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Abstract

Shrinkande and Bhagwan Das (1970) showed how to extend a (4t — 1, 4t) row-orthogonal
matrix with entries =1 to a Hadamard matrix of order 4¢. Using a slightly different approach we
consider extensions of (4¢ — k, 4t) row-orthogonal matrix to a Hadamard matrix of order 41

Introduction

An (m, n)-matrix H,. , with entries = 1 is called a Hadamard submatrix if
the rows of H,, . are orthogonal to one-another. If m = 3, one can easily note
that n is divisible by 4.

If m = n, we call the matrix a Hadamard matrix of order n.

In this note we investigate when and how one can extend a matrix H,, .
to a matrix H, . by adding n — m rows to H, .. The particular case when
m = n — 1 is done by Shrikhande and Bhagwan Das (1970) using a different
method.

Hereafter, weight of a vector means the sum of squares of the compo-
nents of that vector.

2. General approach

From the general theory of linear algebra, there exists a row orthogonal
matrix A of order (n — m, n) such that the rows of A are orthogonal to the
rows of H, , and such that

AA'=n-1,.,
where I,_,. is the identity matrix of order n — m. If all the entries of A are
=1, then if we augment the rows of A to H,. . we get an H, .. Hence,

essentially what we have to look for is an A with these properties.
From the discussion, we have,

Hm,n
1) oo J(Hmni A')=nl,.
A

469

https://doi.org/10.1017/51446788700016335 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016335

470 K. Vijayan [2]

From (1), it is immediate that

Hm, n
2) Hpoi AN - |=nl,.

A
From (2), we get
3) A'A=nl,—R,
where

R = (r,',') = Hy:;vnHm‘ n

and

r; =m, i=1,2,---,n.

If we denote the columns of A as Ay, A,, -, A,, (3) means that the weight of
A;is n—m and

4 AA = —r, if i#] ij=12-""n.

By retracing the steps, one notices that to extend H,, . to H, . one need have
to only construct n m-vectors A, A, ---, A, with entries *1 satisfying
condition (4).

Since an A satisfying (1) always exists, from Schwartz inequality we have,

5) Irl=n—m, Lj=1---n
where

©) r,=n—m iff A,=—A;
and -rn=n—-m iff A,= A

Hereafter we would say that two columns A; and A; are distinct if and
only if A;# A; and A, + A; # 0.
Obviously A; and A; are distinct if and only if

™ lrl<n—m,

and mainly we will be looking for distinct A;’s.
One can also notice that n — m — r; is divisible by 2. This follows by
observing that if ith and jth columns of H. .. have a common entry, then

rp=a—(m—a)=2a—m

which implies r; + m is divisible by 2, and from a previous remark that n is a
multiple of 4. So the possible values of r; are

(8) (n—m)—2k, k=0,1,---,(n—m).
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When n—m =1, from (6) and (8), we note that H, . is uniquely
extendable to H, .. In later sections, we use (6), (7) and (8) to extend H,, ., to
H, ..

3. Extension of H, ., to H, ,

From (7) and (8) we note that any two distinct vectors A; and A; are
orthogonal to one another. If a. is the k th component of A, this means that,

(9) aia; + a;2Q;2 = 0.
At least one of a;, and a;, should be different from 0. Without loss of

generality we may take a;, to be different from 0. Then from (9), we have

(10) ain = _aiz"Zf‘f.

Remembering that the weights of A; and A, are 2, we get

2 2

ai» ai>
2=a?1+a?2=afz<1+—%>=—'z—'2

a,—1 a,-1

and hence

(11) a>= *a;.
Substituting in (10),

(12) —an= *a;,.

Thus if we choose A,, the remaining columns of A are determined from (6),
(11) and (12). To preserve Hadamard property, we choose A, as (i). For the
first i such that r,; = 0, we might choose without any loss of generality

a=(1),

as the other solution is obtained by interchanging the two rows of A. Thus we
have:

THEOREM 1. An H,_, ,can be extended to an H, , essentially uniquely.

4. Extension of H, ; , to H, ,

From (7) and (8) we find that any two distinct pair of columns A; and A;
is such that

(13) AlA = =1.
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Consider all A;’s that are distinct from A,. Without any loss of generality we
can assume that if A; is distinct from A,, then

r; =1.

If A; and A,, are any two columns of A, that are distinct from A,, one
notices that

ry = 1(mod4)
14 =1 or -3.
Hence if A; and A; are distinct, then

ry=1.

