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Abstract We investigate the equation D = x4 − y4 in field extensions. As an application, for a prime
number p, we find solutions to p = x4 − y4 if p ≡ 11 (mod 16) and p3 = x4 − y4 if p ≡ 3 (mod 16) in all
cubic extensions of Q(i).
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1. Introduction

We are interested in the following problem.

Problem 1. Let k be a perfect field of characteristic not equal to 2. Let K be a finite
extension of k. Let D ∈ k∗. Find all solutions to the equation

D = x4 − y4. (1)

By a solution (x, y) to Equation (1), we always mean (x, y) ∈ A2(K) satisfy-
ing Equation (1) and xy 6=0.
When k = K = Q, using a variety of methods, many authors have shown

that Equation (1) has no solutions if D = nzp for integers n and prime numbers p;
see [1, 2, 4, 6, 7, 11].
It is natural to ask for solutions of Equation (1) when k and K are not the rational

field. When k and K are number fields, since Equation (1) defines a curve of genus 3,
by Faltings’ theorem [8], Equation (1) only has a finite number of solutions, but to find
all solutions to Equation (1) is in general a difficult task. We adopt here the method
of Cassels’ [5] and Bremner’s [3], which is effective in finding solutions to Equation (1)
in all cubic extensions of the base field in many situations. It is also worth mentioning
that the work of Silverman [13] on the equation x4 + y4 = D (and x6 + y6 = D) over
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number fields. But Silverman’s method does not apply when finding solutions in cubic
extensions of the base field. The main result of this paper is as follows:

Theorem 1. Let k be a perfect field of characteristic not equal to 2. Let D ∈ k such
that D 6∈ ±k2. Assume that

(i) every solution (X, y, z) ∈ A3(k) to X2 − y4 = Dz4 satisfies z=0,
(ii) every solution (x, Y, z) ∈ A3(k) to x4 − Y 2 = Dz4 satisfies z=0.

If (x, y) is a solution to D = x4 − y4 in a cubic extension K of k, then

(1) (if −1 6∈ k2)

K = k(θ), x = ±
(
D

sθ
− s

4

)
, y = ±

(
D

sθ
+

s

4

)
,

where θ3 − s2θ2/8− 2D2/s2 = 0 and s ∈ k∗, and
(2) (if −1 ∈ k2)

K = k(θ), x = ±
(
θ

s
− s

4

)
, y = ±i

(
θ

s
+

s

4

)
,

where i =
√
−1, θ3 + s4θ/16 +Ds2/2 = 0, and s ∈ k∗.

A nice corollary of Theorem 1 is

Corollary 1. Let p be a prime number. Let D= p if p ≡ 11 (mod 16), and let D = p3

if p ≡ 3 (mod 16). Then solutions to D = x4 − y4 in all cubic extensions of Q(i) are

(1)

x = ±
(
D

sθ
− s

4

)
, y = ±

(
D

sθ
+

s

4

)
,

where θ3 − s2θ2/8− 2D2/s2 = 0 for some s ∈ Q(i)∗; and
(2)

x = ±
(
θ

s
− s

4

)
, y = ±i

(
θ

s
+

s

4

)
,

where θ3 + s4θ/16 +Ds2/2 = 0 for some s ∈ Q(i)∗.

Remark 1. Theorem 1 finds all possible cubic extensions K of k and solutions to
D = x4 − y4 in K. The defining polynomial of K, Fs(x) = x3 − s2x2/8 − 2D2/s2 or
Fs(x) = x3 + s4x/16 + Ds2/2, must be irreducible in k[x], which in general is difficult
to check since the irreducibility of Fs(x) depends on s. However, if k is a number field,
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by Hilbert’s irreducibility theorem [12, Theorem 3.4.1], there exist infinitely many s ∈ k
such that Fs(x) is irreducible in k[x] and Theorem 1 finds all solutions to D = x4 − y4

in these cases.

2. Proof of Theorem 1

We follow Cassels [5]. Equation (1) can be written in the homogeneous form

x4 − y4 = Dz4. (2)

Let C be the projective curve over k defined by Equation (2). Suppose that
P = [x1 : y1 : z1]is a point on (2) whose coordinates generate a cubic extension K of k. If
z1 = 0, then [x1 : y1 : z1] = [±1 : 1 : 0]; therefore K = k, which is impossible. Therefore,
z1 6= 0. Since (x1/z1)

4 − (y1/z1)
4 = D and |K : k| = 3, we have x1/z1, y1/z1 6∈ k. Thus,

k

(
x1

z1

)
= k

(
y1
z1

)
= k

(
x2
1

z21

)
= k

(
y21
z21

)
= K. (3)

Fix an algebraic closure k of k. Let Pi = [xi : yi : zi] ∈ P2(k), i = 1, 2, 3, be the Galois
conjugates of P. The equation

X2 − Y 2 = DZ2 (4)

has a parametrization

[X : Y : Z] = [l2 +Dm2 : l2 −Dm2 : 2lm].

