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1. Introduction

This article represents our attempt to improve the previous results on defining and
understanding overconvergent Eichler–Shimura maps in [5] and [6].

We fix a prime integer p > 2. We recall that an (overconvergent) Eichler–Shimura

morphism is a comparison map describing weight k overconvergent modular symbols,

seen as pro-Kummer étale cohomology classes of a sheaf of weight k distributions Dk
(where k : Z∗p→B∗ is a B -valued weight as in Definition 3.6) tensored some period ring,

in terms of overconvergent modular forms of weight k+2, tensored with the same period

ring. In [5] and in [6], we defined and studied Hodge-Tate Eichler-Shimura maps while in
this article we’ll have Hodge–Tate, de Rham and crystalline variants.

To really explain what the main issues are that we deal with in this article, let us observe

that there has been remarkable recent progress in p-adic Hodge theory and especially in
integral p-adic Hodge theory, and let us just mention [8], [9], [11], [14]. The articles

quoted here deal with various cohomology theories on formal schemes or adic spaces

with constant coefficients. On the other hand, it has been clear for some time that for

applications to p-adic automorphic forms one needs to work with cohomology with very
large coefficients. In this article, we try to understand p-adic Hodge theory (comparison

morphisms really) with large coefficients, and therefore, unfortunately, we cannot use the

recent results quoted above.
More precisely, let X := X0(p

m,N) be the log adic space defined by the modular curve

over Qp associated to the congruence subgroup Γ0(p
m)∩Γ1(N). For any r ≥ 0, we have

open subspaces X
(
p/Hap

r)
, where Ha is a (any) local lift of the Hasse invariant. We

fix k,B as above and let h ∈ N. We denote by ωE the sheaf of invariant differentials of

the universal semiabelian scheme E over X and by Xpke, the log adic space X equipped

with the pro-Kummer étale topology, see section §2.2. We let Dk denote the pro-Kummer

étale sheaf of weight k -modular symbols on this Xpke, and we recall from [6] that both
the pro-Kummer étale cohomology and the sheaf cohomology groups H1

(
Xpke,Dk(1)

)
and H0

(
X
(
p/Hap

r)
,ωk+2
E

)
have finite slope decompositions for the action of the compact

operator Up. If h∈N is a slope, we denote, for a Hecke module M byM (h) the submodule

of slope ≤ h submodule of M.
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Then, Theorem 5.1 states that there is an r depending on k, and therefore a
neighbourhood X

(
p/Hap

r)
of a component of the ordinary locus in X , and a canonical

Cp-linear, Galois and Hecke equivariant map:

ΨHT,h : H
1
(
Xpke,Dk(1)

)(h)⊗̂Cp −→H0
(
X
(
p/Hap

r)
,ωk+2
E

)(h)⊗̂Cp.
In a slightly different way and only for analytic weights, the map ΨHT,h was constructed
in [5]. There we also proved that the map is generically surjective. The new result in this

paper is:

Theorem 1.1. If
∏h−1
i=0 (uk− i) ∈

(
B[1/p]

)∗
, then ΨHT,h is surjective, for all h≥ 1, and

it is surjective if h= 0.

Our next result in this article is a de Rham overconvergent Eichler–Shimura map. We
fix now, as in section §6, X := X (N) the modular curve with full level N structure for

the remainder of this introduction. We construct modular sheaves with connections and

filtrations Wk,dR on X
(
p/Hap

r)
, for an r≥ 0 depending on k, which interpolate p-adically

the family of sheaves {SymvH1
dR

(
E/X

)
}v∈N, with their filtrations and connections, and

we denote by Wk,dR,• :Wk,dR
∇−→Wk+2,dR the de Rham complex of (Wk,dR,∇). Here,

of course, we use the Kodaira–Spencer isomorphism in order to see the connection as

a morphism of abelian sheaves with values in Wk+2,dR. Assuming the hypothesis and
notations above we prove:

Theorem 1.2. a) There is a natural, Galois and Hecke equivariant B⊗̂B+
dR-semilinear

map

(∗) ρk : H
1
(
XK,pke,Dk

)(h)⊗̂B+
dR −→H1

dR

(
X
(
p/Hap

r)
,Wk,dR,•

)(h)⊗̂Fil−1BdR,

b) If
∏h−1
i=0 (uk− i) ∈

(
B[1/p]

)∗
then the display (∗) above becomes:

ρk : H
1
(
XK,pke,Dk

)(h)⊗̂B+
dR −→H0

(
X
(
p/Hap

r)
,ωk+2
E

)(h)⊗̂Fil−1BdR

and it is surjective.

In order to make it clear what improvements we were able to produce in this article,

we now list the new ideas.

1) Neighbourhoods of the ordinary loci in modular curves.

Both in [5] and [6], we worked on the (log) adic modular curves X1(N) and X0(p,N);
these are the (log) adic spaces associated to the modular curves over Qp of level Γ1(N)

and, respectively Γ1(N)∩Γ0(p), which have a connected, respectively two connected,

components of ordinary loci. We worked with strict neighbourhoods of these ordinary
loci of depth n ∈ N defined as the points x with the property vx(Ha) ≤ 1/n. These

neighbourhoods are defined over Spa(L,OL) over which the point x is defined, where

L is some complete extension of Qp and these neighbourhoods are also used in this very
article for the de Rham Eichler–Shimura maps.

For the Hodge–Tate comparison maps in this article, we use a better technology, inspired

by the work of [12]. Namely, let X (p∞,N) be the perfectoid adic space over Spa(Cp,OCp
)
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associated to the projective limit of adic modular curves lim←,mX (p
m,N) and the Hodge–

Tate period map

πHT : X (p∞,N)−→ P1
Qp
.

We define interesting opens U
(n)
# ⊂ P1

Qp
, for n≥ 1 and the symbol # ∈ {0,∞}, which are

invariant under the action of the m-th Iwahori subgroup Iwm ⊂GL2(Zp) as follows: If

# =∞, then m ≥ n if # = 0, then m ≥ 1 and on which we understand the dynamic of
the Up-operator. Then by the properties of πHT, for every n≥ 1, there are: an m≥ 1 as

above and neighbourhoods of the ordinary loci in X0(p
m,N) denoted Z(n)

0 ,Z(n)
∞ such that

if πm : X (p∞,N)→ X0(p
m,N) is the natural projection, then π−1HT(U

(n)
# ) = π−1m (Z(n)

# ),

where # ∈ {0,∞} such that we understand well the dynamic of the Up-operator on
sections of modular sheaves on X0(p

m,N). We remark that X0(p
m,N) has many connected

components of the ordinary locus if m is large and a complicated semistable integral

model; therefore, it would have been difficult to apply the previous method, that is,
defining neighbourhoods of the ordinary loci using Ha, in X0(p

m,N) for m> 1.

2) Payman Kassaei’s method for the cohomology of pro-Kummer étale sheaves.
Let us now explain our new take on the overconvergent Hodge–Tate Eichler–Shimura

morphism. We fix a slope h ∈ N and a weight k : Z∗p −→ B∗ as in Definition 3.6.

This weight is N -analytic, for some N ∈ N, that is, there is uk ∈ B[1/p] such that
k(t) = exp

(
uk log(t)

)
for all t ∈ 1 + pNZp. These data determine integers n,u,m such

that on X := X0(p
m,N) we have our neighbourhoods Z(u)

∞ for u ≤m and Z(n)
0 ,Z(n+1)

0 .

We base-change X ,Z(u)
∞ ,Z(n)

0 ,Z(n+1)
0 over Spa(Qp,Zp) to Spa(B[1/p],B) and still denote

them X ,Z(u)
∞ ,Z(n)

0 ,Z(n+1)
0 . We let Dok be the integral sheaf of weight k -distributions, seen

as a pro-Kummer étale sheaf on X , and denote by Dk := Dok⊗Zp
Qp.

First, let us recall that the map ΨHT,h appears, after passing to the the open subspaces
defined in (1), as the following composition:

H1
(
Xpke,Dk(1)

)(h)⊗̂Cp ∼= (H1
(
Xpke,Dk(1)

)
[1/p]

)(h)
R−→
(
H1
(
(Z(u)
∞ )pke,Dk(1)

)
[1/p]

)(h) Φ−→
Φ−→H0

(
Z(u)
∞ ,ωk+2

E

)(h)⊗̂Cp,
where Dk := Dk⊗̂OZpke

, R is the restriction map and Φ was defined in [6] and in 4.15,

and it was proved in loc. cit. that it is an isomorphism. Therefore, in order to prove

Theorem 5.1, we need to show that restriction from Zpke to (Z(u)
∞ )pke induces a surjective

map on the H1’s if
∏h−1
i−0 (uk− i) is a unit in B[1/p].

To do this, we use Payman Kassaei’s idea of proving classicity of overconvergent modular

forms of integral weight and small slope. More precisely, given x ∈ H1
(
(Z(u)
∞ )pke,Dk

)(h)
,

we may see it as an element of H1
(
(Z(u)
∞ )pke,D

o
k

)
which is annihilated by Q(Up), where

Q(T ) ∈ (B⊗̂OCp
)[T ] is a polynomial all of whose roots have valuations ≤ h. We write
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Q(T ) = P (T )−α, with P (0) = 0, and denote by a the valuation of α. Then by applying

to x the operator
(
P (Up)

)n+u+1
we can see it as a class x̃ in H1

(
(X\Z(n+1)

0 )pke,D
o
k

)
.

On the other hand, following Kassaei, we can define a new operator
(
P (Up)

n
)good

by

choosing all the isogenies defining the correspondence Unp which map Z(n)
0 to Z(1)

∞ . Let

P(x) :=
(
P (Up)

n
)good(

P (Up)
u+1(x)

)
∈ H1

(
Z(n)

0 ,Do
k

)
. As the family {X\Z(n+1)

0 ,Z(n)
0 } is

an open covering of X , one can use a Mayer–Vietoris sequence in order to glue psx̃,psP(x)
for a certain fixed power of p, s modulo pr, where r was chosen in the beginning large
enough so that r ≥ 2(s+ d+1+(u+n+1)a) for a certain constant d (see Section §5).
We obtain a class z ∈H1

(
Xpke,D

0
k

)
annihilated by Q(Up) and such that its restriction to

Z(n)
∞ is congruent to ps+d+1αu+n+1x modulo pr, that is, there is x1 ∈ H1

(
(Z(u)
∞ )pke,D

o
k

)
annihilated by Q(Up) such that R(z) = ps+d+1αn+u+1(x− pr/2x1). Now, we iterate

the process for x1 and in the end obtain an element y ∈ H1
(
Xpke,Dk

)(h)
such that

R(y) = x.

3) On the de Rham comparison.

It is interesting to note, about the de Rham Eichler–Shimura map ρk in theorem 1.2,
the ‘decalage’ between the filtrations on BdR that appear. This decalage is explained

as follows: On the pro-Kummer étale site of X
(
p/Hap

r)
, we have the sheaves with

filtrations and connections: ∇′ : Wk,dR⊗̂OBdR −→Wk+2,dR⊗̂OBdR (see Section §6.4 for
the details), where ∇′ =∇k⊗̂1+1⊗̂∇dR and Wk,dR has an increasing, infinite filtration,

while OBdR has a decreasing, infinite filtration. Both ∇k and ∇dR satisfy the Griffith

transversality property with respect to the respective filtrations, but on the tensor

product, we don’t have a natural filtration. We have, however, the following fact:

∇′ : FilmWk,dR⊗̂Fil0OBdR −→ Film+1Wk+2,dR⊗̂Fil−1OBdR.

This explains the decalage.

As an immediate consequence of the above theorem, we have a ‘big exponential map’.

More precisely, let K be the finite extension of Qp over which X and X
(
p/Hap

r)
are both

defined, and let G denote the absolute Galois group of K for a fixed algebraic closure K

of K.

Then we have a Hecke equivariant, B -linear map

Exp∗k : H
1
(
G,H1

(
XK,pke,Dk(1)

)(h))−→H1
dR

(
X
(
p/Hap

r)
,Wk,dR,•

)(h)
,

which has the property that, for every classical weight k0-specialization, it is compatible

with the classical dual exponential map, as follows:
a) If k0 > h− 1, that is, k0 is a noncritical weight for the slope h, then we have the

following commutative diagram with horizontal isomorphisms. Here, we denoted by exp∗k0
the Kato dual exponential map associated to weight k0 modular forms.(

H1
(
G,H1

(
XK,pke,Dk(1)

)(h)))
k0

(
Exp∗

k

)
k0−→

(
H1

dR

(
X
(
p/Hap

r)
,Wk,dR,•

)(h))
k0

↓∼= ↓∼=
H1
(
G,H1

(
XK,pke,Sym

k0(Tp(E)∨)(1)
)(h)) exp∗

k0−→ Fil0H1
dR

(
X ,Symk0(HE)

)(h)
.
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b) If 0≤ k0 ≤ h+1, that is, k0 is critical with respect to b, we only have a commutative

diagram of the form

(
H1
(
G,H1

(
XK,pke,Dk(1)

)(h)))
k0

(
Exp∗

k

)
k0−→

(
H1

dR

(
X
(
p/Hap

r)
,Wk,dR,•

)(h))
k0

↓ ↑

H1
(
G,H1

(
XK,pke,Sym

k0(Tp(E)∨)(1)
)(h)) exp∗

k0−→ Fil0H1
dR

(
X ,Symk0(HE)

)(h)
,

where the right vertical arrow is induced by restriction.

2. Preliminaries

We will denote by X, Y, Z, . . . log schemes and by caligraphic letters X , Y, Z, . . . log adic

spaces. We refer to [15] for generalities on those.

2.1. Pro-Kummer étale site

Given a finite saturated (for short ‘fs’) locally noetherian log scheme X (resp. an fs locally
noetherian log adic space X ) we denote by Xket, Xfket (resp. Xket, Xfket) the Kummer

étale site, respectively the finite Kummer étale site (see [18, Def. 2.1], [15, Def. 4.1.2]).

Following Scholze [22], we denote by Xpke, resp. Xprofket (resp. Xpke, Xprofket) the pro-
Kummer étale site, resp. the pro-finite Kummer étale site (see [15, Def. 5.1.2 & 5.1.9]) of

X, respectively X .
As a category, it is the full subcategory of pro-Xket, resp. pro-Xfket (resp. pro-Xket, pro-
Xfket) of pro-objects that are pro-Kummer étale over X, resp. pro-finite Kummer étale

over X (resp. X ), that is, objects that are equivalent to cofiltered systems lim← Zi such

that Zi→X is Kummer étale, resp. finite Kummer étale, for every i and there exists an

index i0 such that Zj → Zi is finite Kummer étale and surjective for i and j ≥ i0 (and

similarly for X ). For the covering families we refer to loc. cit.

We have a natural projection ν : Xpke→Xket (resp. ν : Xpke→Xket) sending U ∈Xket

(resp. in Xket) to the constant inverse system defined by U. Then, by [15, Prop. 5.1.6

& 5.1.7] for every sheaf of abelian groups F on Xket (resp. in Xket) and any quasi-

compact and quasi-separated object U = lim← Uj in Xpke (resp. in Xpke), we have natural

isomorphisms of δ-functors

Hi
(
Upke,ν

−1(F)
)∼= lim→ Hi

(
Uj,ket,F

)
, F → Rν∗ν−1

(
F
)
.

2.2. Sheaves on the pro-Kummer étale site

We then have the following sheaves on Xpke defined in [15, Def. 5.4.1] and in [16, Def.

2.2.3] following [22, Def. 6.1]:

i. The structure sheaf OXpke
:= ν−1

(
OXket

)
and its subsheaf of integral elements

O+
Xpke

:= ν−1
(
O+
Xket

)
. It comes endowed with a morphism of sheaves of multiplicative

monoids α : M→ OXpke
defined by taking ν−1 of the morphism of sheaves of

multiplicative monoids defining the log structure on X .
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ii. The completed sheaf Ô+
Xpke

:= lim∞←nO
+
Xpke

/pnO+
Xpke

and the completed structure sheaf

ÔXpke
:= Ô+

Xpke

[
1
p

]
.

iii. Let K be a perfectoid field of characteristic 0 with an open and bounded subring

K+. Assume that X is defined over Spa(K,K+). Then we have the tilted integral
structure sheaf Ô+

X �
pke

:= lim←ϕO
+
Xpke

/pO+
Xpke

and the tilted structure sheaf ÔX �
pke

:=

Ô+
X �

pke

⊗K�+ K�. It comes endowed with a morphism of monoids α� :M� → ÔX �
pke

,

where M� is the inverse limit lim←M indexed by N with transition maps given by

raising to the p-th power, ÔX � is identified as a sheaf of mutiplicative monoids with
the inverse limit lim← ÔXpke

indexed by N with transition maps given by rasing to the

p-th power and the map α� is the inverse limit of the maps α composed with the
natural maps OXpke

→ ÔXpke
.

iv. The period sheaf Ainf :=W
(
Ô+
X �

pke

)
and the period map ϑ : Ainf → Ô+

Xpke
.

2.3. Log affinoid perfectoid opens

Consider a locally noetherian fs log adic space X over Spa(Qp,Zp). Following [15, Def.

5.3.1 & Rmk. 5.3.2], an object U = limi∈I Ui, with Ui=
(
Spa(Ri,R

+
i ),Mi

)
in Xpke is called

log affinoid perfectoid if:

a. There is an initial object 0 ∈ I.
b. Each Ui admits a global sharp finite saturated chart Pi such that each transition

map Uj → Ui is modeled on the Kummer chart Pi→ Pj ;

c.
(
Spa(Ri,R

+
i )
)
i
is affinoid perfectoid, that is, the p-adic completion (R,R+) of

limi(Ri,R
+
i ) is a perfectoid affinoid Qp-algebra;

d. The monoid P = limiPi is n-divisible for all n.

Given a log affinoid perfectoid U as above, we denote by Û := Spa
(
R,R+

)
the associated

perfectoid affinoid space. By [15, Lemma 5.3.6], it has the same underlying topological

space as U (which is defined as the inverse limit of topological spaces lim
← i
|Ui|). Moreover,

by [15, Thm. 5.4.3] and [22, Thm. 6.5], we have that

Ô+
Xpke

(U) =R+, ÔXpke
(U) =R, Ô+

X �
pke

(U) =R�+,

ÔX �
pke

(U) =R�, Ainf(U) =W
(
R�+

)
and the cohomology groups

Hi
(
U,Ô+

Xpke

)
∼ 0, Hi

(
U,Ô+

X �
pke

)
∼ 0, Hi

(
U,Ainf

)
∼ 0 ∀i≥ 1

(where ∼ means almost 0).
Thanks to [15, Prop. 5.3.12 & Prop. 5.3.13], there exists a basis B for the site Xpke given

by log affinoid perfectoid objects such that for every locally constant p-torsion sheaf L on

Xket and every U ∈B we have Hi
(
Xpke|U,L

)
=0 for i≥ 1. In case X is a fs log scheme over
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Qp, there is an analogous notion of log affinoid perfectoid opens of Xpke, and it follows
from the arguments in loc. cit. that there exists a basis of Xpke with the same property.

We recall that K was defined in the previous section as a perfectoid field of characteristic

0 with an open and bounded subring K+. Assume that X is defined over Spa(K,K+).
In this case, Ainf , resp. Ô+

X , is a sheaf of algebras over the classical period ring Ainf :=

W
(
K�+

)
, resp. over K+, and given a generator ζ ∈ Ainf for the kernel of the canonical

ring homomorphism Ainf →K+, it follows from [22, Lemma 6.3] that we have an exact

sequence

0−→ Ainf
·ζ−→ Ainf

ϑ−→ Ô+
Xpke
−→ 0.

2.4. Comparison results

Assume that X is a finite saturated locally noetherian log adic space over a perfectoid
field Spa(K,K+) with K algebraically closed of characteristic 0. Firstly, the main result

of [15], namely Theorem 6.2.1, states that if the underlying adic space to X is log smooth

and proper and L is an Fp-local system on Xket, then the cohomology groups Hi(Xket,L
)

are finite for all i, they vanish for i� 0 and the natural map

Hi(Xket,L)⊗K+/p→Hi(Xket,L⊗O+
Xket

/p)

is an almost isomorphism for every i ≥ 0. As F ∼= Rν∗ν−1
(
F
)

for any sheaf of

abelian goups, we obtain the same cohomology groups replacing Xket with Xpke in the
isomorphisms above. Here, we denoted ν : Xpke −→Xket the natural morphism of sites.

Second, in the case X is finite separated locally noetherian log scheme, proper and log

smooth over K, we have a géométrie algébrique et géométrie analytique (GAGA) type

comparison isomorphism. Let X be the associated log adic space over Spa(K,K+). We
have a natural morphism of sites γ : Xket→Xket. Let L be an Fp-local system on Xket.

Then

Proposition 2.1. For every i≥ 0 the natural morphism Hi(Xket,L
)
−→Hi(Xket,γ

∗(L))
is an isomorphism.

Proof. Let Xo and X o be the scheme, resp. the adic space defined by X and X forgetting

the log structures. In this case, the morphism of sites γo : X oet → Xo
et induces the map

Hi(Xo
et,F

)
−→ Hi(X oet,γo,∗

(
F
))

for every sheaf of torsion abelian groups F. It is an

isomorphism due to [17, Thm. 3.2.10]. Consider the commutative diagram of sites

Xet
γ−→ Xet

α
⏐� ⏐�β
X oet

γo

−→ Xo
et.

Using the compatibility of the Leray spectral sequences Hi(X oet,Rjα∗γ∗(L)
)
=⇒

Hi+j(Xket,γ
∗(L)) and Hi(Xo

et,R
jβ∗(L)

)
=⇒ Hi+j(Xket,L

)
and the result of Huber, it

suffices to prove that the natural morphism

γo,∗
(
Rjβ∗(L)

)
−→ Rjα∗

(
γ∗(L

)
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is an isomorphism of sheaves for every j. It suffices to prove that we get an isomorphism
after passing to stalks at geometric points ζ =Spa

(
l,l+

)
→X o as those form a conservative

family by [17, Prop. 2.5.5]. Recall that ζ might consist of more than one point but it has

a unique closed point ζ0. Taking the stalk at ζ is equivalent to take global sections over
the associated strictly local adic space X o(ζ) (see [17, Lemma 2.5.12]). Let Xo(ζ0) be

the spectrum of the strict Henselization of X at ζ0. Taking the stalk at ζ of γo,∗ of a

sheaf is equivalent to taking the sections of that sheaf over Xo(ζ0). We have a natural

map of sites X o(ζ)ket→Xo(ζ0)ket, considering on Xo(ζ) and on X o(ζ) the log structures
coming from X and X . We need to show that it is an equivalence. In both cases, the

Kummer étale sites are the same as the finite Kummer étale sites; indeed by definition

the Kummer étale topology is generated in both cases by finite Kummer étale covers
and classical étale morphisms and a Kummer cover of Xo(ζ), resp. X o(ζ), is still strictly
local and hence does not admit any nontrivial classical étale cover (see [17, Lemma 2.5.6]

in the adic setting). Both in the schematic and in the adic setting, the finite Kummer
étale sites are equivalent to the category of finite sets with continuous action of the group

Hom(M
gp
,Ẑ
)
with M the stalk of the log structure at ζ, modulo l∗. See [18, Ex. 4.7(a)]

in the schematic case and [15, Prop. 4.4.7] in the adic case. As such quotient is the same

in the schematic and adic cases, the conclusion follows.