Hence to determine the distinct columns of A, one is only to look for
3-vectors of weight 3, such that the inner product between any two vectors is
— 1. Now we show that there can be at most 4 distinct columns for A. If there
are more than 4, let B,, B,, B;, B, be any 4 of them. Then we note that

4
(15) <ZBJE=0jﬂJ@4
i=1

Since any three of the B’s are easily seen to be independent, (15) implies that

4
> B =0
i=1

i.e. any three of B’s uniquely determine the fourth and hence there cannot be
a fifth one.

For our purpose entries in B;’s should be +1. As usual, we choose B,
with all entries + 1. Then the other three B.’s are uniquely determined
(except for permutation of suffixes) as

() () o)

Now the construction of A is obvious. One can also see that A -matrix
obtained by permutating the suffixes 2, 3, 4 of B-vectors, can also be obtained
by permutating the rows of A. This is proved by noting that if there are r;
columns in A not distinct from B; (i =1,2,3,4), then the orthogonality
between rows of A implies that,

ri—rn—r+r=0

(16) n—r+rn—r=0
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and
n+rn—rn—rn=0,

and (16) implies that
n=rn=rn=r;.

Thus the A -matrix obtained is essentially unique. Hence we can state the
theorem,

THEOREM 2. An H,_; can be extended to an H, , essentially uniquely.

5. Extension of H,_, . to H, ,

From (7) and (8), if any pair of columns of A are distinct then they are
either mutually orthogonal or their inner product is *2.

Remark 1. If all distinct columns of A are orthogonal to one another
then we could replace them by any set of orthogonal 4-vectors of weight 4 and
hence in particular columns of an H, and the extension is trivially true.

In view of the Remark 1, we hereafter only consider the case when there
is a pair of non-orthogonal distinct columns.

ReMARK 2. If the two distinct columns A; and A, are not orthogonal to
one another, then any columns A, distinct from these two would be orthogonal
to one of A; and A,, but not to both. This follows from the equation

n—4+r;+r.+r,=0(mod4).

It follows from Remark 2 that we could divide the columns of A into two
sets, such that any pair of distinct columns from the same set are mutually
orthogonal, while from different sets will have an inner product *2.

Let there be b distinct columns By, - - -, B, in the first set and ¢ distinct
columns C,,---, C, in the second set. Without any loss of generality we
assume that b = ¢ and

BiC,=2 i=1,---,b
and
BiC =2 j=1,---c.

To prove the extension we only have to show that B’s and C’s can be
replaced by 4-vectors having components *1 without affecting the inner
product properties.

Let D =(d;) be a ¢ X b matrix with

d,’/‘ = C:B,
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We first prove the following lemma.

LemMA. There exists a Hadamard matrix H, such that the first principal
¢ X b submatrix of H, is 3iD.

Proor. If b =4, D is a Hadamard submatrix and from previous sections
we note that we can extend 31D to an H..

If b =3, any 4-vector say B, having weight 4 and orthogonal to B,, B;
and B; should have inner product =2 with C’s. This follows from the fact that
C’s should be in the space generated by B,, B,, B, and B, and hence could be

written as

4

c = Z l"lBl

j=1

where
_BiG_1,,
i =gig ~3BIC

and

Hence by adding a column to D of inner products of C’s with B,, we are in
the same case as b = 4.

If b =2, then ¢ would have to be 2 and hence either the two rows of D
are same as (11) or orthogonal to one another (remember that we have chosen
B’s such that d,,=d, =1).

If D is orthogonal then the matrix

i(p -b)
2\D -D
is an H,.

If D has both rows the same, then we have
1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

as an H, with the required property. Hence the lemma.
Now we can show how to choose B’s and C’s having components *1
with the required inner product.
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For an H, defined as above, derive a matrix B by changing the sign of the
last column. i.e. if u is the last column of H,, then
B = H2 - 2A

where A is a 4 X4 matrix with last column same as u and the rest of the

elements 0.
Note that the entries of B are *1 and is actually a Hadamard matrix.

Define C =3B - H,. The entries of C also are =1 as
C=3iB-H;=iH,-2A)H,=3i(H.H,-2AH}) =141 - 2uv’).

Hence if we take the first b columns of B as B,, - - -, B, and the first ¢ columns
of C as C,,---, C. we have the required result as we note that

B'C=3B'BH,=2H,
which has D’ as its principal b X ¢ matrix.
Hence we have the theorem,
THEOREM 3. We can extend an H,_, ., to an H, ..

One can easily note that if b = 4, the extension is not essentially unique.

6. Concluding remarks

We have proved so far that we can always extend an H,_« . to H,, , when
k = 4. The author feels that the result is true if k = n/2, but this approach
would obviously be very tedious to be of use to establish the result.
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