f4-invariant, by Theorem 5.1 we can find

a 2-element F ∈ , such that b (F) ∉ L := Q24 . In particular, the order of F is 2 5 for some 5 > 4.

Next, j(F) = k(F)b (F), and k(F) ∈ L because F has 2-power order and k is f4-invariant (using

Lemma 4.1). Furthermore, k(F) ≠ 0 by [N2, Lemma 4.19(ii)], because F is a 2-element and 2 ∤ k(1).
It follows that j(F) ∉ L.

We may assume that F ∈ %. Since L ⊆ Q(j%) by hypothesis, we have

Q(j%) = L(j%) ⊇ L(j(F)).

Defining 1 := exp(%), we certainly have 1 ≥ 5 > 4. Now Q(j%) contains L properly and is contained

in Q21 . As 4 ≥ 2, we also note that Q21/Q24 is a cyclic extension of degree 21−4, with all intermediate

fields being Q22 with 4 ≤ 2 ≤ 1. It follows that Q(j%) = Q20 for some 0 > 4, as desired. �

The following contains Theorems A1 and B1 (by applying Lemma 4.1). Again, we use some of the

ideas in [ILNT].

Theorem 4.7. Let ? be a prime and � a finite group, set j ∈ Irr?′ (�) and let 4 ∈ Z≥1.

(i) Assume that ? is odd and that Conjecture B3 holds for all quasi-simple groups ( such that (/Z(()
is involved in �. Then either j is f4-invariant or E?4 ⊆ Q(j).

(ii) Suppose that ? = 2. Then either j is f4-invariant or Q24+1 ⊆ Q(j).

Proof. If ? is odd, let K = E?4 , and if ? = 2, let K = Q24+1 . In both cases, we have |K : Q| = ?4. We

assume that j is not f4-invariant and we prove that K ⊆ Q(j). If ? is odd, then we argue by induction

on |� |. If ? = 2, then we argue by induction on |� | + 4. Write g = f4.

First we claim that if ? = 2, then we may assume that 4 ≥ 2 and that Q24 ⊆ Q(j). Indeed, if 4 = 1

or 4 = 2, since j is not f4-invariant, then j is not 2-rational. Therefore Q(j) ⊇ Q(8) = Q22 by [ILNT,

Theorem C], and the claim is proved. If 4 ≥ 3, then j is not f4−1-invariant by Lemma 4.1, and therefore

Q(j) ⊇ Q24 by induction. This proves the claim.

Let # be a normal subgroup of�. Let \ be an irreducible constituent of j# and let ) be the stabiliser

of \ in�. Also, letk ∈ Irr()) be the Clifford correspondent of j over \, sok� = j. SinceQ(j) ⊆ Q(k)
(by Lemma 2.1(i)), we know that k is not g-fixed. Notice that |� : ) | is not divisible by ?, because j has

?′-degree. We claim that [Q(k) : Q(j)] is not divisible by ?. Otherwise, letf ∈ Gal(Q(k)/Q(j)) have

order ?. Then jf = j. Since N� ())/) has order not divisible by ?, we have f = 1 by Lemma 2.1(ii).

This is a contradiction, and so [Q(k) : Q(j)] is not divisible by ?, as claimed.

Assume that ) < �. In this case, K ⊆ Q(k) by the inductive hypothesis. Since [Q(k) : Q(j)] is not

divisible by ?, we deduce that K ⊆ Q(j), as wanted.

Thus, we may assume that if # is any normal subgroup of �, then j# = 4\. In particular, Q(\) ⊆
Q(j). Also, if # < �, we may assume that \ is g-invariant, by the inductive hypothesis.

Suppose that # = O? (�) < �. Since j has ?′-degree, we see that \ has ?′-degree. By [Is2,

Theorem 6.28], there is a unique extension \̂ ∈ Irr(�) of \ to � with determinantal order not divisible

by ?. By uniqueness, notice that \̂ is g-invariant, because \ is. By Gallagher [Is2, Corollary 6.17], it

follows that j = _\̂, where _ ∈ Irr(�/#) is linear (because �/# is a ?-group and j(1) is not divisible

by ?).

We want to show that K ⊆ Q(j). So it is enough to show that if f ∈ Gal(Qab/Q) fixes Q(j), then it

fixes K. But if f fixes j, then it fixes \. Therefore it fixes \̂, because \̂ is uniquely determined by \. By

the uniqueness in the Gallagher correspondence, it follows that f fixes _. Hence Q(_) ⊆ Q(j). Now,

since j is not f4-invariant, it follows that _ is not f4-invariant. Therefore the order of _ is at least ?4+1.

Thus Q?4+1 ⊆ Q(_). Then K ⊆ Q?4+1 ⊆ Q(_) ⊆ Q(j), as desired.
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If �/# has ?′ order, where # is proper in �, then since \ is f4-invariant, we can apply Lemma 4.2

to deduce that j is f4-invariant, contrary to hypothesis.

Thus, by taking a maximal normal subgroup # of �, we may assume that �/# is a nonabelian

simple group. Now we apply Theorem 4.6 to conclude that K ⊆ Q(j). �

We conclude this section by noting that [NT4, Conjecture A] implies that the conclusion of Theo-

rem B1 holds in the case where %/%′ is elementary abelian for % ∈ Syl? (�).

5. Proof of Theorem A3: Quasi-simple groups

Throughout this section, f4 is defined with respect to ? = 2. In this section we prove Theorem A3. The

bulk of the proof is devoted to the following weaker version:

Theorem 5.1. Set 4 ≥ 2 and let � be a finite quasi-simple group. If b ∈ Irr2′ (�) is not f4-invariant,

then there is a 2-element 6 ∈ � such that b (6) ∉ Q24 .

5.1. Further reductions

First we prove some preliminary results, some of them extracted from [ILNT].

Lemma 5.2. The following statements hold:

(i) It suffices to prove Theorem 5.1 in the case where Z(�) is of odd order and exp(%/%′) > 24 for

% ∈ Syl2(�).
(ii) Furthermore, Theorem 5.1 holds in the case where �/Z(�) � 2�4 (2) ′.

Proof. (i) Modding out by Ker(b), we may assume that j is faithful. Since b (1) is odd, we then have

that |Z(�) | is odd. Furthermore, since b is not f4-invariant, exp(%/%′) > 24 by [M, Theorem 1].

(ii) Since 2�4 (2) ′ has trivial Schur multiplier, we have � � 2�4 (2) ′. Now the statement can be

checked using [Atlas]. �

Proposition 5.3 ([ILNT], Proposition 4.3). Let � be a finite simple group and set % ∈ Syl2(�). Then

exp(%/%′) ≤ 2 for % ∈ Syl2(�) if one of the following conditions holds:

(i) � = A= for some = ≥ 5.

(ii) � is one of the 26 sporadic simple groups.

(iii) � is a simple group of Lie type in characteristic 2 and � � 2�4 (2) ′.
(iv) @ is an odd prime power. Furthermore, � = PSp2<(@) with < ≥ 1, %Ω±

= (@) with = ≥ 7, PSL2< (@)
or PSU2< (@) with < ≥ 2, �2(@), 2�2(@) with @ = 320+1, 3�4 (@), �4 (@), �8 (@) or the (simple)

group �7(@).
(v) n = ±1, @ is any prime power such that 4| (@ + n) and� = PSLn= (@) with = ≥ 3, or� is the (simple)

group � n
6
(@).

Corollary 5.4. It suffices to prove Theorem 5.1 in the case where @ is an odd prime power, @ ≡ n ( mod 4)
for some n = ±1 and either � = SLn= (@) with = ≥ 3 not a 2-power or � = � n

6
(@)sc.

Proof. Let ( = �/Z(�), so that ( is simple. By Lemma 5.2, we may assume that |Z(�) | is odd,

( � 2�4 (2) ′ and exp(%/%′) > 24 for % ∈ Syl2(�). Hence, exp(&/& ′) > 24 for & ∈ Syl2((). This

implies by Proposition 5.3 that there is some @ ≡ n (mod 4) such that either ( � PSLn= (@) with = ≥ 3

not a 2-power or ( � � n
6
(@) (the simple group). Inspecting the Schur multiplier of ( in those cases,

we see that � is a quotient of SLn= (@) or � n
6
(@)sc. Inflating j if necessary, we may thus assume that

� = SLn= (@) or � n
6
(@)sc. �
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5.2. Special linear and unitary groups

In this subsection we prove Theorem 5.1 for � = SLn= (@). Set = ∈ Z≥1 and consider the 2-adic

decomposition

= = 2<1 + 2<2 + · · · + 2<A , (5.1)

with <1 > <2 > · · · > <A ≥ 0. In what follows, we will refer to the summands 2<8 in equation (5.1) as

2-adic parts of =. A decomposition = = =1+=2+· · ·+=: of =will be called a proper decomposition of = if

: ≥ 1, =8 ∈ Z, =1 > =2 > · · · > =: ≥ 1

and every 2-adic part of = is a 2-adic part of some summand =8 , 1 ≤ 8 ≤ : . By [GKNT, Lemma 2.2],

the latter condition is equivalent to requiring that =!/∏:
8=1 =8! be odd.