3. VBMS and dual VBMS

3.1. VBMS, that is, vector bundles with marked sections

We recall the main constructions of [2] and [4]. Let X denote an adic analytic space over

Spa(Qp,Zp) and let (E,E+) denote a pair consisting of a locally free OX -module E of
rank 2 and a subsheaf E+ of E which is a locally free O+

X -module of rank 2 such that

E = E+⊗O+
X
OX . Let I ⊂ O+

X be an invertible ideal such that I gives the topology on

O+
X , and let r ≥ 0 be an integer such that I ⊂ prO+

X .
We suppose that there is a section s ∈ H0(X ,E+/IE+) such that the submodule(
O+
X /I

)
s is a direct summand of E+/IE+. We have the following.

Theorem 3.1 [4]. a) The functor attaching to every adic space γ : Z →X such that t∗(I)
is an invertible ideal in O+

Z , the set (group in fact):

V(E,E+)
(
γ : Z →X

)
:= HomO+

Z

(
γ∗(E+),O+

Z
)
=H0

(
Z,γ∗(E+)∨

)
,

is represented by the adic vector bundle V(E,E+) := SpaX
(
Sym(E),Sym(E+)

)
→X .

b) The subfunctor of V(E,E+) denoted V0(E+,s) which associates to every adic space
γ : Z →X as above, the set:

V0(E+,s)
(
γ : Z →X

)
:=
{
h ∈ V(E,E+)

(
γ : Z →X

)
| h
(
mod γ∗(I)

)
(γ∗(s)) = 1

}
,

is represented by the open adic subspace of V(E,E+), also denoted V0(E+,s), consisting of

the points x such that |s̃−1|x ≤ |α|x, where s̃ is a (local) lift of s to E+ and α is a (local)

generator of I at x.
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c) Suppose that we have sections s and t∈H0(X ,E+/IE+) which form an
(
O+
X /I

)
-basis

of E+/IE+. Then, the subfunctor V0(E+,s,t) of V0(E+,s) which associates to every adic

space γ : Z →X , the set:

V0(E+,s,t)
(
γ : Z →X

)
:=
{
h ∈ V0(E+,s)

(
γ : Z →X

)
| h
(
mod γ∗(I)

)
(γ∗(t)) = 0

}
,

is represented by the open adic subspace V0(E+,s,t) of V0(E+,s) consisting of the points
x such that |t̃|x ≤ |α|x for a (any) lift t̃ of t to E+ and α a (local) generator of I at x.

Proof. The proof is local on X . Assume that U ⊂X is an affinoid open U = Spa(R,R+)
such that I|U is principal generated by α ∈ R+ and E+|U is free with basis f0, f1

with f0(mod α) = s|U . Then f1(mod α) generates
((
E+/IE+

)
/s
(
O+
X /I

))
|U and we

assume in case (c) that f1(mod α) = t|U . Then by [2, §2] we have V(E,E+)|U =

Spa
(
R〈X,Y 〉,R+〈X,Y 〉

)
and

V0(E+,s)|U = Spa
(
R〈X,Y 〉〈X−1

α
〉,R+〈X,Y 〉〈X−1

α
〉
)
= Spa

(
R〈Z,Y 〉,R+〈Z,Y 〉

)
,

where X = 1+αZ giving also the map to V(E,E+)|U . Similarly,

V0(E+,s,t)|U = Spa
(
R〈Z,W 〉,R+〈Z,W 〉

)
with Y = αW . We have the tautological map over V(E,E+)|U given by

E+⊗R+ R+〈X,Y 〉 →R+〈X,Y 〉, f0 �→X,f1 �→ Y

from which we deduce similarly the tautological maps over V0(E+,s)|U and V0(E+,s,t)|U
providing the claimed representability and concluding the proof.

3.2. Dual VBMS

In this article, we’ll need a variant of the construction in Section §3.1 which we now

present. Suppose that X , I, (E,E+) are as in Section §3.1. Moreover, we assume that

there is an exact sequence of locally free O+
X /I-modules

0−→Q−→ E+/IE+ −→F −→ 0

and a section s ∈H0
(
X ,F

)
such that

(
O+
X /I

)
s= F . We have:

Theorem 3.2. The subfunctor VD0 (E+,Q,s) of V(E,E+), defined by associating to every

adic space t : Z →X as in Section §3.1 the set

VD0 (E+,Q,s)
(
γ : Z →X

)
:=

:=
{
h ∈ V(E,E+)

(
γ : Z →X

)
|h
(
mod γ∗(I)

)(
γ∗(Q)

)
= 0 and h

(
mod γ∗(I)

)
(γ∗(s)) = 1

}
is represented by the the open adic subspace of V(E,E+) denoted VD0 (E+,Q,s) and
consisting of the points x such that |q|x ≤ |α|x and |s̃− 1|x ≤ |α|x, where q is a (local)

lift to E+ of a local generator of Q at x, α is a (local) generator of I at x and s̃ is a

(local) lift of s to E+.
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3.3. The sheaves Wk and WD
k

Let the hypothesis be as in Section §3.1 and §3.2. We assume that we have a morphism

of adic spaces X →W where let us recall that W is the adic weight space for GL2,/Q.
For every adic space Z, the morphisms Z →W classify continuous homomorphisms Z∗p→
Γ
(
Z,OZ

)
. We denote by kuniv : Z∗p → Γ

(
X ,OX

)
the continuous homomorphism defined

by X →W. We assume that kuniv satisfies the following analyticity assumption: There
exists a section uuniv of OX such that |uuniv|x < |p

1
p−1−r|x for every x ∈ X and

kuniv(t) = expuuniv log(t), ∀t ∈ 1+prZp.

We recall that the integer r≥ 0 is such that I ⊂ prO+
X . Let us denote by T the adic torus

representing the functor which associates to an adic space γ : Z →X the group

T (γ : Z →X ) := 1+γ∗(I).

Then kuniv defines a character kuniv : T → Gm, that is, a morphism of adic spaces and

group functors, using the fomula above.

We have natural actions of T on V0(E+,s), V0(E+,s,t) and VD0
(
E+,Q,s

)
defined

on γ : Z → X points by: u ∗ h := uh and u ∗ h′ := uh′, where u ∈ T (γ : Z → X ),
h∈V0(E+,s)(γ : Z→X ), resp. h∈V0(E+,s,t)(γ : Z→X ), resp. h′ ∈VD0

(
E+,Q,s

)
(γ : Z→

X ). Let us denote by f : V0(E+,s) −→ X , g : V0(E+,s,t) −→ X and by fD :
VD0
(
E+,Q,s

)
−→X the structural morphisms.

Definition 3.3. We denote

Wkuniv(E+,s) := f∗
(
O+

V0(E+,s)
)
[kuniv], Wkuniv(E+,s,t) := g∗

(
O+

V0(E+,s,t)
)
[kuniv]

and

WD
kuniv

(
E+,Q,s

)
:= fD∗

(
O+

VD
0

(
E+,Q,s

))[kuniv],
where if G is an O+

X -module on X with an action by the torus T := 1+ I, we denote

G[kuniv] the subsheaf of G of sections x such that u∗x= kuniv(u)x for all corresponding

sections u of T .

3.3.1. Local descriptions of the sheaves Wk and WD
k . We assume all notations

and assumptions of the proof of Theorem 3.1 and of Section §3.3. Let U = Spa(R,R+)⊂
X be an affinoid open such that E+|U = f0O+

U + f1O+
U , I|U = αO+

U and such that

f0(mod α) = s|U and f1(mod α) generates
((
E+/IE+

)
/s
(
O+
X /I

))
|U (respectively

f1(mod α) = t|U ).
In view of the next section, we also consider the dual situation, that is, recall that s

is a global marked section of E+ modulo I and denote F := (E+/IE+)/
(
s(O+

X /I)
)
. By

dualizing, we obtain the exact sequence

0−→Q−→ (E+)∨/I(E+)∨ −→ (O+
X /I)s∨ −→ 0,
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where Q := F∨, which defines data for VD0 . Then (E+)∨|U = f∨0 O+
U + f∨1 O+

U , Q|U =

f∨1
(
O+
U/αO+

U

)
and f∨0 (mod α) = s∨|U . Therefore, as in [2, Lemma 2.4], one proves that

V0(E+,s)|U = Spa
(
R〈X,Y 〉〈X−1

α
〉,R+〈X,Y 〉〈X−1

α
〉
)
= Spa

(
R〈Z,Y 〉,R+〈Z,Y 〉

)
,

where X = 1+αZ and

V0(E+,s,t)|U = Spa
(
R〈Z,W 〉,R+〈Z,W 〉

)
with Y = αW . Similarly, we have

VD0
(
(E+)∨,Q,s∨

)
|U = Spa

(
R〈A,B〉〈A−1

α
,
B

α
〉,R+〈A,B〉〈A−1

α
,
B

α
〉
)
=

= Spa
(
R〈C,D〉,R+〈C,D〉

)
,

where A= 1+αC and B = αD.

Therefore, we have

Wkuniv(E+,s)(U) =R+〈Z,Y 〉[kuniv] =R+〈 Y

1+αZ
〉kuniv(1+αZ),

Wkuniv(E+,s,t)(U) =R+〈Z,W 〉[kuniv] =R+〈 W

1+αZ
〉kuniv(1+αZ)

and

WD
kuniv

(
(E+)∨,Q,s∨

)
(U) =R+〈C,D〉[kuniv] =R+〈 D

1+αC
〉kuniv(1+αC).

3.4. The duality

Suppose that X , I, (E,E+), s are as in Section §3.1, and let us denote by

ι : F := s
(
O+
X /I

)
↪→E+/IE+.

Let
(
E ′,(E+)∨

)
denote the pair where (E+)∨ is the O+

X -dual of E+ and E ′ := (E+)∨⊗O+
X

OX . Moreover, let us consider Q := Ker
(
(E+/IE+)∨ ι∨−→ F∨

)
, where F∨ is the O+

X /I-
dual of F . As explained in Theorems 3.1 and 3.2, we have adic spaces V0(E+,s) and
VD0
(
(E+)∨,Q,s∨

)
over X . Consider the morphism of adic spaces

〈 , 〉 : V0(E+,s)×X VD0
(
(E+)∨,Q,s∨

)
−→ V0(O+

X ,1),

defined on points as follows. Fix a morphism of adic spaces γ : Z → X . Consider

h ∈ V0(E+,s)
(
γ : Z → X

)
and h′ ∈ VD0

(
(E+)∨,Q,s∨

)(
γ : Z → X

)
. By definition, this is

equivalent to giving morphisms of O+
Z -modules h : γ∗(E+)→O+

Z with h(mod I)(γ∗(s)) =
1 and h′ : γ∗(E+)∨ → O+

Z with h′(mod γ∗(I))(Q) = 0 and h′(mod γ∗(I))(γ∗(s∨)) = 1.

Then h′(h)∈H0(Z,O+
Z) and h

′(h)(mod γ∗(I)) = 1, that is, h′(h)∈V0(O+
X ,1)

(
γ : Z →X

)
.

We define

〈h,h′〉 := h′(h) ∈ V0(O+
X ,1)

(
γ : Z →X

)
.
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Notice that V0(O+
X ,1) is the affine one-dimensional space A1

X over X , with standard

coordinate T. The torus T ×T acts componentwisely on V0(E+,s)×X VD0
(
(E+)∨,Q,s∨

)
.

Given sections (h,h′) of the latter and (u,u′) of T ×T , we have 〈u∗h,u′ ∗h′〉 = (u ·u′)∗
〈h,h′〉.

Lemma 3.4. There is a section T k
univ

of Wkuniv(O+
X ,1) over X such that Wkuniv(O+

X ,1)=
T k

univ ·O+
X . Moreover, 〈 , 〉∗

(
T k

univ) ∈Wkuniv(E+,s)⊗̂WD
kuniv

(
(E+)∨,Q,s∨

)
. Here, we see

〈 , 〉∗ in a natural way, as a morphism of sheaves Wkuniv

(
O+
X ,1
)
−→ Wkuniv(E+,s)⊗̂

WD
kuniv

(
(E+)∨,Q,s∨

)
.

Proof. The statement is local on X . We use the explicit coordinates of §3.3.1. Then, T =
1+αV and T k

univ

is the section kuniv(1+αV ). By loc. cit., we have Wkuniv(O+
X ,1)(U) =

T k
univ ·R+.

As 〈 , 〉∗
(
T
)
=X⊗A+Y ⊗B =

(
1+αZ)

)
·
(
1+αC

)
+αY ⊗D, we conclude that

〈 , 〉∗
(
T k

univ)
= kuniv(1+αZ)kuniv(1+αC) ·kuniv

(
1+α

Y

1+αZ
⊗ D

1+αC

)
. (1)

This concludes the proof.

Definition 3.5. Write Wkuniv(E+,s)∨ for the O+
X -dual of Wkuniv(E+,s). Define the map

of O+
X -modules

ξkuniv : Wkuniv(E+,s)∨ −→WD
kuniv

(
(E+)∨,Q,s∨

)
, γ �→ (γ⊗1)

(
〈 , 〉∗

(
T k

univ))
.

3.4.1. Local descriptions of the duality between Wk and WD
k . We put ourselves

in the setting of §3.3.1 and compute explicitly the pairing ξkuniv on the affinoid U in terms
of the local coordinates of loc. cit. As kuniv is supposed to be r -analytic on X , we can

write kuniv(t) = expuuniv log(t) for every t ∈ 1+prZp. We then claim that

ξkuniv

(
kuniv(1+αZ)

( Y

1+αZ

)n)∨
= αn

(
uuniv
n

)
kuniv(1+αC)

( D

1+αC

)n
,

where

(
uuniv
n

)
:=

uuniv(uuniv−1) · · ·(uuniv−n+1)

n!
if n≥ 1 and

(
uuniv
0

)
= 1.

First of all, one computes that, if we write f(X) := expuuniv log(1+X) =
∑∞
n=0 anX

n

as a formal power series in X, then an =

(
uuniv
n

)
. Using equation (1), we deduce that

〈 , 〉∗
(
T k

univ)
kuniv(1+αZ)kuniv(1+αC)

=

∞∑
n=0

αn
(
uuniv
n

)(
Y

1+αZ

)n
⊗
(

D

1+αC

)n
,

and the claim follows.

3.5. An example: locally analytic functions and distributions

We consider in this article weights defined as follows. LetW denote the weight space seen

as an adic space.
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Definition 3.6. Let U ⊂W be an open disk of an open affinoid ofW, and let ΛU denote
the Zp-subalgebra of sections in O+

U (U) which are bounded; see Section §4 of [5]. We

recall that ΛU is a complete noetherian local Zp-algebra, and we call ‘weak topology’ the

mΛU
-adic topology of ΛU , where mΛU

is its maximal ideal. Let B denote either ΛU for
some open disk U ⊂W or OK for a finite extension K of Qp. In this article, we will work

with B -valued weights k : Z∗p −→B∗, which, if B =ΛU , is the universal weight associated

to U.

Let k : Z∗p −→ B∗ be a weight as in definition 3.6, and suppose it is an r -analytic
character. Let T =Zp⊕Zp; denote by f0 = (1,0) and f1 = (0,1)∈ T the standard Zp-basis.

Denote by T∨ the Zp-dual of T, and let T∨0 ⊂ T∨ be the subset of elements Z∗pe0×Zpe1
with e0 = f∨0 and e1 = f∨1 , the Zp-basis of T

∨ dual to (f0,f1). Then T
∨
0 is a profinite set

with an action of the Iwahori subgroup Iw1 ⊂GL2(Zp). Following [7, Def. 3.1], we set:

Definition 3.7. For every integer n ≥ r, let Aok(T∨0 )[n] denote the space of functions

f : T∨0 −→B such that

(1) for every a ∈ Z∗p, t ∈ T∨0 , we have f(at) = k(a)f(t)
(2) the function z→ f(e0+ ze1) extends to an n-analytic function, that is, for every

i∈Z/pnZ the function f
(
e0+(i+pnz)e1

)
for z ∈Zp is given by the values of a convergent

power series
∑∞
m=0 am,iz

m.

Define Do
k(T

∨
0 )[n] := HomB

(
Aok(T

∨
0 )[n],B

)
, the continuous dual of Aok(T

∨
0 )[n] with

respect to the weak topology of B. We write Ak(T
∨
0 )[n] := Aok(T

∨
0 )[n] ⊗Z Q and

Dk(T
∨
0 )[n] :=Do

k(T
∨
0 )[n]⊗ZQ.

By [7, Lemma 3.1], the action of Iw1 on T∨0 induces actions of Iw1 on Aok(T
∨
0 )[n],

Do
k(T

∨
0 )[n], Ak(T

∨
0 )[n] and Dk(T

∨
0 )[n]. Moreover, [7, Def. 3.3 & Prop. 3.3] the B module

Do
k(T

∨
0 )[n] admits a decreasing filtration Fil•Do

k(T
∨
0 )[n] of B -modules, stable under the

action of Iw1, such that the graded pieces are finite and Do
k(T

∨
0 )[n] is the inverse limit

lim∞←mD
o
k(T

∨
0 )[n]/FilmDo

k(T
∨
0 )[n].

3.5.1. An alternative description. For later purposes, we end this section by

describing Ak(T
∨
0 )[n] and Dk(T

∨
0 )[n] using the formalism of VBMS. For every λ =

0, . . . ,pn−1 denote by Wk(T,s,t+λs,p
n), or simply Wk(T,s,t+λs) if the power of p we

are working with is clear from the context, the sections Wk(T,s,t+λs)(U) over the adic

space U = Spa(B[1/p],B) associated to the rank 2, free O+
U -module T ⊗O+

U and the two

sections s = f0⊗ 1 and t+λs = f1⊗ 1+ λ(f0⊗ 1) modulo I := pnO+
U . Let Iwn be the

subgroup of matrices M =

(
α β

γ δ

)
∈GL2(Zp) such that γ ≡ 0 modulo pn. Then:

Proposition 3.8. There is an Iwn-equivariant isomorphism of B-modules

νn : ⊕p
n−1
λ=0 Wk(T,s,t−λs)−→Aok(T

∨
0 )[n].

Then, taking duals with respect to the weak topology on B, we get a decomposition into a

direct sum and a Iwn-equivariant isomorphism

ν∨n : Do
k(T

∨
0 )[n]∼=⊕p

n−1
λ=0 Wk(T,s,t−λs)∨.
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Proof. We describe the isomorphism explicitly. First of all, notice that Aok(T
∨
0 )[n]

decomposes as a direct sum

Aok(T
∨
0 )[n] =⊕p

n−1
λ=0 A

o
k,λ(T

∨
0 )

according to residue classes: We say that f ∈ Aok(T∨0 )[n] lies in Aok,λ(T
∨
0 ) if an only if

f(1,w) is zero if w �∈ λ+pnZp. In particular,

Aok,λ(T
∨
0 ) =B〈wλ〉 ·uk,

where
∑∞
m=0 amw

m
λ ·uk : T∨0 → B sends ue0+ ve1 �→ k(u) ·

∑
m am

( v/u−λ
pn

)m
if v/u ∈ λ+

pnZp and to 0 otherwise. The standard left action of Iwn on T is described as follows:

Given M =

(
α β

γ δ

)
∈ Iwn, we have M(f0) = αf0+γf1, M(f1) = βf0+δf1. This induces

a right action given by e0 ·M = αe0+βe1, e1 ·M = γe0+ δe1. We finally obtain the left

action of Iwn on Aok(T
∨
0 )[n]. Explicitly, as (ue0 + ve1) ·M = (αu+ γv)e0 +(βu+ δv)e1,

then

M(wm0 ·uk) = k(α+γw0)

(
β+ δw0

α+γw0

)m
·uk.

As wmλ ·uk =
(
1 −λ
0 1

)
(wm0 ·uk) we get the sought for action of Iwn on ⊕p

n−1
λ=0 A

o
k,λ(T

∨
0 ).

On the other hand, consider the subfunctors �p
n−1
λ=0 V0(T,s,t− λs)→ V(T ) over the

adic space U = Spa(B[1/p],B). The action of Iwn on T restricts to an action on this

subfunctors and induces an action on ⊕p
n−1
λ=0 Wk(T,s,t−λs). Explicitly,

Wk(T,s,t−λs) =B〈 Wλ

1+pnZ
〉k(1+pnZ)

according to §3.3.1. It contains the B -submodule of the space of integral functions B〈X,Y 〉
of V(T ⊗O+

U ), where X = 1+pnZ and Y = pnWλ+λX. Recall that we have a universal

map T →B〈X,Y 〉 defined by sending mf0+rf1 �→mX+rY . The left action of Iwn on T

defines by universality an action on B〈X,Y 〉: If M =

(
α β

γ δ

)
, then M(f0) = αf0+γf1,

M(f1) = βf0+ δf1 and M(X) = αX+γY , M(Y ) = βX+ δY . Denote by Iw1
n ⊂ Iwn the

subgroup of matrices with α= 1 modulo pn. We then get an action of Iw1
n on the integral

functions on �p
n−1
λ=0 V0(T,s,t−λs), and hence on ⊕λWk(T,s,t−λs), determined on the

variables Z and Wλ’s by the formulas

M(Z) =
(αX−1)

pn
+γW0, M(W0) =

β

pn
X+ δW0,

(
1 −λ
0 1

)
(W0) =Wλ.
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Notice that if M =

(
α 0
0 δ

)
∈ Iwn, then M

(
k(1+pnZ)

)
= k(α)k(1+pnZ) and M(W0) =

δW0 giving explicitly the action of diagonal matrices on each Wk(T,s,t−λs). For every

λ= 0, . . . ,pn−1 define the map

νλ : Wk(T,s,t−λs)−→Aok,λ(T
∨
0 )[n], k(1+pnZ)

∑
i

ai

(
Wλ

1+pnZ

)i
�→
∑
i

aiw
i
λ ·uk.

It is clearly an isomorphism of B -modules. We are left to show that

νn :=

pn−1∑
λ=0

νλ : ⊕p
n−1
λ=0 Wk(T,s,t−λs)→⊕p

n−1
λ=0 A

o
k,λ(T

∨
0 )[n] =Aok(T

∨
0 )[n]

is Iwn-equivariant.

Consider the B -linear map ξ : B〈X,Y 〉 → A(T∨), where A(T∨) is the ring of ana-

lytic functions from T∨ to B, sending f(X,Y ) =
∑
h,m ah,mX

hY m to the function

ξ
(
f(X,Y )

)
: T∨→B, ue0+ve1→

∑
h,m ah,mu

hvm. This map is Iwn-equivariant. Indeed,

given M ∈ Iwn such that M(f0) = αf0 + γf1, M(f1) = βf0 + δf1 then M(e0) = αe0 +
βe1, M(e1) = γe0 + δe1 so that M(ue0 + ve1) = (uα + vγ)e0 + (uβ + δv)e1. Hence,

M
(
ξ(f(X,Y ))

)
= ξ
(
f
(
M(X),M(Y )

))
. As νn is determined by ξ using that X = 1+pnZ

and Y = pnWλ+λX, this implies that νn is Iwn-equivariant as well.

Note that we have a Iwn-equivariant map of functors, and hence of representing objects,
�λ∈Z/pnZV0(T,s,t−λs)→ V0(T,s). This provides a Iwn-equivariant map

Wk(T,s)→⊕p
n−1
λ=0 Wk(T,s,t−λs).

Let Qn ⊂ T∨/pnT∨ be the (Z/pnZ)-dual of the quotient
(
T/pnT

)
/(Z/pnZ)s. The duality

between

ζk : Wk(T,s)
∨ −→WD

k (T
∨,s∨,Qn)

of Definition 3.5 composed with the Iwn-equivariant isomorphism

ν∨n : Do
k(T

∨
0 )[n]∼=⊕p

n−1
λ=0 Wk(T,s,t−λs)∨

of Proposition 3.8 give the following.

Corollary 3.9. We have a Iwn-equivariant, B-linear map

Do
k(T

∨
0 )[n]∼=⊕p

n−1
λ=0 Wk(T,s,t−λs)∨ −→WD

k

(
T∨,s∨,Qn

)
.

