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ON THE CRITERIA OF D.D. ANDERSON 
FOR INVERTIBLE AND FLAT IDEALS 

BY 

DAVID E. DOBBS 

ABSTRACT. Let R be an integral domain. It is proved that if a nonzero 
ideal I of R can be generated by n < °° elements, then / is invertible (i.e., 
flat) if and only if/( n Rat) = H lat for all { « , , . . . , an} C I. The article's 
main focus is on torsion-free /?-modules E which are LCM-stable in the 
sense that E(Ra D Rb) = Ea D Eb for all a,b E: R. By means of linear 
relations, LCM-stableness is shown to be equivalent to a weak aspect of 
flatness. Consequently, if each finitely generated ideal of R may be 
2-generated, then each LCM-stable /^-module is flat. Finally, LCM-
stableness of maximal ideals serves to characterize Priifer domains, 
Dedekind domains, principal ideal domains, and Bézout domains amongst 
suitably larger classes of integral domains. 

1. Introduction. Our starting point is the following recent result of D. D. Anderson 
([1], Theorem 1): a nonzero ideal / of an integral domain R is invertible if and only if 
/(Pi Ji) = fl Ui for each collection {/,} of fractional ideals of/?. A careful study of 
Anderson's proof reveals that attention may be restricted to fractional ideals Jt which 
are principal. In this spirit, we show in Theorem 2.2 that if/ is finitely generated, then 
the focus of Anderson's criterion may be restricted still further, namely to finite index 
sets {/} and principal (integral) ideals /,. 

In a related result, Anderson ([1], Theorem 2) showed that an ideal / of an integral 
domain R is /?-flat if and only if /( Jx D J2) = IJ\ H IJ2 for all pairs Jx, J2 of ideals 
of R. A more general result, with / replaced by an arbitrary torsion-free /^-module E, 
was established several years earlier by Jensen ([11], Theorem 1). In view of the above 
sharpening of ([ 1], Theorem 1), it seems natural to attempt to relate the possible flatness 
of such an E to the property "E(Ra fl Rb) = Ea C\ Eb for all a, b E /?." This latter 
property has been studied under the name "LCM-stableness," in case E is an extension 
domain of R, by Gilmer [9] and, recently, Uda [16]. Uda has shown in fact that 
LCM-stableness is genuinely weaker than flatness; and has rephrased Richman's char­
acterization of Priifer domains [13] in terms of the LCM-stableness of overrings. 

As Priifer domains are characterized by the flatness of their ideals, the above result 
of Uda makes it natural to ask whether LCM-stableness of ideals also characterizes 
Priifer domains. Indeed, this is so: see Proposition 3.7. In the presence of a mild 
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finiteness condition, LCM-stableness of just the maximal ideals serves to characterize 
Priifer domains (Theorem 3.8). As a consequence (Corollary 3.9), one has new char­
acterizations of Bézout domains, PID's, and Dedekind domains. However, analysis of 
the D + M construction in Corollary 3.6 shows that such results fail in the absence of 
a suitable finiteness condition. 

The key to the above results is Theorem 3.3(b), which explains the connection 
between LCM-stableness and flatness: an /^-module E is LCM-stable if and only if each 
linear relation (of length two) of elements rx, r2 in R with coefficients in E is a linear 
consequence of linear relations of the r,'s with coefficients in R. As another con­
sequence (Corollary 3.4), LCM-stableness is equivalent to flatness in case each finitely 
generated ideal of R is 2-generated. 

Any unexplained material is standard, as in [8], [12]. 

2. Invertible ideals. We begin by recording a sharp version of what was established 
in a proof of D. D. Anderson ([1], Theorem 1). 

PROPOSITION 2.1. Let E be a nonzero ideal of an integral domain R. Then the 
following are equivalent: 

(1) H EIj = E(nij) for each nonempty set {/,} of ideals of R; 
(2) fl Ea{ = E(P\Raj) for each subset {a^ of the quotient field of R; 
(3) E is invertible; 
(4) E is R-projective. 

It is known, by various module-theoretic results ([7] Theorem 1, [11], Corollary 1), 
that a nonzero ideal / of an integral domain R is invertible if (and only if) / is finitely 
generated and flat over R. Accordingly, it is of some interest to find conditions 
characterizing when a finitely generated nonzero ideal of an integral domain is flat (i.e., 
invertible). One such result appeared in ([4], Proposition 1). Another is given next, 
motivated by weakening the above condition (2), our variant of the criteria in [1]. 

THEOREM 2.2. Let I be a nonzero n-generated ideal of an integral domain R,for some 
positive integer n. Then the following are equivalent: 

(1) nidi = I(P\Rai) for each finite subset {at} of R; 
(2) nidi = I(nRai)forall{al9. . .,a„} C /; 
(3) / is R-flat; 
(4) / is invertible. 

