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Abstract

We consider the problem of reducing the response time of fork-join systems by
maintaining the workload balanced among the processing stations. The general problem
of modeling and finding an optimal policy that reduces imbalance is quite difficult. In
order to circumvent this difficulty, the heavy traffic approach is taken, and the system
dynamics are approximated by a reflected diffusion process. This way, the problem of
finding an optimal balancing policy that reduces workload imbalance is set as a stochastic
optimal control problem, for which numerical methods are available. Some numerical
experiments are presented, where the control problem is solved numerically and applied
to a simulation. The results indicate that the response time of the controlled system is
reduced significantly using the devised control.
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1. Introduction

Consider a fork-join parallel processing system composed ofK stations, where each arriving
job is split into K tasks and each task is assigned to one of the stations for processing. The
jobs that enter this system are only completed when each of its K tasks is served. Fork-join
systems are natural models for several practical systems, such as distributed processing stations,
distributed databases, disk arrays [19], and query serving in Web search systems [1], among
others. The response time of these systems, which is the average time it takes to complete a job,
is a critical performance measure. Several works address the problem of deriving closed-form
expressions for the response time of fork-join systems. However, obtaining exact solutions
has proved to be a difficult task under several scenarios and assumptions. Under Markovian
assumptions, some analytical results are possible [8], but most results for more general systems
consist of bounds or approximations [6], [15], [13].

Since a job only leaves the system when each of its K tasks have finished service, the
response time in fork-join systems can be greater when the system workload is imbalanced
among the stations. Due to the stochastic nature of these systems, imbalance can occur even
when every station has the same processing speed. Hence, our approach is to deal with only
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the parallel aspect of the fork-join system, and try to reduce the response time by maintaining
the workload balanced among the stations.

In order to reduce imbalance, it is natural to consider strategies that distribute jobs optimally
between the queues. The distribution of jobs can be performed at the arrival time by assigning
more than one task to the same station, or at the service time, where a task at an overloaded
station is moved to another station for processing. Moving tasks between processing stations
may be costly due to delay in the computation, that is, each station may be specialized at
their part of the job, but they can work on a neighboring station’s task at an additional cost in
computation, or delay in communication, where it takes time to move tasks among the stations.
Therefore, the question of identifying the ideal moment to move a customer is not trivial.
In this paper we are interested in finding ‘good’ (ε-optimal) dynamic policies to balance the
workload of these fork-join systems. We do this by characterizing these systems under their
limit working conditions by a diffusion. Using this characterization, the problem of finding
the optimal balancing policy can be framed into an optimal stochastic control problem. It is
perhaps worth noting here that the problem of finding a control policy that reduces the response
time of a fork-join system is quite difficult.

Diffusion approximations for queueing systems, which are obtained via a powerful method
dubbed heavy traffic analysis, have their roots in the early sixties with the seminal works of
Kingman [14], Prohorov [21], and Borovkov [4], [5]. The technique gets its name from the
required assumption that job arrival rates are close to service rates, which is a common setting
in computer systems. Using this approximation, one is able to describe the system dynamics
by a reflected stochastic differential equation. These approximations can be useful even if the
actual queueing system does not experience heavy traffic (see, e.g. [16] and [23]).

There is an extensive literature on heavy traffic models for optimization in parallel processing
systems under heavy traffic. Most are concerned with the problem of resource pooling, where
one has to assign servers to a bank of queues in parallel. One common approach is to assume a
condition called complete pooling, which leads to a simplification of the workload process for
large systems (see, e.g. [2], [10], [11], [16], and [24]). The control problem is then set in a path-
wise fashion. The approach here is different since each server is assigned to a predefined queue,
and the rate in which tasks are moved among the stations is small relative to the job arrival and
service rates of the system. Also, the cost function is to be minimized over the expected total
cost. This approach is similar to Kushner and Chen [17], who considered the general problem
of job assignment in parallel systems. However, we focus here on the problem of reducing the
response time of fork-join systems by maintaining the workload balanced among the stations.
We show how the controls are applied in the physical system and how the queueing model
with control converges to the diffusion under heavy traffic. In addition, we propose a strategy
to solve the numerical method for large systems. Typical practical problems, such as parallel
processing stations in web search systems, are composed of hundreds of stations, which makes
the numerical problem impracticable. In this sense, we propose a strategy to avoid this problem
by solving the control problem for two stations at a time. The resulting controls were tested in
a simulation, which shows significant reduction in the system response time when compared
to the uncontrolled system. The difference from our previous approach [20] is that we suppose
that the rate in which tasks are moved among stations is always ‘small’ relative to the job arrival
and service rates of the system. This simplifies the analysis considerably and we are able to
consider models with nonexponential service and arrival times, which are not dealt with in [20].

In most of this paper, we are concerned with the derivation of the heavy traffic limit for the
parallel system with a balancing strategy. In Section 2 we derive the heavy traffic approximation
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for a system with control applied at the service times. In Section 3 we treat the heavy traffic
approximation for systems with control applied at the arrival time. In Section 4 we introduce
the control problem, discuss the strategy taken to make the numerical solution feasible for large
systems, and show how the controls are applied in the physical system. In Section 5 we present
some numerical experiments.

2. Control at service times

In this section we consider a parallel system where the balancing control is applied at the
service times. That is, every time a station completes service, it can move a task from another
station into itself to reduce imbalance. The moved tasks are processed with priority at the
receiving stations and, possibly, with a different service distribution.

2.1. Process definition and stochastic primitives

Let {�al ; l ∈ N} be a mutually independent and identically distributed (i.i.d.) sequence of
random variables denoting the time between consecutive arrivals. Also, let {�di,l; l ∈ N} be a
sequence of i.i.d. random variables denoting the processing times of each task l at station i. The
interarrival times are assumed to be independent of the service times, and the service times at
each station are independent of each other. LetA(t) denote the number of arrivals to the system
by time t , that is, A(t) = max{m ∈ N0 : ∑m

l=1�
a
l ≤ t}, where N0 is the set of nonnegative

integers. Let Di(t) denote the number of served tasks by time t at station i, which can be
written asDi(t) = max{m ∈ N0 : ∑m

l=1�
d
i,l ≤ t − Ti(t)− Vi(t)}, where Ti(t) is the total idle

time at station i by time t and Vi(t) is the total time that station i has worked on external tasks
(i.e. tasks moved from other stations) by time t . Let Xi(t) denote the number of regular tasks
at station i at time t . That is, tasks that were not moved from other stations (including the one
in service). The processes Ti and Vi will be formally defined later on.