3.5.2. The Up operator. For ρ = 0, . . . ,p− 1, let πρ : T → T be the map defined by(
1 ρ

0 p

)
, that is, f0 �→ f0, f1 �→ pf1+ ρf0. It defines the map π∨ρ : T

∨ → T∨ that sends

ue0 + ve1 �→ ue0 +(pv+ ρ)e1. In particular, taking (π∨ρ )
∗ it induces a map Aok(T

∨
0 )[n+

1]→ Aok(T
∨
0 )[n] that is 0 on Aok,λ(T

∨
0 )[n+1] for λ �≡ ρ modulo p and it induces a map
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Aok,λ(T
∨
0 )[n+1]→ Aok,λ0

(T∨0 )[n] if λ= ρ+pλ0, with λ0 ∈ {0, . . . ,pn−1}. Taking the sum

over the ρ’s, we get a map πn =
∑p−1
ρ=0(π

∨
ρ )
∗, where

πn : A
o
k(T

∨
0 )[n+1] =⊕p−1ρ=0⊕

pn−1
λ0=0 A

o
k,ρ+pλ0

(T∨0 )[n+1]→⊕λ0∈Z/pnZA
o
k,λ0

(T∨0 )[n]

=Aok(T
∨
0 )[n].

Notice that πρ defines by functoriality a map V0(T,s,t− λs,pn) → V0(T,s,t− (ρ+
pλ)s,pn+1) (we have added the dependence on the power of p in the definition of V0

to avoid confusion). This gives a map μρ : Wk(T,s,t− (ρ+pλ)s,pn+1)→Wk(s,t−λs,pn)
and, summing over all ρ’s,

μn =

p−1∑
ρ=0

μρ : ⊕p−1ρ=0⊕
pn−1
λ=0 Wk(T,s,t− (ρ+pλ)s,pn+1)→⊕λ∈Z/pnZWk(T,s,t−λs,pn).

Lemma 3.10. With the notation of Proposition 3.8, we have πn ◦ νn+1 = νn ◦μn and

similarly taking strong duals ν∨n+1 ◦π∨n = μ∨n ◦ν∨n .

Proof. This is an explicit computation using the notation of the proof of Proposition 3.8
and follows from the fact that (π∨ρ )

∗ sends wρ+pλ0
�→wλ0

and μλ sendsWρ+pλ �→Wλ.

4. The modular curve setting

Let p > 0 be a prime integer. We fix once for all the p-adic completion Cpof an algebraic

closure of Qp. We denote by v the valuation on Cp, normalized such that v(p) = 1.
Let N ≥ 5 and r ≥ 0 be integers with N prime to p, and let X0(p

r,N), resp. X1(p
r,N),

resp. X(pr,N), be the modular curves over Cp of level Γ1(N)∩Γ0(p
r), resp. Γ1(N)∩

Γ1(p
r), resp. Γ1(N)∩Γ(pr). Over the complement of the cusps of the modular curve

X0(p
s,N), we have a universal elliptic curve E, a cyclic subgroup Hs ⊂ E[ps] of order ps

and an embedding ΨN : μN ↪→ E[N ]. For X1(p
s,N), we further have a generator of Hs.

We denote the associated adic space over Spa(Cp,OCp

)
by X0(p

r,N), resp. X1(p
r,N),

resp. X (pr,N) considered as adic spaces with logarithmic structures given by the cusps,

with reduced structure, as in [15, Ex. 2.3.17]. We simply write X, resp. X for X0(p
0,N),

resp. X (p0,N). Notice that the pr-torsion of the universal elliptic curve E over the

complement of the cusps in X defines a locally constant sheaf for the finite Kummer
étale topology that we denote by E[pr] and X (pr,N)→ X is the finite Kummer étale

Galois cover, with group GL2(Z/p
rZ), defined by trivializing it. We let Tp(E) be the

sheaf on Xprofket, resp. Xprofket defined by the inverse limt limE[pr]. Thanks to [23, Thm.
3.1.2], we have

(i) a unique perfectoid space X (p∞,N) such that X (p∞,N)∼ lim∞←rX (p
r,N) in the sense

of [24, Def. 2.4.1];

(ii) the Hodge–Tate period map πHT : X (p∞,N)−→ P1
Qp

.

In particular, we have morphisms of adic spaces πr : X (p∞,N)→X (pr,N), compatible

for varying r ≥ 0, inducing a homeomorphism of the underlying topological spaces

|X (p∞,N)| ∼= lim∞←r|X (p
r,N)|.
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4.1. On the pro-Kummer étale topology of modular curves

For every s ∈ N, we write lim∞←rX (p
r,N) (for r ≥ s) for the pro-finite Kummer étale cover

of X0(p
s,N) defined by the Kummer étale covers X (pr,N)→ X0(p

s,N), for r ≥ s. The
following lemma provides a basis for the pro-Kumemr étale topology of X0(p

s,N):

Lemma 4.1. For every s ∈ N, the site X0(p
s,N)pke has a basis consisting of log affinoid

perfectoid opens U that are pro-Kummer étale over an affinoid perfectoid open of
lim∞←rX (p

r,N) (for r ≥ s). In particular, for any such open U, Tp(E)|U is a constant

sheaf and such basis is closed under fibre products over X0(p
s,N).

Proof. Due to [15, Prop. 5.3.12], the site X0(p
s,N)pke admits a basis consisting of log

affinoid perfectoid opens, and thanks to [15, Prop. 5.3.11], the category of such bases is
closed under fibre products. Given any such W, consider the fibre product Z of W and

lim∞←rX (p
r,N) over X0(p

s,N). By [15, Cor. 5.3.9] if such a fibre product exists, it is pro-

Kummer étale over lim∞←rX (p
r,N). As a cover of W, it can be represented as lim∞←rWr with

Wr :=X (pr,N)×X0(ps,N)W . In particular, thanks to [15, Lemma 5.3.8], eachWr is a finite
étale cover of W so that Z = lim∞←rWr→W is a pro-finite étale cover of W. Since W is log

affinoid perfectoid, we deduce from [15, Cor. 5.3.9] that also Z is log affinoid perfectoid.

Recall from [23, Thm. 3.1.2] that lim∞←rX (p
r,N) is covered by perfectoid affinoid open

subsets. Taking the fibre product over lim∞←rX (p
r,N) of Z with a cover of lim∞←rX (p

r,N)

by perfectoid affinoid open subsets, the claim follows.

Remark 4.2. Endow X (p∞,N) with the limit log structure. Then, open affinoid subsets
of X (p∞,N) for the analytic topology are not log affinoid perfectoid opens as condition

(d) of §2.3 is not satisfied.

This condition is used in [15, Cor. 5.3.8], an analogue of Abhyankar’s lemma, stating

that, for a log affinoid perfectoid, the finite Kummer étale site coincides with the finite
étale site. This was already used in the proof of Lemma 4.1.

4.2. Standard opens

We start by defining certain opens of P1 := P1
Qp

, namely let for every n ≥ 1

U0,U∞,U
(n)
∞ ,U

(n)
0 ⊂ P1 be defined as follows. Let T denote a parameter at 0 on P1,

then

a) U∞= {x∈P1 | ‖ 1
T
‖x≤ 1}, U0 = {x∈P1 | ‖T −λ‖x≤ 1, for some λ∈ {0,1, . . . ,p−1}},

b) U (n)
∞ = P1

( 1

pnT

)
= {x ∈ P1 | ‖ 1

T
‖x ≤ ‖pn‖x},

c) U
(n)
0 = ∪λU (n)

0,λ with λ = λ0 + λ1p + . . . + λn−1pn−1, where λ0,λ1, . . . ,λn−1 ∈

{0,1, . . . ,p−1} and we have U
(n)
0,λ := P1

(T −λ
pn

)
.
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We remark that for every n ≥ 1 we have P1(Qp,Zp) ⊂ U (n)
∞ ∪U (n)

0 , and moreover, the

family {U (n)
∞ ∪U (n)

0 }n≥1 is a fundamental system of open neighbourhoods of P1(Qp,Zp)
in P1.

We recall from [23, Thm. 3.3.18] that for every rational open subset U ′ ⊂U0 or U
′ ⊂U∞

the inverse image U ′ := π−1HT

(
U ′
)
is an affinoid perfectoid open subspace of X (p∞,N). In

particular, it is quasi-compact so that it is also the inverse image of an open U ′r via πr
of X (pr,N) for some r using the homeomorphism |X (p∞,N)| ∼= lim∞←n|X (p

r,N)|. As the

transition maps in the inverse limit are finite and surjective, U ′r is in fact the image of U ′
via πr for r large enough. If U ′ is further invariant for the action of the Iwahori subgroup
Iws ⊂GL2(Zp) of matrices which are upper triangular modulo ps, then also U ′ is Iws-

invariant as πHT is Iws-equivariant and U ′ is the inverse image of a unique open U ′0,s of

X0(p
s,N). Indeed, given U ′r ⊂ X (pr,N) for some r ≥ s such that its inverse image gives

U ′, then U ′r is Iws-invariant. As the morphism X (pr,N)→ X0(p
s,N) is finite Kummer

étale and Galois with group Gs equal to the image of Iws ⊂GL2(Zp)→GL2(Z/p
rZ)

then U ′0,s := U ′r/Gs is an open of X0(p
s,N) with the required properties. Furthermore,

U ′0,s defines the open (U ′r)r≥s for the pro-Kummer étale site of X0(p
s,N), and hence of

X , given by U ′r := U ′0,s×X0(ps,N)X (pr,N). By construction, U ′ ∼ lim∞←rU
′
r.

In particular, for every n ≥ 1, we consider the open rational subspaces U
(n)
∞ of U∞

and U
(n)
0 of U0 defined above. We remark that U

(n)
∞ is invariant under the left action

of the subgroup Iwn. Then we denote by X (p∞,N)
(n)
0 := π−1HT

(
U

(n)
0

)
and X (p∞,N)

(n)
∞ :=

π−1HT

(
U

(n)
∞
)
and recall that they define affinoid perfectoid open subspaces of X (p∞,N).

As explained above, they also define opens for the pro-Kummer étale site of X0(p
n,N)

and of X respectively. Namely, for n≥ 1, X (p∞,N)
(n)
∞ , being invariant under Iwn, descends

to an affinoid open denoted X0(p
m,N)

(n)
∞ of X0(p

m,N), for allm≥n. We also have variants

X1(p
m,N)

(n)
∞ , resp. X (pm,N)

(n)
∞ , if we descend to X1(p

m,N), resp. X (pm,N).

In contrast, as U
(n)
0 is invariant with respect to Iw1, the open X (p∞,N)

(n)
0 descends

to an open affinoid denoted X0(p
m,N)

(n)
0 of X0(p

m,N), for all m ≥ 1. In this case, we

consider the variant X (pm,N)
(n)
0 open of X (pm,N).

Lemma 4.3. For every h ∈ N, there exists n = n(h) ≥ 1 such that for every r ≥ n

the universal elliptic curve over X0(p
r,N)

(n)
0 and X0(p

r,N)
(n)
∞ resp. admits a canonical

subgroup of order ph.

Proof. This follows from [23, Lemma 3.3.14], stating that the preimage via πHT of

P1(Qp,Zp) is, as a topological space, the closure of the inverse image in X (p∞,N) of

the ordinary locus and the cusps of X .
In particular, X (p∞,N)

(n)
0 and X (p∞,N)

(n)
∞ define a fundamental system of open

neighbourhoods of the ordinary locus in X (p∞,N).

Remark 4.4. Recall that the ordinary locus in X0(p,N) has two connected components.

Then X (p,N)
(1)
0 and X (p,N)

(1)
∞ are neighbourhoods of these two components. The first

is defined by requiring that the level subgroup is not the canonical one while the second

is the component where the level subgroup coincides with the canonical one. Following
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conventions going back to Robert Coleman, we set up the notation so that the first is
indexed by 0 and the second by ∞.

A reason to introduce the open subsets X0(p
r,N)

(n)
∞ for r ≥ n and X0(p

r,N)
(n)
0 , for any

r ≥ 1, is that they behave nicely under the Up-correspondence, as we will explain below.

4.3. On the Hodge–Tate period map

Over X (p∞,N), the sheaf Tp(E) admits a universal trivialization

Tp(E) = Zpa⊕Zpb.

The map dlog defines a surjective map onto the sheaf of invariant differentials of E

TpE
∨⊗Zp

OX (p∞,N) −→ ωE

which is used to define the map πHT: For every log affinoid perfectoid open

W =Spa(R,R+) of X (p∞,N) such that the universal elliptic curve extends to a

(generalized) elliptic curve over Spec(R+) and ωE is generated as R+-module by
one element that we denote ΩW , we write dlog(a∨) = αΩW , dlog(b∨) = βΩW with

α, β ∈R generating the whole ring R. Then πHT|W : W → P1 is defined in homogeneous

coordinates by [α;β]. Namely, let W∞ ⊂W be the rational open defined by W (1/α),
and let W0 ⊂W be the rational open defined by W (1/β). Then πHT|W0

: W0→ U0 sends

the standard coordinate T on the standard affinoid neighbourhood U0 = A1 of 0 to

α/β and πHT|W∞ : W∞→ U∞ sends the standard coordinate T on the standard affinoid

neighbourhood U∞ := A1 of ∞ to β/α.
For every n∈N, we can refine such morphism to a morphism on X0(p

n,N)pke as follows.

Considering the smooth formal model X of the modular curve X over OCp
given by moduli

theory and the universal generalised elliptic curve E over X, the invariant differentials
of E relative to X and the fact that X is the adic generic fibre of X, give an invertible

O+
X -module ω+

E on X . Pulling back via the projection map X0(p
n,N)→ X , we get a

O+
X0(pn,N)pke

-module for the pro-Kummer étale topology that we still abusively denote

ω+
E and passing to p-adic completions we finally obtain an invertible Ô+

X0(pn,N)-module

ω̂+
E . Here, for simplicity, we write Ô+

X0(pn,N) for Ô
+
X0(pn,N)pke

.

Consider the map dlog for the basis of X0(p
n,N)pke given in Lemma 4.1. Let a modulo

pn be a generator in Tp(E)/pnTp(E) of the level subgroup of order pn. For every log

affinoid perfectoid open U as in loc. cit., write Û = Spa(R,R+). Then Tp(E)∨ is constant

on U ; we have a universal generalized elliptic curve E over Spec(R+) and Ô+
X0(pn,N)(U) =

R+. We then have the map dlog : Tp(E)∨(U)⊗Zp
R+ −→ ω̂+

E(U). Gluing, we obtain a map

of sheaves on X0(p
n,N)pke:

dlog : Tp(E)∨⊗Zp
Ô+
X0(pn,N) −→ ω̂+

E . (2)

Proposition 4.5. For every r ∈ N there exist m ∈ N such that for every n ∈ N with

n≥m, r the following hold:
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a. There exists a canonical subgroup Cr of order pr on X0(p
n,N)

(m)
∞ and on

X0(p
n,N)

(m)
0 which on X0(p

n,N)
(m)
∞ coincides with pr-torsion of the level pn subgroup

and which on X0(p
n,N)

(m)
0 is disjoint from the level pn subgroup;

b. There exists an invertible O+

X0(pn,N)
(m)
∞

-module ωmod
E on X0(p

n,N)
(m)
∞ (resp. a

O+

X0(pn,N)
(m)
0

-module ωmod
E on X0(p

n,N)
(m)
0 ) contained in ω+

E ;

c. The morphism dlog surjects onto the p-adic completion ω̂mod
E of the pullback of ωmod

E

to X1(p
n,N)

(m)
∞,pke and its restriction to Tp(E)∨ modulo pr factors via C∨r . The kernel

of dlog is isomorphic to the p-adic completion of
(
ω̂mod
E

)−1
(here, we omit the Tate

twist that usually appears as we work over Cp);

d. The map dlog surjects onto the p-adic completion ω̂mod
E of ωmod

E on X (pn,N)
(m)
0,pke and

its restriction to Tp(E)∨ modulo pr factors via C∨r . The kernel of dlog is isomorphic

to the p-adic completion of
(
ω̂mod
E

)−1
.

Proof. It follows from [3] that the result holds true on strict neighbourhoods X
(
p/Hap

s)
of the ordinary loci in X defined by the points x, where |p|x < |Hap

s

|x for s large enough;

here, Ha is a (any) local lift of the Hasse invariant. Thanks to [23, Lemma 3.3.8], there

exists m ∈ N such that X (pn,N)
(m)
∞ and X (pn,N)

(m)
0 are contained in X

(
p/Hap

s)
. See

Lemma 4.3. The claim follows.

Remark 4.6. See [12] for similar results in the case of Shimura curves. The notation

ωmod
E is taken from [20].

From Proposition 4.5, we get an integral version of the Hodge–Tate exact sequence:

0→
(
ω̂mod
E

)−1 −→ Tp(E)∨⊗Zp
Ô+

X0(pn,N)
(m)
∞
−→ ω̂mod

E → 0.

This will be useful to compute the cohomology H1
(
X0(p

n,N)
(m)
∞,pke,ÔX0(pn,N)

(n)
∞

)
. In

fact, tensoring the exact sequence with ω̂mod,2
E and taking the long exact sequence in

cohomology we obtain a map

H0
(
X0(p

n,N)
(m)
∞,pke,ω̂

mod,2
E

)
−→H1

(
X0(p

n,N)
(m)
∞,pke,Ô

+

X1(pn,N)
(m)
∞

)
(3)

and similarly for X0(p
n,N)

(m)
0 , or their covers X1(p

n,N)
(m)
∞ , X (pn,N)

(m)
0 .

4.4. The sheaf ωkE

Take r, m and n ∈ N as in Proposition 4.5. The map dlog provides ωmod
E /prωmod

E with a

marked section s over X1(p
n,N)

(m)
∞ as the image of the tautological generator of C∨r .

Similarly, recall that we have a decomposition X (pn,N)
(m)
0 = �λ∈Z/pnZX (pn,N)

(m)
0,λ ,

where over X (pn,N)
(m)
0,λ , using the trivialization Tp(E)/pnTp(E) = (Z/pnZ)a⊕ (Z/pnZ)b,

we have dlog(a∨) = λdlog(b∨). In particular, the canonical subgroup Cr is generated by

b+λa and ωmod
E /prωmod

E acquires a marked section s := dlog(b∨).
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Suppose we are given an h-analytic character k : Z∗p→B∗, for h≤ r, as in Definition 3.6.
Using the formalism of VBMS from §3.3 for ωmod

E and the section s modulo pr, we get

the invertible O+

X1(pn,N)
(m)
∞
⊗̂B-module, resp. OX (pn,N)

(m)
0
⊗̂B-module

ωkE :=Wk(ω
mod
E ,s).

Since ωmod
E and the section s modulo pr are stable under the action of the automorphism

group Δn := (Z/pnZ)∗ of jn : X1(p
n,N)

(m)
∞ → X0(p

n,N)
(m)
∞ , then (Z/pnZ)∗ acts on

jn,∗
(
ωkE [1/p]

)
and, taking the subsheaf of jn,∗

(
ωkE [1/p]

)
on which Z∗p acts via the character

k, then jn,∗
(
ωkE [1/p]

)
descends to an invertible OX0(pn,N)

(m)
∞
⊗̂B[1/p]-module that we

denote ωkE [1/p].

Similarly, the Galois group of j′n : X (pn,N)
(m)
0 →X0(p

n,N)
(m)
0 , which is identified with

the standard Borel subgroup of GL2(Z/p
nZ), acts compatibly on (ωmod

E ,s) and hence it
acts on j′n,∗

(
ωkE [1/p]

)
. In this case we let ωkE [1/p] be the invertible OX0(pn,N)

(m)
0
⊗̂B[1/p]-

module defined as the subsheaf of j′n,∗
(
ωkE [1/p]

)
on which the standard Borel subroup

of GL2(Zp) acts via the projection onto the lower right entry Z∗p composed with the

character k.

4.5. The Up-correspondence

Given the modular curve X0(p
s,N) for s ≥ 1, we have correspondences T
, for �

not dividing pN , and Up. They are defined by the analytification X0(p
s,N,�), resp.

X0(p
s,N,p), of the modular curve X0(p

s,N,�), resp. X0(p
s,N,p), classifying, at least

away from the cusps, subgroups D of order � of the universal elliptic curve E, resp.

subgroups of order p of E complementary to the p-torsion H1 of the cyclic subgroup Hs of

order ps defined by the level structure. We have two maps q1,q2 : ,X0(p
s,N,�)→X0(p

s,N)
defined by the analytification of the maps q1,q2 : X0(p

s,N,�)→X0(p
s,N), where q1 sends

the universal object (E,Hs,ΨN,D) to (E,Hs,ΨN ) (the forgetful map) and q2 sends the

universal object (E,Hs,ΨN,D) to (E/D,H ′s,Ψ
′
N ), where H ′s is the image of Hs via the

isogeny E→ E/D and Ψ′N is ΨN composed with this isogeny.
These maps induce morphisms of sites X0(p

s,N,�)pke → X0(p
s,N)pke, resp. X0(p

s,

N,p)pke → X0(p
s,N)pke. As q1,q2 are finite Kummer étale, the following follows from

the discussion in [5, Cor. 2.6] or [15, Prop. 4.5.2].

Lemma 4.7. There is a natural isomorphism of functors qi,∗ ∼= qi,!. In particular, qi,∗ is
exact and we have a natural transformation Trqi : qi,∗q

∗
i → Id, called the trace map.

The maps q1 and q2 induce maps of perfectoid spaces. Take � prime to N but possibly
equal to p. The fibre product X (p∞,N,�) := X (p∞,N)×qiX0(ps,N) X0(p

s,N,�) exists and

is independent of the choice of maps q1 or q2. We then have the two projections

q1,q2 : X (p∞,N,�)→X (ps,N). Notice that X (p∞,N,p) splits completely as

X (p∞,N,p) =�λ=0,...,p−1X (p∞,N),
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where over the copy labeled by λ= 0, . . . ,p−1 the isogeny E→ E′ := E/D produces the

map of Zp-modules

uλ : TpE = Zpa⊕Zpb→ Tp(E
′) := Tp(Eλ) := Zpa

′⊕Zpb
′,

a′ = a,b′ =
b+λa

p
∈ TpE⊗Qp.

Using this description, the maps q1 and q2 restricted to the component labeled λ define

maps q1,λ and q2,λ, where q1,λ is the identity map and q2,λ : X (p∞,N)→X (p∞,N) is an
isomorphism such that the pullback of TpE is Tp(Eλ).

We consider the maps t1,t2 : �λ=0,...,p−1P1→ P1 where on the component labeled by λ

the map t1,λ induced by t1 is the identity while the map t2 is the isomorphism t2,λ : P
1→

P1 defined on points by [α,β] �→ [α−λβ,pβ]. We then have the following diagram:

X (p∞,N)
q2←− X (p∞,N,p) =�λ=0,...,p−1X (p∞,N)

q1−→ X (p∞,N)

πHT

⏐� �λ=0,...,p−1πHT

⏐� πHT

⏐�
P1 t2←− �λ=0,...,p−1P1 t1−→ P1.

In fact, the squares are commutative. This follows from the functoriality of dlog with

respect to isogenies and by computing u∨λ : The map uλ sends a �→ a′ and b �→ pb′−λa′ so
that on the dual basis u∨λ sends (a′)∨ �→ a∨−λb∨ and (b′)∨ �→ pb∨.

Remark 4.8. Let us observe that, with the notations above, if we denote by Up
the correspondence on X (p∞,N) given by Up := q2 ◦ q−11 and if we denote by Ũ the

correspondence on P1 defined by Ũ := t2 ◦ t−11 , then we have: πHT ◦Up = Ũ ◦πHT.