Since [x2
1 : y21 : z21 ] satisfies Equation (4), there exist λ, µ ∈ k such that

[x2
1 : y21 : z21 ] = [λ2 +Dµ2 : λ2 −Dµ2 : 2λµ]. (5)

Since z1 6= 0, it follows from Equation (5) that µ 6=0, λ 6=0, and

[λ : µ] = [x2
1 + y21 : z21 ] = [Dz21 : x2

1 − y21 ]. (6)

Let θ = λ/µ. Then Equations (3) and (6) show that θ 6∈ k. Hence, k(θ) = K. Therefore,
there exists an irreducible cubic polynomial P (x) = ax3 + bx2 + cx+ d ∈ k[x] such that
P (θ) = 0. In particular, ad 6=0. From Equation (5), we have(

x1

z1

)2

:

(
y1
z1

)2

=
θ2 +D

2θ
:
θ2 −D

2D
. (7)

Step 1: Consider the weighted projective curve

C1 : X2 − y4 = Dz4. (8)

By points on C1, we mean the equivalence classes of points [X : y : z] in P2
2,1,1(k)

satisfying Equation (8). Since x2
i , y

2
i , yizi, z

2
i are linearly dependent over k and xi 6= 0,
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there exist r, s, t ∈ Q such that

x2
i = ry2i + syizi + tz2i ,

for i = 1, 2, 3. Consider the weighted projective curve

D1 : X = ry2 + syz + tz2. (9)

By the weighted Bézout theorem [Theorem VIII.2][10], the two curves C1 and D1 intersect
at 4 points in P2

2,1,1(k). We know that three of these four points are [x2
i : yi : zi] for

i = 1, 2, 3. Let v1(T ) be the fourth point of intersection. Since the set {[x2
i : yi : zi] :

i = 1, 2, 3} is stable under the action of Gal(k/k), v1(T ) is fixed by Gal(k/k). Therefore,
v1(T ) is a k -rational point. By the assumption in Theorem 1, we have v1(T ) = [±1 : 1 : 0].
• v1(T ) = [1 : 1 : 0]. Then Equation (9) gives r =1. Since

(X − y2 − tz2)2 − s2y2z2 = 0,

the homogeneous quartic in l,m,

(l2 +Dm2 − (l2 −Dm2)− 2tlm)2 − s2(l2 −Dm2)(2lm),

has factors m and P (l,m). Therefore, there exists q ∈ k such that

(l2 +Dm2 − (l2 −Dm2)− 2tlm)2 − 2lms2(l2 −Dm2) =2qm(al3 + bl2m

+ clm2 + dm3). (10)

Thus,

2m(Dm− tl)2 − ls2(l2 −Dm2) = q(al3 + bl2m+ clm2 + dm3).

Therefore, 
qa = −s2,

qb = 2t2,

qc = Ds2 − 4Dt,

qd = 2D2.

(11)

Hence,

q(c+Da) = −4Dt, q2bd = 4D2t2, q 6= 0.

Therefore,

(c+Da)2 = 4bd. (12)
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Since a, d 6= 0, system (11) gives

a

d
≡ −2 (mod k2). (13)

• v1(T ) = [−1 : 1 : 0]. Then Equation (9) gives r = −1. Since

(X + y2 − tz2)2 − s2y2z2 = 0,

the homogeneous quartic in l,m,

(l2 +Dm2 + l2 −Dm2 − 2tlm)2 − s2(l2 −Dm2)(2lm),

has factors l and P (l,m). Therefore, there exists q ∈ k such that

(2l2 − 2tlm)2 − s2(l2 −Dm2)(2lm) = 2ql(al3 + bl2m+ clm2 + dm3). (14)

Hence,

2l(l − tm)2 −ms2(l2 −Dm2) = q(al3 + bl2m+ clm2 + dm3).

Therefore, 
qa = 2,

qb = −4t− s2,

qc = 2t2,

qd = Ds2.

(15)

Hence,

q2ac = 4t2, q

(
b+

d

D

)
= −4t, q 6= 0.

Therefore, (
b+

d

D

)2

= 4ac. (16)

Since a, d 6= 0, system (15) also gives

a

d
≡ 2D (mod k2). (17)

Step 2: Consider the weighted projective curve

C2 : x4 − Y 2 = Dz4. (18)
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By points on C2, we mean the equivalence classes of points [x : Y : z] in P2
1,2,1(k) satisfying

Equation (18). Since y2i , x
2
i , xizi, z

2
i are linearly dependent over k and yi 6= 0, there exist

r, s, t ∈ Q such that

y2i = rx2
i + sxizi + tz2i ,

for i = 1, 2, 3. Consider the weighted projective curve

D2 : Y = rx2 + sxz + tz2. (19)

By the weighted Bézout theorem [Theorem VIII.2][10], the two curves C2 and D2 intersect
at 4 points in P2