For a fixed n ∈ {±1}, let `@−n = 〈Z〉 be the cyclic subgroup of order @ − n of F×
@2 and define

U := Z (@−n )2′ so that 〈U〉 = O2 (`@−n ). Fix a (@ − n)th primitive root of unity Z̃ ∈ C, and define

Ũ := Z̃ (@−n )2′ , a (@ − n)2th root of unity in C. For B ∈ `@−n , let [B] ∈ Z/(@ − n)Z be such that B = Z [B] .
We will consider the map

� : G ∈ F×@ ↦→ G@n .

We will also use the Dipper–James labelling for irreducible characters of GL= (@), as in [GKNT, (2.2)],

and its analogue for a subset of Irr(GU= (@)) as explained in [GKNT, Lemma 5.2].

To handle groups of type � we will need the following two statements.

Lemma 5.5. Let @ be an odd prime power, n = ±1, 4 ≥ 2, set = ∈ Z≥3 not a 2-power and define

� := SLn= (@) ⊳ GLn= (@) =: �̃. Let j ∈ Irr(�) be of odd degree. Then the following statements hold:

(i) j extends to j̃ ∈ Irr(�̃).
(ii) There exist a proper decomposition = = =1 + =2 + · · · + =: of =, : pairwise distinct elements

s8 ∈ `@−n , 1 ≤ 8 ≤ : , and : partitions ,8 ⊢ =8 , 1 ≤ 8 ≤ : , such that

j̃ = ((s1, ,1) ◦ ((s2, ,2) ◦ · · · ◦ ((s: , ,: ).

(iii) Suppose j is not f4-invariant. Then : ≥ 2 in (ii), 24+1 | (@ − n), and there exist 1 ≤ 8 < 9 ≤ : such

that (@ − n)2/24 does not divide [s8] − [s 9 ].

Proof. Statement (i) follows from [ST, Lemma 10.2], and (ii) is proved in [GKNT, Theorem 2.5] for

n = 1 and [GKNT, Lemma 5.2] for n = −1.

For (iii), note that for a suitable choice of Z̃ , ((Z0, (=)) is the linear character of �̃ sending 6 ∈ �̃
with det(6) = Z1 to Z̃01 . Now suppose that j is not f4-invariant but the conclusion of (iii) does not

hold. Define 20 := (@ − n)2 and 1 := min(0, 4). Multiplying j̃ by (((s−1
1
, (=)), we may assume that

20−1 divides [s8] for all 8. Recall that ((1, ,8) is a unipotent character of GLn=8 (@) and so takes only

integer values. Since

((s8 , ,8) = ((s8 , (=8))((1, ,8), (5.2)

(see, for example, [GT, Lemma 2.9] for the case where n = 1 and the displayed formula just before

[GKNT, Lemma 5.1] in general), the condition on [s8] now implies that ((s8 , ,8) takes values in

Q( Z̃ (@−n )2/21 ), and so it is f4-invariant (as 1 ≤ 4). Note that j̃ = ±'�̃! (k), where

k = ((s1, ,1) ⊗ ((s2, ,2) ⊗ · · · ⊗ ((s: , ,: ); (5.3)

that is, j̃ is Lusztig induced from the Levi subgroup

! = GLn=1
(@) × GLn=2

(@) × · · · × GLn=: (@). (5.4)
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For future use, we also note that N�̃ (!) = !. Arguing as in the proof of [GKNT, Theorem 5.3], we see

that j̃ and j are f4-invariant – a contradiction. �

The next statement is extracted from [GLBST, Lemma 7.5] and its proof.

Lemma 5.6. Let �̃ = GLn= (@) with = ≥ 1, n = ±1, and let @ be any odd prime power. Also fix the

generator U of O2 (`@−n ) as before. Then the following statements hold:

(i) If = = 2< for some < ∈ Z≥1, then there exists a regular 2-element 6= (U) ∈ �̃ of determinant U,

whose eigenvalues on F
=

@ form an �-orbit

{\, \@n , . . . , \ (@n )=−1 }

of some generator \ of O2 (F×@= ). In particular, all eigenvalues of 6= (U) lie in F@2< \ F
@2<−1 .

(ii) For every 2-element X of `@−n , there exists a regular 2-element ℎ= (X) ∈ �̃ of determinant X with

all eigenvalues on F
=

@ belonging to F@2<1 , if = is written in the form of equation (5.1).

Theorem 5.7. Let = ∈ Z≥3 be not a 2-power, 4 ≥ 2, n = ±1, and let @ be an odd prime power such that

(@ − n)2 = 20 ≥ 4. Then Theorem 5.1 holds for � = SLn= (@).

Proof. Let j ∈ Irr(�) be of odd degree and not f4-invariant. We define �̃ := GLn= (@) and apply

Lemma 5.5 to get the character j̃ as described in that lemma, and 0 ≥ 4 +1. We will write j̃ = ±'�̃! (k)
with k given in equation (5.3). Also define+ := F=@ (or F=

@2 ), denote the natural module for �̃ and define

+̃ := + ⊗F@ . Since = = =1 + · · · +=: is a proper decomposition, the Levi subgroup ! from equation (5.4)

acts semisimply with pairwise nonisomorphic simple submodules on + and on +̃ . Also let �< denote

the identity < × <-matrix over F@2 , and define

62< (U−1) := (62< (U))−1,

with 62< (U) as defined in Lemma 5.6.

(i) Case 1. There exist 80 < 90 such that 20−4−1 ∤ ([s80] − [s 90 ]).
Case 1a. Suppose in addition that the smallest 2-adic part 2<A of = – compare equation (5.1) – is not

a 2-adic part of either =80 or = 90 .

Then we consider the following two elements in �̃ using Lemma 5.6:

6 =
(
62<1 (U), . . . , 62

<80 (U), . . . , 62
<90−1 (U), 62

<90 (U−1), 62
<90+1 (U), . . . , 62<A−1 (U), ℎ2<A (X)

)
,

6′ =
(
62<1 (U), . . . , 62

<80−1 (U), 62
<80 (U−1), 62

<80+1 (U), . . . , 62
<90 (U), . . . , 62<A−1 (U), ℎ2<A (X)

)
,

each containing only one block 62<8 (U−1) with 1 ≤ 8 ≤ A − 1, and with X ∈ `@−n chosen so that

6, 6′ ∈ SLn= (@). We will show that

exp

(
2c8

24+1

)
∈ Q(j(6)) ∪ Q(j(6′)). (5.5)

As shown in Case 1a of the proof of [ILNT, Theorem 4.7], each of 6 and 6′ is contained in a unique �̃-

conjugate of the Levi subgroup ! given in equation (5.4), and so without loss we may assume 6, 6′ ∈ !;

furthermore,

C�̃ (6) = C! (6). (5.6)

According to [DM, Proposition 9.6],

St�̃ · j̃ = ±St�̃ · '�̃! (k) = ±(St! · k)�̃ , (5.7)
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where St�̃ (resp., St!) denotes the Steinberg character of �̃ (resp., of !). Applying this formula to 6

and using the fact that ! is the unique �̃-conjugate of ! that contains 6, we have

St�̃ (6)j(6) = ±St! (6)k(6),

and similarly for 6′. On the other hand, as 6 is semisimple, we have

St�̃ (6) = ±|C�̃ (6) |? , St! (6) = ±|C! (6) |?

(see [DM, Corollary 9.3]), and similarly for 6′. It follows that

j(6) = ^k(6), j(6′) = ^′k(6′) (5.8)

for some ^, ^′ ∈ Q×.

Now we evaluate k on 6 and 6′, using equation (5.3). Since 2 ∤ j(1), the degrees of k and of ((s8 , ,8)
are all odd, whence ((s8 , ,8) evaluated at the GLn=8 (@)-component of 6 is nonzero by [ILNT, Lemma

2.4]. Recalling the constructions of 6 and 6′ and applying equation (5.2) to ((s80 , ,80) and ((s 90 , , 90 ),
we now have

k(6)
k(6′) = Ũ2( [s80 ]−[s 90 ]) . (5.9)

As |Ũ | = 20 and 20−4−1 ∤ ([s80 ] − [s 90 ]), we see that k(6)/k(6′) is a root of unity of order 2 5 ≥ 24+1.

On the other hand, as the unipotent characters ((1, ,8) take only integer values, equation (5.2) implies

that k(6) is a Z-multiple of a 2-power root of unity. It follows from equation (5.9) that this root of unity

for at least one of 6, 6′ must have order ≥ 24+1 – say for 6. We conclude by equation (5.8) that j(6) is

a Q-multiple of a 2-power root of unity of order ≥ 24+1, and j(6) ≠ 0 by [ILNT, Lemma 2.4]. Thus

exp(2c8/24+1) ∈ Q(j(6)), establishing formula (5.5).

Case 1b. Suppose we are in Case 1, but the smallest 2-adic part 2<A of = is a 2-adic part of, say, = 90 .