We conclude this section with a lemma on the dynamic of the operators t2,λ. For

λ= 0, . . . ,p−1 we write tλ in place of t2,λ in the next lemma.

Lemma 4.9. a) Let λ = λ0+ pλ1+ · · ·+λnpn with λi ∈ {0, . . . ,p− 1}. Write tλ := tλn
◦

· · · ◦ tλ0
. Then tλ

(
U

(n+1)
0,λ

)
= U0, tλ

(
P1\U (n+1)

0,λ

)
= U

(1)
∞ .

b) If μ := λ0+λ1p+. . .+λn−1pn−1 with λi as above for 0≤ i≤ n−1 and tμ := tλn−1
◦

. . . ◦ tλ0
, then we have tμ

(
P1\U (n+1)

0,λ

)
⊂ U∞\U (1)

0 and tμ(U
(1)
∞ )⊂ U (n+1)

∞ .

Proof. It is enough to prove the statement for Spa(K,K+)-valued points for an affinoid

field (K,K+). This is determined by a K -valued point of P1, or equivalently a K+-valued
point [α;β] as K+ is a valuation ring, whose normalized valuation is denoted v.

a) We prove the statement for λ = λ0 leaving the inductive process to the reader. If

[α;β] is a point of U∞\U0, then we can assume that α= 1 and that β is in the maximal

ideal of K+ and tλ([1;β]) = [1−λβ;pβ] defines a point of U
(1)
∞ .

If β is a unit, we can assume that β = 1 and then tλ([α;1]) = [α−λ;p]. This is a point

of U0 if and only if α−λ
p ∈K+, that is, if and only if [α;1] defines a point of U

(1)
0,λ. Else

p
α−λ lies in the maximal ideal of K+ and then tλ([α;1]) defines a point of U∞\U0.

b) If [α,β] ∈ P1\U (n+1)
0 , α,β ∈K+, we may assume that one of α,β is 1.
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If β = 1, we have tμ([α,1]) = [α−μ,pn]. Moreover, [α,1] /∈ U (n+1)
0 implies either that

r := v(α−μ) < n and in this case [α−μ,pn] ∈ U∞\U (1)
0 , or that v(α−μ) = n and α =

μ+pnγ, with γ ∈K+, γ /∈ Fp(mod pK+). Then tμ([α,β]) = [γ,1] ∈ U∞\U (1)
0 .

If now α = 1 and β is in the maximal ideal of K+, we have tμ([1,β]) = [1−μβ,pnβ].
Since 1−μβ ∈ (K+)∗, we have tμ([1,β]) = [1,pnβ/(1−μβ)] ∈ U (n)

∞ ⊂ U∞\U (1)
0 .

Let us notice that if x ∈ U∞\U (1)
0 and ν ∈ {0,1, . . . ,p− 1}, then tν(x) ∈ U (1)

∞ . This

observation and claim (b) imply the part tλ(P
1\U (n+1)

0 )⊂ U (1)
∞ of claim (a).

4.6. Étale sheaves

Let H ⊂GL2(Zp) be a finite index subgroup. In this section, we recall the tensor functor

from the category of profinite H -representations to the category of sheaves on the pro-

Kummer étale site of the modular curve X(H,N) defined by H or, equivalently, of the

associated adic space X (H,N). We work with the latter.
We fix log geometric points ζi, one for every connected component Zi of X (H,N).

Due to [15, Prop. 5.1.12], the sites Zi,fket are Galois categories with underlying profinite

group, the Kummer étale fundamental group πket
1 (Zi,ζi). In particular, the pro-Kummer

finite étale cover
(
X (pr,N)

)
r
of X (H,N) for r big enough, restricted to each Zi defines

a homomorphism

π1(Zi,ζi)→ lim∞←rAut
(
X (pr,N)/X (H,N)

)
=H.

Given a finite representation Ln of H, we view it as a representation of π1(Zi,ζi), for every
i, and hence as a local system on each Zi,ket and, hence, a local system Ln on X (H,N)ket.

In fact, Ln is a sheaf on X (H,N)ket such that there exists a finite Kummer étale cover

X (pr,N)→X (H,N), for r� 0, on which the sheaf Ln is constant.

Given a profinite representation L of H, that is, an inverse limit L = lim∞←nLn of finite

representations Ln for n ∈ N, we let L be the inverse limit L = lim∞←nLn. It is a sheaf on

X (H,N)ket. Notice that using the scheme X(H,N) one gets, as mentioned before, a sheaf
on X(H,N)ket, that we will denote L. We have the following GAGA type of results:

Theorem 4.10. For every i ∈ N, the maps

Hi
(
X(H,N)pke,L

)
−→Hi

(
X (H,N)pke,L

)
are isomorphisms. Analogously, the natural map

Hi
(
X (H,N)pke,L

)
⊗̂OCp

−→Hi
(
X (H,N)pke,L⊗̂Ô+

X (H,N)

)
is an almost isomorphism.

Proof. The result for each Ln follows from the discussion in §2.4 and from Proposition 2.1.

Consider the natural map lim← : ShN(Z) → Sh(Z) from inverse systems of sheaves

on Z = X(H,N)pke, and Z = X (H,N)pke, respectively. Using the existence of bases

of log affinoid perfectoid opens with the properties recalled in §2.3, it follows

from [22, lemma 3.18] that we have Rilim← (L) = 0, both in the algebraic and
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in the adic setting, and Rilim←
(
L⊗̂Ô+

X (H,N)

)
= 0 for i ≥ 1. Hence, Hj

(
Z,L

)
and

Hj
(
X (H,N)pke,L⊗̂Ô+

X (H,N)

)
coincide with the derived functors Hj

(
Z,(Ln)n∈N

)
, resp.

Hj
(
X (H,N)pke,(Ln⊗O+

X (H,N)pke
)n∈N

)
of lim← H0(Z, ) introduced by [19] on the inverse

system ShN(Z). Due to [19, Prop. 1.6], these cohomology groups sit in exact sequences

0−→ lim←
(1)Hj−1

(
Z,Ln

)
−→Hj

(
Z,(Ln)n∈N

)
−→ lim← Hj

(
Z,Ln

)
−→ 0

and similarly for the inverse system (Ln⊗O+
X (H,N)pke

)n∈N. The maps in the theorem are

compatible with these sequences, and the claims follow from the finite case, that is, for

the sheaves Ln.

Remark 4.11. The sheaf L has the property that its pullback to the perfectoid space

X (p∞,N) is constant and coincides, together with the its H -action, with π−1HT

(
L) where

we view L as a constant, H -equivariant sheaf on P1 (compare with [10, §2.3] for the case

of p-adic automorphic étale sheaves).

Example 4.12. Consider on X (p∞,N) trivializations TpE = Zpa⊕ Zpb. The group

GL2(Zp) acts on the left on the family of trivializations: Given such a basis A := {a,b}
as above and a matrix M ∈ GL2(Zp), we get a new basis A′ := (a′,b′) := (a,b)M . If
we think of a trivialization as an isomorphism ψA : TpE ∼= Z2

p, then ψA′ is ψA times left

multiplication by M. Thus, Tp(E) corresponds to the standard representation T =Zp⊕Zp
of GL2(Zp).
This action of M induces a map on dual basis t(a∨,b∨) = M t(a

′,∨,b
′,∨). Then the

trivializations ψA∨ : TpE
∨ ∼=Z2

p and ψA′,∨ : TpE
∨ ∼=Z2

p induced by the dual bases are such

that ψA∨ is ψA′,∨ times the right multiplication by M. To make the map πHT equivariant
for the GL2(Zp)-action we take on P1

Qp
the standard action. If πHT(ψA∨) = [α;β] and

πHT(ψA′,∨)= [α′;β′], then t[α;β] =M t[α′;β′] (where t[α;β] means [α;β] viewed as column

vector).

Consider an s-analytic character k : Z×p −→ B∗ as in Definition 3.6. Consider the Qp-

module Dk(T
∨
0 )[n], for n≥ s, with action of the Iwahori subroup Iw1, defined in §3.7. As

Dk(T
∨
0 )[n] =

(
Do
k(T

∨
0 )[n]

)
[1/p] and Do

k(T
∨
0 )[n] admits a Iw1-equivariant filtration with

finite graded pieces, we get an associated sheaf Dk(T
∨
0 )[n] on the pro-Kummer étale site

of X0(p,N). Then:

Proposition 4.13. For every i ∈ N, we have isomorphisms

Hi
(
Γ0(p)∩Γ(N),Dk(T

∨
0 )[n]

)
⊗̂Cp ∼=Hi

(
X0(p,N)pke,Dk(T

∨
0 )[n]⊗̂ÔX0(p,N)

)
.

Proof. The first group is identified with Hi
(
X0(p,N)pke,Dk(T

∨
0 )[n]

)
⊗̂Cp arguing as

in [5, Thm. 3.15] using the filtration Fil•Dk(T∨0 )[n] discussed in §3.5. As ÔX0(p,N) =

Ô+
X0(p,N)[1/p] and cohomology commutes with direct limits, the conclusion follows from

Theorem 4.10 and inverting p.

For every s ≥ 1, we have actions of Hecke operators on Hi
(
X0(p

s,N)pke,Dk(T
∨
0 )[n]⊗̂

ÔX0(ps,N)

)
as follows. Let � be a prime integer not dividing N, and let q1,q2 : X0(p,N,�)→
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X0(p,N) be as in §4.5. For � �= p, we have natural isomorphisms q∗1
(
Dok(T

∨
0 )[n]

)
→

q∗2
(
Dok(T

∨
0 )[n]

)
inducing a map

T
 : q∗1
(
Dok(T

∨
0 )[n]⊗̂Ô+

X0(ps,N)

)
→ q∗2

(
Dok(T

∨
0 )[n]

)
⊗̂Ô+
X0(ps,N,
)

.

Inverting p, taking q2,∗ and using the trace map Tr: q2,∗q∗2 → Id of Lemma 4.7, we get a

map

q2,∗q∗1
(
Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N)

)
→ Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N).

For � = p, it follows by taking the dual of the Iws-equivariant map πn of §3.5.2 that we

have a map Up : q∗1
(
Dok(T

∨
0 )[n]

)
→ q∗2

(
Dok(T

∨
0 )[n+1]

)
and, hence, a map

Up : q∗1
(
Dok(T

∨
0 )[n]⊗̂Ô+

X0(ps,N)

)
→ q∗2

(
Dok(T

∨
0 )[n+1]

)
⊗̂Ô+
X0(ps,N,p)

.

Inverting p, taking q2,∗ and using the trace map Tr: q2,∗q∗2 → Id, we get a map

q2,∗q∗1
(
Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N)

)
→ Dk(T

∨
0 )[n+1]⊗̂ÔX0(ps,N).

We have a restriction map Dk(T
∨
0 )[n+ 1] → Dk(T

∨
0 )[n] which is Iws-equivariant and

defines a map Dk(T
∨
0 )[n+1]→ Dk(T

∨
0 )[n]. We finally get a morphism

q2,∗q∗1
(
Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N)

)
→ Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N).

Taking cohomology groups over X0(p
s,N)pke and using the map

Hi
(
X0(p

s,N)pke,Dk(T
∨
0 )[n]⊗̂ÔX0(ps,N)

)
→Hi

(
X0(p

s,N,�)pke,q
∗
1

(
Dk(T

∨
0 )[n]⊗̂ÔX0(ps,N)

))
,

we get Hecke operators

T
,U
naive
p : Hi

(
X0(p

s,N)pke,Dk(T
∨
0 )[n]⊗̂ÔX0(ps,N)

)
→Hi

(
X0(p

s,N)pke,Dk(T
∨
0 )[n]⊗̂ÔX0(ps,N)

)
. (4)

(Here we introduce the unnormalized operator Unaive
p which is p times the standard

operator Up as it preserves integral structures, a fact that will be of crucial importance

in section §5.)

4.7. A comparison result on X0(p
n,N)

(m)
∞

Consider an r -analytic weight k : Z∗p→ B∗ as in Definition 3.6 and integers n ≥m as in

Proposition 4.5, and define the sheaf

D
o,(m)
k,∞ [n] := Dok(T

∨
0 )[n]|X0(pn,N)

(m)
∞
⊗̂Ô+

X0(pn,N)
(m)
∞
.

The aim of this section is to prove that for m large enough it admits a decreasing filtration

FilhD
o,(m)
k,∞ [n] for h≥−1 with the following properties.
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Proposition 4.14. The following hold:

i. For n≥m′ ≥m, we have Fil•Do,(m)
k,∞ [n]⊗̂

̂O+

X0(pn,N)
(m)
∞
Ô+

X0(pn,N)
(m′)
∞
∼= Fil•Do,(m′)

k,∞ [n];

ii. We have a surjective map Gr−1Do,(m)
k,∞ [n] = D

o,(m)
k,∞ [n]/Fil0D

o,(m)
k,∞ [n] −→

ωkE⊗O+

X0(pn,N)
(m)
∞
Ô+

X0(pn,N)
(m)
∞

, where ωkE is the sheaf defined in §4.4;

iii.We have an isomorphism

H1
(
X0(p

n,N)
(m)
∞,pke,ω

k
E⊗O+

X0(ps,N)
(m)
∞
ÔX0(pn,N)

(m)
∞

)∼=H0
(
X0(p

n,N)(m)
∞ ,ωk+2

E

)
[1/p];

iv.The map

H1
(
X0(p

n,N)
(m)
∞,pke,D

o,(m)
k,∞ [n]/FilhD

o,(m)
k,∞ [n]

)
→H1

(
X0(p

n,N)
(m)
∞,pke,ω

k
E⊗O+

X0(ps,N)
(m)
∞
Ô+

X0(pn,N)
(m)
∞

)
,

induced by the projection onto Gr−1Do,(m)
k,∞ [n] and (ii), has kernel and cokernel

annihilated by a power pah of p (with a depending on n);

v. Hi
(
X0(p

n,N)
(m)
∞,pke,D

o,(m)
k,∞ [n]/FilhD

o,(m)
k,∞ [n]

)
is equal to H0

(
X0(p

n,N)
(m)
∞ ,

GrhD
o,(m)
k,∞ [n]

)
for i= 0, and it is 0 for i≥ 2.

Proof. Recall the surjective map

dlog : Tp(E)∨⊗Zp
Ô+

X0(pn,N)
(m)
∞
−→ ωmod

E ⊗̂Ô+

X0(pn,N)
(m)
∞

from equation (2) and Proposition 4.5. It is defined for every m large enough and ωmod
E

is an invertible O+

X0(pn,N)
(m)
∞

-module. We also assume that over X0(p
n,N)

(m)
∞ we have a

canonical subgroup Cr of order pr. Consider the natural projection jn : X (pn,N)
(m)
∞ →

X0(p
n,N)

(m)
∞ ; then jn is Kummer étale and Galois with group Δn the subgroup

of GL2(Z/p
nZ) of upper triangular matrices. In particular, to define a sheaf on

X0(p
n,N)

(m)
∞,pke is equivalent to define a sheaf on X (pn,N)

(m)
∞,pke with an action of Δn

compatible with the action on X (pn,N)
(m)
∞ . In order to define FilhD

o,(m)
k,∞ [n], we define a

Δn-equivariant filtration on j∗n
(
D
o,(m)
k,∞ [n]

)
.

Over X (pn,N)
(m)
∞ , we have a trivialization

Tp(E)/pnTp(E) = (Z/pnZ)a⊕ (Z/pnZ)b

such that dlog(a∨) is a basis for ωmod
E /prωmod

E as O+

X (pn,N)
(m)
∞

-module. Dualizing, we get

an injective map

(dlog)∨ : ωmod,−1
E ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
−→ Tp(E)⊗Zp

Ô+

X (pn,N)
(m)
∞
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with quotient Q isomorphic to ωmod
E ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞

and such that modulo pr the

section a generates ωmod,−1
E /pnωmod,−1

E as O+

X (pn,N)
(m)
∞

-module. Then (dlog)∨ induces, for

every λ ∈ Z/pnZ, an affine map

ρλ : V0

(
Tp(E),a,b−λa

)
×Zp
X (pn,N)(m)

∞ −→ V0

(
ωmod,−1
E ,a

)
×X0(p,N)

(m)
∞
X (pn,N)(m)

∞

on the pro-Kummer étale site of X (pn,N)
(m)
∞ . Here and below, the formalism f VBMS

is applied with respect to the ideal I generated by pr. Notice that V0

(
Tp(E),a,b−

λa
)
×Zp
X (pn,N)

(m)
∞ ∼= V0

(
Tp(E)⊗Zp

Ô+

X (pn,N)
(m)
∞
,a,b− λb

)
is a principal homogeneous

space under the formal vector group V′
(
Q
)
⊂ V

(
Q
)
classifying sections of Q∨ which are

zero modulo pr. We have the invertible O+

X0(p,N)
(m)
∞
⊗̂B-module ω−kE := Wk(ω

mod,−1
E ,a

)
.

Set

W
(m)
k,∞,λ :=Wk

(
Tp(E),a,b−λa

)
⊗Zp
Ô+

X (pn,N)
(m)
∞
.

Applying the formalism of VBMS, we get the map of sheaves on the pro-Kummer étale
site of X (pn,N)

(m)
∞

ρkλ : ω
−k
E ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
−→W

(m)
k,∞,λ.

Using that V0

(
Tp(E)⊗Zp

Ô+

X (pn,N)
(m)
∞
,a,b+λa

)
is a principal homogeneous space under

V′
(
Q
)
, we obtain a V′

(
Q
)
-stable increasing filtration FilhW

(m)
k,∞,λ for h≥ 0 with

Fil0W
(m)
k,∞,λ = ω−kE ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
,

GrhW
(m)
k,∞ ∼= ω−k+2h

E ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
. (5)

See [2] and [6, Prop. 5.2]. Taking Ô+

X (pn,N)
(m)
∞

-duals, we get a sheaf and a decreasing

filtration

W
(m),∨
k,∞,λ =Wk

(
Tp(E),a,b−λb

)∨⊗Zp
Ô+

X (pn,N)
(m
∞
, FilhW

(m),∨
k,∞,λ,h≥−1

on the pro-Kummer étale site of X (pn,N)
(m)
∞ . Here, FilhW

(m),∨
k,∞,λ consists of those sections

of W
(m),∨
k,∞,λ which are zero on FilhW

(m)
k,∞,λ (where we set Fil−1W

(m),∨
k,∞,λ = 0 so that

Fil−1W(m),∨
k,∞,λ) =W

(m),∨
k,∞,λ). Then

GrhW
(m),∨
k,∞,λ ∼= ωk−2h−2E ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
. (6)

Due to Proposition 3.8, we have a Δn-equivariant isomorphism

j∗n
(
D
o,(m)
k,∞ [n]

)∼=⊕λ∈Z/pnZW(m),∨
k,∞,λ
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and we set Filhj∗n
(
D
o,(m)
k,∞ [n]

)
to be the filtration corresponding to ⊕λ∈Z/pnZFilhW(m),∨

k,∞,λ.

The map ⊕λρkλ defines a map ρk : ω−kE ⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
−→⊕λW(m)

k,∞,λ and, hence,

a map

ν : Gr−1j∗n
(
D
o,(m)
k,∞ [n]

)
→ ωkE⊗O+

X0(p,N)
(m)
∞
Ô+

X (pn,N)
(m)
∞
.

By construction, (i) and (ii) hold over X (pn,N)
(m)
∞ , and to prove those claims we need to

show that the given filtration and the map ν are Δn-equivariant. Also, given a sheaf F
on X0(p,N)

(m)
∞ , we have a spectral sequence

Hi(Δn,H
j
(
X (pn,N)

(m)
∞,pke,j

∗
n(F)

)
⇒Hi+j

(
X0(p

n,N)
(m)
∞,pke,F

)
.

Since the cohomology groups Hj
(
Δn,G

)
are annihilated by the order of Δn for j ≥ 1, to

conclude (iv)–(v) it suffices to prove those claims for X (pn,N)
(m)
∞ .

The rest of the proof is a computation using the log affinoid perfectoid cover by opens U

of the adic space X0(p
n,N)

(m)
∞,pke defined by trivializing the full Tate module

∏

T
(E). It is

Galois over X0(p
n,N)

(m)
∞,pke with group GU . Let Û := Spa(R,R+) be the associated affinoid

perfectoid space as in §2.3. Write Tp(E)∨(U)⊗R+ = e0R
+ ⊕ e1R+ with e0 mapping

to a generator of ωmod
E and e1 in the kernel of d log generating ωmod,−1

E . Recall from

Proposition 3.8 that W
(m),∨
k,∞,λ(U) is the dual of W

(m)
k,∞,λ(U)∼= R+⊗B〈 Wλ

1+prZ 〉 ·k(1+prZ)
with increasing filtration defined by Filh =⊕hi=0R

+⊗B
(

Wλ

1+prZ

)i ·k(1+prZ).
For every σ ∈ GU , we then have σ(e1) = e1 and σ(e0) = e0 + ξ(σ)e1. Then, σ(Wλ) =

Wλ+
ξ(σ)
pn (1+ prZ) and σ(Z) = Z. If ξ(σ) = α+ prβ then σ(Wλ) =Wλ+α+β(1+ p

rZ).

Thus, the increasing filtration on ⊕λ∈Z/pnZW(m)
k,∞,λ and the diagonal embedding of R+⊗

B→⊕λ∈Z/pnZFil0W(m)
k,∞,λ are both stable for the action of GU . This concludes the proof

of (i) and (ii).
We pass to claims (iii)–(v). As ωk+2

E is a locally free O+

X0(p,N)
(m)
∞
⊗̂B-module, we are left

to show that

H1
(
X0(p

n,N)
(m)
∞,pke,ÔX0(pn,N)

(m)
∞

)∼=H0
(
X0(p

n,N)(m)
∞ ,ω2

E

)
[1/p].

So to prove claim (iii), we are left to show that that the map (3) is an isomorphism.

The étale cohomology of the structure sheaf on U is trivial as recalled in §2.3. Thanks
to equation (6), the sheaves D

o,(m)
k,∞ [n]/FilhD

o,(m)
k,∞ [n]|U are extensions of the structure

sheaf Ô+
U so that also their cohomology over U is trivial. Then the cohomology groups

in equation (3) and those of D
o,(m)
k,∞ [n]/FilhD

o,(m)
k,∞ [n] appearing in (iv) and (v) coincide

with the continuous cohomology of GU of the sections of the relevant sheaves over U.

This reduces the proof of claims (iii), (iv) and (v) to a Galois cohomology computation
for which we refer to [6, Thm. 5.4].

We have Hecke operators acting on the cohomology of D
o,(m)
k,∞ [n]; see equation (4). We

assume the hypothesis in the proof of Proposition 4.14.

https://doi.org/10.1017/S1474748022000548 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000548


676 F. Andreatta and A. Iovita

Proposition 4.15. The operator Unaive
p = pUp is defined on Hi

(
X0(p

n,N)
(m)
∞,pke,

FilhD
o,(m)
k,∞ [n]

)
for every h≥−1. There exists an operator Up,h

Up,h : H
i
(
X0(p

n,N)
(m)
∞,pke,Fil

hD
o,(m)
k,∞ [n]

)
→Hi

(
X0(p

n,N)
(m)
∞,pke,Fil

hD
o,(m)
k,∞ [n]

)
such that on Hi

(
X0(p

n,N)
(m)
∞,pke,Fil

hD
o,(m)
k,∞ [n]

)
we have Unaive

p = ph+1Up,h for i= 0, 1.