Task movement between the queues is performed at the instant of a task completion. For
example, at the instant of a task departure from station i, the station can decide whether to move
a task from other stations into itself. This decision is represented by the indicator function Iij,l ,
which takes the value of 1 when a task at station j is moved to station i at the lth task completion
at station i, and 0 otherwise. Only one task can be moved upon each job completion at station i.
However, a task can only be moved from station j if it is not being served by that station.
Hence, the total number of moved tasks from station j to station i by time t can be written as
Cij (t) = ∑Di(t)

l=1 Iij,lI{Xj(τd,il ) > 1}, where I{·} denotes the indicator function and τd,il is the
instant of the lth departure from station i, and we suppose that no two departures in the system
can occur at the same instant. As a side note, if we consider the case where more than one
station can have departures at the same time and we decide to move tasks from the same station,
we would have to change I{Xj(τd,il ) > 1} appropriately. One way to resolve this is to give
preference of some sort to the stations when moving tasks. For example, stations with lower
index numbers could have preference. In this case, let θd,ij,l denote the number of moved tasks

from station j to stations with index numbers lower than i at the instant τd,il ; the expression

I{Xj(τd,il ) > θ
d,i
j,l + 1} could replace the other indicator function in the definition of Cij (t).

However, since θd,ij,l is always bounded by K − 2, where K is the number of stations in the
system, the analysis would be essentially the same after the introduction of the scaling in the
next section.

Every time a task is moved, it has priority on the arriving queue. The service time of the lth
task moved from station j to i is given by �vij,l , which are i.i.d. in l, independent in (i, j), and
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independent of the interarrival and other service times. Therefore, the total time that station i
has worked on external tasks by time t is given by Vi(t) = ∑K

j=1(j �=i){
∑Cij (t)

l=1 �vij,l} − �̃vi (t),
where �̃vi (t) denotes the time remaining for an external task being processed at station i at time t
(if any) to finish service. This way, the number of tasks at station i by time t , excluding the
possible moved task at service, is given byXi(t) = Xi(0)+ A(t)−Di(t)− ∑K

j=1(j �=i) Cji(t),
where the random variableXi(0) denotes the initial number of tasks at station i and is assumed
to be independent of the other driving processes.

2.2. Space and time scalings

Heavy traffic analysis exploits the well-known result that properly scaled sums of indepen-
dent random variables with mean 0 and finite variance converge in distribution to Brownian
motion. This result is usually called Donsker’s theorem (see, e.g. Theorem 14.1 [3, p. 146]).
In this paper, a more general version of this result is used and is included in Appendix A
(Theorem A.1) for reference. In view of Theorem A.1, let �̄a := (λa)−1 := E[�al ] and
�̄di := (λdi )

−1 := E[�di,l], and define ξal := (1 −�al λ
a) and ξdi,l := (1 −�di,lλ

d
i ). In addition,

define the martingales

wa(t) := n−1/2
|nt |∑
l=1

ξal , wdi (t) := n−1/2
|nt |∑
l=1

ξdi,l ,

where |nt | denotes the greatest integer less than or equal to nt . The processes defined above
are used in the following sections.

2.3. Scaled queueing system

Suppose that we have a sequence of queueing systems, as defined in Section 2.1, indexed by
the parameter n, given by {Xn; n ∈ N}. In addition, suppose that the traffic intensity parameter
of each queue in the system, given by ρni := λa,n/λ

d,n
i , increases up to its maximum utilization,

that is, ρni → 1 as n ↑ ∞. This statement will be made formal in Assumption 2.1 below.
For each t and n, let us introduce the scaled system xni (t) := n−1/2Xni (nt). Note that

xni can be written as xni (t) = xni (0)+ an(t)− dni (t)− ∑K
j=1(j �=i) cnji(t), where the lowercase

processes are just the scaled versions of the respective uppercase processes. That is, xni (0) :=
n−1/2Xni (0), a

n(t) = n−1/2An(nt), dni (t) = n−1/2Dni (nt), and cnij (t) = n−1/2Cnij (nt).
Since an(t) = n−1/2 ∑An(nt)

i=1 1, we have

an(t) = wa,n(n−1An(nt))+ n−1/2λa,n
An(nt)∑
l=1

�
a,n
l , (2.1)

where wa,n and ξa,nl are as defined in Section 2.2 but with the extra index n in their respective
definitions. Note that the last term on the right-hand side of (2.1) is approximately given by
n−1/2λa,n(nt) = n1/2tλa,n, modulo an error term accounting for the time elapsed since the
last arrival, which is asymptotically negligible given the scaling introduced. Let us define
ma,n(t) := wa,n(n−1An(nt)) to be used later.

A similar expansion can be derived for dni as

dni (t) = w
d,n
i (n−1Dni (nt))+ n−1/2λ

d,n
i

Dni (nt)∑
l=1

�
d,n
i,l

= m
d,n
i (t)+ n−1/2λ

d,n
i (nt − T ni (nt)− V ni (nt))+ ε

d,n
i (t),
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wheremd,ni (t) := w
d,n
i (n−1Dni (nt)) and εd,ni (t) denotes an asymptotically negligible error term

accounting for the elapsed processing time for the task being served at station i at time t (if
any).

Also, observe that

vni (t) := n−1/2V ni (nt)

=
K∑

j=1(j �=i)

{
n−1/2

Cnij (nt)∑
l=1

�
v,n
ij,l

}
− n−1/2�̃

v,n
i (nt)

=
K∑

j=1(j �=i)
{wv,nij (n−1Cnij (nt))+ �̄

v,n
ij n

−1/2Cnij (nt)} − n−1/2�̃
v,n
i (nt),

where wv,nij (t) := n−1/2 ∑|nt |
l=1 ξ

v,n
ij,l , with ξ

v,n
ij,l = (�

v,n
ij,l − �̄

v,n
ij ) and �̄

v,n
ij := (λ

v,n
ij )

−1 :=
E[�v.nij,l]. Again, let us define mv,nij (t) := w

v,n
ij (n

−1Cnij (nt)).
At this point, the following assumption needs to be introduced in order to continue.

Assumption 2.1. (a) Let xi,nl := xn(τ
i,n
l /n), where τ i,nl = inf{t > 0 : Dni (t) = l}. In words,

x
i,n
l is the scaled number of tasks in the system at the moment of the lth departure from station i.

Also, define F r,i,n
l as the history (or filtration) of all driving processes up to the lth departure

from station i, but not including the control decision at this instant. Then, we suppose that
there are continuous and bounded functions fij and constants θni such that E[Inij,l | F r,i,n

l ] =
θni fij (x

i,n
l ) for i �= j . The constants θni are assumed to satisfyn1/2θni → θi ∈ [0,∞) asn ↑ ∞.

This constant is associated with how the control is implemented in the physical system (see the
discussion below).

(b) There exist constants bi ∈ R such that bni := n1/2(λa,n − λ
d,n
i ) → bi as n ↑ ∞. This is the

so-called ‘heavy traffic assumption’ mentioned at the beginning of the section.

The constants θni represent the circumstances in which the control can be applied in the
physical system. For example, we used θni = n−1/2 in [20], so that the control could be applied
with probability n−1/2 in the physical system. Another approach that takes advantage of the
station’s idle time is to always apply the control when the queue is empty. This way, we can set
θni = 1 − ρni , where 1 − ρni is interpreted as the probability of finding queue i empty. Another
possibility, which combines the two ideas discussed above, is to set θni = n−1/2ρni + (1 − ρni ),
which can be interpreted as always applying the control when the queue is empty and applying
the control with probability n−1/2 when the queue is not empty. We return to this topic in
Section 4.