Then we consider the following two elements in �̃ using Lemma 5.6:

6 =
(
62<1 (U), 62<2 (U), . . . , 62<A−1 (U), ℎ2<A (X)

)
,

6′ =
(
62<1 (U), . . . , 62

<80−1 (U), 62
<80 (U−1), 62

<80+1 (U), . . . , 62<A−1 (U), ℎ2<A (XU2)
)
,

with X ∈ `@−n chosen so that 6, 6′ ∈ SLn= (@). Now the same arguments as in Case 1a show that each

of 6 and 6′ is contained in a unique �̃-conjugate of !, say 6, 6′ ∈ !, and moreover, equations (5.8)

and (5.9) hold. Hence we conclude as before that formula (5.5) holds, as desired.

(ii) Case 2. For all 1 ≤ 8, 9 ≤ : , 20−4−1 divides [s8] − [s 9 ].
Multiplying j̃ by ((s−1

1
, (=)), we may assume that 20−4−1 divides [s8] for all 1 ≤ 8 ≤ : . By

Lemma 5.5(iii), there exist some 80 < 90 such that 20−4 ∤ ([s80] − [s 90]). Keeping in mind that

= = =1 + · · · + =: is a proper decomposition, we partition

{<1, . . . , <A } = {<′
1, . . . , <

′
B} ∪ {<′′

1 , . . . , <
′′
C },

with B + C = A , <′
1
> . . . > <′

B , <
′′
1
> . . . > <′

C , such that

• each 2-adic part of any =8 with 20−4 ∤ [s8] is among 2<
′
1 , . . . , 2<

′
B , and vice versa, each 2<

′
8′ is a

2-adic part of some =8 with 20−4 ∤ [s8]; and

• each 2-adic part of any = 9 with 20−4 | [s 9 ] is among 2<
′′
1 , . . . , 2<

′′
C , and vice versa, each 2<

′′
8′ is a

2-adic part of some = 9 with 20−4 | [s 9 ].

Now write ! = !1 × !2, where

!1 =

∏

8:20−4∤[s8 ]
GLn=8 (@), !2 =

∏

9:20−4 | [s 9 ]
GLn= 9

(@).
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We claim that to prove the theorem in this case, it suffices to find a 2-element 6 ∈ � such that whenever

a conjugate 6G of 6 is contained in !,

the projection of 6G onto !1 has determinant ≡ U(mod U2). (5.10)

Indeed, suppose ℎ1ℎ2 = 6G ∈ !, with ℎ8 the projection of 6G onto !8 for 8 = 1, 2. As 6 is a 2-element,

the determinant of the projection of ℎ1 onto the direct factor GLn=8 (@) of !1 is U08 for some 08 ∈ Z, and

similarly the determinant of the projection of ℎ2 onto the direct factor GLn= 9
(@) of !2 is U1 9 for some

1 9 ∈ Z. Recalling equation (5.2) and the fact that unipotent characters ((1, ,8) take only integer values,

we see that there is an integer ^(G) ∈ Z such that

k(6G) = ^(G)Ũ<(G) ,

with

<(G) :=

( ∑

8:20−4∤[s8 ]
[s8]08 +

∑

9:20−4 | [s 9 ]
[s 9 ]1 9

)
≡ 20−4−1

∑

8:20−4∤[s8 ]
08 ≡ 20−4−1 (mod 20−4),

since by expression (5.10) we have

U
∑

8:20−4∤[s8 ] 08 = det(ℎ1) ≡ U(mod U2).

But |Ũ | = 20, so we have k(6G) = ^′(G) Ṽ, where

Ṽ := exp(2c8/24+1)

and ^′(G) ∈ Q( Ṽ2) = Q24 . It now follows from equation (5.7) that

j(6) = ^′ Ṽ

for some ^′ ∈ Q24 . Since ^ ≠ 0 by [ILNT, Lemma 2.4], we conclude that j(6) ∉ Q24 , as desired.

We will now follow Case 2 of the proof of [ILNT, Theorem 4.7] to construct a 2-element 6 = 6162 ∈
� ∩ !, with 61 ∈ !1 and 62 ∈ !2, that satisfies formula (5.10).

Case 2a. We are in Case 2, but B and C are both odd.

Setting

61 =
(
6

2
<′

1
(U), 6

2
<′

2
(U−1), 6

2
<′

3
(U), 6

2
<′

4
(U−1), . . . , 6

2
<′
B−2

(U), 6
2
<′
B−1

(U−1), 6
2<

′
B
(U)

)
,

62 =
(
6

2
<′′

1
(U−1), 6

2
<′′

2
(U), 6

2
<′′

3
(U−1), 6

2
<′′

4
(U), . . . , 6

2
<′′
C−2

(U−1), 6
2
<′′
C−1

(U), 6
2<

′′
C
(U−1)

)
,

and arguing as in Case 1a, we see that ! is the unique �̃-conjugate of ! that contains 6. Clearly,

det(61) = U, and so we are done.

Case 2b. We are in Case 2, but B + C is odd.

Multiplying j̃ by ((U20−4−1

, (=)) if necessary, we may assume that 2 ∤ B and 2|C. We set

61 =
(
6

2
<′

1
(U), 6

2
<′

2
(U−1), 6

2
<′

3
(U), 6

2
<′

4
(U−1), . . . , 6

2
<′
B−2

(U), 6
2
<′
B−1

(U−1), 6
2<

′
B
(U)

)
,

62 =
(
6

2
<′′

1
(U−1), 6

2
<′′

2
(U), 6

2
<′′

3
(U−1), 6

2
<′′

4
(U), . . . , 6

2
<′′
C−3

(U−1), 6
2
<′′
C−2

(U), 6
2
<′′
C−1

(U−1), 6∗2
)
,

where

6∗2 =

{
�
2<

′′
C
, <′

B > <
′′
C ,(

6
2<

′′
C −1 (U), 62<

′′
C −1 (U−1)

)
, <′

B < <
′′
C .

If <′
B > <′′

C or if <′′
C > <′

B but <′′
C ≠ <′

8 + 1 for all 8, then arguing as in Case 1a we see that ! is the

unique �̃-conjugate of ! that contains 6. As det(61) = U, we are done in this case.
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Suppose that <′′
C = <′

9 + 1 for some 9 and 6 ∈ !G for some G ∈ �̃. Again, we argue as in Case 1a and

see that each 2-adic part 2<8 with <8 ≠ <′′
C , <

′
9 is ‘filled up’ uniquely by the �-orbit of 6-eigenvalues

within 62<8 (U±1) (that is, this �-orbit of 6-eigenvalues is the only one of length 2<8 ). This leaves

three �-orbits of 6-eigenvalues, of length 2
<′

9 each, and afforded by two blocks 6
2
<′

9
(U) and one block

6
2
<′

9
(U−1), to fill up the two remaining 2-adic parts 2<

′′
C = 2 · 2

<′
9 and 2

<′
9 . Clearly, all possible ways

of filling up the remaining 2-adic part 2
<′

9 for !G
1

have determinant U or U−1, and so formula (5.10) is

satisfied.

Case 2c. We are in Case 2, but B and C are even.

Multiplying j̃ by ((U20−4−1

, (=)) if necessary, we may assume that <′
B > <

′′
C . We set

61 =
(
6

2
<′

1
(U), 6

2
<′

2
(U−1), 6

2
<′

3
(U), 6

2
<′

4
(U−1), . . . , 6

2
<′
B−3

(U), 6
2
<′
B−2

(U−1), 6
2
<′
B−1

(U−1), 6♯
1

)
,

62 =
(
6

2
<′′

1
(U−1), 6

2
<′′

2
(U), 6

2
<′′

3
(U−1), 6

2
<′′

4
(U), . . . , 6

2
<′′
C−3

(U−1), 6
2
<′′
C−2

(U), 6
2
<′′
C−1

(U−1), 6∗2
)
,

where
(
6
♯
1
| |6∗

2

)
is chosen to be

( (
6

2<
′
B−1 (U−1), 6

2<
′
B−1 (U3)

)
| |�

2<
′′
C

)
, <′

B > <
′′
C + 1,(

diag(1, U2) | |�1
)
; <′

B = <
′′
C + 1 = 1,( (

6
2<

′′
C −1 (U), 62<

′′
C −1 (U), 62<

′′
C −1 (U), 62<

′′
C −1 (U−1)

)
| |
(
6

2<
′′
C −1 (U), 62<

′′
C −1 (U−1)

) )
, <′

B = <
′′
C + 1 ≥ 2.

Suppose 6 ∈ !G for some G ∈ �̃. Again we argue as in Case 1a and see that each 2-adic part 2<8 > 2<
′
B

is filled up uniquely by the �-orbit of 6-eigenvalues of 62<8 (U±1).
Consider the case where<′

B > <
′′
C +1. The smallest 2-adic part 2<

′′
C can only be filled up by the block

�
2<

′′
C
, because all other eigenvalues of 6 have �-orbit of length > 2<

′′
C . If, moreover, <′

B − 1 is not equal

to any <′′
8 , then the two blocks 6

2<
′
B−1 (U−1) and 6

2<
′
B−1 (U3) can only fill up the 2-adic part 2<

′
B . Thus

! is the unique �̃-conjugate of ! that contains 6, and det(61) = U as desired. Suppose <′
B − 1 = <′′

8 .