PROOF. The above remarks established (3) O (4). Moreover, (4) => (1) by Proposi­
tion 2.1; and (1) =̂> (2) trivially. It thus remains only to prove that (2) => (4). 

The result is evident if / is a principal ideal. We may therefore assume that n > 1, 
and write / = Rax + Ra2 + . . . + Ran. For each /, let bt = axa2 . . . ana^\ the product 
of all the a/s except a-x. Observe next that 

l(Rbx H Rb2D . . . H Rbn) D Ib{ H . . . Pi IbnD Raxa2 ... a„, 

with the first inclusion following from (2) and the second inclusion following since 
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d\a2... an = ciibi. As one may similarly check that/(fl Rbt) C Raxa2. . . an, it follows 
that/(Pi Rbt) = Ra\d2... an, an invertible ideal. Hence, / is also invertible, completing 
the proof. 

The proof that (2) =̂> (4) in Theorem 2.2 was motivated by an argument of Gilmer 
([8], Theorem 25.2, (c\) =̂> (d\) =̂> (a)), possible revisiting an argument of Jensen 
([10], Theorem 3). The results in question are characterizations of Priifer domains. 
These are relevant since an integral domain R is a Priifer domain if and only if each ideal 
of R is flat; that is, if and only if each nonzero 2-generated ideal of R is invertible 
(cf. [3], Theorem 4.2, [8], Theorem 22.1). We shall meet this theme again in 
Proposition 3.7. Next, we close the section by summarizing the import of the proof of 
Theorem 2.2 for 2-generated ideals. 

COROLLARY 2.3. Let a,b be elements, not both of which are zero, of an integral 
domain R. Then for I = Ra + Rb, the following are equivalent: 

(1) la Dlb = I(Ra DRb); 
(2) / is R-flat; 
(3) / is invertible. 

3. LCM-stableness and flatness. For motivation, we begin by collecting some 
characterizations of flatness. 

PROPOSITION 3.1. Let R be an integral domain and E a torsion-free R-module. Then 
the following are equivalent: 

(1) El H EJ = E(I PI J) for all ideals I, J of R; 
(2) DEIi = E(fMi)for all finite sets {/,-} of ideals of R; 
(3) EI fl Eb — E(I H Rb) for all finitely generated ideals I ofR and all elements 

b <ER; 
(4) E is R-flat. 

PROOF. (1) O (4): This is the content, when specialized to the commutative case, of 
a result of Jensen ([11], Theorem 1). 

(3) ẑ> (4): This follows from the above-cited proof of Jensen. 
(1) =̂> (2): Induction. 
(2) =>(3): Use {/,-} = {/,Rb}. 
The proof is complete. 
The equivalence of conditions (1), (2), and (4) in Proposition 3.1 was established for 

the special case in which E is an ideal of R by D. D. Anderson ([1], Theorem 2). We 
shall next introduce our main object of study, a weakening of condition (3) in 
Proposition 3.1. 

Let R be an integral domain. By analogy with ([9], p. 50), we shall say that a 
torsion-free /^-module E is LCM-stable (over R) in case Ea 0 Eb = E(Ra D Rb) for 
alla,& G R. 

REMARK 3.2. It is evident from the result of Jensen (cf. Proposition 3.1) that if E is 
a flat module over an integral domain R, then E is LCM-stable over R. The converse, 
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however, is false, as Uda ([16], Example 4.8) has shown via a suitable simple algebraic 
extension of integral domains. 

For a deeper study of the relationship between "flat" and "LCM-stable," we intro­
duce the following definition. Let R be an integral domain, E an /?-module, and n a 
positive integer. We shall say that E is n-flat (over R) in case each relation rxex + . . . 
+ rnen = 0 (with each r, E R, et E E) is induced by suitable/) E £(1 < j < m) and 
ri} Ei R(l < i < n; 1 < j < m) satisfying e, = 2r / ; ^ for each / and 2 r , ^ = 0 for each 
j . The terminology is, of course, suggested by the result ([2], Corollary 1, p. 27) that, 
for R and E as above, E is /?-flat if and only if E is n-flat over # for each n > 1. 

THEOREM 3.3. L^r /? be an integral domain and E an R-module. Then: 
(a) E is l-flat over R if and only if E is a torsion-free R-module. 
(b) E is 2-flat over R if and only if E is LCM-stable over R. 

PROOF, (a) This may be proved by simple calculations. For instance, if E is l-flat and 
re - 0 (r E R, e E E) with r =£ 0, then the equations e = XrXjfj and rrXj — 0 lead 
to rXj — 0 for each j , whence e = 0. The details for the converse may be left to the 
reader. 