In order to expand the term cnij , we define the processes

w
r,n
ij (t) := n−1/2

|nt |∑
l=1

[Inij,l − θni fij (x
i,n
l )]I{n1/2x

i,n
l,j > 1},

w
c,n
ij (t) := n−1/2

|nt |∑
l=1

θni fij (x
i,n
l )(1 −�

d,n
i,l+1λ

d,n
i )I{n1/2x

i,n
l,j > 1},
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where xi,nl,j is the j th component of xi,nl . Then we can write

cnij (t) = n−1/2
Dni (nt)∑
l=1

I
n
ij,lI{n1/2x

i,n
l,j > 1}

= m
r,n
ij (t)+m

c,n
ij (t)

+ λ
d,n
i θni n

−1/2
Dni (nt)∑
l=1

fij (x
i.n
l )�

d,n
i,l+1I{n1/2x

i,n
l,j > 1}, (2.2)

where mr,nij (t) := w
r,n
ij (n

−1Dni (nt)) and mc,nij (t) := w
c,n
ij (n

−1Dni (nt)). Note that the last term
on the right-hand side can be written as

λ
d,n
i θi

∫ t

0
fij (x

n(s))(1 − I
v,n
i (s))I{xni (s) > 0, xnj (s) > n−1/2} ds, (2.3)

modulo an asymptotically negligible error, and where I
v,n
i (t) is a random variable indicating

whether station i is busy processing a moved task at time nt . This is possible since the
sum in the last term of (2.2) can be seen as a piecewise-linear approximation of the integral
above; see Appendix A for further detail. In order to simplify the notation, let I

f,n
ij (t) :=(1 −

I
v,n
i (t))I{xni (t) > 0, xnj (t) > n−1/2}.

2.4. Heavy traffic limit

This section is devoted to the proof of the heavy traffic limit for the system described in the
previous subsection. We need to introduce the following assumption on the random variables
�
a,n
l , �d,ni,l , and �v,nij,l .

Assumption 2.2. It holds that {|�a,nl |2, |�d,ni,l |2, |�v,nij,l |2; (l, n) ∈ N
2} is uniformly integrable

for each i, j ∈ {1, . . . , K}.
Define (σ a,n)2 := E[|ξa,nl |2], (σ d,ni )2 := E[|ξd,ni,l |2], and (σ v,nij )2 := E[|ξv,nij,l |2]. Let the

constants σa , σdi , and σvij be such that σa,n → σa , σd,ni → σdi , and σv,nij → σvij , for each i, j ∈
{1, . . . , K}. Also, let λa , �̄a , λdi , �̄di , λvij , �̄vij ∈ (0,∞) be such that λa,n → λa := (�̄a)−1,
λ
d,n
i → λdi := (�̄di )

−1, and λv,nij → λvij := (�̄vij )
−1 as n ↑ ∞.

Theorem 2.1. Suppose that xn(0) converges weakly to x(0). Under Assumptions 2.1 and 2.2,
{xn} is tight and the weak-sense limit process x = (x1, . . . , xK)

	 of any weakly convergent
subsequence satisfies

xi(t) = xi(0)+ wa(λat)− wdi (λ
d
i t)+ bit + yi(t)

+
K∑

j=1(j �=i)

[∫ t

0

[(
�̄vij

�̄di

)
θiλ

d
i fij (x(s))− θjλ

d
j fji(x(s))

]
ds

]
(2.4)

for each i ∈ {1, . . . , K}, where wa(λa ·) and wdi (λ
d
i ·) for i ≤ K are mutually independent

Ft -Wiener processes with variances λa(σ a)2 and λdi (σ
d
i )

2 for i ≤ K , respectively, and
Ft denotes the minimal σ -algebra that measures {xi(s), wa(λas), wdi (λdi s), yi(s); s ≤ t,

i ≤ K}. The process yi is the so-called ‘reflection process’, which satisfies yi(0) = 0, yi is
nondecreasing, continuous, and increases only at t ≥ 0 such that xi(t) = 0.
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Before presenting the proof, let us make a few remarks.

Remark 2.1. It is interesting to interpret the drift coefficient of limit equation (2.4). Note that
θiλ

d
i can be seen as the ‘rate’ in which tasks are moved to queue i, and the fraction �̄vij /�̄

d
i can

be seen as the number of regular tasks from station i that are needed to account for one moved
task from station j . In particular, if, for some j �= i, we have �̄vij = 2�̄di , then the rate of tasks
received at station i as a result of moving tasks from j doubles.

Remark 2.2. When fij ≡ 0, there is weak-sense uniqueness for the solution of (2.4) by the
results presented in [22] and [7]. This result can be extended to bounded fij by a Girsanov
transformation argument (see, for instance, [12, p. 178] and [16, p. 97]).

Proof of Theorem 2.1. Let us begin by writing xn(t) = xn(0)+mn(t)+bn(t)+yn(t)+εn(t),
where the vector-valued processes mn, bn, and yn have components given by

mni (t) := ma,n(t)−m
d,n
i (t)+

K∑
j=1(j �=i)

{λd,ni m
v,n
ij (t)+ λ

d,n
i �̄

v,n
ij m

r,n
ij (t)

+ λ
d,n
i �̄

v,n
ij m

c,n
ij (t)−m

r,n
ji (t)−m

c,n
ji (t)},

bni (t) := n1/2t (λa,n − λ
d,n
i )+

K∑
j=1(j �=i)

∫ t

0
[(λd,ni )2�̄

v,n
ij θifij (x

n(s))I
f,n
ij (s)

− λ
d,n
j θjfji(x

n(s))I
f,n
ji (s)] ds,

yni (t) := n−1/2λ
d,n
i T ni (nt) = n1/2λ

d,n
i

∫ t

0
I{xni (s) = 0}(1 − I

v,n
i (s)) ds,

and where εni (t) is a sum of the asymptotic negligible terms. We are going to use Theorem 3.6.2
of [16, p. 133] to establish tightness of {yn}. For that, we need to show that ψn(t) := mn(t)+
bn(t)+ εn(t) is asymptotically continuous in the sense that, for each ν > 0 and T > 0,

lim
δ→0

lim sup
n

P

{
sup
t≤T

sup
s≤δ

|ψn(t + s)− ψn(t)| ≥ ν
}

= 0.

This can be checked directly for the process bn by the heavy traffic hypothesis and the bounded-
ness of fij . The process εn converges weakly to the zero process by the uniform integrability
assumptions (i.e. Assumption 2.2).

Formn, we are going to apply TheoremA.1 and TheoremA.2 inAppendixA. First, let w̄n :=
(wa,n, wd,n, wv,n)	, where wα,n := (w

α,n
i )	i≤K for α = d, v and wv,ni := (w

v,n
ij )

	
j≤K(j �=i). By

a direct application of Theorem A.1 on w̄n and the independence assumptions, the processes
wa,n, wd,ni , and wv,nij converge weakly to mutually independent Wiener processes. In addition,
note that, for any j, k ∈ {1, . . . , K}, with j, k �= i, we have

E[(Inij,l − θni fij (x
i,n
l ))(I

n
ik,l − θni fik(x

i,n
l ))]

= E[θni δjkfij (xi,nl )− (θni )
2fij (x

i,n
l )fik(x

i,n
l )]

→ 0

as n ↑ ∞, where δjk := 1 if j = k and 0 otherwise. Hence, by Theorem A.1, wr,ni :=
(w

r,n
ij )

	
j≤K(j �=i) converges weakly to the zero process. A similar analysis can be carried out for
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the process wc,ni := (w
c,n
ij )

	
j≤K(j �=i) to show that it also converges weakly to the zero process.