Then each 2-adic part 2
<′′

9 with 8 < 9 < C must be filled up by the unique block 6
2
<′′

9
(U±1) in 62. Next,

the 2-adic part 2<
′′
8 can be filled up by an �-orbit of length 2<

′′
8 coming from the three remaining blocks

6
2<

′
B−1 (U−1), 6

2<
′
B−1 (U3) and 6

2
<′′
8
(U±1). Any choice of such filling gives the same determinant modulo

U2. The two remaining �-orbits then fill up the remaining 2-adic part 2<
′
B of !G

1
, thus giving the same

determinant modulo U2 for the projection on 6 onto !G
1
, as required in formula (5.10).

Suppose <′
B = <

′′
C + 1. In this case, all 2-adic parts but 2<

′
B = 2 · 2<

′′
C and 2<

′′
C are already filled up

uniquely by suitable blocks of 6. If <′′
C = 0, then the 2-adic part 2<

′′
C can be filled up by a 6-eigenvalue

1 or U2. If <′′
C ≥ 1, then the 2-adic part 2<

′′
C can be filled up by two �-orbits of 6-eigenvalues of length

2<
′′
C −1, afforded by blocks 6

2<
′′
C −1 (U) or 6

2<
′′
C −1 (U−1). Evidently, any choice of such filling gives the same

determinant modulo U2. The remaining �-orbits then fill up the remaining 2-adic part 2<
′
B of !G

1
and

thus give the same determinant modulo U2 for the projection on 6 onto !G
1
, as required in formula (5.10).

This completes the proof of Theorem 5.1 for � = SLn= (@). �

For future reference, we will need the following consequence of the foregoing analysis:

Proposition 5.8. Let � = GLn= (@) with 2 ∤ @ and n = ±. Suppose

j = ((s1, ,1) ◦ ((s2, ,2) ◦ · · · ◦ ((s: , ,: )

is an odd-degree irreducible character of � as in Lemma 5.5(ii), and let 22 be the smallest 2-part of

[s8], 1 ≤ 8 ≤ : . If % ∈ Syl2 (�) and 20 := (@ − n)2, then Q(j%) = Q20−2 .

Proof. (i) Recall that unipotent characters ((1, ,8) and linear characters ((±1, (=8)) are rational-valued.

More generally, if 2C8 denotes the 2-part of [s8], then the linear character ((s8 , (=8)) can take values at
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2-elements only in Q20−C8 . Hence, using equation (5.2) and the arguments in the proof of Lemma 5.5,

we see that

Q(j%) ⊆ Q20−2 . (5.11)

In particular, if 2 ≥ 0 − 1, then j |% is rational and we are done. In what follows we may therefore

assume that 0 ≥ 2 and 2 ≤ 0 − 2. Furthermore, if : = 1, then 2 = C1 and again we are done by using

equation (5.2) and the preceding arguments. Thus we may assume that : ≥ 2; in particular, = is not a

2-power (since = = =1 + · · · + =: is a proper decomposition).

(ii) Let 0 ≤ 1 ≤ 0 be the largest integer subject to the condition that 21 divides [s8] − [s 9 ] for all

1 ≤ 8 < 9 ≤ : . Note that 1 ≥ 2. (Assume that 1 ≤ 2−1. By the definition of 1 and 2, we have [s8]2 = 22

for some 8 and 22 ∤ ([s8] − [s 9 ]) for some 9 ≠ 8, whence 22 ∤ [s 9 ] – a contradiction.) Next we fix an

index ; with [s;]2 = 22 and write

j = ((s; , (=))j′, (5.12)

where j′ = ((s1/s; , ,1) ◦ ((s2/s; , ,2) ◦ · · · ◦ ((s:/s; , ,: ). Then j and j′ have the same restriction,

call it i, to [�,�] = SLn= (@). The arguments in the proof of Lemma 5.5 can then apply to show that i

is f1′-invariant for all 1′ ≥ 0 − 1 and

Q(j′%) ⊆ Q20−1 , Q(j&) ⊆ Q20−1 , (5.13)

where & = % ∩ [�,�] ∈ Syl2([�,�]). We also note that

((s1, (=)) (D) is a primitive 20−2-root of unity if D ∈ % has det(D) = Z (@−n )2′ . (5.14)

Consider the case where 1 ≥ 0 − 1. By formula (5.13), j′(D) ∈ Q, and it is nonzero as 2 ∤ j(1).
Hence equation (5.12) and formula (5.14) show that Q(j(D)) ⊇ Q20−2 , whence we have equality in

formula (5.11), as required.

(iii) From now on we may assume that 1 ≤ 0 − 2. Note that i = j[�,� ] is irreducible, since s8 ,

1 ≤ 8 ≤ : , are pairwise distinct and = = =1 + · · · + =: is a proper decomposition. Moreover,

i is not f0−1−1-invariant. (5.15)

Assume the contrary. As i extends to �, we have that j and f0−1−1(j) can differ only by a linear

character of �. Using the unique representation of j as in Lemma 5.5(ii) (see, for example, [GKNT,

Lemma 5.2] for the uniqueness in the case where n = −) and the action of Galois automorphisms of

Q@−n on these representations (see, for example, the last displayed formula in the proof of [GKNT,

Theorem 5.3]), we have

(s′1)
20−1−1

= (s′2)
20−1−1

= · · · = (s′: )
20−1−1

,

where s
′
8 is the 2-part of s8 , and in fact (s8/s 9 )20−1−1

= 1 for all 8, 9 . This implies that 21+1 divides

[s8] − [s 9 ] for all 8, 9 , contradicting the choice of 1.

In particular, i is not f1-invariant, and so it is not 2-rational. By [ILNT, Theorem E], 8 ∈ Q(i&) ⊆
Q(j%). Recalling formula (5.11) and the cyclic extension Q20−2/Q(8), it suffices now to show that

Q(j%) * Q20−2−1 . (5.16)

(iv) If 1 > 2, then formulas (5.13) and (5.14) show that j(D) ∉ Q20−2−1 , and so formula (5.16)

holds. Finally, we consider the case where 1 = 2. If 2 = 0 − 2, then 8 ∈ Q(j%) as noted already,

implying formula (5.16). If 2 ≤ 0 − 3, then as i is not f0−2−1-invariant, by formula (5.15), we have

Q(i&) * Q20−2−1 by Theorem 5.1, and so formula (5.16) holds again, completing the proof. �
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5.3. Groups of type E6 and 2E6(q)

The rest of the section is devoted to proving Theorem 5.1 for � = � n
6
(@)sc. First we recall the following

result from [ILNT]:

Proposition 5.9 ([ILNT], Proposition 4.9). Let � = G� = � n
6
(@)sc, and suppose that @ ≡ n (mod 8).

Write (@ − n)2 = 20. Then there exists an element C ∈ � with the following properties:

(i) C is a 2-element;

(ii) C� (C) is a maximal torus (@4 − 1) × (@2 − 1);
(iii) C centralises a unique involution E that has centraliser of type �5)1 in G;

(iv) if ! = C� (E) and � = ! ′
� � n

5
(@), then the coset C� ∈ !/� has order 20 and generates

O2 (!/�);
(v) C� ∩ ! = C! .

Proof of Theorem 5.1 By Corollary 5.4 and Theorem 5.7, it suffices to prove Theorem 5.1 in the case

where � = G� = � n
6
(@)sc, with n = ±1 and 4| (@ − n). Here G is a simple, simply connected algebraic

group of type �6 in characteristic ? |@ and � : G → G is a suitable Steinberg endomorphism. Using

[Lu] one can see that � has exactly 8(@ − n) irreducible characters of odd degree, eight of which are

unipotent and listed in [C, §13.9]. As shown in the proof of [M, Theorem 3.4], any unipotent character

of odd degree of � lies in the principal series and is 2-rational. So we may assume that j is one of

8(@ − n − 1) nonunipotent characters of odd degree and j belongs to the rational series E(�, (B)),
labelled by a 2-central semisimple element B ∈ �∗. Here, �∗ = G∗� ∗

and (G∗, �∗) is dual to (G, �).
As mentioned in the proof of [M, Theorem 3.4], CG∗ (B) is connected. In fact, as one can see using

[LSS, Table 5.1], there are @ − n − 1 classes of such elements B ∈ �∗, with CG∗ (B) = L∗, an �∗-stable

Levi subgroup of type �5)1, dual to an �-stable Levi subgroup L of G. Next, as mentioned in the proof

of [NT3, Lemma 4.13], ! := L� and L∗� ∗
each have exactly eight unipotent characters of odd degree,

and furthermore their degrees are pairwise distinct. The latter immediately implies that these unipotent

characters are rational-valued (indeed, any Galois automorphism of Q acts on the set of unipotent

characters and hence fixes each of these eight characters).