Moreover, for every positive integer h the cohomology group H1
(
X0(p

n,N)
(n)
∞,pke,

D
o,(m)
k,∞ [n]

)
[1/p] admits a slope ≤ h-decomposition with respect to the Up-operator and

we have an isomorphism of Hecke modules:

Ψ: H1
(
X0(p

n,N)
(m)
∞,pke,D

o,(m)
k,∞ [n]

)
[1/p](h) ∼=H0

(
X0(p

n,N)(m)
∞ ,ωk+2

E

)(h)⊗̂Cp,
where the tensor product is over the finite extension of Qp over which X0(p

n,N)
(m)
∞ is

defined.

Proof. Recall the construction of the Up-operator in equation (4); all steps are defined

integrally on D
o,(m)
k,∞ [n] except for the trace Tr: q2,∗q∗2 ∼ Id, and all steps are defined for

FilhD
o,(m)
k,∞ [n] except possibly for

U : q∗1
(
Dok(T

∨
0 )[n]⊗̂Ô+

X0(p,N)

)
→ q∗2

(
Dok(T

∨
0 )[n+1]

)
⊗̂Ô+
X0(p,N,p)

.

We claim that U restricts to a map on q∗1
(
FilhDok(T

∨
0 )[n]⊗̂Ô+

X0(p,N)

)
→ q∗2

(
FilhDok(T

∨
0 )[n+

1]⊗̂Ô+
X0(p,N,p)

)
which can be written as ph+1 times an operator U ′. Both statements can

be checked upon passing to sections over a log affinoid perfectoid. These statements are

then proven in [6, Thm. 5.5].

The statement on the existence of slope decomposition and the displayed isomorphism
are proven as in [6, Thm. 5.1] using Proposition 4.14.

4.8. A comparison result on X0(p
n,N)

(m)
0

As in the previous section, we fix an r -analytic weight k : Z∗p→ B∗, as in definition 3.6,

and we write uk ∈ B[1/p] for the element such that k(a) = expuk loga for a ∈ 1 +

prZp. Note that pruk ∈ B. Fix an integer n ≥ r, and define the sheaf D
o,(m)
k,0 [n] :=

Dok(T
∨
0 )[n]|X0(pn,N)

(m)
0
⊗̂Ô+

X0(pn,N)
(m)
0

. In this case, we have the following.

Proposition 4.16. For m large enough, there exists an increasing filtration(
FilsD

o,(m)
k,0 [n]

)
s≥0 with the following properties:

i. For m′ ≥m, we have Fil•D
o,(m)
k,0 [n]⊗̂

̂O+

X0(pn,N)
(m)
0

Ô+

X0(pn,N)
(m′)
0

∼= Fil•D
o,(m′)
k,0 [n];

ii. For every s≥ 0 the image of the map

H1
(
X0(p

n,N)
(m)
0,pke,FilsD

o,(m)
k,∞ [n]

)
→H1

(
X0(p

n,N)
(m)
0,pke,D

o,(m)
k,∞ [n]

)
is annihilated by the product p(r+c)s

(
uk
s

)
(with c depending on n).
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Proof. We follow closely the proof of Proposition 4.14. We take m large enough so that
E admits a canoncial subgroup Cn of level pn over X0(p

n,N)
(m)
0 . Note that the canonical

subgroup Cn and the level subgroup Hn are distinct.

The natural projection jn : X (pn,N)
(m)
0 →X0(p

n,N)
(m)
0 is Kummer étale with automor-

phism group Δn isomorphic to the subgroup of GL2(Z/p
nZ) of matrices that are upper

triangular modulo pn. It is not a Galois cover as X (pn,N)
(m)
0 is not connected. In fact, we

have a trivialization TpE/p
nTpE = (Z/pnZ)a⊕(Z/pnZ)b over X (pn,N)

(m)
0 . As recalled in

4.2, we have a decomposition X (pn,N)
(m)
0 =�ξ∈Z/pnZX (pn,N)

(m)
0,ξ where over X (pn,N)

(m)
0,ξ

we have dlog(a∨) = ξdlog(b∨) modulo pn. We recall that to give a sheaf on X0(p,N)
(m)
0,pke

is equivalent to give a sheaf on X (pn,N)
(m)
0,pke endowed with a compatible action of Δn.

In particular to define FilsD
o,(m)
k,∞ [n], we define the filtration over X (pn,N)

(m)
0,pke and we

prove that it is stable for the action of Δn. The maps dlog and dlog∨ define an exact

sequence of sheaves on the pro-Kummer étale site of X (pn,N)
(m)
0 :

Q := ωmod,−1
E ⊗O+

X0(pn,N)
(m)
0

Ô+

X (pn,N)
(m)
0

−→ Tp(E)⊗Zp
Ô+

X (pn,N)
(m)
0

−→ ωmod
E ⊗O+

X0(pn,N)
(m)
0

Ô+

X (pn,N)
(m)
0

.

Via the trivialization TpE/p
nTpE = (Z/pnZ)a⊕ (Z/pnZ)b over X (pn,N)

(m)
0 , over the

component X (pn,N)
(m)
0,ξ the canonical subgroup Cr, and hence, Q modulo pr, is generated

by the section b+ ξa and a maps to a generator of the quotient ωmod
E ⊗O+

X0(p,N)
(m)
0

Ô+

X (pn,N)
(m)
0

modulo pr. In particular, we get an affine map

ρ : V0

(
ωmod,−1
E ,a

)
⊂ V0

(
Tp(E)⊗Zp

Ô+

X (pn,N)
(m)
0,−λ

,a,b−λa
)

∼= V0

(
Tp(E),a,b−λa

)
×Zp
X (pn,N)

(m)
0,−λ

on the pro-Kummer étale site of X (pn,N)
(m)
0,−λ. Considering the underlying sheaves of

functions of weight 0, the map ρ∗ induces a surjective map of sheaves of rings

ρ∗0 : W0

(
Tp(E),a,b−λa

)
⊗Zp
Ô+

X (pn,N)
(m)
0,−λ

→ Ô+

X (pn,N)
(m)
0,−λ

.

We let I be its kernel. We set

W
(m)
k,0,λ :=Wk

(
Tp(E),a,b−λa

)
⊗Zp
Ô+

X (pn,N)
(m)
0,−λ

, FilsW
(m)
k,0,λ := IsW

(m)
k,0,λ.

Taking Ô+

X (pn,N)
(m)
∞

-duals we get a sheaf and an increasing filtration

W
(m),∨
k,0,λ =Wk

(
Tp(E),a,b−λb

)∨⊗̂Zp
Ô+

X (pn,N)
(m
0,−λ

, FilsW
(m),∨
k,0,λ ,s≥−1
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on the pro-Kummer étale site of X (pn,N)
(m)
0,−λ. Here, FilsW

(m),∨
k,0,λ consists of those sections

vanishing on FilsW
(m)
k,0,λ. Due to Proposition 3.8, we have a Δn-equivariant isomorphism

j∗n
(
D
o,(m)
k,0 [n]

)∼=⊕λ∈Z/pnZW(m),∨
k,0,λ ,

and we set Filsj
∗
n

(
D
o,(m)
k,∞ [n]

)
to be the filtration given by ⊕λ∈Z/pnZFilsW(m),∨

k,0,λ .

In order to get a well-defined filtration on D
o,(m)
k,0 [n], we need to prove that

Filsj
∗
n

(
D
o,(m)
k,∞ [n]

)
is Δn-equivariant. If this holds, claim (i) is then clear by construction.

Arguing as in Proposition 4.14, to prove claim (ii) it suffices to prove it for

H1
(
X (pn,N)

(m)
0,pke,

)
. As in loc. cit. one reduces the proof of this statement and the

statement of the Δn-equivariance after passing to a log affinoid perfectoid cover U of

X (pn,N)
(m)
0 , with group of automorphisms GU relatively to X0(p

n,N)
(m)
0 and with Û :=

Spa(R,R+) the associated affinoid perfectoid space. Write Tp(E)(U)⊗R+ =R+f0+R
+f1

and Tp(E)∨(U)⊗R+ = e0R
+ ⊕ e1R+ with e0 = f∨0 ≡ b∨ mapping to a generator of

ωmod
E and e1 = f∨1 ≡ a∨ − λb∨ in the kernel of dlog generating ωmod,−1

E . Recall from

Proposition 3.8 that W
(m),∨
k,0,λ (U) is the dual of W

(m)
k,0,λ(U)∼= (R+⊗B)〈 Wλ

1+prZ 〉 ·k(1+prZ)
where prWλ = Y and X = 1+prZ, and we have the universal map αf0+βf1 �→ αY +βX
(note the roles of X and Y are interchanged compared to loc. cit. as in this case we

are looking for functions on T that are 0 on b modulo pr and 1 on a modulo pr, or

equivalently that are 1 on e1 modulo pr and 0 on e0−λe1 modulo pr). The decreasing

filtration is defined by Fils =⊕i≥s(R+⊗B)
(

Wλ

1+prZ

)i ·k(1+prZ).
Given σ ∈ GU , we have σ(e0) = e0 and σ(e1) = e1 + ξ(σ)e0 so that σ(Y ) = Y and

σ(X) = X + ξ(σ)Y = X + prξ(σ)Wλ. Here, ξ is an R+-valued continuous 1-cocycle on
GU . In particular, write k(t) = exp(uk log(t)) for t≡ 1 modulo pr. Then

σ
(
k(X)X−i

)
= k
(
σ(X)

)
σ(X)−i = exp

(
(uk− i) log(X(1+prξ(σ)

Wλ

X
)
)
=

= k(X)X−i exp
(
(uk− i) log(1+prξ(σ)

Wλ

X
)
)
= k(X)X−i

∞∑
m=0

prm
(
uk− i
m

)(
ξ(σ)

Wλ

X

)m
.

Notice that the term m= 0 is (uk− i)k(X)X−i. Thus,

σ
(( Wλ

1+prZ

)i ·k(1+prZ))= ( Wλ

1+prZ

)i ·k(1+prZ)∑
m

prm
(
uk− i
m

)(
ξ(σ)

Wλ

1+prZ

)m
.

(7)

This implies first of all that GU preserves the filtration. Claim (ii) follows from the

following lemma.

Lemma 4.17. For every s, consider the short exact sequence of GU -modules

0→ FilsW
(m),∨
k,0,λ (U)→ Fil2sW

(m),∨
k,0,λ (U)→ Fil2sW

(m),∨
k,0,λ (U)/FilsW

(m),∨
k,0,λ (U)→ 0.
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Then, the connecting homomorphism

H0
(
GU,Fil2sW

(m),∨
k,0,λ (U)/FilsW

(m),∨
k,0,λ (U)

)
→H1

(
GU,FilsW

(m),∨
k,0,λ (U)

)
has cokernel annihilated by p(r+c)ss!

(
uk
s

)
for some c depending on n.

Proof. We argue by induction on s. We are reduced to prove that for any s the short

exact sequence

0→GrsW
(m),∨
k,0,λ (U)→ Fils+1W

(m),∨
k,0,λ (U)/Fils−1W

(m),∨
k,0,λ (U)→Grs+1W

(m)
k,0,λ(U)→ 0

the connecting homomorphism

H0
(
GU,Grs+1W

(m)
k,0,λ(U)

)
→H1

(
GU,GrsW

(m)
k,0,λ(U)

)
has cokernel annihilated by p(r+c) (uk−s)

s for some c depending on n. Note that

H0
(
GU,Grs+1W

(m)
k,0,λ(U)

)
=
(
(R+)GU ⊗B

)(( Wλ

1+prZ

)s+1

·k(1+prZ)
)∨

and

H1
(
GU,GrsW

(m)
k,0,λ(U)

)
=
(
(R+)GU ⊗B

)
⊗(R+)GU

(( Wλ

1+prZ

)s
·k(1+prZ)

)∨
H1
(
GU,R

+
)
.

Thanks to equation (7), the map sends

((
Wλ

1+prZ

)s+1

·k(1+prZ)
)∨

to the cocyle

GU � σ �→ (uk− s)prξ(σ)
((

Wλ

1+prZ

)s
·k(1+prZ)

)∨
. The quotient of H1

(
GU,R

+
)
by the

(R+)GU -span of the cocycle ξ is torsion and hence killed by a power pc of p; see [6, Prop.

5.2]. The conclusion follows.

5. The Hodge–Tate Eichler–Shimura map revisited

Let k : Z∗p −→ B∗ be a B -valued weight, as in Definition 3.6, which is r -analytic for

some r ∈ N (definition 3.6), that is, there is uk ∈ B[1/p] such that k(t) = exp
(
uk log(t)

)
for all t ∈ 1+ prZp. In this section, we fix an integer n ≥ r and denote Dok(T

∨
0 )[n] the

integral pro-Kummer étale sheaf of distributions on the base-change of X := X0(p
n,N)

over Spa(B[1/p],B). We will simply denote this sheaf by Dok in this section and also set

Dk := Dok⊗Zp
Qp.

Let us fix a slope h ∈ N, and recall that if M is a Qp-vector space with a linear

endomorphism Up, we denoteM
(h) the subvector space of M of elements x∈M such that

P (Up)(x) = 0 for all polynomials P (X) ∈ Qp[X], whose roots in Cp have all valuations
in [0,h]∩Q. Up to localization of B and for s large enough, both H1

(
Xpke,Dk

)
and

H0
(
X〈 p

Hap
s 〉,ωk+2

E

)
admit slope h decompositions; here, Ha is a (any) local lift of the

Hasse invariant. Then the main result of this section is as follows.
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Theorem 5.1. For s large enough, there is a canonical Cp-linear, Galois and Hecke
equivariant map:

ΨHT : H1
(
Xpke,Dk(1)

)(h)⊗̂Cp −→H0
(
X〈 p

Hap
s 〉,ωk+2

E

)(h)⊗̂Cp.
Moreover, if

∏h−1
i=0 (uk− i) ∈

(
B[1/p]

)∗
, then ΨHT is surjective.

The map ΨHT was defined in [5] using Faltings’ sites of X and X〈 p
Hap

s 〉, respectively.
To relate it to the language developed in this paper, first of all we allow ourselves to
increase n. In fact, the map X0(p

n1,N)→X0(p
n2,N) for n1 ≥ n2 is finite étale, and one

can obtain the map ΨHT for n = n1 in the theorem upon taking traces from the map

ΨHT for n = n2; on the left-hand side the trace is defined using Lemma 4.7. We also
replace X0(p

n,N)〈 p
Hap

s 〉 with X0(p
n,N)

(m)
∞ for arbitrary large integers n≥m, as the first

is contained in the latter for m large enough thanks to [23, Lemma 3.3.15].

In particular, we choose n large enough such that there is m ≤ n with the property

that the restriction of Dok to the pro-Kummer étale site of X0(p
n,N)

(m)
∞ has the property

that the (pro-Kummer étale) sheaf Dok⊗̂ÔX0(pn,N)
(m)
∞

has the decreasing filtration defined

in Proposition 4.14. We fix such n, m. Let us denote by Do
k := Dok⊗̂O+

Xpke
, where O+

Xpke

is the structure sheaf of the pro-Kummer étal site of X . As in [5], we let ΨHT be the

composition of the following maps:

H1
(
X0(p

n,N)pke,Dk(1)
)(h)⊗̂Cp ∼= (H1

(
X0(p

n,N)pke,D
o
k(1)

)
[1/p]

)(h) R−→
R−→
(
H1
(
(X0(p

n,N)(m)
∞ )pke,D

o
k(1)

)
[1/p]

)(h) Φ−→H0
(
X0(p

n,N)(m)
∞ ,ωk+2

E

)(h)⊗̂Cp,
where R is the restriction map while the map Φ is defined in Proposition 4.15 and it is

proved in loc. cit. that it is an isomorphism. Therefore, in order to prove Theorem 5.1, it
is enough to prove the following.

Theorem 5.2. In the notations above, if
∏h−1
i=0 (uk− i) ∈

(
B[1/p]

)∗
, then the map R is

surjective.

To simplify the notation, in the rest of the section, we write X instead of X0(p
n,N),

X (m)
∞ instead of X0(p

n,N)
(m)
∞ , and so on. Before starting the proof of Theorem 5.2, we’ll

describe the dynamic of the Up-operator on the modular curve X . We think about Up as

correspondences on X , and we have:

Lemma 5.3. For every integer u≥ 1, we have

i) Uu+1
p

(
X\X (u+1)

0

)
⊂X (1)

∞ and Uup (X\X
(u+1)
0 )⊂X∞\X (1)

0 .

ii) Uup
(
X (1)
∞
)
⊂X (u+1)

∞ .

Proof. This is a direct consequence of Lemma 4.9.

We also have:

Lemma 5.4. For every u ≥ 1, there is a canonical decomposition of correspondences

Uup |X (u)
0

=
(
Uup
)good� (Uup )bad such that:
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a) (Uup )
good

(
X (u)

0

)
⊂X (1)

∞ .

b) (Uup )
bad
(
X (u)

0 \X
(u+1)
0

)
⊂X∞\X (1)

0 .

We remark that for u = 1, U1
p = Up and so we obtain the decomposition of Up|X0(1) =(

Up
)good� (Up)bad.

Proof. In view of Lemma 4.9 and Remark 4.8, it is enough to define this decomposition

for the correspondence Ũu :=∪μtμ : U (u)
0 −→P

(
P1
)
, where μ= λ0+λ1p+. . .+λu−1pu−1,

λi ∈ {0,1, . . . ,p− 1}, for i = 0,1, . . . ,u− 1. Namely, we define (Ũu)bad|
U

(u)
0,μ

:= tμ and

(Ũu)good|
U

(u)
0,μ

:= ∪λ �=μtλ. With these definitions, the rest of Lemma 5.4 follows from

Lemma 4.9.

We have the following consequence of Lemma 5.3 and Lemma 5.4. Let us recall our

notation Do
k := Dok⊗̂O+

X (this is a sheaf on the pro-Kummer étale site of the base-change
of X to Spa(B[1/p],B)) base-change which is not shown in the notations. Also, we recall

that we use the operator Unaive
p induced on cohomology by the Up-correspondence and

not its normalized version p−1Unaive
p . With this understanding, to ease the notation, we

simply write Up instead of Unaive
p .

Corollary 5.5. Let P (T )∈ (B⊗̂OCp
)[T ] be such that P (T ) = TR(T ) and for every u≥ 1

denote
(
P (Up)

u
)good

:= (Uup )
goodR(Up)

u and
(
P (Up)

u
)bad

:=
(
Uup )

badR(Up)
u. Then

i) P (Up)
u : H1

(
(X (1)
∞ )pke,D

o
k

)
−→H1

(
(X\X (u)

0 )pke,D
o
k

)
.

ii) P (Up)
u−1 : H1

(
(X (u)
∞ )pke,D

o
k

)
−→H1

(
(X (1)
∞ )pke,D

o
k

)
.

iii)
(
P (Up)

u
)good

P (Up) : H
1
(
(X∞\X (1)

0 )pke,D
o
k

)
−→H1

(
(X (u)

0 )pke,D
o
k

)
.

iv)
(
P (Up)

u
)bad

: H1
(
(X∞\X (1)

0 )pke,D
o
k

)
−→H1

(
(X (u)

0 \X
(u+1)
0 )pke,D

o
k

)
.

Proof. In view of the fact that, for any polynomial Q(T ) with (B⊗̂OCp
)-coeffcients,

Q(Up) maps H1
(
(X (1)
∞ )pke,D

o
k

)
to itself, i) and, respectively, ii) are immediate conse-

quences of Lemma 5.3 a) and b), respectively, while iii) is a consequence of Lemma 5.4

a) and iii) follows from Lemma 5.4 b).

Before we start the actual proof of Theorem 5.2, it seems natural to recall and gather

here the main ingredients in the proof, namely the properties of the cohomology of the

filtrations of the sheaf Do
k on X (m)

∞ and respectively on X (v)
0 , for m as fixed at the

beginning of this section and for the moment v ≥ 1 such that the pro-Kummer étale sheaf

Do
k has the increasing filtration Fil• of Proposition 4.16 when restricted to X (v)

0 .

Recall that we have denoted by Do
k := Dok⊗̂Ô+

X for Ô+
X the completion of the structure

sheaf of the pro-Kummer étale site of X . We have:

i) The image of the morphism H1
(
(X (v)

0 )pke,Filh
)
−→ H1

(
(X (v)

0 )pke,D
o
k

)
is annihilated

by p(r+c)h
∏h−1
i=0 (uk− i)/h!, where let us recall r is the degree of analyticity of the weight

on B, X = X0(p
n,N) and c is constant independent of h. In particular, if

(∏h−1
i=0 (uk−

i)/h!
)
γ = pq for some γ ∈B, then p(r+c)h+q annihilates the image of the above map.
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ii) The Up correspondence on X (m)
0 can be written as the disjoint union of Ugood

p ,

mapping X (m)
0 to X (1)

∞ and Ubad
p : X (m)

0 → X (m−1)
0 and corresponding to the p-isogeny

E → E′ given by modding out by the canonical subgroup. To keep track of where our

sheaves are defined, we denote D
o,(s)
k,0 the restriction of the pro-Kummer étale sheaf Do

k to

(X (s)
0 )pke. Suppose 1 ≤ u ≤m is such that D

o,(u−1)
0,k has the increasing filtration Fil(u−1)•

on (X (u−1)
0 )pke. We have:

Proposition 5.6. The map Ubad
p induces a map Ubad

p : D
o,(u)
k,0 → γ∗

(
D
o,(u−1)
k,0

)
that

preserves the filtration. Furthermore, for every b, there exists an operator

Ubad,b
p : D

o,(u)
k,0 /Fil

(u)
b → γ∗

(
D
o,(u−1)
k,0 /Fil

(u−1)
b

)
such that Ubad

p = pbUbad,b
p on D

o,(u)
k,0 /Fil

(u)
b . Here, γ : X (u)

0 ⊂X (u−1)
0 is the inclusion.

Proof. We use the notation of Proposition 4.16. It suffices to prove both statements after

passing to a log affinoid perfectoid cover U of X (u)
0,λ for λ = λ0 +λ1p+ . . .+λn−1pn−1,

λi ∈ {0,1, . . . ,p− 1}, for i = 0,1, . . . ,n− 1, with associated affinoid perfectoid space Û :=
Spa(R,R+). Recall from loc. cit. that Tp(E) is trivialized Tp(E)(U) = Zpα⊕Zpβ, where

the level subgroup is generated by α and the canonical subgroup is generated by the

section β+λα. For every λ as above, write λ= λ0+pλ
′, and then Ubad

p restricts to a map

uλ0
: X0(p

n,N)
(m)
0,λ → X0(p

n,N)
(m−1)
0,λ′ . At the level of universal elliptic curves over U, it

corresponds to the p-isogeny defined by uλ0
: Tp(E)(U)→ Tp(E

′)(U) with Tp(E
′)(U) =

Zpα⊕Zpβ
′ with β′ = β+λ0α

p in Tp(E)⊗Q. Notice that β+λαp = β′+λ′α defines a generator

of the canonical subgroup on E′. The map uλ0
induces by functoriality the map D

o,(u)
k,0,λ→

u∗
(
D
o,(u−1)
k,0,λ0

)
. We describe it explicitly.

Write Tp(E)(U)⊗R+ = R+f0⊕R+f1 as in Proposition 4.16 so that f0 ≡ β+λα and
f1 ≡ a modulo pn and Tp(E)∨(U)⊗R+ = e0R

+⊕ e1R+ with e0 = f∨0 ≡ β∨ mapping to

a generator of ωmod
E and e1 = f∨1 ≡ α∨−λβ∨ in the kernel of dlog generating ωmod,−1

E .