Now, the process n−1An(n·) converges weakly to a process taking values λat by Theorem A.2.
Also, {n−1Dni (n·)} is tight and any weak-sense limit has Lipschitz continuous sample paths, with
Lipschitz constant no greater thanλdi . In addition, by (2.2) it is clear that n−1Cnij (n·) = n−1/2cnij
converges weakly to the zero process by the weak convergence of wr,nij and wc,nij to the zero
process and the boundedness of the integral given by (2.3). These facts imply that {mn} is
asymptotically continuous. Therefore, Theorem 3.6.2 of [16, p. 133] implies that {yn} is tight,
and any weak-sense limit process is continuous with probability 1. This in turn implies that
{xn} is tight, and any weak-sense limit process has continuous paths with probability 1. Now,
all that remains is to characterize the weak-sense limit of any convergent subsequence.

Tightness of {yni } implies that n−1Dni (n·) converges weakly to a process taking values λdi t ,
using Theorem A.2 in Appendix A. Hence, by the almost-sure sample path continuity of the
Wiener process, we have the weak convergences ma,n ⇒ wa(λa ·) and md,ni ⇒ wdi (λ

d
i ·). In

addition, the fact that n−1Cnij (n·) converges weakly to the zero process implies that mv,nij
converges weakly to the zero process. The statement about the Wiener processes being
Ft -adapted can be shown by repeating the arguments, mutatis mutandis, used in [16, p. 239].

To characterize the weak-sense limit of a converging subsequence of {bn}, first note that∫ t
0 I

v,n
i (s) ds = n−1V ni (nt), modulo an asymptotically negligible error, and, therefore, it con-

verges weakly to the zero process. This fact combined with the tightness of {yni } implies that∫ t
0 (1 − I

f,n
ij (s)) ds converges weakly to the zero process. Now take any convergent subsequence

of {xn} with weak-sense limit given by x. Then the process taking values given by (2.3)
converges weakly to the process taking values λdi θi

∫ t
0 fij (x(s)) ds, by the continuity of fij .

In addition, by the properties of yni , the facts that it is asymptotically continuous, non-
decreasing, and increases only at the times that xn is 0, implies that a converging subsequence
of yn converges weakly to the reflection process.

2.5. Some extension results

2.5.1. Workload process. Define the workload Wli(t) at station i to be the total time that the
server must work in order to complete all pending tasks in the station i at time t . In order words,
Wli(t) is the sum of service times of every queued task plus the time needed to complete the
task that is currently being processed.

As mentioned before, we want to find a ‘routeing’ policy which will maintain the balance
of the workload in each station. For that reason, a heavy traffic approximation for Wli will
be needed. Again, suppose that we have a sequence of queueing systems, with corresponding
workload given by {Wln}, indexed by the parameter n ≥ 1. Define the scaled workload as
wlni (t) := n−1/2Wlni (nt). A result which is usually true for heavy traffic approximations of
queueing systems is wli(t) = �̄di xi(t), where wli denotes a weak-sense limit of wlni , and xi
is as defined in (2.4). It is possible to show that the above result is valid for the system under
consideration.

Theorem 2.2. Let wlni (0) := �̄di x
n
i (0) for each i ∈ {1, . . . , K}. Under the conditions of

Theorem 2.1, the difference wlni − �̄
d,n
i xni converges weakly to the zero process.

Proof. Note that we can write

n−1/2
Dni (nt)+n1/2xni (t)∑
l=Dni (nt)+2

�
d,n
i,l ≤ wlni (t) ≤ n−1/2

(Dni (nt)+n1/2xni (t)∑
l=Dni (nt)+1

�
d,n
i,l + �̃vi

)
, (2.5)
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where �̃vi denotes the service time of a moved task (if present). Note that

n−1/2
Dni (nt)+n1/2xni (t)∑
l=Dni (nt)+1

�
d,n
i,l

= n−1/2
Dni (nt)+n1/2xni (t)∑
l=Dni (nt)+1

(�
d,n
i,l − �̄

d,n
i )+ �̄

d,n
i xni (t)

= �̄
d,n
i {−wd,ni (n−1Dni (nt)+ n−1/2xni (t))+ w

d,n
i (n−1Dni (nt))} + �̄

d,n
i xni (t). (2.6)

Under the assumptions of Theorem 2.1, we know that n−1Dni (n·) converges weakly to the
process taking values λdi t . In addition, n−1/2xni converges weakly to the zero process by the
tightness of {xni }. Therefore, the terms inside the curly brackets in (2.6) converge weakly to the
zero process. The same argument can be used on the sum on the left-hand side of (2.5), leading
to the desired result.

2.5.2. Finite buffers. Let us suppose that each queue in the system has a maximum number of
tasks that it can hold, and denote it by Bni ∈ (0,∞) for n ≥ 1 and i ∈ {1, . . . , K}. Due to
the scaling introduced in Section 2.2, let Bni := √

nBi , where Bi ∈ (0,∞) is a fixed constant,
independent of n.

Usually, parallel processing systems are able to hold relatively long queues of pending tasks.
Most of the time, the system never reaches this ‘maximum’ buffer size, and it does not interfere
with the process. However, the numerical method employed in Section 5 requires a limited
state space to work on and, therefore, finite buffers need to be introduced. The idea, however,
is to choose Bi large enough so that it does not interfere with the dynamics of the diffusion.

Suppose that any task sent to a full queue is lost upon arrival. Let Lni (t) denote the number
of tasks lost at station i due to a full buffer by time t . Then we can write the scaled system as

xni (t) = xni (0)+ ani (t)− dni (t)+
K∑

j=1(j �=i)
cnji(t)− lni (t),

where lni (t) := n−1/2Lni (nt), for every t . The same arguments used in Theorem 2.1 can be
used here to show weak convergence of {xn} with finite buffers. The theorem below states the
result formally.

Theorem 2.3. Assume that the conditions of Theorem 2.1 hold. Then {xn} for the system with
finite buffers is tight and any weak-sense limit satisfies x̃i (t) = xi(t)−li (t), where x is a process
satisfying (2.4) and li satisfies li (0) = 0, with li nondecreasing, and increasing only at t ≥ 0
such that xi(t) = Bi .

2.5.3. Discontinuous functions fij . The condition on the continuity of the functions fij used
in Section 2.1 can be relaxed. This is important since the ‘routeing’ policies considered in
Section 5 are in fact discontinuous but satisfy a broader condition given in Theorem 4.1 of [16,
p. 327] (see the reference for more detail).

3. Control at arrival times

In this section we consider a parallel processing system where the balancing control is applied
at the arrival times. That is, the system can assign more than one task to the same station at
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each job arrival. A task that is originally destined to station j but is assigned to station i, due
to the balancing policy, can be processed with a different processing speed at station i.