Since CG∗ (B) = L∗, Lusztig’s classification of irreducible characters of � in the rational series

E(�, (B)) [DM, §13] yields

j = ±'�! (k_), (5.17)

where k ∈ Irr(!) is unipotent of odd degree and _ ∈ Irr(!) has degree 1. (Indeed, as B ∈ Z(!∗), by

[DM, Proposition 13.30], there is a linear character _ = B̂ of ! such that multiplication by _ gives a

bijection between E(!, (1)) and E(!, (B)). Next, by [DM, Theorem 13.25], there are some signs Y� and

Y! such that the map

Y�Y!'
�
! : E(!, (B)) → E(�, (B))

is a bijective isometry which sends true characters to true characters.) The formula for the Lusztig in-

duction functor '�! (see [DM, p. 90]) shows that it commutes with Galois actions on characters; see also

[GM, Corollary 3.3.14]. With the assumption that j is not f4-invariant and the aforementioned rational-

ity of k, this implies that _ is not f4-invariant. Since !/� � �@−n for � := ! ′ as in Proposition 5.9(iv),

it follows that _ is a character of !/� of order divisible by 24+1, and (@ − n)2 = 20 ≥ 24+1.

We now consider the regular 2-element C ∈ ! constructed in Proposition 5.9. For any C ′ ∈ C� ∩ !,

CG (C ′) is a maximal torus (of rank 6). At the same time, CL (C ′) contains a maximal torus of rank 6. It

follows that CL (C ′) = CG (C ′), and so C� (C ′) ≤ ! for all C ′ ∈ C� ∩ !. Thus we can apply [ILNT, Lemma

4.8] to C and obtain from equations (5.7) and (5.17) that

j(C) = ±St� (C)j(C) = ±(St� · '�! (k_)) (C) = ±(St!k_)� (C) = ±k(C)_(C) (5.18)

(noting that the Steinberg character takes values ±1 at regular semisimple elements). Recall from

Proposition 5.9(iv) that the coset C� generates O2 (!/�). Since _ has order divisible by 24+1, it follows

https://doi.org/10.1017/fmp.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.1


20 Gabriel Navarro and Pham Huu Tiep

that _(C) is a primitive root of unity b of order 21 ≥ 24+1. Now equation (5.18) yields j(C) = ±k(C)b,
and k(C) is an odd integer by [ILNT, Lemma 2.4]. Hence Q24+1 ⊆ Q(j(C)), as required. �

5.4. Completion of the proof of Theorem A3

Note that Theorem A3 obviously holds when 0 = 0. SinceQ< = Q2< when< is odd, it remains to prove

Theorem A3 when 0 ≥ 2; in particular, j is not 2-rational. By Lemma 4.1(iii), 0 is the smallest integer

4 ≥ 2 such that j is f4-invariant. The first statement of Theorem A3 now follows from [ILNT, Theorem

E] when 0 = 2, and it is just Theorem 5.1 when 0 ≥ 3. For the second statement, define 1 := exp(%),
so that L := Q(j%) ⊆ Q21 . It follows from [ILNT, Theorem E] that 8 ∈ L, and so Q22 ⊆ L ⊆ Q21 and

1 ≥ 2. However, Q21/Q22 is a cyclic extension of degree 21−2, and all intermediate subfields are Q22

with 2 ≤ 2 ≤ 1. It follows that L = Q23 for some 2 ≤ 3 ≤ 1. Applying Theorem 5.1, we have 3 ≥ 0.

On the other hand, 3 ≤ 0 by the definition of 2(j) = 20<, and hence 3 = 0, as stated. �

6. Evidence in support of Conjecture B3

Theorem 6.1. Let ? > 2 be a prime and � a finite quasisimple group. Then Conjecture B3 holds for

�, unless possibly when ( := �/Z(�) is a finite simple group of Lie type in characteristic ≠ ?.

Proof. (i) First we consider the ‘generic’ case, where � is a quotient of G� for some simple, simply

connected algebraic group G over a field of characteristic ? and � : G → G a Steinberg endomorphism,

and let K := Q(Z |� |?′ ), where Z= := exp(2c8/=) for any = ∈ Z≥1. Set j ∈ Irr(�). Now if ? = 5 and G is

of type �8, thenQ(j) ⊆ K(Z?) by [TZ, Proposition 10.12]. In all other cases,Q(j) ⊆ K(√?) ⊆ K(Z?)
by [TZ, Theorem 1.3]. It follows that j has conductor 2(j) = ?0< with ? ∤ < and 0 ≤ 0 ≤ 1. In this

case, if 6 ∈ � is a ?-element, then j(6) ∈ Q?0 and certainly [Q?0 : Q] divides ? − 1, and so we are

done.

(ii) Next we consider the case where ( = A= with = ≥ 8. Without any loss we may assume that

Z(�) = �2, and � is a normal subgroup of index 2 in � = 2S=, a double cover of S=; in particular,

Z(�) = Z(�) = 〈I〉. Define K := Q(Z |� |?′ ), and consider any ?-element 6 ∈ � and ?′-element B ∈ �
that commutes with 6. With B projecting onto B̄ ∈ S=, define � := C� (B), �̄ := C�/Z(� ) ( B̄), and let �

be the full inverse image of �̄ in �. Clearly, GBG−1 = B or BI, and so [� : �] ≤ 2. It is well known that

any complex character of S= is rational and so has a field of values contained in K. By [TZ, Corollary

2.12], the latter implies that every ?-element in S= is strongly rational – that is, rational in the centraliser

of any ?′-element of S= that commutes with it. Hence, for any integer ℓ ∈ Z coprime to ?, there exists

an element H ∈ � such that H6H−1 ∈ 6ℓZ(�). But since |6 | is odd and Z(�) = �2, it follows that

H6H−1 = 6ℓ – that is, 6 is rational in �. Since [� : �] ≤ 2, it follows that the generators of 〈6〉 break

into at most two �-conjugacy classes. We have shown that 6 is strongly half-rational in the sense of

[TZ, Definition 2.4]. Hence, by [TZ, Lemma 2.8(ii)], Q(j) ⊆ K(√?) for every j ∈ Irr(�).
Consider any k ∈ Irr(�), and assume first that k is faithful. By a classical result of Schur [HH,

Theorem 8.6], there is a strict partition _ of = such that k is an irreducible constituent of a faithful

irreducible character 〈_〉 of � labelled by _. Moreover, if _ is odd, then k = 〈_〉� , whence Q(k) ⊆
K(√?) as already shown. Suppose _ is even. Then, again by Schur’s result [HH, Theorem 8.7(iv)], for

any G ∈ � we have k(G) = (〈_〉(G) ± b)/2, where either b = 0 or G projects onto an element of cycle

type _ = (_1, . . . , _;) in S= and

b =

√
(−1) (=−;)/2_1 . . . _; .

Since b ∈ K(√?), we conclude that Q(k) ⊆ K(√?). In the case where k is not faithful, the same

conclusion holds by [JK, Theorem 2.5.13].

We have shown that Q(k) ⊆ K(√?) for all k ∈ Irr(�), and the statement now follows as at the end

of (i).
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(iii) All the remaining cases – where ( is either a sporadic simple group, A= with 5 ≤ = ≤ 7 or a

simple group of Lie type with exceptional Schur multiplier – can be checked directly using [GAP]. �

7. Results on Conjecture C

In this last section, we prove some results on Conjecture C. In order to check our statement, a more

comprehensive understanding of the values of ?′-degree characters on ?-elements is needed.

We start with some elementary lemmas.

Lemma 7.1. Let � be a finite group and ? a prime, and set % ∈ Syl? (�). Set j ∈ Irr(�) and let

5 = ?0< be the conductor of j, where 0 ≥ 0 and ? does not divide <. Then the conductor of Q(j%)
divides ?0. In particular, Q(j%) ⊆ Q?0 .

Proof. If ?1 is the exponent of %, we have Q(j%) ⊆ Q?1 . In particular, the conductor of Q(j%) is ?2

for some 2 ≤ 1. Now Q(j%) ⊆ Q(j) ⊆ Q?0<, and therefore Q(j%) ⊆ Q?2 ∩ Q?0< = Qgcd(?2 , ?0<) =
Qmin(?2 , ?0) . By the definition of the conductor, we have ?2 ≤ min(?2 , ?0), and therefore ?2 ≤ ?0, as

required. �

Next we show an elementary reformulation of Conjecture C for ? odd, which also shows its equiva-

lence with the conclusion of Conjecture B3. Again, recall that if ? is odd and 0 ≥ 1, then E?0−1 is the

unique subfield of Q?0 of degree ?0−1 over Q.

Lemma 7.2. Suppose that ? is odd. Let j ∈ Irr(�) have conductor ?0<, where ? does not divide <,

0 ≥ 2, and set % ∈ Syl? (�). Then the following are equivalent:

(i) There exists G ∈ % such that E?0−1 ⊆ Q(j(G)).
(ii) ? does not divide [Q?0 : Q(j%)].
(iii) j% is not g-invariant, where g ∈ Gal(Q?0/Q) is any Galois automorphism of order ?.