Then W
(u),∨
k,0,λ (U) is the dual of W

(u)
k,0,λ(U)∼= R+⊗B〈 Wλ

1+prZ 〉 ·k(1+prZ). Similarly, write

Tp(E
′)(U)⊗R+ =R+f ′0⊕R+f ′1 with f ′0 =

f0
p = β′+λ′α and f ′1 = f1. Then Tp(E

′)∨(U)⊗
R+ = e′0R

+ ⊕ e′1R+ with e′0 = (f ′0)
∨ = pe0 mapping to a generator of ωmod

E′ and e′1 =

(f ′1)
∨ = f1 in the kernel of dlog for E′ generating ωmod,−1

E′ . In particular, W
(u−1),∨
k,0,λ0

(U) is

the dual of W
(u−1)
k,0,λ0

(U)∼=R+⊗B〈 W ′
λ0

1+prZ′ 〉 ·k(1+prZ ′). The map Tp(E)→ Tp(E
′) induces

a map Tp(E
′)∨→ Tp(E)∨ on the duals and, hence, a map

vλ : W
(u)
k,0,λ(U)→W

(u−1)
k,0,λ0

(U), Z �→ Z ′,Wλ �→ pWλ0
.

As the decreasing filtrations are defined by

FilbW
(u)
k,0,λ(U) =W

(u)
k,0,λ(U) ·

( Wλ

1+prZ

)b
, FilbW

(u−1)
k,0,λ0

(U) =W
(u−1)
k,0,λ0

(U) ·
( W ′λ0

1+prZ ′
)b
,

we see that vλ respects the filtrations and on Filb can be written as pbv′λ with

v′λ : Fil
bW

(u)
k,0,λ(U)→FilbW

(u−1)
k,0,λ0

(U). The claim follows upon taking strong R+-duals.
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iii) Given h∈N, there exists an integer d such that pd annihilates Ker
(
H1
(
(X (m)
∞ )pke,D

o
k

)
−→ H1

(
(X (m)
∞ )pke,Dk

))
and pdeh is integral, where eh is an idempotent projecting onto

the slope ≤ h parts of H1
(
Xpke,Dk

)
and of H1

(
(X (m)
∞ )pke,Dk

)
. This is the main result

of §7.

Proof of Theorem 5.2. We now start the proof of Theorem 5.2. We work with a weight
k as in Definition 3.6, which will be assumed in this proof to be the universal weight of

some (wide) open disk of the weight space. The case of a finite extension of Qp is obtained

by specialization. In particular, uk− i is not 0 in B for every i ∈ N. This will be used in
step 3.

We recall that we have fixed a slope h ∈ N and consider the module

H1
(
(X (u)
∞ )pke,Dk

)(h) ∼= (H1
(
X (u)
∞ ,Dk

)
⊗̂Cp

)(h)
.

Let Q(T ) ∈ (B⊗̂OCp
)[T ] be the polynomial with deg(Q(T ))≥ 1 and having the property:

y ∈H1
(
(X (u)
∞ )pke,Dk

)(h)
if and only if Q(Up)y = 0. Such a polynomial exists as by [6] we

have an isomorphism H1
(
(X (u)
∞ )pke,Dk

)(h) ∼= H0
(
X (u)
∞ ,ωk+2

E

)(h)
and on H0

(
X (u)
∞ ,ωk+2

E

)
the operator Up is compact and has a Fredholm determinant which is an entire power

series. Q(T ) is obtained from a factor of this Fredholm determinant. We write Q(T ) =

P (T )−α, with P (T ) = TR(T ) and remark that there is nonnegative a ∈ Q such that
α ∈ pa(B⊗̂OCp

)∗. Then a ≤ h · deg(Q(T )). Now, we choose integers b with b ≥ 2a+2,

s := (r+ c)b+ q (see i) above) and d as in iii) above. Then it is easy to verify that there

exist integers m and θ ≥ 1 such that

mb≥ θ ≥ θ

2
+s+d+1+(m+u+1)a.

We will work with the open affinoids X (u)
∞ := X0(p

n,N)
(u)
∞ , X (m)

0 := X0(p
n,N)

(m)
0 ,

Xm+1)
0 := X0(p

n,N)
(m+1)
0 ⊂X0(p

n,N)and their pro-Kummer étale sites.

Step 1. Fix x ∈ H1
(
(X (u)
∞ )pke,Dk

)(h)
, then P (Up)x = αx. Without loss of generality,

we may consider x ∈ H1
(
(X (u)
∞ )pke,D

o
k

)tf
such that P (Up)x = αx (this notation was

introduced in Section §7) as H1
(
(X (u)
∞ )pke,Dk

)
=H1

(
(X (u)
∞ )pke,D

o
k

)
[1/p]. Then there is a

unique x′ ∈ H1
(
(X (u)
∞ )pke,D

o
k

)
with P (Up)x

′ = αx′ and (x′)tf = pdx, and using Corollary

5.5 ii), we have: P (Up)
u(x′) ∈ H1

(
(X (1)
∞ )pke,D

o
k

)
, and by using Corollary 5.5 i), we have

that P (Up)
m+u+1(x′) ∈ H1

(
(X\X (m+1

0 )pke,D
o
k

)
. Denote x̃ the image of P (Up)

m+u+1(x′)
in H1

(
(X\X (m+1)

0 )pke,D
o
k/p

θDo
k

)
.

We recall that P (Up)
u+1(x′) = P (Up)

(
P (Up)

u(x′)
)
∈ H1((X∞\X (1)

0 )prok,D
o
k) by Corol-

lary 5.5 i) and so denote P
(
x
)
the image of(

P (Up)
m
)good(

P (Up)
u+1(x′)

)
∈H1

(
(X (m)

0 )pke,D
o
k

)
in H1

(
(X (m)

0 )pke,D
o
k/p

θDo
k

)
.
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Now, let us observe that the opens (X\X (m+1)
0 ) and X (m)

0 constitute an open covering

of X , and so we have a Mayer–Vietoris exact sequence:

H1
(
Xpke,D

o
k/p

θDo
k

) ϕ−→H1
(
(X\X (m+1)

0 )pke,D
o
k/p

θDo
k

)
⊕H1

(
(X (m)

0 )pke,D
o
k/p

θDo
k

) ψ−→

ψ−→H1
(
(X (m)

0 \X (m+1)
0 )pke,D

o
k/p

θDo
k

)
,

together with an almost isomorphism H1
(
Xpke,D

o
k

)
⊗̂OCp

ρ−→ H1
(
Xpke,D

o
k

)
. We consider

the element

(A,B) :=
(
psx̃,psP(x)

)
∈H1

(
(X\X (m+1)

0 )pke,D
o
k/p

θDo
k

)
⊕H1

(
(X (m)

0 )pke,D
o
k/p

θDo
k

)
,

and we first claim that ψ(A,B) = 0.

Indeed, let us denote by V the pro-Kummer étale site (X (m)
0 \X (m+1)

0 )pke. Thanks to

Corollary 5.5 iv), we have

ψ(A,B) =A|V −B|V =
(
P (Up)

m
)bad(

psP (Up)
u+1(x′)

)
∈ psH1

(
V,Do

k/p
θDo

k

)
.

Now, let us recall that we have an exact sequence

H1
(
V,Filb/pθFilb

) f−→H1
(
V,Do

k/p
θDo

k

) g−→H1
(
V,Do

k/(Filb+p
θDo

k)
)
.

Using Proposition 5.6 and the fact that mb≥ θ, we have g
(
(P (Up)

m)bad
(
P (Up)

u+1(x′)
)
=

0 which implies that there is β ∈H1
(
V,Filb/pθFilh

)
such that

(
P (Up)

m
)bad(

P (Up)
u+1(x′)

)
= f(β). But by i) above, the image of f is annihilated by ps, therefore ψ(A,B) = psf(β) =

0. This proves the claim.
We continue the proof of the theorem. The Mayer–Vietoris exact sequence implies that

there is y ∈H1
(
Xpke,D

o
k

)
⊗̂OCp

such that

ρ(y)|
(X (u)

∞ )pke
≡ ps+1P (Up)

m+u+1x′ = ps+1αm+u+1x′
(
mod pθH1

(
(X (u)
∞ )pke,D

o
k

))
.

Let z0 ∈ H1
(
Xpke,D

o
k

)
⊗̂OCp

be z0 := pdeh(y). Then z0 ∈ H1
(
Xpke,D

o
k

)(h)⊗̂OCp
and

ρ(z0)|(X (u)
∞ )pke

≡ ps+d+1αm+u+1x′
(
mod pθH1

(
(X (u)
∞ )pke,D

o
k

)(b))
, where we write

H1
(
(X (u)
∞ )pke,D

o
k

)(h)
for the image pdehH

1
(
(X (u)
∞ )pke,D

o
k

)
.

Step 2. Let x1 ∈H1
(
(X (u)
∞ )pke,D

o
k

)(h)
be such that ρ(z0)|(X (u)

∞ )pke
= ps+d+1αm+u+1

(
x′−

pθ/2x1
)
. Such x1 exists indeed because x1 ∈ p−s−d−1+θ/2α−m−u−1H1

(
(X (u)
∞ )pke,D

o
k

)(h) ⊂
H1
(
(X (u)
∞ )pke,D

o
k

)(h)
.

Now, we apply to x1 the Step 1 we used on x and obtain z1 ∈ H1
(
Xpke,D

o
k

)(h)⊗̂OCp

such that ρ(z1)≡ ps+d+1αm+u+1x1

(
mod pθH1

(
(X (u)
∞ )pke,D

o
k

)(b))
.

We remark that ρ(z0 + pθ/2z1)|(X (u)
∞ )pke

≡ ps+d+1αm+u+1x′
(
mod p3θ/2H1

(
(X (u)
∞ )pke,

Do
k

)(b))
.
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Repeating Step 2, we construct inductively a sequence (zv)v≥0 in H1
(
Xpke,D

o
k

)(h)⊗̂OCp

such that for every v ≥ 0 we have

ρ
( v∑
j=0

pjθ/2zj
)
|
(X (u)

∞ )pke
≡ ps+d+1αm+u+1x′

(
mod p(2v+1)θ/2H1

(
(X (u)
∞ )pke,D

o
k

)(b))
.

If we denote by

z := p−s−d−1α−m−u−1
∞∑
j=0

pjθ/2zj ∈H1
(
Xpke,D

o
k

)(h)⊗̂Cp,
then ρ

(
p−dz

)
|
(X (u)

∞ )pke
= p−d

(
(x′)tf

)
= x. To see that the written series converges, we recall

(see [5]) that H1
(
Xpke,D

o
k

)
is profinite, therefore compact, and so H1

(
Xpke,D

o
k

)(h)⊗̂Cp is

complete for the p-adic topology.

Step 3. Using step (2), Theorem 5.2 is proven under the condition that
(∏b−1

i=0

(uk− i)
)
∈B[1/p]∗. As no uk− i is 0 in B due to our assumptions, we have B

[
p−1

∏h−1
i=h

(uk− i)−1
]
= ∩n∈NBn[p−1], with Bn =B

[[
pn/

∏b−1
i=h(uk− i)

]]
satisfying the requirements

of Definition 3.6 for every n≥ 0. The theorem then holds for each Bn. Since the map R
is a map of finite and projective B[1/p]-modules, we get that Theorem 5.2 holds after
inverting

∏b−1
i=h(uk− i).

Consider the reduction of ΨHT modulo uk− i, for h ≤ i ≤ b− 1. It is compatible with

the classical p-adic Hodge–Tate decomposition, which provides a surjective map

H1
(
XK,pke,Sym

i(T∨0 )
)
⊗Cp −→H0

(
X ,ωi+2

E

)
;

see [5]. The map H1
(
XK,pke,Doi (T∨0 )[n]

)
→ H1

(
XK,pke,Sym

i(T∨0 )
)

is induced by the

surjective map Dok(T
∨
0 )[n]/(uk − i) ∼= Doi (T

∨
0 )[n] → Symi(T∨0 ) and induces a surjective

morphism on the slope ≤ h-part H1
(
XK,pke,

)(h)
, by results of Stevens. The map

H0
(
X ,ωi+2

E

)
→ H0

(
X (u)
∞ ,ωi+2

E

) ∼= H0
(
X (u)
∞ ,ωk+2

E

)
/(uk − i) is the restriction map, and it

is an isomorphism on the slope ≤ h-part by the classicity result of Coleman. We conclude

that ΨHT, and hence R, is surjective modulo uk− i for every h≤ i≤ b−1. This implies

that R is surjective if
(∏h−1

i=0 (uk− i)
)
∈B[1/p]∗, as claimed.

6. The BdR-comparison

In this section, we consider the modular curve X =X (N) of full-level N and the modular

curve X0(p
n,N) over the ring of integers OK of an unramified extension K of Qp. Let X̂

be the p-adic formal scheme over OK defined by formally completing the modular curve

X(N) over OK along the special fibre X(N)0. Let E be the universal generalised elliptic

curve over X(N), and denote its modulo p-reduction by E0. As X(N)0 is smooth, the

crystalline cohomology H1
crys

(
E0/X̂

)
is identified with the de Rham cohomology HE :=

H1
dR

(
E/X̂

)
(as a module with log connection; see its description below).
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6.1. Period sheaves

There is a map of sites w : Xpke → X̂et defined by associating to an étale map U → X̂

of formal schemes its adic generic fibre. We set Ounr,+
Xpke

:= w−1
(
O

̂X

)
(see [25, §2.2]). It is

a subsheaf of O+
Xpke

. As X̂ is endowed with the log structure defined by the cusps, this

induces a log structure α̂ : M̂ → O
̂X ; more precisely, M̂ is the inverse limit lim∞←nMn,

where Mn → O ̂X/p
nO

̂X is the log structure defined by the cusps. This induces a log

structure αunr : Munr,+ := w−1
(
M̂
)
→ Ounr,+

X and a log structure α+ : M+ → O+
Xpke

which defines the log structure α :M→OXpke
of §2.2. In particular, we can refine the

prelog structure α� :M�→ ÔX �
pke

of loc. cit. to a prelog structure α�,+ :M�,+→ Ô+
X �

pke

,

where M�,+ is the inverse limit lim← M
+, indexed by N, with transition maps given by

raising to the p-th power. We write a �→ a� for the first projectionM�,+→M+.
Recall that we have the period sheaf Ainf over Xpke; see §2.2. We define the morphism

of multiplicative monoids αinf : M�,+ → Ainf by composing α�,+ with the Teichmüller

lift. Then the map ϑ : Ainf → Ô+
Xpke

is compatible with prelog structures, namely ϑ◦αinf

coincides with the first projectionM+,�→M+ composed with α+ and the natural map
O+
Xpke
→ Ô+

Xpke
. The map ϑ defines a map

ϑX := 1⊗ϑ : OAinf :=Ounr,+
Xpke

⊗Zp
Ainf −→ Ô+

Xpke

of Ounr,+
Xpke

-algebras. Furthermore, ϑX is a map of sheaves compatible with the prelog

structures αunr × αinf : Munr,+ ×M�,+ → OAinf and α+; namely, ϑX ◦
(
αunr × αinf

)
coincides with α+ composed with the homomorphism of monoids τ :Munr,+×M�,+→
M+ provided by the natural mapMunr,+→M+, the projectionM�,+→M+ given by

a �→ a� and the multiplication mapM+×M+→M+.
Define OAlog to be the sheaf on Xpke given by the p-adic completion of the log-

divided powers (DP) envelope of OAinf with respect to the product prelog structure

αunr × αinf and with respect to ϑX ; see [1, Lemma 2.16] for the definition. More

precisely, letM′ ⊂ (Munr,+)gp× (M�,+)gp be the sheaf of monoids defined as the inverse
image ofM+ ⊂ (M+)gp via the map τgp : (Munr,+)gp× (M�,+)gp→ (M+)gp associated

to τ defined above; here, the superscript gp is the sheaf of groups associated to a

sheaf of monoids. Let OA′inf := OAinf ⊗
Z

[
Munr,+×M�,+

] Z[M′] be the log envelope of

Ounr+
X ⊗Zp

Ainf , with respect to prelog structure Munr,+ ×M�,+ and the map ϑX . It
is endowed with a tautological prelog structure α′ :M′ →OA′inf . The map ϑX extends

uniquely to a map ϑ′X : OA′inf −→Ô+
Xpke

compatible with the prelog structures α′ and α+,

that is, such that ϑ′X ◦α′ is α+ composed with the natural morphismM′→M+ induced

by (αunr)gp× (αinf)
gp. Let I be the kernel of ϑ′X .

Then OAlog is the p-adic completion of the DP envelope of OA′inf with respect to the

ideal I. For every positive integer n, we also define OAlog
max,n to be the p-adic completion of

the subsheafOA′inf
[ I
pn
]
ofOA′inf [p−1]. The map ϑ′X extends to a map ϑmax,n : OAlog

max,n→

Ô+
Xpke

. As I admits DP powers in OAlog
max,n and OAlog is the p-adic completion of the
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DP envelope of OA′inf with respect to I, we have a natural map OAlog →OAlog
max,n by

the universal property of the DP envelope.

The derivation d : O
̂X → Ωlog

̂X/OK
defines Ainf -linear connections

∇ : OAlog −→OAlog⊗Ounr,+
Xpke

Ωunr
Xpke

and

∇ : OAlog
max,n −→OAlog

max,n⊗Ounr,+
Xpke

Ωunr
Xpke

,

where Ωunr
Xpke

:= w−1
(
Ωlog

̂X/OK

)
is the inverse image of the logarithmic differentials on X̂.

Remark 6.1. On the complement of the cusps, where the log structure is trivial, the

sheaf OAlog is the p-adic completion of the DP envelope of OAinf with respect to the

kernel of ϑX ; it is the sheaf denoted OAcris in [25, Def. 2.9].
Take an affine open neighbourhood Û0 ⊂ X̂ of a cusp, with local coordinate Y at

the given cusp. Define U0 ⊂ X to be the associated affinoid with induced log structure.

Take U = limiUi with Ui =
(
Spa(Ri,R

+
i ),Mi

)
to be a log affinoid perfectoid with initial

object U0, and let (R,R+) be the p-adic completion of limi(Ri,R
+
i ). By assumption, we

have a compatible system of pn-th roots Yn of Y so that the system Y := [Y ,Y1,Y2, · · · ] ∈
α�,+

(
M�,+

)
(U). As shown in [1, Lemma 3.25], we have OAlog(U) =Acris(R,R

+){〈w−1〉},
which is the p-adic completion of the DP algebra Acris(R,R

+)〈w− 1〉. The structure as

R0-algebra is provided by sending Y �→ [Y ]w. Here, Acris is the p-adic completion of the

DP envelope of Ainf with respect to the kernel of ϑ. There is a similar description for

OAlog
max,n(U).

There are also the geometric de Rham sheaves OB+
dR,log and OBdR,log defined in

[16, Def. 2.2.10], with a map ϑdR,log : OB+
dR,log → Ô

+
Xpke

and logarithmic connection

OB+
dR,log −→ OB

+
dR,log ⊗Ounr,+

Xpke

Ωunr
Xpke

(see [16, §2.2]). As OB+
dR,log is an OXpke

⊗Ainf -

algebra by construction, there is a natural map of sheaves OAinf → OB+
dR,log whose

composite with ϑdR,log is ϑX .

Lemma 6.2. The map OAinf →OB+
dR,log extends to morphisms OAlog →OAlog

max,n →
OB+

dR,log, for every n, such that the composite with ϑdR,log is the map ϑmax,n and it is

compatible with connections.

Proof. First of all, we show how to get a map OA′inf →OB+
dR,log of OAinf -algebras.

It suffices to construct this for log affinoid perfectoid objects of Xpke arising from toric
charts, as those form a basis of Xpke. Take any such object that we denote by U. It

follows from [16, Lemma 2.3.12] that there exists a morphism of monoids β :M�,+(U)∗→
OB+

dR,log(U) such that for every a ∈ M�,+(U) we have α+(a�) =
[
α�,+(a)

]
β(a). Since

the map M�,+(U) → M+(U) is an isomorphism, any element in the kernel H of
(αunr)gp(U)× (αinf)

gp(U) : (Munr,+)gp(U)× (M�,+)gp(U)→ (M+)gp(U) is of the form(
a�(b�)−1,ab−1

)
with a,b ∈M�(U) such that a�,b� ∈Munr,+(U). Any such element can

be sent to β(a)β(b)−1, and this defines a group homomorphism β : H →M�,+(U)∗. As
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M′(U) = H ·
(
Munr,+(U)×M�,+(U)

)
⊂ (Munr,+)gp(U)× (M�,+)gp(U)→ (M+)gp(U),

such map extends to a map of monoids β :M′(U)→OB+
dR,log(U) which is compatible

with the map αunr(U)×αinf(U) :Munr,+(U)×M�,+→OAinf(U)→OB+
dR,log(U). Using

this we get a unique morphism OA′inf(U)→ OB+
dR,log(U) of OAinf(U)-algebras which

coincides with β onM′(U).

In this way, we get the claimed morphism OA′inf → OB+
dR,log whose composite with

ϑdR,log is ϑ′X . In particular, the kernel I of ϑ′X is mapped to the kernel of ϑdR,log. As p

is invertible in OB+
dR,log, it also extends to a morphism OA′inf

[ I
pn
]
→OB+

dR,log and
I
pn

maps to the kernel of ϑdR,log. Passing to log affinoid perfectoid objects of Xpke one shows

that such map extends to the p-adic completion OAlog
max,n of OA′inf

[ I
pn
]
→OB+

dR,log. The

compatibility with ϑmax,n is clear. The compatibility of the connections is also clear as

both are defined using the derivation d : O
̂X → Ωlog

̂X/OK
.

6.2. Crystalline comparison morphisms

We have a crystalline comparison morphism over Xpke:

αlog : (Tp(E))∨ −→
(
H1

crys

(
E0/X̂

)
⊗O+

X
OAlog

)∇′=0

, (8)

where (Tp(E))∨ is the Zp-dual of Tp(E) and ∇′ is the natural connection on

H1
crys

(
E0/X̂

)
⊗OAlog determined by the connections on the factors. We also write

(
H1

crys(E0/X̂)⊗O+
X
−
)
for
(
w−1

(
H1

crys(E0/X̂)
)
⊗Ounr+

X
−
)

to ease the notation.
We describe αlog for a log affinoid perfectoid open cover of X . Consider an étale open

U = Spf(S)⊂ X̂. Let W = Spa(R,R+) be a log affinoid perfectoid cover of UQp
, the adic

geometric generic fibre of U. We assume that the universal elliptic curve extends to a

(generalised) elliptic curve Ẽ over Spec(S) and that Tp(E) is trivialized over W. Consider

the rings Acris(R
+) (resp. Alog(R

+)) defined by taking the p-adic completion of the DP
envelope (resp. the log DP envelope) of S⊗Ainf(W ) with respect to the kernel of the

map 1⊗ϑ(W ) : S⊗Ainf(W )→Ô+
X (W ) =R+. It naturally maps to OAlog(W ). We define

αlog(W ) with values in H1
crys

(
Ẽ0/S

)
⊗S Alog(R

+) as follows.

Away from the cusps: Assume first that Ẽ is an elliptic curve so that Ẽ[pn](R+) =
E[pn](R) for every n ∈ N and Tp(Ẽ)(R+) = Tp(E)(R). Equivalently, the log structure

is trivial and Alog(R
+) = Acris(R

+). Then to give a ∈ Tp(E∨)(R) = Tp
(
E
)∨

(R+)(1) is

equivalent to give a map of p-divisible groups γa : Qp/Zp → E∨[p∞] over R+ and γa
defines a map of covariant Dieudonné modules

Dcris(γa) : Dcris(Qp/Zp)
(
Acris(R

+)
)
→Dcris

(
E∨[p∞]

)(
Acris(R

+)
)
.
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Note that Acris(R
+) = Dcris(Qp/Zp)

(
Acris(R

+)
)

and Dcris

(
Ẽ∨[p∞]

)(
Acris(R

+)
)
=

H1
crys

(
E∨0 /S

)∨⊗S Acris(R
+), where E∨0 is the modulo p reduction of E∨. Thus Dcris(γa)

defines a map

Dcris(γa) : Acris(R
+)−→H1

crys

(
E∨0 /S

)∨⊗S Acris(R
+)

and setting

αlog(W )(a) = αcris(W )(a) :=Dcris(γa)(1)

(see [24]§3.5) and using Weil, respectively Poincaré dualities gives the map

αlog(W ) : Tp(E)∨(R+)−→H1
crys

(
E0/S)⊗s a : cris(R+).