This time, we begin working with the workload process since it is more convenient in
this setting. The analysis is somewhat condensed in the subsection below, since some of the
arguments used in the previous model are repeated here.

3.1. Process definition and heavy traffic limit

The sequences of i.i.d. random variables {�al ; l ∈ N} and {�di,l; l ∈ N} for i ∈ {1, . . . , K}
are defined as in Section 2. Let Iij,l be a random variable that indicates whether a task directed
to station j is assigned to station i at the lth arrival time. If the task is assigned to station i then
let �vij,l denote its service time requirement at that station. Also, let I

m
i,l := ∑K

j=1(j �=i) Iji,l ,
which indicates whether the lth task directed to station i was assigned to another station in the
system. The arrival processA is defined as in Section 2. This way the total workload at station i
at time t is given by

Wli(t) = Wli(0)+
A(t)∑
l=1

{
(1 − I

m
i,l)�

d
i,l +

K∑
j=1(j �=i)

Iij,l�
v
ij,l

}
− t + Ti(t),

whereWli(0) is the initial work at station i and Ti(t) is the total server idle time by time t , that
is, Ti(t) := ∫ t

0 I{Wli(s) = 0} ds. It is assumed that Wl(0) is independent of the other driving
processes.

Assume that the existence of a sequence of queueing systems indexed by the parameter n,
given by {Wln; n ∈ N}, which approaches the heavy traffic regime as n ↑ ∞. Let wln be the
scaled workload process defined as wlni (t) := n−1/2Wlni (nt). Proceeding in the same fashion
as in Section 2, we rewrite the scaled processes as the sum of a ‘regular’ (predictable) part and
a martingale. The following assumption replaces Assumption 2.1(a) of the previous model.

Assumption 3.1. Let wlnl denote the scaled workload in the system at the time of the lth job
arrival. Also, let F r,n

l be the history of all driving processes up to the instant of the lth arrival,
but not including the balancing decision at this instant. Then suppose that there are continuous
and bounded functions gij and constants θni such that E[Inij,l | F r,n

l ] = θni gij (wl
n
l ) for i �= j ,

where n1/2θni → θi ∈ [0,∞).

Let us define the martingales wa,n and wd,ni as given in Section 2.3. In addition, let

w
v,n
ij (t) := n−1/2

|nt |∑
l=1

I
n
ij,l(�

v,n
ij,l − �̄

v,n
ij ),

w
d,n
ji (t) := n−1/2

|nt |∑
l=1

I
n
ji,l(�

d,n
i,l − �̄

d,n
i ),

w
c,n
ij (t) := n−1/2

|nt |∑
l=1

θni gij (wl
n
l )(1 −�

a,n
l+1λ

a,n),

w
r,n
ij (t) := n−1/2

|nt |∑
l=1

[Inij,l − θni gij (wl
n
l )].
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Then we have

n−1/2
An(nt)∑
l=1

�
d,n
i,l = �̄

d,n
i {−wd,ni (n−1An(nt))+ wa,n(n−1An(nt))+ λa,nn1/2t},

modulo an asymptotically negligible error term. Similarly, we can write

n−1/2
An(nt)∑
l=1

I
n
ij,l�

v,n
ij,l = w

v,n
ij (n

−1An(nt))+ �̄
v,n
ij n

−1/2
An(nt)∑
l=1

I
n
ij,l ,

n−1/2
An(nt)∑
l=1

I
n
ji,l�

d,n
i,l = w

d,n
ji (n

−1An(nt))+ �̄
d,n
i n−1/2

An(nt)∑
l=1

I
n
ji,l ,

where we have

n−1/2
An(nt)∑
l=1

I
n
ij,l = w

r,n
ij (n

−1An(nt))+ w
c,n
ij (n

−1An(nt))

+ λa,nθni n
−1/2

An(nt)∑
l=1

gij (wl
n
l )�

a,n
l+1.

The rightmost term of the above equation can be written as λa,nθi
∫ t

0 gij (wl
n(s)) ds, modulo

an asymptotically negligible error term, using the same arguments given in Appendix A for the
derivation of (2.3).

Now the heavy traffic result can be presented. The proof of the theorem below uses the
arguments of Theorem 2.1 and is thus omitted. The constants λa , �̄a , λdi , �̄di , λvij , �̄vij , σa ,
and σdi used below are as defined at the beginning of Section 2.4.

Theorem 3.1. Suppose that wln(0) converges weakly to wl(0). Under Assumptions 2.1(b),
2.2, and 3.1, {wln} is tight and the weak-sense limit process wl = (wl1, . . . , wlK)

	 of any
weakly convergent subsequence satisfies

wli(t) = wli(0)+ �̄di (w
a(λat)− wdi (λ

at)+ bit)+ yi(t)

+
K∑

j=1(j �=i)

[∫ t

0
[(�̄vij )λaθigij (wl(s))− (�̄di )λ

aθjgji(wl(s))] ds

]
(3.1)

for each i ∈ {1, . . . , K}, where wa(λa ·) and wdi (λ
a ·) for i ≤ K are mutually independent Ft -

Wiener processes with variances λa(σ a)2 and λa(σ di )
2 for i ≤ K , respectively, and Ft denotes

the minimal σ -algebra that measures {wli(s), wa(λas), wdi (λas), yi(s); s ≤ t, i ≤ K}. The
process yi is the reflection process, which satisfies yi(0) = 0, yi is nondecreasing, continuous,
and increases only at t ≥ 0 such that wli(t) = 0.

Note that the heavy traffic limit is the same for the model of Section 2, since, by the heavy
traffic assumption, the rates λa and λdi are equal for each i ∈ {1, . . . , K}. Therefore, every
single occurrence of λa can be replaced by either λdi or λdj in the limit equation (3.1). However,
in practice, since diffusion approximation is used for systems which are only near heavy traffic,
the models can be slightly different since λa,n �= λ

d,n
i .
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In practice, we cannot always accurately measure the workload of a system at a given time.
For that reason, the balancing policy, which is determined by the functions gij , should not
depend on this quantity. A result similar to Theorem 2.2, which establishes an asymptotic
relationship between the weak-sense limits of the scaled workload and the number of tasks in
the station, is useful in this setting.

Theorem 3.2. Let �̄d,ni xni (0) := wlni (0) for each i ∈ {1, . . . , L}. Under the conditions of
Theorem 3.1, the difference wlni − �̄

d,n
i xni converges weakly to the zero process.