Proof. We have that the extension Q?0/Q is cyclic and that E?0−1 is contained in every subfield  of

Q?0 such that [Q?0 :  ] is not divisible by ?, by elementary Galois theory. Let g ∈ Gal(Q?0/Q)
be of order ?, and let � = Q?0−1 be the fixed field of g, which is the unique subfield  such that

[Q?0 :  ] = ?. Hence � contains every subfield  ⊆ Q?0 such that [Q?0 :  ] is divisible by ?. By

Lemma 7.1, we have Q(j(G)) ⊆ Q(j%) ⊆ Q?0 for every G ∈ %.

Now, if there exists G ∈ % such that E?0−1 ⊆ Q(j(G)) ⊆ Q(j%), then ? does not divide [Q?0 :

Q(j%)]. Hence (i) implies (ii). Assume (ii). If E?0−1 is not contained in Q(j(G)), where G ∈ %,

then ? divides the index of the cyclic extension Q?0/Q(j(G)), and therefore Q(j(G)) ⊆ �. If this

happens for all G ∈ %, we have Q(j%) ⊆ � and therefore ? divides [Q?0 : Q(j%)]. Finally, ? divides

[Q?0 : Q(j%)] if and only if Q(j%) ⊆ Q?0−1 if and only if j% is g-invariant. This shows that (ii) and

(iii) are equivalent. �

Next we prove Conjecture C in the case where � has a normal Sylow ?-subgroup.

Theorem 7.3. Let � be a finite group, and set % ∈ Syl? (�). Set j ∈ Irr?′ (�) and assume % ⊳ �.

Suppose that the conductor of j is ?0<, where 0 ≥ 1 and ? does not divide <. Then Q?0/Q(j%) has

degree not divisible by ?.

Proof. By Lemma 7.1, we have Q(j%) ⊆ Q?0 . We may assume that 0 ≥ 2. Let _ ∈ Irr(%) be a linear

irreducible constituent of j% . By Lemma 2.5(ii), we have >(_) = ?0. Now apply Lemma 2.5(i). �

Using Gajendragadkar–Isaacs theory, it is easy to prove Conjecture C for primitive characters of

?-solvable groups.

Theorem 7.4. Suppose that j is a primitive character of a ?-solvable group, of degree not divisible

by ?. If ?0 is the ?-part of the conductor of j, and % ∈ Syl? (�), then Q(j%) = Q?0 . In particular,

Conjecture C holds for j.
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Proof. Suppose that j = UV, where U is a ?′-special character of � and V is ?-special and linear.

We know that U is ?-rational by [Is3, Corollary 2.13]. By Lemma 2.4, we have 2(j) = 2(U)2(V) and

2(V) = 2(j)? = ?0. Also, Q(j%) = Q(V%) = Q?0 . �

The following might be useful in the future:

Theorem 7.5. If � is a counterexample for Conjecture C minimising |� |, then O? (�) = 1 and �/� ′

has order not divisible by ?.

Proof. Set j ∈ Irr(�) of ?′-degree and suppose that the ?-part of the conductor of j is ?0. Set

% ∈ Syl? (�). Assume that Q?0/Q(j%) has degree divisible by ? but Conjecture C holds for every

finite group of order smaller than�. We have 0 ≥ 2. We also may assume that ker(j) = 1 by minimality.

Let # = O? (�) and assume that # < �. We will now deduce a contradiction. Write j# = \ ∈ Irr(#)
and j = \̂_, where \̂ is the canonical extension of \ and _ ∈ Irr(�/#) is linear. In particular,

2(\) = 2(\̂). (See [N2, Corollaries 6.2 and 6.4].) Suppose that \ is ?-rational. Then \̂ is ?-rational, and

then Q(j%) = Q(_) by Lemma 2.4. Since ?0 = 2(j)? = 2(_) by Lemma 2.4, we get a contradiction.

We assume that \ is not ?-rational.

If 4 ≥ 1, notice that

(\̂_)f4 = \̂_

if and only if \f4 = \ and _f4 = _, using the uniqueness in the Gallagher correspondence. This shows

that 2(j)? = max(2(_), 2(\)?), using Lemma 4.1(iii).

Write 2(\)? = ?3 , where 3 ≥ 1, >(_) = ?1 , and let & = % ∩ # . By induction, we have that

Q?3/Q(j&) has degree not divisible by ?.

Assume first that ?1 ≤ ?3 . Then 2(j)? = ?0 and 0 = 3. Since Q?0/Q(j&) has degree not divisible

by ? and Q(j&) ⊆ Q(j%) ⊆ Q?0 , we are done in this case.

Assume now that ?1 > ?3 . Therefore 2(j)? = >(_) = ?1 and 0 = 1. Let g ∈ Gal(Q?1</Q?3<)
be of order ?, where < is the ?′-part of the order of |� |, fixing j% = \̂%_% . Then g fixes \̂ and thus,

using the fact that \̂ (G) ≠ 0 on every ?-element G, we have _g = _, which is impossible. This shows

that �/� ′ has order not divisible by ?.

Assume that O? (�) > 1. Notice that O? (�) ≤ � ′, by the previous part. Let ! be a minimal normal

subgroup of� inside O? (�). Therefore, ! is an elementary abelian ?-subgroup. Now, let n ∈ Irr(%) be

a linear irreducible constituent of j% , and let _ = n! . Notice that _ ≠ 1, because j is faithful. Thus, if

) = �_ is the stabiliser of _ in �, we have % ≤ ) . Also, let k ∈ Irr() |_) be the Clifford correspondent

of j over _. Thus k� = j and j) = k + Δ , where no irreducible constituent of Δ lies over _ (using

the Clifford correspondence). By the induction formula and the fact that the ?-elements of ) are inside

some )-conjugate of %, we easily deduce that Q(j%) ⊆ Q(k%). In particular, ?0 ≤ ?2 , where 2 is

the conductor of k% . We claim that Q? (j%) = Q(k%), where Q? = Q(_) is the ?th cyclotomic field.

Since k! is a multiple of _, we have Q? (j%) ⊆ Q(k%). Set f ∈ Gal(Q(k%)/Q? (j%)). Notice that we

have j% = k% + Δ% , where no irreducible constituent of Δ% lies over _. Now let d be an irreducible

constituent of k% . Since f fixes j% , it follows that df is an irreducible constituent of either k% or Δ% .

Since d lies over _ and f fixes _, it follows that df is an irreducible constituent of k% . Then

[k% , d] = [j% , d] = [(j%)f , df] = [j% , df] = [k% , df],

and we easily deduce that (k%)f = k% . This proves the claim.

By elementary Galois theory, we have that Gal(Q(k%)/Q(j%)) is isomorphic to Gal(Q?/(Q? ∩
Q(j%))), and therefore has order not divisible by ?. Thus Q(k%)/Q(j%) has degree not divisible by ?.

Now, by [N2, Lemma 5.11], we have that _ extends to some a ∈ Irr()). If ) = �, then � ′ ≤ ker(a),
and therefore _ = 1, which is not possible. We conclude that ) < �. By minimality, we have that

Q?2/Q(k%) has degree not divisible by ?. Since ?0 ≤ ?2 , 0 ≥ 2, and Q(k%)/Q(j%) has degree not

divisible by ?, we deduce that Q(k%) ⊆ Q?0 . Then 0 = 2, and Q?0/Q(j%) has degree not divisible by

?. This is a contradiction. �
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Theorem A3 immediately shows the following:

Corollary 7.6. Conjecture C holds in the case where ? = 2 and � is quasi-simple.

Another case of Conjecture C that we can handle is the following:

Theorem 7.7. Suppose that � has ?-length 1. Then Conjecture C holds for �. In particular, Conjec-

ture C holds for ?-solvable groups with abelian Sylow ?-subgroups.

Proof. Suppose that � has a normal ?′-subgroup  and a Sylow ?-subgroup % such that ! =  % ⊳ �.

Suppose that j ∈ Irr?′ (�), and let ?0 be the ?-part of the conductor of j. We may assume that 0 ≥ 2.

Let [ ∈ Irr(!) be under j, so that j! is a rational multiple of
∑
G∈N� (%) [

G . Now [ has ?′-degree, so

[ = \ ∈ Irr( ). Thus [ = \̂_ for some _ ∈ Irr(%) linear, where \̂ ∈ Irr(!) is the canonical extension

of \. (We identify the characters of !/ with the characters of %.) By the first paragraph in the proof

of Theorem 7.4, we have that the ?-part of the conductor of [ is >(_) = ?1 (using the facts that \̂ is

?′-special and _ is ?-special).

We claim that [ is not ?-rational. Otherwise, if ? = 2, j is ?-rational by Lemma 4.2(ii), which is

not possible. If ? is odd, then _ = 1 and [ is ?′-special. Since �/! is a ?′-group, j is ?′-special by

[Is3, Theorem 2.4(i)], and in this case 0 = 0 (by [Is3, Corollary 2.13]) – a contradiction. This proves

the claim. Hence, 1 ≥ 1. By Lemma 4.2(ii), we conclude that 0 = 1.

We want to study the field of values of the character

Δ =

∑

G∈N� (%)
_G (\̂%)G .

We claim that

Q(Δ) = Q(
∑

G∈N� (%)
_G).