1,2,1(k). We know that three of these four points are [xi : y2i : zi] for

i = 1, 2, 3. Let v2(T ) be the fourth point of intersection. Since the set {[xi : y2i : zi] :
i = 1, 2, 3} is stable under the action of Gal(k/k), v2(T ) is fixed by Gal(k/k). Therefore,
v2(T ) is a k -rational point. By the assumption in Theorem 1, we have v2(T ) = [1 : ±1 : 0].
• v2(T ) = [1 : 1 : 0]. Then Equation (19) gives r =1. We have

(Y − x2 − tz2)2 − s2x2z2 = 0,

so that the homogeneous quartic in l,m,

(l2 −Dm2 − (l2 +Dm2)− 2tlm)2 − s2(l2 +Dm2)(2lm),

has factors m and P (l,m). Therefore, there exists q ∈ k such that

(l2 −Dm2 − (l2 +Dm2))2 − 2tlm)2 − s2(l2 +Dm2)(2lm) = 2qmP (l,m). (20)

Thus,

2m(Dm+ rl)2 − ls2(l2 +Dm2) = q(al3 + bl2m+ clm2 + dm3).

Hence, 
qa = −s2,

qb = 2r2,

qc = 4Dr −Ds2,

qd = 2D2.

(21)

Therefore,

q(c−Da) = 4Dr, q2bd = 4D2r2, q 6= 0.

Hence,

(c−Da)2 = 4bd. (22)
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Since a, d 6= 0, system (21) gives

a

d
≡ −2 (mod k2). (23)

• v2(T ) = [1 : −1 : 0]. Then Equation (19) gives r = −1. We have

(Y + x2 − tz2)2 − s2x2z2 = 0,

so that the homogeneous quartic in l,m,

(l2 −Dm2 + (l2 +Dm2)− 2rlm)2 − s2(l2 +Dm2)(2lm),

has factors l and P (l,m). Thus, there exists q ∈ k such that

(l2 −Dm2 + (l2 +Dm2)− 2tlm)2 − s2(l2 +Dm2)(2lm) =2lq(al3 + bl2m

+ clm2 + dm3). (24)

Hence,

2l(l − tm)2 −ms2(l2 +Dm2) = q(al3 + bl2m+ clm2 + dm3).

Therefore, 
qa = 2,

qb = −4t− s2,

qc = 2t2,

qd = −Ds2.

(25)

Hence,

q2ac = 4t2, q

(
b− d

D

)
= −4r, q 6= 0.

Thus, (
b− d

D

)2

= 4ac. (26)

System (25) also gives

a

d
≡ −2D (mod k2). (27)

It follows from (23), (27), (13) and (17) and the assumption that D 6∈ ±k2 that there
are only two compatible cases for v1(T ) and v2(T ).
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Case 1: v1(T ) = [1 : 1 : 0] and v2(T ) = [1 : 1 : 0]. From (12) and (22), we have

(c−Da)2 = (c+Da)2.

Since aD 6=0, we have c=0. From (21), we have r = s2/4. Thus,

qP (x) = −s2x3 +
s4

8
x2 + 2D2.

Therefore θ satisfies

θ3 − s2

8
θ2 − 2

D2

s2
= 0. (28)

Then (10) and (20) give

θ2 +D

2θ
=

(
s

4
+

D

2θ

)2

,
θ2 −D

2θ
=

(
s

4
− D

2θ

)2

. (29)

From (7) and (29), we have

x1

z1
= ±

(
D

sθ
− s

4

)
,

y1
z1

= ±
(
D

sθ
+

s

4

)
. (30)

Case 2: v1(T ) = [−1 : 1 : 0] and v2(T ) = [1 : −1 : 0]. This case also implies that
−1 ∈ k2. From (17) and (25), we have(

b+
d

D

)2

=

(
b− d

D

)2

.

Since d 6=0, we have b=0. Hence, from (15), we have t = −s/4. Therefore,

qP (x) = 2x3 +
s4

8
x+Ds2.

Therefore, θ satisfies

θ3 +
s4

16
θ +

Ds2

2
= 0. (31)

It follows from (14) and (24) that

θ2 +D

2θ
=

(
θ

s
− s

4

)2

,
θ2 −D

2θ
=

(
i

(
θ

s
+

s

4

))2

, (32)

where i ∈ k such that i2 = −1 ∈ k. From (7) and (32), we have

x1

z1
= ±

(
θ

s
− s

4

)
,

y1
z1

= ±i

(
θ

s
+

s

4

)
. (33)
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3. Proof of Corollary 1

Corollary 1 is a consequence of Theorem 1 and the following lemma due to Izadi et al.
[9].

Lemma 1.

(1) For prime numbers, p ≡ 3 (mod 16), then the equations x2−y4 = ±p3z4 only have
solutions X = ±y2 and z=0 in Q(i).

(2) For prime numbers, p ≡ 11 (mod 16), then the equations X2−y4 = ±pz4 only
have solutions X = ±y2 and z=0 in Q(i).

Proof. See Izadi [9, Theorems 3.2 and 3.4]. �
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