Proof. Let τni (t) denote the arrival time of the oldest task in station i at time nt , or the actual
time nt in the case where the station is empty. Let xn,tot

i (t) be the scaled number of arrivals
during the period (τni (t), nt]. Then

wlni (t) = n−1/2
An(τni (t))+n1/2x

n,tot
i (t)∑

l=An(τni (t))+1

{
(1 − I

m,n
i,l )�

d,n
i,l +

K∑
j=1(j �=i)

I
n
ij,l�

v,n
ij,l

}
,

modulo an asymptotically negligible error term accounting for the time remaining for the current
job (at time nt) to complete service, if any. Then we can expand the above by writing

n−1/2
An(τni (t))+n1/2x

n,tot
i (t)∑

l=An(τni (t))+1

{
(1 − I

m,n
i,l )(�

d,n
i,l − �̄

d,n
i )+

K∑
j=1(j �=i)

I
n
ij,l(�

v,n
ij,l − �̄

v,n
ij )

}

+ �̄
d,n
i x

n,i
i (t)+

K∑
j=1(j �=i)

�̄
v,n
ij x

n,j
i (t),

modulo a negligible error, wherexn,ii (t)denotes the number of regular tasks in station i (i.e. tasks
that were not moved from other stations), and xn,ji (t) denotes the number of tasks in station i
that were moved from station j . Note that

x
n,j
i (t) = {wr,nij (n−1An(τni (t))+ n−1/2x

n,tot
i (t))− w

r,n
ij (n

−1An(τni (t)))}

+ n−1/2
An(τni (t))+n1/2x

n,tot
i (t)∑

l=An(τni (t))+1

θni gij (wl
n
l ),

where the last term of the equation is bounded by n−1/2x
n,tot
i (t), modulo an asymptotically

negligible error term. The sum of the terms inside the curly brackets in the previous equations
are martingales and can be written as

m
n,sum
ij (n−1An(τni (t))+ n−1/2x

n,tot
i (t))−m

n,sum
ij (n−1An(τni (t))), (3.2)

where mn,sum
ij (t) = −�̄d,ni w

d,n
i (t)+ ∑K

j=1(j �=i)(−wd,nji (t)+ w
v,n
ij (t)+ �̄

v,n
ij w

r,n
ij (t)). Since

n−1An(τni (t)) + n−1/2x
n,tot
i (t) = n−1An(nt), modulo 1/n, and by the weak convergence of

n−1An(n·) to a process taking values λat by Theorem A.2 in Appendix A, the martingale terms
and n−1/2x

n,tot
i (t) are bounded with high probability in [0, T ], in the sense of Equation (3.11)

of [16, p. 203]. Since wlni is asymptotically continuous under the conditions of Theorem 3.1,

�̄
d,n
i x

n,i
i +∑K

j=1(j �=i) �̄
v,n
ij x

n,j
i must be bounded with high probability. This in turn implies that
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x
n,tot
i is bounded with high probability and n−1/2x

n,tot
i converges to the zero process. The mar-

tingales in (3.2) also converge to the zero process. Concluding, the difference �̄d,ni x
n,i
i − wlni

converges to the zero process. This also implies that the fraction of scaled work at any station i
at time nt , accounting for the moved tasks, is asymptotically negligible.

4. Control problem

Our control problem is to find state-dependent ‘routeing’ policies fij (for the model of
Section 2) or gij (for the model of Section 3) that minimizes a cost function which penalizes
imbalance, which will be given shortly. In view of Theorem 3.2, let fij (ξ) := gij (�̄

dξ)/�̄di
for the model of Section 3, where �̄dξ is a vector with components �̄di ξi , in order to maintain
an interchanging notation between the two models.

In most practical problems, the number of stations in a parallel processing system is very
large, containing hundreds or more stations in parallel. Since we are going to solve the control
problem numerically, this problem becomes largely impractical (i.e. we would be looking for
hundreds of functions fij which are defined on a very high dimensional space). However, task
movement is always performed between two stations; therefore, we can reduce this problem
significantly by considering a control problem between two stations at a time. That is, we solve
the control problem by considering queues two by two. Hence, for some i, j ∈ {1, . . . , K},
i �= j , we are interested in the following problem. Find f ∗ = (f ∗

ij , f
∗
ji) over the set of

admissible controls that minimizes the cost

E
f
x0

[∫ ∞

0
e−βt

(
max{�̄di xi(t), �̄dj xj (t)} dt +

2∑
k=1

ck dlk(t)

)]
, (4.1)

where x(0) = x0 is the initial condition, and xi(t), xj (t) are the number of tasks for stations i
and j given by either the model of Section 2 or 3, where the functions fkl are set to 0 whenever
(k, l) �= (i, j) and (k, l) �= (j, i). Also, fij (ξ) and fji(ξ) depend only on the components ξi
and ξj of ξ ∈ R

K . That is, we consider a reduced problem where the system is composed of
only stations i and j . The terms lk are defined as in Theorem 2.3, and will be discussed shortly.

Consider an example where the system is homogeneous (i.e. each processing station has the
same service distribution) and the service time for a moved task is the same for every station,
that is, the random variables �vij,l have the same distribution for each l, i, and j . Then we
would have to solve the reduced control problem for two queues once. Let f ∗ = (f ∗

1 , f
∗
2 ) be

the optimal (or ε-optimal) control. Then, in practice, we could use f ∗
1 as follows. Suppose that,

in the physical system at a given time t , we have to make a decision whether to move a task
into station i; then we look for the station with the highest ‘expected’ workload (i.e. highest
�̄di Xi(t)), call this station l. Then, a task of station l is moved to station i with probability
θni f

∗
1 (xi, xl), where xi and xl are the scaled numbers of tasks in each station. The control

f ∗
2 works analogously to f ∗

1 , but it is used to move tasks into station j . In homogeneous
systems, it is natural to expect f ∗

1 and f ∗
2 to be the same, and this is indeed observed in the

numerical data. This way, we could use either f ∗
1 or f ∗

2 to decide to move tasks into any station
composing the system. Consider now a heterogeneous system composed of two classes, that
is, stations are classified as class 1 or 2, where stations in the same class have the same service
time distribution. In this case, the control problem would be solved with station i representing
stations of class 1 and station j representing stations of class 2. This way f ∗

1 would be used
to move tasks from class-2 stations into class-1 stations, and f ∗

2 would be used to move tasks
from stations of class 1 into class 2.
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The optimal controls f ∗ found for this problem were always of switching type, that is, the
control divides the state space into a region where the control is applied with maximum rate,
which we will call the active region, and another region where the control is not applied, which
we call the inactive region. In this case, we can interpret the control as follows. A task from
station l is moved to station i with probability θni if the point (xi, xl) lies within the active
region. Therefore, since θni must go to 0 as n increases, we have to be careful in choosing
θni in order to take advantage of the possible situations that the system may undergo. If, for
instance, θni is set to n−1/2, then n1/2θni converges to a constant as required. However, this
means that if (0, xl) lies within the active region, a task will be moved from station l to i,
which is idle, with probability n−1/2. However, we would like to move a task from l to i with
probability 1 if station i is empty, as long as (xi, xl) is within the region where the control
should be applied, so that stations will not sit idle when they could be working on pending jobs.
Hence, consider θni = n−1/2ρni + (1 − ρni ), which attends the required assumption on θni since
n1/2θni → 1 − bi/λ

d
i by the heavy traffic condition. This choice of θni can be interpreted as

follows. If (xi, xl) lies within the active control region, move from l to i with probability 1 if
queue i is empty, or with probability n−1/2 if queue i is not empty, where we interpret 1 − ρni
as the probability of station i being empty.