Set H ∈ %. Then \̂ (H) = nH\H (1), where nH is a sign and \H ∈ Irr(C� (H)) is the 〈H〉-Glauberman

correspondent of \ (by [Is2, Theorems 13.6 and 13.14]). Notice that (\H)G = \HG and nH = nHG for H ∈ %
and G ∈ N� (%) (by the uniqueness in [Is2, Theorem 13.6]). Also, (\̂G) = \̂G for G ∈ N� (%), this time

by the uniqueness of canonical extensions.

Thus,

Q(Δ) = Q(
∑

G∈N� (%)
_G (H)\̂ (HG−1 ) | H ∈ %) =

Q(nH\H (1)
∑

G∈N� (%)
_G (H) | H ∈ %) = Q(

∑

G∈N� (%)
_G)),

as claimed. Now, if k ∈ Irr(N� (%)) lies over _, we have Q(k%) = Q(Δ) = Q(j%) and we apply

Theorem 7.3. �

Next we make a few remarks concerning the Galois–McKay conjecture. As formulated in [N2,

Conjecture 9.8] (or at the end of [N1]), this proposes that if � is a finite group of order =, % ∈ Syl? (�)
and H is the subgroup of Gal(Q=/Q) that sends ?′-roots of unity to some arbitrary ?-power, then there

should exist a bijection

∗ : Irr?′ (�) → Irr?′ (N� (%))

that commutes with the action of H. Now let F be the fixed field in Q= by H. (Notice that if < = =?′ ,

then F is the fixed field inQ< of the subgroup generated by the Frobenius automorphism b ↦→ b ? , where

b is any <-root of unity.) Since Gal(Q=/F) = H, by elementary Galois theory it easily follows that the

Galois–McKay conjecture is equivalent to showing that F(j) = F(j∗) for all j ∈ Irr?′ (�). (If Q? is
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the field of ?-adic numbers, it can be proved that this is equivalent to showing that Q? (j) = Q? (j∗)
for all j ∈ Irr?′ (�).)

We find it interesting to study the class of finite groups for which the bijection ∗ in the Galois–McKay

conjecture can be strengthened in the following way:

Condition D. Let � be a finite group and ? a prime, and set % ∈ Syl? (�). Then there exists a bijection
∗ : Irr?′ (�) → Irr?′ (N� (%)) such that Q(j%) = Q(j∗ |%) and Q? (j) = Q? (j∗) for all j ∈ Irr?′ (�).

Suppose that Condition D holds for � and consider any j ∈ Irr?′ (�). Since Gal(Q=/Q<) ≤ H,

we easily deduce that the Galois–McKay conjecture implies that j is ?-rational if and only if j∗ is

?-rational. (More than that, it implies that 2(j) and 2(j∗) have the same ?-part.) In the case where j

is ?-rational, notice that j% (and j∗ |%) is rational-valued, so Condition D, for ?-rational characters,

follows from the Galois–McKay conjecture. Once j is not ?-rational, Condition D is new territory. We

remark that the restriction j∗ |% is well understood: it is a sum of N� (%)-conjugate linear characters of

%. However, in general, notice that j% might contain irreducible characters of % of degree divisible by

?, and constituents with different multiplicities. We believe that studying the character j% is of interest.

We caution the reader that Condition D does not always hold. We thank B. Sambale for communicating

to us that � = PrimitiveGroup(64, 38) (in the notation of [GAP]) for ? = 3 is an example. (This group

is not a counterexample to Conjecture C.) On the other hand, as we will show, Condition D does hold

for many interesting classes of finite groups, so it might be worth exploring further.

We show now that Condition D implies Conjecture C.

Theorem 7.8. Condition D implies Conjecture C.

Proof. Let � be a finite group of order = and ? a prime, set % ∈ Syl? (�) and let # = N� (%). Let

G = Gal(Q=/Q). Let H be the subgroup of Galois automorphisms that send every ?′-root of unity in

Q= to some fixed but arbitrary ?-power. Let F be the fixed field of H. Assume that there is a bijection

∗ : Irr?′ (�) → Irr?′ (#)

such that F(j) = F(j∗) – or equivalently, that commutes with the action of H. Since f4 ∈ H for every

4, we have that the ?-parts of the conductors of j and j∗ are the same, say ?0, where j ∈ Irr?′ (�). Now

if Q(j%) = Q(j∗ |%), then [Q?0 : Q(j%)] = [Q?0 : Q(j∗ |%)]. By Theorem 7.3, this latter number is

not divisible by ?. �

Next we present several classes of finite groups which satisfy Condition D.

Theorem 7.9. Condition D holds in the following cases:

(i) � has a cyclic Sylow ?-subgroup %.

(ii) � has a self-normalising Sylow ?-subgroup %, and either ? is odd or � is solvable.

(iii) � has a normal ?-complement.

(iv) � is a sporadic simple group.

(v) ? = 2, % ∈ Syl2(�) is self-normalising and %/%′ is elementary abelian.

(vi) ? = 2 and � = S= or � = A= with = ≥ 5.

(vii) ? is any prime and � = S=.

(viii) ? = 2 ∤ @ and � = GL= (@) or � = GU= (@).

Proof. (i) We have that Irr?′ (�) is a union of Irr?′ (�) for ?-blocks � of � of maximal defect. Let us

fix a block � of maximal defect of �, and let 1 be the Brauer first main correspondent in N� (%). Write

|% | = ?0. By [N1, Theorem 3.4], there is a bijection ∗ : Irr?′ (�) → Irr?′ (1) that commutes with f for

all f ∈ H�. (Here H is the subgroup of Galois automorphisms of Gal(Q |� |/Q) that send ?′-roots of

unity to a fixed but arbitrary ?-power, and H� the stabiliser in H of �.) This naturally defines an H-

equivariant bijection ∗ : Irr?′ (�) → Irr?′ (N� (%)). We only need to check thatQ(j%) = Q(j∗ |%). Now

let us use the notation given in the paragraph preceding [N1, Theorem 3.4]. Suppose first that |Δ | = 1.

https://doi.org/10.1017/fmp.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.1


Forum of Mathematics, Pi 25

Then 0 = 1 and 4 = ?−1. By the formulas in [D1, Corollary 1.9], we have that j% is rational-valued for

every j ∈ Irr(�) (and for the same reason, so is j∗ |%). Hence, (i) is proved. Assume that |Δ | > 1, and

divide Irr(�) into nonexceptional and exceptional characters. The bijection ∗ sends exceptional (resp.,

nonexceptional) characters of Irr(�) onto exceptionals (resp., nonexceptionals) of Irr(1). Now if j is

nonexceptional, then Q(j%) = Q (again by [D1, Corollary 1.9]), and there is nothing else to prove. The

arguments in [N1, Theorem 3.4] (together with [D3]) show that we may label the exceptional characters

in � as {j_ | _ ∈ Δ}, and the exceptional characters in 1 as { j̃_ | _ ∈ Δ} such that (j_)∗ = j̃_, and

both satisfy the formulas in [D1, Corollary 1.9]. In particular, we have that j_ (G) is a rational multiple

of j̃_ (G) for every G ∈ %. Therefore Q(j%) = Q(j∗ |%) for all j ∈ Irr(�).
(ii) When N� (%) = %, by [NTV, Corollary B] in the case where ? is odd and by [N2, Theorem 9.4]

in the case where � is solvable, there is a natural bijection j ↦→ j∗ between Irr?′ (�) and the set of

linear characters of %; in fact, j∗ is the unique linear constituent of j% . Such a map commutes with

the action of any Galois automorphism in Gal(Q/Q), and hence Q(j) = Q(j∗). Next, suppose that

W ∈ Gal(Q/Q) fixes j∗. Then j∗ is the (unique) linear constituent of (jW)% , whence j∗ = (jW)∗ and

so j = jW . This implies that

Q(j%) ⊆ Q(j) ⊆ Q(j∗).

Now assume that W ∈ Gal(Q/Q) fixes j% . Then (j∗)W is the (unique) linear constituent of j% , whence

(j∗)W = j∗. Thus Q(j∗) ⊆ Q(j%), and so Q(j%) = Q(j∗), as stated.

(iii) Suppose that� has a normal ?-complement and a Sylow ?-subgroup %. By [N2, Theorem 9.2],

there exists a canonical bijection ∗ : Irr?′ (�) → Irr?′ (N� (%)) such that Q(j) = Q(j∗) for every

j ∈ Irr?′ (�). Furthermore, if j = \, then j = \̂_, where \̂ is the canonical extension of \ to �

[N2, Corollary 6.4] and _ ∈ Irr(�/ ) is linear. Now Q(\) = Q(\̂), and we deduce that \̂ is ?-rational.

Therefore \̂ (G) ∈ Q for all G ∈ %. Also \̂ (G) ≠ 0, by [N2, Corollary 4.20]. Now Q((\̂_) |%) = Q(_).
Since j∗ = (\∗×_), where \∗ is the %-Glauberman correspondent of \, we deduce thatQ(j∗ |%) = Q(_),
as desired.