As Dcris(γa) is a map of crystals; therefore, it is compatible with connections. Since

∇(1) = 0 for 1 ∈Acris(R
+), then ∇′

(
Im
(
αcris(W )

))
= 0.

Around the cusps: Assume next that U does not contain supersingular points. Then

the connected part Ẽ[p∞]0 of Ẽ[p∞] is a p-divisble group of multiplicative type. Let

Ẽ[p∞]0,∨ be its Cartier dual; it is an étale p-divisible group over U. We write H1
crys(E0/S)

for the direct sum of ωE/S ∼= Dcris

(
Ẽ[p∞]0

)
(S)∨ and ω−1E/S

∼= Dcris

(
Ẽ[p∞]0,∨

)
(S)∨.

The connection H1
crys(E0/S) → H1

crys(E0/S)⊗S Ω1, log
S/OK

is the sum of the connections

induced from those on Dcris

(
Ẽ[p∞]0

)
(S)∨ and Dcris

(
Ẽ[p∞]0,∨

)
(S)∨ plus the S -linear

isomorphism ωE/S ∼= ω−1E/S ⊗S Ω1, log
S/OK

provided by the Kodaira–Spencer isomorphism,

which we denote KS. In other words, as a module Dcris(Ẽ[p∞]) is isomorphic to the direct

sum Dcris(Ẽ[p∞]0)(S)∨ ⊕Dcris(Ẽ[p∞]0,∨)(S)∨ ∼= ωE/S ⊕ ω−1E/S , while the logarithmic

connection ∇
˜E[p∞] is given with respect to this decomposition by(

∇
˜E[p∞]0 0

KS ∇
˜E[p∞]0,∨

)
.

Lemma 6.3. If U does not contain supersingular points and Ẽ is an elliptic curve,
the two definitions of H1

crys(E0/S) coincide. Moreover, a splitting of the Tate module

Tp
(
Ẽ[p∞])(R) = Tp

(
Ẽ[p∞]0

)
(R+)⊕Tp

(
Ẽ[p∞]0,∨

)
(R+) uniquely defines

(1) a splitting Ẽ[p∞]R+ = Ẽ[p∞]0,∨R+ ⊕ Ẽ[p∞]0R+ of the connected-étale sequence for

Ẽ[p∞]R+ ;

(2) a splitting of Dcris

(
Ẽ∨[p∞]

)(
Acris(R

+)
)∨ ∼=H1

crys

(
E0/S

)∨⊗S Acris(R
+);

(3) a splitting of αlog(W ) as the direct sum of the crystalline comparison maps for the

p-divisible groups Ẽ[p∞]0R+ and Ẽ[p∞]0,∨R+ , compatibly with (1) ad (2).

Proof. Notice that the quotient map Ẽ∨[p∞]→ Ẽ∨[p∞]et onto the étale part induces a

map from H1
crys

(
Ẽ0/S

)
to the Dieudonné module of Ẽ∨[p∞]et(S) which splits canonically

via the unit root decomposition. As Ẽ∨[p∞]et ∼= Ẽ[p∞]0,∨ and similarly Ẽ∨[p∞]0 ∼=
Ẽ[p∞]et,∨ ∼= Ẽ[p∞]0 we conclude that H1

crys

(
Ẽ0/S

)
splits canonically, as a module, as

the direct sum of ωE/S ∼= Dcris

(
Ẽ[p∞]0

)
(S)∨ and ω−1E/S

∼= Dcris

(
Ẽ[p∞]0,∨

)
(S)∨, with
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connection given by the connection on each factor plus the Kodaira–Spencer isomorphism.
Thus, the two descriptions of H1

crys

(
Ẽ0/S

)
coincide. Claims (2) and (3) follow from the

functoriality of Dcris and of αlog.

Lemma 6.3 suggests how to define αlog(W ) in the case that U does not contain

supersingular points but can possibly contain the cusps. Namely, we write Tp
(
Ẽ[p∞])(R)

as a split extension of Tp
(
Ẽ[p∞]0,∨

)
(R+) by Tp

(
Ẽ[p∞]0

)
(R+) and αlog(W ) as the direct

sum of the crystalline comparison maps for the p-divisible groups Ẽ[p∞]0R+ and Ẽ[p∞]0,∨R+ .

Then Lemma 6.3 implies that this definition agreed with the definition given away from
the cusps. Thus, αlog(W ) are functorial in the pair (U,W ), and hence, they glue to a

morphism αlog on Xpke. We also consider the composite map of sheaves

αlog
max,n : (Tp(E))∨ −→

(
H1

crys(E0/X̂)⊗O+
X
OAlog

max,n

)∇′=0

,

induced by composing αlog with the map of sheaves OAlog→OAlog
max,n described at the

beginning of the section.

6.3. The sheaves Wk,dR

We consider strict neighbourhoods X
(
p/Hap

s)
of the ordinary locus in X , where Ha is a

(any) local lift of the Hasse invariant. It follows from [23, Lemma 3.3.8 & Lemma 3.3.15]

that the neighbourhoods X
(
p/Hap

s)
⊗KCp and X (m)

∞ of §4.2 for varying s, respectively m,

are fundamental systems of open neighbourhoods of the ordinary locus of XCp
. We then

take s and m large enough so that the conclusions of Proposition 4.5 hold for X
(
p/Hap

s)
and for X (m)

∞ . Namely, we require that a canonical subgroup Cn of order pn exists, and

this defines a section

X
(
p/Hap

s)
→X0(p

n,N)
(
p/Hap

s)
(9)

of the natural forgetful map X0(p
n,N)

(
p/Hap

s)
−→X

(
p/Hap

s)
. Write

ν : Ign
(
p/Hap

s)
−→X

(
p/Hap

s)
for the (Z/pnZ)∗-Galois cover classifying trivializations of C∨n .
Let E be the universal elliptic curve over the normalization of X̂ in Ign

(
p/Hap

s)
.

Its invariant differentials ωE and relative de Rham cohomology HE define locally free

O+

Ign
(
p/Hap

s
)-modules with the Hodge filtration ωE ⊂ HE . Write δ for the invertible

O+

Ign
(
p/Hap

s
)-module defined by δ := ωE(ω

mod
E )−1. Note that δp−1 = ν∗(Hdg), where Hdg

is the ideal of O+

X
(
p/Hap

s
) generated by the local lifts Ha of the Hasse invariant (due to

the blowup, it does not depend on the choice of the local lifts).

From the tautological section P of C∨n , we get a canonical section t of ωmod
E /prωmod

E

generating it as O+

Ign
(
p/Hap

s
)-module. Recall that k : Z∗p→B∗ is an r -analytic character
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for r ≤ n, where B is a ring as in definition 3.6. We denote by H#
E the pushout in the

category of O+

Ign
(
p/Hap

s
)-modules of the diagram

δpωE −→ δpHE
∩

ωmod
E .

We then have the following commutative diagram of sheaves with exact rows:

0 −→ δpωE −→ δpHE −→ δpω−1E −→ 0

∩ ↓ ||
0 −→ ωmod

E −→ H#
E −→ δpω−1E −→ 0

∩ ∩ ∩
0 −→ ωE −→ HE −→ ω−1E −→ 0.

It follows that H#
E is a locally freeO+

Ign
(
p/Hap

r
)-module of rank two and (ωmod

E ,t)⊂ (H#
E,t)

is a compatible inclusion of locally free sheaves with marked sections.

Using the formalism of the dual VBMS (see §3.3), we get sheaves of O+

Ign
(
p/Hap

s
)⊗̂B-

modules ωkE ⊂Wk,dR. We have a residual action of the Galois group (Z/pnZ)∗ of

jn : Ign
(
p/Hap

s)
→ X

(
p/Hap

s)
on (ωmod

E ,t) and (H#
E,t) on which it acts by scalar

multiplication. We then get sheaves ωkE ⊂Wk,dR of OX
(
p/Hap

s
)⊗̂B-modules by taking

the subsheaves of jn,∗(ωkE) ⊂ jn,∗(Wk,dR) on which Z∗p acts via k. We refer to [2, §3.2&
3.3] for details.

Proposition 6.4. The base change of ωkE [1/p] to X
(
p/Hap

s)
Cp

coincides with the

restriction of the sheaf ωkE [1/p] defined in §4.4 over X0(p
n,N)

(m)
∞ .

The sheaf Wk,dR has a natural, increasing filtration
(
FilnWk,dR

)
n≥0 such that

ωkE [1/p] = Fil0Wk,dR[1/p]. The Gauss–Manin connection ∇ : HE → HE ⊗Ωlog

X
(
p/Hap

s
)
/K

induces a connection

∇k : Wk,dR[1/p]−→Wk,dR⊗̂Ωlog

X
(
p/Hap

s
)
/K

satisfying Griffiths’ transversality, that is, ∇k
(
FilnWk,dR[1/p]

)
⊂ Filn+1Wk,dR[1/p]

⊗̂Ωlog

X
(
p/Hap

s
)
/K

.

The cohomology groups H0
(
X
(
p/Hap

s)
,Wk,dR

)
and H0

(
X
(
p/Hap

s)
,FilnWk,dR

)
are

endowed with an action of the Up-operator, and for every integer h they admit slope

≤ h decompositions. Furthermore, we have p∇k ◦Up = Up ◦∇k, and for n� 0 we have

H0
(
X
(
p/Hap

s)
,FilnWk,dR

)(h)
=H0

(
X
(
p/Hap

s)
,Wk,dR

)(h)
.

Proof. The first statement follows from the fact that the two constructions coincide on

X
(
p/Hap

s)
Cp
. The other statements are proven in [2]. Namely, the filtration is constructed

https://doi.org/10.1017/S1474748022000548 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000548


692 F. Andreatta and A. Iovita

in Theorem 3.11, the connection in Theorem 3.18, the Up-operator is defined in §3.6 and
the statements about the slope decomposition follow from Correlation 3.26.

Using the Kodaira–Spencer isomorphism ω2
E |X

(
p/Hap

sΩ
log

X
(
p/Hap

s
)
/K

, we can and will

view the connection ∇k as a map ∇k : Wk,dR[p
−1]→Wk+2,dR[p

−1].

6.4. The de Rham comparison map

Fix an r -analytic weight k : Z∗p→B∗ as in definition 3.6. Let B+
dR and BdR =B+

dR[t
−1] be

the classical period rings of Fontaine with the canonical topology so that, for example, the

quotient topology on B+
dR/tB

+
dR = Cp is the p-adic topology on Cp. They are endowed

with filtrations such that FiliBdR = tiB+
dR for every i ∈ Z. We write Wk,dR,• for the

complex Wk,dR[p
−1]→Wk+2,dR[p

−1], where the map is defined by ∇k and FilmWk,dR,•
for the subcomplex FilmWk,dR[p

−1]→ Film+1Wk+2,dR[p
−1]. In this section, we use the

map αlog to get the following result.

Theorem 6.5. We have a Hecke equivariant, B⊗̂B+
dR-linear, Gal(K/K)-equivariant

map

ρk : H
1
(
XK,pke,Dok(T∨0 )[n]

)(h)⊗̂B+
dR −→H1

dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)⊗̂Fil−1BdR,

where the completed tensor product is taken considering the canonical topology on B+
dR.

Moreover,

H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h) ∼= H0
(
X
(
p/Hap

s)
,Wk+2,dR[1/p]

)(h)
∇k
(
H0
(
X
(
p/Hap

s)
,Wk,dR[1/p]

)(h−1)) .
Furthermore:

i. If uk(uk−1) · · ·(uk−h+1) is invertible in B[1/p] the map ρk is surjective;

ii. The map ωk+2
E →Wk+2,dR induces a surjective map, which is an isomorphism if (i)

above holds:

H0
(
X
(
p/Hap

s)
,ωk+2
E [1/p]

)(h) −→H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•[1/p]

)(h)
.

iii. For specializations, B[1/p]→ Qp so that the composite weight k0 is classical, ρk is

compatible with the classical de Rham comparison map

H1
(
XK,pke,Sym

k0(Tp(E)∨)
)
⊗BdR

∼=H1
dR

(
X ,Symk0(HE)

)
⊗K BdR

via the map induced by taking on the left-hand side the pro-Kummer étale

cohomology via the projection Dok(T
∨
0 )[n]→ Dok0(T

∨
0 )[n]→ Symk0(Tp(E)∨) and on

the right-hand side the restriction map to the open X
(
p/Hap

s)
H1

dR

(
X ,Symk0(HE)

)
−→H0

(
X
(
p/Hap

s)
,ωk0+2
E [1/p]

)
/ϑk0+1

×H0
(
X
(
p/Hap

s)
,ω−k0E [1/p]

)
.

(Here, ϑ is the classical theta operator on modular forms.)
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The proof of Theorem 6.5 will be given in Section §6.4.2.
We now consider the Galois cohomology for the group G := Gal(K/K). Recall that

H1
(
G,Fil−1BdR(1)

)
=K[logχ], where χ is the cyclotomic character. More precisely, we

see logχ as a 1-cocycle logχ : G−→Zp⊂Fil−1BdR(1)= t(t−1B+
dR)=B+

dR, and we denoted
[logχ] its cohomology class. We then obtain from Theorem 6.5 the following corollary:

Corollary 6.6. We have a Hecke equivariant, B-linear map

Exp∗k : H
1
(
G,H1

(
XK,pke,Dok(T∨0 )[n](1)

)(h))−→H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)
,

called the big dual exponential map. It has the property that for every classical weight
specialization k0 it is compatible with the classical dual exponential map as follows:

a) If k0 > h− 1, that is, k0 is a noncritical weight for the slope h, then we have the

following commutative diagram with horizontal isomorphisms. Here, we denoted by exp∗k0
the Kato dual exponential map associated to weight k0 modular forms.

(
H1
(
G,H1

(
XK,pke,Dok(T∨0 )[n](1)

)(h)))
k0

(
Exp∗

k

)
k0−→

(
H1

dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h))
k0

↓∼= ↓∼=
H1
(
G,H1

(
XK,pke,Sym

k0(Tp(E)∨)(1)
)(h)) exp∗

k0−→ Fil0H1
dR

(
X ,Symk0(HE)

)(h)
.

b) If 0≤ k0 ≤ h+1, that is, k0 is critical with respect to h, we only have a commutative

diagram of the form(
H1
(
G,H1

(
XK,pke,Dok(T∨0 )[n](1)

)(h)))
k0

(
Exp∗

k

)
k0−→

(
H1

dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h))
k0

↓ ↑

H1
(
G,H1

(
XK,pke,Sym

k0(Tp(E)∨)(1)
)(h)) exp∗

k0−→ Fil0H1
dR

(
X ,Symk0(HE)

)(h)
,

where the right vertical arrow is induced by restriction.

Proof. Granted Theorem 6.5, we have the following natural B -linear and G-equivariant

maps:

H1
(
XK,pke,Dok(T∨0 )[n](1)

)(h) −→H1
(
XK,pke,Dok(T∨0 )[n](1)

)(h)⊗̂B+
dR

ρk−→
ρk−→H1

dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)⊗̂Fil−1BdR(1),

whose composition we denote by fk. Then we define Exp∗k as the map induced by

composing fk in Galois cohomology with the natural isomorphism:

H1
(
G,H1

(
XK,pke,Dok(T∨0 )[n](1)

)(h))
−→H1

(
G,H1

dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)⊗̂Fil−1BdR(1)
)
∼=

∼= (H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)⊗K H1
(
G,Fil−1BdR(1)

)∼=H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•

)(h)
.
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The vertical maps on the left-hand side of the diagrams in (a) and (b) are induced by

the quotient map Dok(T
∨
0 )[n]|k0 → Symk0(Tp(E)∨. The fact that the induced map on

the slope ≤ h-part of H1
(
XK,pke,

)
is an isomorphism upon specialization in weight k0

follows identifying H1
(
XK,pke,

)
with the group cohomology H1

(
Γ0(p

n)∩Γ(N),
)
, arguing

as in [5, Prop. 3.18] and using Glenn Stevens’ classicality result of modular symbols; see

[5, Thm. 3.16 & Thm. 3.17]. The vertical maps on the right-hand side of the diagrams
in (a) and (b) are induced by the inclusion H0

(
X ,ωk0+2

E

)
= Fil0H1

dR

(
X ,Symk0(HE)

)
⊂

H1
dR

(
X ,Symk0(HE)

)
. The induced map on slope ≤ h-part in (a) is an isomorphism thanks

to Theorem 5.1.

Remark 6.7. The main reason we twist by 1 the pro-Kummer étale sheaves Dok(T
∨
0 )[n]

and Symk0
(
(Tp(E)∨

)
in the corollary above is because the Galois representations attached

to overconvergent eigenforms, respectively classical ones are quotients of pro-Kumer étale

cohomology of such sheaves (with the twist, that is).

6.4.1. A refinement of the map αlog. Consider the étale cover jn : Ign
(
p/Hap

s)
→

X
(
p/Hap

s)
given by choosing a generator of C∨n . It is Galois with groups Δn

∼=
(Z/pnZ)∗. Let Dn := (Tp(E)/pn)/Cn. Then we get an exact sequence 0 → D∨n →
Tp(E)∨/pnTp(E)∨→ C∨n → 0 with a marked section s of C∨n .

Proposition 6.8. The restriction to Ign
(
p/Hap

s)
of the map αlog

max,n+1 factors via the

submodule H#
E ⊗O+

Ign

(
p/Hap

s
) OAlog

max,n+1|Ign
(
p/Hap

s
). The induced map

βlog
max,n+1 : (Tp(E))∨⊗Zp

OAlog
max,n+1|Ign

(
p/Hap

s
)

−→H#
E ⊗O+

Ign

(
p/Hap

s
) OAlog

max,n+1|Ign
(
p/Hap

s
)

sends the tautological section P of C∨n to the marked section t of H#
E/p

rH#
E and sends D∨n

to 0 modulo pr. In particular, jn,∗(β
log
max,n+1) is equivariant for the action of Δn.

Proof. Let J be the kernel of the map OAlog→Ô+
Xpke

. By construction of Amax,n+1, the

ideal J maps to IpOA
log
max,n+1 ⊂ pnOA

log
max,n+1 via the map OAlog −→OAlog

max,n+1.

The map αlog modulo J coincides with the map dlog of equation (2) and thanks

to Proposition 4.5, its image coincides with ωmod
E ⊗Ô+

Ign
(
p/Hap

s
) ⊂H#

E ⊗Ô+

Ign
(
p/Hap

s
) ⊂

HE⊗Ô+

Ign
(
p/Hap

s
). Also, Hap ·HE ⊂H#

E . As p/Ha
p is a section ofO+

X
(
p/Hap

s
), we conclude

that pHE ⊂H#
E . We deduce that the image of αlog

max,n+1 is contained in

H#
E ⊗O+

Ign

(
p/Hap

s
)OAlog

max,n+1|Ign
(
p/Hap

s
)+J HE⊗O+

Ign

(
p/Hap

s
) OAlog

max,n+1|Ign
(
p/Hap

s
) ⊂

⊂H#
E ⊗O+

Ign

(
p/Hap

s
)OAlog

max,n+1|Ign
(
p/Hap

s
)+pHE⊗O+

Ign

(
p/Hap

s
)OAlog

max,n+1|Ign
(
p/Hap

s
) ⊂

⊂H#
E ⊗O+

Ign

(
p/Hap

s
) OAlog

max,n+1|Ign
(
p/Hap

s
)
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as claimed. We also know that αlog maps the tautological section P of C∨n to the marked

section t of H#
E/p

rH#
E modulo prOAlog+J and sends D∨n to 0 modulo prOAlog+J . As

J ⊂ pnOAmax,n+1, the conclusion follows.

The equivariance of jn,∗(β
log
max,n+1) follows from the fact that after composing with

the inclusion H#
E ⊂ j∗n

(
HE
)
, it coincides with αlog

max,n+1 restricted to Ign
(
p/Hap

s)
and

αlog
max,n+1 is defined over X

(
p/Hap

s)
.

Corollary 6.9. Applying the formalism of VBMS to βlog
max,n+1, we get map

δ : WD
k

(
(Tp(E))∨,D∨n,t

)
|Ign

(
p/Hap

s
)
pke

−→
(
Wk,dR⊗̂O+

Ign

(
p/Hap

s
)OAlog

max,n+1|Ign
(
p/Hap

s
))∇=0

of sheaves over Ign
(
p/Hap

s)
pke

such that jn,∗(δ) is Δn-equivariant.

Composing with the map defined in Corollary 3.9, we get a map of sheaves on
X
(
p/Hap

s)
pke

:

ζk : D
o
k(T

∨
0 )[n]−→

(
Wk,dR⊗̂O+

X
(
p/Hap

s
)OAlog

max,n+1[p
−1]

)∇=0

that is functorial with respect to isogenies E→E′ inducing an isomorphism on canonical

subgroups.

Proof. We define δ for a log affinoid perfectoid open W of Ign
(
p/Hap

s)
pke

over an open

affinoid U = Spa(R,R+) of Ign
(
p/Hap

s)
. We assume that Tp(E)(W ) is trivial and that

H#
E (U) is a free of rank two R+-module. It is easy to see that we have isomorphisms

VD0
(
(Tp(E))∨,D∨n,t

)
⊗̂Zp
OAlog

max,n+1(W )

∼= VD0
(
(Tp(E)⊗Zp

OAlog
max,n+1(W ))∨,D∨n ⊗ZOAlog

max,n+1(W ),t
)

and that

V0

(
H#
E,t
)
⊗̂R+OAlog

max,n+1(W )∼= V0

(
H#
E ⊗̂R+OAlog

max,n+1(W ),t
)
.

Thanks to Proposition 6.8, the map βlog
max,n+1 induces a map

V0

(
H#
E ⊗̂R+OAlog

max,n+1(W ),t
)

→ VD0
(
(Tp(E)⊗Zp

OAlog
max,n+1(W ))∨,D∨n ⊗ZOAlog

max,n+1(W ),t
)
.

In conclusion, we get a map

V0

(
H#
E,t
)
⊗̂R+OAlog

max,n+1(W )−→ VD0
(
(Tp(E))∨,D∨n,t

)
⊗̂Zp
OAlog

max,n+1(W ).

This induces the claimed map δ(W ). As jn,∗(β
log
max,n+1) is Δn-equivariant due to

Proposition 6.8, also δ is.
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The formalism of VBMS implies that these maps are functorial with respect to isogenies
and base change. The connection on Wk,dR is defined in [2] using Grothendieck’s

approach: Passing to the base-change over the first infinitesimal neighbourhood of the

diagonal of X
(
p/Hap

s)
, it is realized as an isomorphism between the pullback via the two

projections to X
(
p/Hap

s)
using the functoriality of the VBMS formalism. The fact that

βlog
max,n+1 has image annihilated by ∇ implies that the image of δ(W ) is also annihilated

by the connection.

Recall that H1
(
XK,pke,Dok(T∨0 )[n]

)
admits slope decompositions for the Up-operator

thanks to Proposition 4.13.

Lemma 6.10. For every h, there exists m such the map

H1
(
XK,pke,Dok(T∨0 )[n]

)(h) −→H1
(
X
(
p/Hap

s)
K,pke

,Wk,dR,•⊗̂O+

X(p/Hap
s
)

OAlog
max,n+1[p

−1]
)
,

induced by ζk, factors via

H1
(
X (p/Hap

s

)K,pke,FilmWk,dR,•⊗O+

X(p/Hap
s
)

OAlog
max,n+1[p

−1]
)
.