In order to find the optimal control f ∗, we use the Markov chain approximation method
(MCAM) of [18]. This numerical method requires the queue buffers to be finite. That is why
we introduced the penalization for loss of customers due to buffer overflow in the cost function
given by (4.1). The constants ci are the instantaneous cost associated with losing customers due
to buffer overflow. However, we found that better results were obtained by setting ci = cj = 0
and cropping the resulting controls near the boundaries to avoid its effects.

5. Numerical experiments

In practice, we use the heavy traffic limit derived in the previous sections by choosing
a ‘large’ parameter n, say n = N ∈ N, and approximating the number of tasks in each
station by Xi(Nt) ∼ √

Nxi(t), with x(t) given by (2.4) with the drift constant bi defined
as bi = √

N(λa − λdi ) and the control constant θi given by θi = ρi + √
N(1 − ρi), where

ρi := λa/λdi , λa , λdi , (σ a)2, (σ di )
2, and so on, are the data for the system under consideration.

For the numerical example, we consider the data collected by [9] from the parallel
processing station of a Web search system. In this system, tasks have a hyperexponential
service distribution, where, with probability 0.17, the service has an exponential distribution
with mean mc = 9.20 ms, accounting for the case in which needed database information is
found in the disk cache, and, with probability 0.83, the service is exponentially distributed with
mean md = 38.12 ms, when the server has to access the disk. We consider interarrival time
to be exponentially distributed with mean ma = 35.714 ms, and suppose that moved tasks are
processed with an exponential service distribution with mean md , that is, λvij = 1/md .

The parameters that were used for the MCAM were N = 100, discount factor β = 10−4,
discretization step h = 0.1, and buffer sizes B1 = B2 = 10. In order to test the results, we
implemented a simulation of a parallel system. The simulation computes the response time of
the system under steady state.

In order to compare the controls derived via this heavy traffic approach, we created two
‘intuitive’ controls for comparison. The first, which we call ‘move only when empty (MWE),’
is applied to either the system with control at service or arrival times and moves tasks when
the receiving queue is empty. That is, for the control at service, when station i finishes service
and becomes empty, it will look for the largest station in the system and move the oldest task
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Figure 1: (a) The switching curve for the optimal control, which shows the region of the state space
where the control is applied at a maximum rate. In this figure, a task from station 1 with X1 tasks can
be moved (with respect to the control probability θ2) to station 2 with X2 tasks if (X1, X2) lies under the
curve. (b) The response time distribution computed with a simulation for the system with the mean arrival
time set to ma = 35.714 and the number of stations K = 60 for different types of control. (c) Switching
curves for the optimal control for the system with delay for varying values of mδ = 15 ms, 30 ms, and
50 ms. (d) The response time distribution computed with a simulation for a system with mean delay

mδ = 15 ms, K = 20, and ma = 35.714.

from it, if there are any pending tasks available. This control will help us answer the question
of whether there can be reduction in the response time if tasks are moved even when queues are
not empty, that is, when tasks are moved to maintain the workload balanced. The other intuitive
control is applied at the arrival time and it is called ‘send to shorter (STS)’, which sends tasks
to shorter queues in order to maintain an equal number of pending tasks among the stations.
Controls constructed via the heavy traffic model are called ‘optimal service’or ‘optimal arrival’,
indicating whether they were constructed for the system which applies control at service times
or arrival times.

Figure 1(a) displays the switching curve obtained for the optimal control applied at service
times. There was no significant difference in the switching curve for the model with control
applied at service times from the model with control applied at arrival times. Table 1 contains the
results for a varying number of stations K , and mean arrival ma . Note that the optimal control
achieves a lower response time when compared with the system using the control MWE.
This suggests that moving customers among queues to maintain the workload balance is
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Table 1: Mean response time in seconds for varying values of arrival rates, number of stations, and
movement delay. The numbers in brackets are the 95%-t confidence interval for the simulation.

Fixed number of stations K = 20 and no delay

Optimal MWE Optimal MWE
ma(ms) service service arrival arrival STS No control

40.000 0.247 127 0.260 378 0.363 942 0.391 612 0.351 078 0.649 346
(±0.002 135) (±0.002 754) (±0.003 311) (±0.004 392) (±0.003 767) (±0.008 408)

35.714 0.470 430 0.531 653 0.667 127 0.793 336 0.867 851 1.549 194
(±0.013 677) (±0.020 209) (±0.019 341) (±0.021 337) (±0.044 381) (±0.044 400)

34.000 1.252 058 1.470 797 1.564 387 2.155 631 10.620 13 4.319 226
(±0.129 287) (±0.116 892) (±0.121 348) (±0.124 506) (±0.643 902) (±0.312 732)

Fixed mean arrival time ma = 35.714 ms and no delay

Optimal MWE Optimal MWE
K service service arrival arrival STS No control

40 0.483 501 0.551 990 0.712 856 0.877 556 0.961 460 1.701 969
(±0.010 598) (±0.019 382) (±0.018 259) (±0.024 470) (±0.057 233) (±0.049 615)

60 0.501 103 0.563 471 0.734 357 0.889 049 0.991 861 1.868 287
(±0.012 531) (±0.015 275) (±0.015 075) (±0.025 574) (±0.059 877) (±0.051 111)

Fixed mean arrival time ma = 35.714 ms and K = 20 with varying delay

Optimal MWE Optimal MWE
mδ service service arrival arrival STS No control

15 0.589 806 0.643 809 0.667 127 0.793 336 0.867 851 1.549 194
(±0.018 030) (±0.020 542) (±0.019 341) (±0.021 337) (±0.044 381) (±0.0444)

30 0.686 567 0.735 412 0.667 127 0.793 336 0.867 851 1.549 194
(±0.021 641) (±0.024 598) (±0.019 341) (±0.021 337) (±0.044 381) (±0.0444)

50 0.783 159 0.810 906 0.667 127 0.793 336 0.867 851 1.549 194
(±0.022 719) (±0.021 095) (±0.019 341) (±0.021 337) (±0.044 381) (±0.0444)

beneficial to reducing the response time. Also, note that STS works well for the system under
moderate traffic, but it gets worse as the traffic increases. It actually yields a response time that
is worse than that of the uncontrolled system for ma = 34. In addition, the control applied at
arrival times has greater response times when compared with the system with control applied at
service times. Figure 1(b) contains the response time distribution forK = 60 andma = 35.714.

In order to discuss the performance of the different types of control, consider first the case
where task movement is applied at service times. In this case, one of the reasons why the
control constructed via the optimal control problem has better performance is that it can take
advantage of the idle times of the stations. This is not performed by the system with no control.
In addition, it also implements some sort of priority for older tasks, since a pending task can
be moved to a station even when it is not empty. This way, older jobs can leave the system
sooner and the response time of the system is reduced. The MWE control also takes advantage
of the idle time, and that contributes significantly to reducing the response time. However,
priority is not given to older tasks when the queues are not empty. Note from Table 1 that the
response time difference between the MWE service and optimal service increases as the traffic
intensity increases. This can be explained by the fact that it will be harder to find empty queues
and the chance of greater variation among the stations will increase.
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For the system that implements controls at arrival times, the optimal control also takes
advantage of the idle time of the stations. In addition, it does not overload stations that have
many pending tasks, since tasks can be directed to other stations that are not empty. When
compared to MWE, this strategy of avoiding large queues is beneficial in order to avoid even
larger queues, which would contribute to the increase in the response time. However, this task
movement between queues that are not empty needs to be done carefully. Indeed, STS sends
tasks to shorter stations every time. However, by doing so, it increases the overall system
workload, since tasks have greater system requirements when assigned to different stations. As
seen in the numerical experiments, this becomes critical as the traffic intensity increases.