(iv) Most of the character tables of the Sylow normalisers of the sporadic simple groups are given

in [GAP], but not all. The Galois–McKay conjecture was proved for the sporadic groups in [Tu,

Theorem 3.1]. As remarked before, Condition D is equivalent to Galois–McKay for ?-rational characters.

The only case of a Sylow normaliser N� (%) of a sporadic group possessing non-?-rational characters

and whose Sylow normaliser is not given in [GAP] is )ℎ for ? = 3. The group N� (%)/%′, as described

in [Wi], is SmallGroup(108,40), and we check that Condition D holds in this case using [GAP].

(v) By [ILNT, Theorem D], since %/%′ is elementary abelian, all odd-degree irreducible characters

of � are 2-rational, and the same holds for N� (%) = %. Hence, by the main result of [SF], all odd-

degree irreducible characters of � are H-invariant, and again the same holds for %. It remains to apply

the main result of [MS] guaranteeing the existence of a McKay bijection.

(vi) Since the statement is obvious for = = 5, we may assume that = ≥ 6. Hence % ∈ Syl2 (�) is self-

normalising (see, for example, [Ko, Theorem 2]. Furthermore, %/%′ is elementary abelian by [NT2,

Lemma 3.3]. Hence we are done, by using (v).

(vii) Let e denote the Galois automorphism of Gal(Q |� |?′/Q) that sends any ?′-root of unity to its

?-power. Since the McKay conjecture holds for � [O] and since � is rational, it suffices to show that

any k ∈ Irr?′ (N� (%)) is rational on % ∈ Syl? (�), and moreover is ?-rational and e-invariant. We will

do it in steps. First, if = = ?, then #1 := NS?
(�?) � �? ⋊ �?−1; in particular, every element of �? is

rational in #1 and any k ∈ Irr(#1) is ?-rational and e-invariant, whence the claim follows. Next, in the

case where = = ?: , we have #: := NS
?:
(%)/%′

� (#1): by [O, Proposition (1.5)] using induction on

: ≥ 1, and so the claim follows from the case = = ?. Now, if = = 0?: with 1 ≤ 0 < ? and : ≥ 1, then

% � &0, N� (%) � #: ≀ S0

for a suitable & ∈ Syl? (S?: ). By the previous case (and the representation theory of wreath products

[JK, §4.4]), every irreducible constituent of k |(#: )0 is rational on %, and k is again ?-rational and
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e-invariant. Finally, if = =
∑C
8=0 08 ?

8 is the ?-adic decomposition of =, then

% =

∏

8:08≠0

%8 , N� (%) =
∏

8:08≠0

NS
08 ?

8 (%8)

for suitable %8 ∈ Syl? (S08 ?8 ) (and after suitably conjugating %). Hence the claim follows from the

preceding case.

(viii) We will use the canonical McKay bijection j ↦→ j♯ between Irr2′ (�) and Irr2′ (N� (%))
for % ∈ Syl2 (�) constructed in [GKNT, Theorem 5.3]. As mentioned in [GKNT, Theorem E], this

bijection commutes with Galois automorphisms, and so Q(j) = Q(j♯), hence it remains to show that

Q(j%) = Q(j♯ |%) for any j ∈ Irr2′ (�). To unify the notation, we will again write GLn for GL when

n = +1 and for GU when n = −1. Also decompose

= = 2<1 + 2<2 + · · · + 2<A

with <1 > <2 > · · · > <A ≥ 0 as in equation (5.1). Then we can choose %8 ∈ Syl2(�8), where

�8 = GLn2<8 (@), and embed�1 ×�2 × · · · ×�A in� such that we can identify % with %1 ×%2 × · · · ×%A
and then have

N� (%) = N�1
(%1) × N�2

(%2) × · · · × N�A
(%A ) (7.1)

(see [GKNT, (5.5)]).

On the global side, we can write

j = ((s1, ,1) ◦ ((s2, ,2) ◦ · · · ◦ ((s: , ,: ),

as in Lemma 5.5(ii). Recall that s8 ∈ `@−n for 1 ≤ 8 ≤ :; let 22 denote the smallest 2-part of [s8],
1 ≤ 8 ≤ : . Then Q(j%) = Q20−2 by Proposition 5.8. Rephrasing it, we have Q(j%) = Q23 , where 23 is

the largest 2-part of the orders of s8 , 1 ≤ 8 ≤ : . In terms of the U-map in the proof of [GKNT, Theorem

5.3], we note that 23 is the largest 2-part of the orders of B̂8 ∈ `@−n , 1 ≤ 8 ≤ A , if

U(j) = ( B̂1, a1, B̂2, a2, . . . , B̂A , aA ).

On the local side, in accordance with equation (7.1), we consider \ = \1 ⊗ \2 ⊗ · · · ⊗ \A , where

\8 ∈ Irr2′ (N�8
(%8)). Note by [GKNT, (5.3)] that

N�8
(%8) = /8 × %8 , (7.2)

where /8 is a central 2′-group. Now the V-map in the proof of [GKNT, Theorem 5.3] is constructed

such that

V(\) = (Ĉ1, `1, Ĉ2, `2, . . . , ĈA , `A )

if V(\8) = (Ĉ8 , `8) and Ĉ8 ∈ `@−n . We also note thatQ((\8)%8 ) = Q238 , where 238 is the 2-part of the order

of Ĉ8 . (Indeed, this is the case if @ ≡ −n (mod 4), since the map V commutes with Galois automorphisms

by [GKNT, Lemma 5.1]. Assume now that 4| (@ − n). Analyzing the proof of [GKNT, Lemma 5.1]

in this case, we see that Q((\8)%8 ) = Q(W) for some linear character W of O2 (`@−n ), whose order is

precisely 238 .) It now follows from equations (7.1) and (7.2) that

Q(\%) = Q2max1≤8≤A 38 ,

and 2max1≤8≤A 38 is certainly the largest 2-part of the orders of Ĉ8 , 1 ≤ 8 ≤ A .
Since j♯ = V−1U(j) by [GKNT, Theorem E], we conclude that Q(j%) = Q(j♯ |%), as desired. �

We also mention that E. Giannelli [Gi] has proved that Condition D (and a blockwise version of it)

holds for A= for any odd prime ?.
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In the next result, we will show that Condition D holds for certain finite groups of Lie type in defining

characteristic. Let G be a simple, simply connected algebraic group over an algebraically closed field of

characteristic ?, and let � : G → G be a Steinberg endomorphism. Consider the regular embedding of

(G, �) in (G̃, �), as discussed in [R, §4.1]. Then G� embeds in G̃� . Note that the latter groups include

the general linear group GL= (@), the general unitary group GU= (@), the conformal symplectic group

CSp2= (@) when 2 ∤ @ and Sp2= (@) when 2|@, the conformal spin groups CSpinn= (@) when 2 ∤ @ and

furthermore n ≠ +when 2|=, the orthogonal groupsΩ±
2= (@) when 2|@ and�2 (@), 2�4 (@) with @ = 220+1,

�4 (@) and �8(@).

Proposition 7.10. In the introduced notation, Condition D holds for (G̃� , ?).

Proof. If G̃� = �2(3), �4 (2) or 2�4 (2), this claim can be checked using [GAP]. Henceforth, we

may assume that G̃� ≠ �2(3), �4 (2), 2�4 (2). Under this extra assumption, [R, Theorem 5.2] yields

an H-equivariant McKay bijection j ↦→ j∗ for (G̃� , ?) in all the cases already listed. Hence, as we

discussed before Theorem 7.8, to verify Condition D it suffices to prove that all j ∈ Irr?′ (G̃� ) are

?-rational. This follows from [TZ, Theorem 1.9(i)(i)] if ? is a good prime and @ is a square, where

@ = @(�) denotes the common absolute value of eigenvalues of � on the character group of an �-stable

maximally split maximal torus of G. If @ = 2 and G is of type �=, ��= or �=, then G̃� = GL±
=+1(@),

Sp2= (@), Ω±
2= (@) or 3�4 (@), and we can apply [TZ, Theorem 1.9(i)(ii)] – or we can argue directly when

G̃� ∈ {�2(2) � S6,
2�2(2) � �5 ⋊ �4}.

Thus we may assume furthermore that @ > 2 if G is classical and ? = 2. Now let (G̃∗, �∗) be

dual to (G̃, �). Since G̃ has connected centre, every semisimple element B ∈ (G̃∗)�∗
has connected

centraliser. Then by [M, Theorem 6.8], the only ?′-degree unipotent character of C(G̃∗)�∗ (B) is the

principal character. The Lusztig classification of irreducible characters of G̃� implies that the ?′-degree

characters j ∈ Irr?′ (G̃� ) are precisely the semisimple characters, one for each semisimple class in

(G̃∗)� ∗
. The claim now follows, since it is well known that semisimple characters are ?-rational (see,

for example, [C, Theorem 7.2.8 and Proposition 8.4.6] and use the fact that the Green functions are

integer-valued [C, p. 237]). �

Added in proof. Conjecture C for ?-solvable groups has now been proved by M. Isaacs and the first

author (work in progress). It looks plausible that Condition D, with Q replaced by Q? , might hold true

for arbitrary finite groups.
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