Proof. Consider the complex Wk,dR,•/FilmWk,dR,•. We claim that for i= 0 and 1

Hi
(
X
(
p/Hap

s)
K,pke

,Wk,dR,•/FilmWk,dR,•⊗̂O+

X(p/Hap
s
)

OAlog
max,n+1[p

−1]
)

admits a slope h-decomposition and the ≤ h-part is zero, for m� 0. The claim of the

lemma then follows upon taking long exact sequences in cohomology associated to the

short exact sequences 0→ FilmWk,dR,• →Wk,dR,• →Wk,dR,•/FilmWk,dR,• → 0 and

using that the slope h-decomposition is an exact operation.
It follows from [2, Lemma 3.33] that the operator Up on

Hi
(
X
(
p/Hap

s)
K,pke

,Wk,dR,•/FilmWk,dR,•⊗̂O+

X(p/Hap
s
)

OAlog
max,n+1

)
is integrally defined and can be written as ph+1U ′p for some operator U ′p for m� 0. The
proof then follows from [6], Lemma 5.8 and the subsequent claim: One shows that for

every polynomial P of slope ≤ h, P (Up) is invertible on this space after inverting p.

6.4.2. Proof of Theorem 6.5. Consider the map FilmWk,dR,• ⊗O+

Y(p/Hap
s
)

OAmax,n+1[p
−1] → FilmWk,dR,• ⊗O+

Y(p/Hap
s
)

Fil0OBdR,log obtained from the mor-

phism OAlog
max,n+1 → OB+

dR,log of Lemma 6.2. We recall that the connection ∇′ :
Wk,dR⊗̂OBdR −→Wk+2,dR⊗̂OBdR has the form ∇′ = ∇k⊗̂1 + 1⊗̂∇dR, where ∇k is

the connection on Wk,dR and ∇dR the one on OBdR. Moreover, both ∇k and ∇dR satisfy
the Griffith-transversality property with respect to the respective filtrations of Wk,dR

and respectively OBdR, where let us recall that the first sheaf has an increasing filtration

Fil•Wk,dR while the second has a decreasing filtration Fil•OBdR.
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For every s≥ 1, we consider the composition, which we still denote ∇′:

FilmWk,dR⊗
Fil0OBdR,log

FilsOBdR,log

∇′
−→ Film+1Wk+2,dR⊗

Fil0OBdR,log

FilsOBdR,log
+FilmWk+2,dR⊗

Fil−1OBdR

Fils−1OBdR

−→ Film+1Wk+2,dR⊗
Fil−1OBdR,log

Fils−1OBdR,log

,

and we have:

Lemma 6.11. For every u≥ 1, the natural map of complexes

H0
(
X
(

p
Hap

rs

)
K
,FilmWk,dR

)
⊗̂ Fil0BdR

FiluBdR

∇−→ H0
(
X
(

p
Hap

s

)
K
,Film+1Wk+2,dR

)
⊗̂ Fil−1BdR

Filu−1BdR

↓ ↓
H0
(
X
(

p
Hap

s

)
K
,FilmWk,dR⊗ Fil0OBdR,log

FiluOBdR,log

) ∇′
−→ H0

(
X
(

p
Hap

s

)
K
, Film+1Wk+2,dR

⊗ Fil−1OBdR,log

Filu−1OBdR,log

)
,

where the cohomology is taken with respect to the pro-Kummer étale topology, is an

isomorphism.

In the above diagram, BdR denotes Fontaine’s classical period ring. Furthermore,
this complex represents the cohomology RΓ

(
X
(
p/Hap

s)
K,pke

,FilmWk,dR,• ⊗O+

X(p/Hap
s
)

Fil0OBdR

FiluOBdR

)
.

Proof. Recall that FilmWk,dR[1/p] is a locally free OX
(
p/Hap

s
)-module for every m. We

prove the result restricting to an affinoid cover {Ui}i∈I , where Film and Film+1 are free.
Since X

(
p/Hap

s)
is affinoid, the Chech complex for FilmWk,dR[1/p] w.r.t. the Ui’s is

exact. As Fil0BdR/Fil
uBdR is an iterated extension of Cp-vector spaces for every h, the

Chech complex remains exact also after taking ⊗̂Fil0BdR/Fil
uBdR. From the result for

the Ui’s, we then deduce the lemma.

We are left to show the claim for each Ui =Spa(Ri,R
+
i ). Then [16, Lemma 3.3.2] implies

that the group Hj
(
Ui,K,pke,Fil

nOBdR,log/Fil
n+uOBdR,log

)
=0 for j ≥ 1 and coincides with

Filn
(
R+
i ⊗̂BdR

)
/Filu+n

(
R+
i ⊗̂BdR

)
for i = 0, for n = 0,−1. As the latter coincides with

R+
i ⊗̂
(
FilnBdR/Fil

u+nBdR

)
by [16, Def. 3.1.1], the conclusion follows.

We deduce from Lemma 6.10 and Lemma 6.11 that for every positive integer u we have
a natural map

H1
(
XK,pke,Dok(T∨0 )[n]

)(h)⊗̂Fil0BdR

FiluBdR

→
H0
(
X
(
p/Hap

s)
,Film+1Wk+2,dR

)
⊗̂(Fil−1BdR/Fil

u−1BdR)

∇k
(
H0
(
X
(
p/Hap

s)
,FilmWk,dR

))
⊗̂(Fil0BdR/Fil

uBdR)
.
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Recall from Proposition 6.4 that H0
(
X
(
p/Hap

s)
,FilmWk,dR[1/p]

)
admits a slope

≤ h−1 decomposition and H0
(
X
(
p/Hap

s)
,Film+1Wk+2,dR[1/p]

)
admits a slope

≤ h decomposition and the slope ≤ h − 1 part, resp. ≤ h part, coincides with

H0
(
X
(
p/Hap

s)
,Wk,dR[1/p]

)(h−1)
, resp. H0

(
X
(
p/Hap

s)
,Wk+2,dR[1/p]

)(h)
.

The same then holds after ⊗̂Fil0BdR/Fil
uBdR, respectively ⊗̂Fil−1,BdR/Fil

u−1BdR,

and for their quotient via ∇ (by the five lemma for slope decompositions cf. [6, Thm.
5.7]). As Fil0BdR =B+

dR, Fil
−1BdR = t−1B+

dR and Filn+uBdR = tn+uB+
dR for n ∈ {−1,0},

we get maps

H1
(
XK,pke,Dok(T∨0 )[n]

)(h)⊗̂ B+
dR

tuB+
dR

−→H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•[1/p]

)(h)⊗̂ t−1B+
dR

tu−1B+
dR

with

H1
dR

(
X
(
p/Hap

s)
,Wk,dR,•[1/p]

)(h) ∼= H0
(
X
(
p/Hap

s)
,Wk+2,dR[1/p]

)(h)
∇k
(
H0
(
X
(
p/Hap

s)
,Wk,dR[1/p]

)(h−1))
by [2, Lemma 3.33 & Eq. (6)]. As they are obtained from maps of sheaves on Xpke, the

equivariance for the Gal(K/K)-action is clear. The compatibility with Hecke operators

follows from the fact that ζk is compatible with the map induced by isogenies preserving
the canonical subgroup that are used to define the Hecke operators T
, for � � |pN , and the

Hecke operator Up. It is compatible with weight specializations as the map ζk is. Taking

the inverse limits for u→∞, we get the statement of Theorem 6.5, except for (i) and (ii).

Claim (ii) follows from [2, section §3.9]. Using (ii), we get a map

H1
(
XK,pke,Dok(T∨0 )[n]

)(h)⊗̂ B+
dR

tuB+
dR

−→H0
(
X
(
p/Hap

s)
,ωkE

)(h)⊗̂ t−1B+
dR

tu−1B+
dR

,

which we’d like to prove is surjective under the hypothesis of i). By devissage it suffices

to prove surjectivity for u = 1. As t−1B+
dR/B

+
dR
∼= Cp(−1), the surjectivity follows from

Theorem 5.1.

7. Appendix: Integral slope decomposition

Let us start by formulating the following general property.

We let R be a p-torsion-free Zp-algebra and T an R-module equipped with an R-linear
operator v : T → T and let α ∈R be an element such that there is r ∈ N and γ ∈R with

αγ = pr. We denote by ρ : T −→ T [1/p] := T ⊗RR[1/p] and denote by T tors := Ker(ρ),

T tf := T/T tors = Im(ρ) and remark that v−α respects the submodule T tors and therefore
induces an R-linear map on T tf .

Definition 7.1. We say that the triple (T,v,α) has property (∗) if

1) There is w ∈ N such that pw
(
T tors

)v=α
= 0.

2) There is a η ∈ N, which depends only on α, such that for every x ∈
(
T tf
)v=α

there

is x̃ ∈ T v=α such that (x̃)tf = pηx, where we denoted (x̃)tf the image of x̃ in T tf .
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The main result of this appendix is the following. Let B denote a ring, and let k : Z∗p −→
B∗ be a B -valued weight as in Definition 3.6, which is s-analytic. Let X (u)

∞ be the adic

subspace of the adic modular curve X := X0(p
n,N) for n ≥ u as in Proposition 4.5.

Let Dk(T
∨
0 )[n] denote the pro-Kummer étale sheaf of weight k distributions, for n ≥ s,

over X (u)
∞ and D

o,(m)
k,∞ [n] := Dk(T

∨
0 )[n]⊗̂O+

(X (u)
∞ )pke

, where we have denoted O+

(X (u)
∞ )pke

the

structure sheaf of the pro-Kummer étale site of X (u)
∞ . We write R := O+

X (u)
∞

(X (u)
∞ )⊗̂Zp

B

and T := H1
(
(X (u)
∞ )pke,D

o,(m)
k,∞ [n]

)
. On T [1/p], we have a B[1/p]-linear operator Up which

has finite slope decompositions by Proposition 4.15.
Let Q(X) ∈

(
B⊗̂OCp

)
[X] be the polynomial with the property that T [1/p](b), for some

b ∈ N is the subset of elements x ∈ T [1/p] such that Q(Up)x = 0. Such a polynomial

exists as T [1/p](b) ∼= H0
(
X (u)
∞ ,ωk+2

E

)
[1/p](b) by Proposition 4.15, and on H0

(
X (u)
∞ ,ωk+2

E

)
the Up operator is compact and has a Fredholm determinant. Then α := −Q(0) ∈
pa(B⊗̂OCp

)∗ with a≤ b ·deg(Q(X)). We write Q(X) = P (X)−α, with P (X) =XR(X)

and P (X),R(X) ∈
(
B⊗̂OCp

)
[X]. We denote v := P (Up) and remark that x ∈ T [1/p](b) if

and only if v(x) = αx. We have

Theorem 7.2. After localizing B to a new p-adically complete ring which we denote
by B′ and replacing R by R′ := O+

X (u)
∞

(X (u)
∞ )⊗̂Zp

B′ and T by T ′ := T ⊗R R′ the triple

(T ′,v⊗1R′,α) above satisfies property (∗) of definition 7.1.

Before we start on the proof of this theorem, we need a few lemmas. We remind the
reader that the sheaf D

o,(m)
k,∞ [n] has a decreasing filtration

(
Filν

)
ν≥0 by subsheaves with

the property (see Proposition 4.15): For all ν ≥ 0 and i≥ 0 we have

Up

(
Hi
(
(X (u)
∞ )pke,Fil

ν
))
⊂ pν+1Hi

(
(X (u)
∞ )pke,Fil

ν
)
.

Moreover, we have Filν/Filν+1 ∼= ωk−2ν−2E ⊗̂OX (u)
∞

(ν + 1) by equation (5). With these

notations we have:

Lemma 7.3. For every ν ∈N large enough and i≥ 0 the triple
(
T νi :=Hi

(
(X (u)
∞ )pke,Fil

ν
)
,

v = P (Up),α
)
satisfies property (∗) of definition 7.1.

Proof. We have the following commutative diagram with exact rows:

0 −→
(
T νi
)tors −→ T νi −→

(
T νi
),tf −→ 0

↓ v−α ↓ v−α ↓ v−α
0 −→

(
T νi
)tors −→ T νi −→

(
T νi
),tf −→ 0.

We remark that the above property about the behavior of Up with respect to the

cohomology of the filtration and the fact that v is the composition of Up, with an

endomorphism of T νi which commutes with Up, implies that there is ν0 such that for all
ν ≥ ν0 we have (v−α · IdT ν

i
) = αU ′i , where U

′
i : T

ν
i −→ T νi is an isomorphism. Therefore,(

T νi )
)v=α

= T νi [α] =
(
T νi
)tors

[α] and
(
T νi
)tf

[α] = 0. Therefore, 1) of property (∗) follows:
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α
((
T νi
)tors)v=α

= α(T νi [α]) = 0. For property 2), let x ∈
((
T νi
)tf)v=α

= 0. For every

y ∈
(
T νi
)v=α

= T νi [α], we have αy = 0 = x.

Lemma 7.4. For every ν ∈ N, the triple
(
Tν := H1

(
(X (u)
∞ )pke,D

o
k/Fil

ν
)
,u = P (Up),α

)
satisfies the property (∗) of Definition 7.1.

Proof. In order to prove the lemma, we’ll use induction on ν ≥ 0. For ν = 0, we have

Dk/Fil
0 ∼= ωkE⊗̂O+

X (u)
∞

; therefore, we have:

1) p1/(p−1)(T0)tors = p1/(p−1)H1
(
(X (u)
∞ )pke,Ô+

X (u)
∞

)tors⊗̂H0(X (u)
∞ ,ωkE) = 0 as computed by

Faltings; see [22, Lemma 5.5 & 5.6] when the log structure is trivial and their analogues

[15, Lemma 6.1.7 & 6.1.11] in the general case;

and
2) If x∈ (T0)tf is such that (v−α)x=0, let y ∈T0 be any lift of x. Then (v−α)(y)∈T tors

0 ;

therefore, z := p1/(p−1)y ∈ T0 satisfies: (v−α)(z) = 0 and ztf = p1/(p−1)x, where we wrote
ztf for the image of z in T tf

0 . Let us observe that we proved more then 1) of property
(∗); namely, we showed that there is r ≥ 0 such that prT tors

0 = 0. We’ll prove the same

property, call it (∗∗) for all ν ≥ 0.

Suppose now that (∗∗) is true for Tν , ν ≥ 1, and let us prove it for Tν+1. We have an

exact sequence of pro-Kumer étale sheaves on the site V := (X (u)
∞ )pke:

0−→ Filν/Filnu+1 −→Do
k/Fil

ν+1 −→Do
k/Fil

ν −→ 0,

therefore a long exact cohomology sequence:

A := H0(V,Dk/Fil
ν)

β→B := H1(V,Filν/Filν+1)
γ→

C := H1(V,D/Filν+1)
δ→D := H1(V,D/Filν)→ 0.

By the induction hypothesis, there is r such that prAtors = prBtors = prDtors = 0. We
have the commutative diagram with the middle row exact:

Ators β−→ Btors γ−→ Ctors δ−→ Dtors

↓ ↓ ↓ ↓
(1) A β−→ B γ−→ C δ−→ D −→ 0

↓ ↓ ↓ ↓
Atf β−→ Btf γ−→ Ctf δ−→ Dtf .

Let us suppose that there is s ≥ 0 such that ps
(
Btf/β(Atf)

)tors
= 0. Then we claim

that p2r+sCtors = 0. To see it, let c ∈ Ctors, then prx= γ(y), y ∈B. We denote by [y] the

image of y in Btf/β(Atf). As pNx= 0 for some N ≥ 0 we have that pN [y] = 0, therefore

[y] ∈
(
Btf/β(Atf

)tors
and so by the above assumption ps[y] = 0. Let z ∈ A be such that

β(ztf) = psytf in Btf . It follows that β(z)−psy ∈ Btors which implies that pr+sy = prβ(z).

Therefore, ps+2rx= 0.
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Let us now prove the remaining claim, namely that there is s ≥ 0 such that

ps
(
Btf/β(Atf

)tors
= 0. For this, let us recall [6] that we have a commutative diagram

with exact rows

H0(X (u)
∞ ,ωk−2νE )

β̃−→ H0(X (u)
∞ ,ωk−2νE ) −→ Coker(β̃) −→ 0

↓ i ↓ j ↓ u
Atf β−→ Btf −→ Btf/β(Atf) −→ 0,

where i and j are injective with cokernels killed by pν/(p−1) and p1/(p−1), respectively.
Moreover, it follows using the explicit basis of the filtration described in Proposition 4.14

and [6, Prop. 5.2] that β̃ =
(∏ν

n=0(uk−n)
)
β′, with β′ an isomorphism. As p1/(p−1) kills

Coker(j), it also kills Coker(u). Therefore, it is enough to prove the claim for Coker(β̃)tors.

We have two possibilities. Either uk = n for some 0 ≤ n ≤ ν and then Btf/β(Atf) = Btf
so that the claim is obvious. Else

∏ν
n=0(uk−n) ∈ (B[1/p])∗ due to our assumption on B

in Definition 3.6, that is, there exists s ∈ N and v ∈ B such that
∏ν
n=0(uk−n) · v = ps.

Then β̃ is injective with the cokernel annihilated by ps and the claim is proven also in

this case.

So we have proved that the property (∗∗) holds for triples (Tν,v = P (Up),α) for all
ν ≥ 0, which implies 1) of property (∗).
Let us prove 2) of property (∗) for C, supposing that it holds for D. We recall our

diagram (1) and let x ∈ Ctf be such that (v−α)(x) = 0. Then δ(x) ∈ Dtf is such that
(v−α)(δ(x)) = 0; therefore, by the induction hypothesis there is m ≥ 0 and y ∈ Dv=α
such that ytf = pmδ(x). Let z ∈ C be such that δ(z) = y and let x̃∈ C be such that x̃tf = x.

Then there is q ∈ B such that γ(pmq)−z+pmx̃ ∈ Ctors and so pmz−pm+rγ(q) = pm+rx̃.

Let t = pmz− pm+rγ(q) ∈ C. It has the property that (v−α)(t) = (v−α)pm+r(x̃) and
so (v−α)(t)tf = 0, that is, (v−α)(t) ∈ Ctors. Therefore, (v−α)(prt) = 0 and (prt)tf =

pm+2rx.

Proof. (of Theorem 7.2). Let ν ∈N be large enough so that Lemma 7.3 is satisfied for

the triple
(
H1
(
(X (u)
∞ )pke,Fil

ν
)
,v = P (Up),α

)
, and consider the exact sequence of sheaves

on the pro-Kummer étale site X (u)
∞ )pke:

0−→ Filν −→Dk −→Dk/Fil
ν −→ 0,

where we use the notations introduced before Lemma 7.4. It induces the long exact

sequence of pro-Kummer étale cohomology groups which, in order to simplify notations,
we write H•(F ) instead of H•

(
(X (u)
∞ )pke,F

)
, where F is a sheaf on (X (u)

∞ )pke.

A=H0(Dk/Fil
ν)

β→ B =H1(Filν)
γ→ C =H1(Dk)

δ→ D =H1(Dk/Fil
ν)

ε→ E =H2(Filν).

We’d like to show the v -module C satisfies the property (∗).
1) Let x∈ Cv=α such that x is a p-power torsion element. Then δ(x)∈Dv=α is a p-power

torsion element, and let s = s(D) ∈ N be such that psδ(x) = 0. Then let y ∈ B be such
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that γ(y) = psx. We also have γ
(
(v−α)y

)
= (v−α)γ(y) = (v−α)(psx) = 0. Therefore,

let z ∈ A be such that β(z) = (v−α)(y).
At this point, we recall the following result from [21], Proposition 12, and [13],

Propositions A.4.2 and A.4.3: As A[1/p] is a finitely generated, free R[1/p]-module and

Up is completely continuous on it, after localizing B to B′ and replacing R by R′, there
are d = d(A,α),e = e(A,α) ∈ N and eα = pdPα(Up), with pdPα(T ) a series with integral

coefficients such that for every z ∈A we denote by zα := eαz ∈A and by z⊥ := pdz−zα ∈A.
Then (v−α)(zα) = 0. Moreover there is a wα ∈ A with (v−α)(wα) = pez⊥α .
Let now e,d be as above, then pd+ez = pezα+(v−α)(wα). Therefore, we have:

(v−α)
(
pd+ey−β(wα)

)
= peβ(zα), and so we have (v−α)2

(
pd+ey−β(wα)

)
= 0.

If we set m := pd+ey−β(wα), we have (v−α)2(m) = 0 and γ(m) = pd+eγ(y) = pd+e+sx.

As (v−α)2m = 0, we have α2m = 0; therefore, α2pd+e+sx = 0. This concludes 1) of

property (∗) for C.
2) Let x ∈

(
Ctf
)v=α

. Then there is r := r(D,α) and y ∈ Dv=α such that ytf = prδ(x),

where we denoted ytf the image of y in Dtf . The image ε(y) ∈ Ev=α is annihilated by α,

and therefore, there is z ∈ C such that δ(z) = αy. There is w ∈ D such that (v−α)(z) =
γ(w) and let q ∈ B be such that αw = (v−α)(q). Therefore, (v−α)(αz−γ(q)) = 0. Let

x̃ :=αz−γ(q)∈ Cv=α. Then δ(x̃) = δ(αz) =α2y. The image α2ytf of α2y in (D[1/p])v=α is

α2prδ(x). But δ induces an isomorphism
(
C[1/p]

)v=α δ∼=
(
D[1/p]

)v=α
(see [6]). Therefore,

the image (x̃)tf of x̃ in
(
C[1/p]

)v=α
is α2prx which proves the claim.
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[7] D. Barrera and S. Gao, ‘Overconvergent Eichler–Shimura isomorphisms for quater-
nionic modular forms over Q’, International Journal of Number Theory 13 (2017), 2487–
2504.

[8] B. Bhatt, M. Morrow and P. Scholze, ‘Integral p-adic Hodge theory’, Preprint, 2019,
arXiv:1602.03148v3.

[9] B. Bhatt and P. Scholze, ‘Prisms and prismatic cohomology ’, Preprint, 2019.
[10] A. Caraiani and P. Scholze, ‘On the generic part of the cohomology of compact unitary

Shimura varieties’, Ann. of Math. 186 (2017), 649–766.

https://doi.org/10.1017/S1474748022000548 Published online by Cambridge University Press

https://arxiv.org/abs/1602.03148v3
https://doi.org/10.1017/S1474748022000548


Overconvergent de Rham Eichler–Shimura morphisms 703

[11] K. Cesnavicius and T. Koshikawa, ‘The Ainf -cohomology in the semi-stable case’,
Comp. Math. 155, (11) (2019), 2039–2128.

[12] P. Chojecki, D. Hansen and C. Johansson, ‘Overconvergent modular forms and
perfectoid Shimura curves’, Documenta Math. 22 (2017), 191–262.

[13] R. Coleman, ‘p-adic Banach spaces and families of modular forms’, Invent. Math. 127
(1997), 417–479.

[14] P. Colmez, G. Dospinescu and W. Niziol, ‘Intregral étale cohomology of Drinfeld
symmetric spaces’, Preprint, 2019.

[15] H. Diao, K.-W. Lan, R. Liu and X. Zhu, ‘Logarithmic adic spaces: some foundational
results’, Preprint, 2019, arXiv:1912.09836.

[16] H. Diao, K.-W. Lan, R. Liu and X. Zhu, ‘Logarithmic Riemann–Hilbert correspondences
for rigid varieties’, Preprint, 2019, arXiv:1803.05786. To appear in J. Amer. Math. Soc.
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