Now let us consider a scenario where there is a time delay in moving tasks among the stations
when the control is applied at service time. That is, if station imoves a task from another station,
it will have to wait for the task to arrive before it can resume processing. Let mδ denote the
mean delay. Then we have λvij = 1/(md + mδ). For mδ = 15 ms, 30 ms, and 50 ms, the
resulting switching curves are given in Figure 1(c). Table 1 contains the mean response time
for the system for the different mean delay values. Note that the mean response times for the
system using control at arrival times and no control are unaltered by the delay, since the delay is
applied only to tasks moved at service time. This shows that as the delay increases, the control
applied at arrival times starts to be more suitable, yielding lower response times than that of the
system with control applied at service times. The response time distribution computed by the
simulation for a system with mean delay mδ = 15 ms is given in Figure 1(d).

Appendix A

A.1. Details on the derivation of (2.3)

Let bni,m denote the beginning of the mth (scaled) period during which station i is busy
working on its own tasks, and let eni,m denote its ending. Let τ i,nk denote the kth jump time
of Dni , and, for illustration purposes, suppose that it is the first jump on the interval (n ×
bni,m, n × eni,m]. Then τ i,nk = n × bni,m + �

d,n
i,k ; in addition, if τ i,nk+1 ≤ n × eni,m, we have

τ
i,n
k+1 = n× bni,m +�

d,n
i,k +�

d,n
i,k+1, and so on. Observe that the last term on the right-hand side

of (2.2) may be rewritten as

λ
d,n
i θi

∞∑
m=1

∞∑
l=1

fij

(
xn

(
τ
i,n
l

n

))(
�
d,n
i,l+1

n

)
I

{
n1/2xnj

(
τ
i,n
l

n

)
> 1

}

× I

{
bni,m ≤ τ

i,n
l

n
≤ eni,m,

τ
i,n
l

n
≤ t

}
, (A.1)

modulo a negligible error term originating from the approximation θni ≈ n−1/2θi . Note that
(A.1) is a piecewise-linear approximation of the integral

λ
d,n
i θi

∞∑
m=1

∫ eni,m∧t

bni,m

fij (x
n(s))I{xnj (s) > n−1/2} ds. (A.2)

The difference between (A.1) and (A.2) becomes increasingly small as n increases. Equation
(A.2) can be further rewritten in a more compact form as

λ
d,n
i θi

∫ t

0
fij (x

n(s))(1 − I
v,n
i (s))I{xni (s) > 0, xnj (s) > n−1/2} ds.
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A.2. Auxiliary results

In this section we present some auxiliary results used in the paper.

Theorem A.1. (Theorem 2.8.8 of [16, p. 84].) For n ≥ 1, let wn(t) = n−1/2 ∑|nt |
l=1 ξ

n
l for

t ≥ 0, where ξnl takes values in R
k . Let F n

t denote the minimal σ -algebra that measures
{ξnl , l/n ≤ t; vn(s), s ≤ t}, where vn(·) takes values in D(Rm; 0,∞). Assume that there is a
matrix � such that the ξnl satisfy

E[ξnl+1 | F n
l/n] = 0, lim

n,l,k↑∞ E[(ξnl+k)(ξnl+k)	 | F n
l/n] → �,

where the limit is in the mean. Suppose that {|ξnl |2; n, l} is uniformly integrable. Then wn

converges weakly to a Wiener process with covariance matrix �. Suppose that (vn,wn)
converges weakly to (v,w). Then w is an Ft -Wiener process with covariance matrix �, where
{Ft , t ≥ 0} is the filtration engendered by (v,w).

The theorem below is a modification of a result which is part of Theorem 5.1.1 of [16, p. 185].

Theorem A.2. Let {ξnl , l ∈ N} be a sequence of positive real-valued random variables, for each

l and n. Assume that {hn} is tight, where the process hn is defined as hn(t) := n−1/2 ∑|nt |
l=1(ξ

n
l −

ξ̄ n), and, for each l, E[ξnl ] := ξ̄ n → ξ̄ ∈ R>0 as n → ∞. Let Jn be a nondecreasing process
that satisfies Jn(0) = 0 and Jn(t) ≤ nt . Then {Nn}, which is given byNn(t) := n−1 max{m ∈
N0 : ∑m

l=1 ξ
n
l ≤ nt − Jn(t)}, is tight and any weakly convergent subsequence has weak-sense

limit process with almost-sure Lipschitz continuous sample paths, with Lipschitz constant no
greater than 1/ξ̄ . In addition, if {n−1/2Jn} is tight, the process Nn converges weakly to the
process taking values t/ξ̄ .

Proof. Let T n(t) := n−1 ∑|nt |
l=1 ξ

n
l , note that

Nn(T n(t)) = 1

n
max

{
m ∈ N0 :

m∑
l=1

ξnl ≤
|nt |∑
l=1

ξnl − Jn(T n(t))

}
≤ t + εn,1, (A.3)

where |εn,1| < 1/n. In addition, we have

T n(Nn(t)) = t − Jn(t)

n
+ εn,2, (A.4)

where |εn,2| < (1/n)ξnNn(t)+1 is a negligible error, which converges to the zero process as
n ↑ ∞ since {hn} is tight.

The process T n(t) can be written as T n(t) := (1/n)
∑|nt |
l=1(ξ

n
l − ξ̄ n)+ ξ̄ nt . By the tightness

of {hn}, the first term converges weakly to the zero process, and T n(·) ⇒ T (·), where T (t) :=
ξ̄ t , by the assumption that ξ̄ n → ξ̄ . Hence, for each ε > 0 and t > 0,

lim
n

P

(
sup
s≤t

Nn(s) ≤ t

ξ̄
+ ε

)
= 1, (A.5)

using (A.3).
Using (A.4), note that, for any τ > 0, we have

T n(Nn(t + τ))− T n(Nn(t)) = τ − Jn(t + τ)− Jn(t)

n
+ ε̃n,2 ≤ τ + ε̃n,2,
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where the last passage is possible since Jn(·) is nondecreasing and nonnegative. Therefore, for
any constant ε > 0, τ > 0, and t ∈ R≥0, we have

lim
n

P

(
sup
s≤t

|Nn(s + τ)−Nn(s)| ≤ τ

ξ̄
+ ε

)
= 1. (A.6)

Equations (A.5) and (A.6) together imply that {Nn(·)} satisfies the first part of the theorem.
Now suppose that {n−1/2Jn} is tight. Using (A.4) and letting n ↑ ∞, we have T (N(t)) = t ;

hence, N(t) = t/ξ̄ , since {n−1Jn} converges weakly to the zero process.
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