(b) Suppose first that E is 2-flat over R. It is easy to see that E is then also l-flat over 
R', hence, by (a), E is torsion-free over R. It remains to prove that Ea D Eb E 
E(Ra fl Rb) for all a, b E R. Consider g = ae = bf(g,e,f<EE). By 2-flatness, the 
relation ae + b(—f) = 0 induces equations e = Xr]jhj, —f — Xr2jhj, and arXj + 
frr2; = 0 for suitable r1;, r2; E 7? and fy E E. Since ar1; = b(-r2j) ERaP\ Rb, it follows 
that g = ^(arXj)hj E (/?<? Pi Rb)E, as desired. 

Conversely, let £ be LCM-stable over /?. To see that £ is 2-flat, note that the proof 
of Jensen ([11], Theorem 1) adapts nearly verbatim, in view of (a). These details may 
be left to the reader, completing the proof. 

COROLLARY 3.4. Let R be an integral domain in which each finitely generated ideal 
is 2-generated. Then an R-module E is LCM-stable over R (if and) only if E is R-flat. 

PROOF. Remark 3.2 takes care of the parenthetical assertion. Conversly, let E be 
LCM-stable. To see that E is 7?-flat, it is enough (cf. [2], Proposition 1, p. 12) to prove 
that the canonical homomorphism g : / 0 RE-> E is a monomorphism for each finitely 
generated ideal / of R. By hypothesis, / = Ra + Rb. Thus any element t E / (x) RE 
has the form t — a (x) e + b (x) / . If g(t) = 0, the construction of g yields ae + 
bf = 0, and so Theorem 3.3(b) produces equations e = XrXjhj, f = Lr2jhj, and 
arXj + br2j = 0; hence t = l<(arXj + br2j) ® h} = 0, completing the proof. 

In view of Theorem 3.3, Corollary 3.4 may be viewed as a companion for the result 
([2], Proposition 3, p. 15) that if R is a Bézout domain, then an /^-module E is 
torsion-free if and only if E is R-fiat. Of course, Bézout domains are the most natural 
examples of integral domains satisfying the hypothesis of Corollary 3.4. A partial 
converse is available (via [6], Theorem 4): if an integrally closed integral domain R of 
finite Krull dimension satisfies the hypothesis of Corollary 3.4, then R is a Prufer 
domain. We shall pursue such rings via the LCM-stable property later in this section. 
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First, though, we shall collect some useful ways in which LCM-stableness reflects the 
behavior of flatness. 

PROPOSITION 3.5. Let R be an integral domain and n a positive integer. Then: 
(a) IfE is n-flat over R and S is a multiplicatively closed subset ofR, then Es is n-flat 

over Rs. 
(b) IfE = lim Ei where each Et is n-flat over R, then E is n-flat over R. 

(c) If{R,M) is quasilocal, I an n-flat ideal ofR and n > 2, then either I = Ml or 
1 is principal. 

PROOF, (a) Consider an «-term relation 2(r /j"
1)(^ /5"1) = 0 E ESy with r, E R, 

s E S and et E E. As E is also 1-flat over R, Theorem 3.3(a) yields 2 ne^ = 0 E E. 
Using «-flatness of E over R, we infer certain equations in R and E which, via the 
canonical maps R —> Rs and E —> Es, induce the required equations in Rs and Es. 

(b) This follows readily from the construction of direct limit. The main point is that 
any «-term relation rxex + . . . + rnen = 0 (rk E R, ek E E) is induced by some relation 
2 rkeik — 0 where each eik is sent to ek by the structure map £,—>£. 

(c) Since / is also 2-flat over R, we may apply verbatim an argument of Sally-
Vasconcelos ([14], Lemma 2.1), completing the proof. 

In view of Theorem 3.3(b), the case n = 2 of Proposition 3.5(a) asserts that 
LCM-stableness is preserved by localization: cf. ([16], Corollary 1.5(2)). Note also that 
the proof of Proposition 3.5(b) recovers stability of flatness under direct limit ([2], 
Proposition 9, p. 20). We turn next to an application of Proposition 3.5(c). 

COROLLARY 3.6. Let (V,M) be a valuation domain of the form V = K + M, where 
K is afield. Let k be a proper subfield ofK. Set R = k + M. Then a proper ideal I of 
V is LCM-stable over R (if and) only if I is R-flat; that is, if and only if 1 — Ml. 

PROOF. Remark 3.2 takes care of the parenthetical assertion, while ([5], Theorem 7) 
dispatches the final assertion. Therefore, it remains only to show that if/ is nonzero and 
LCM-stable over/?, then / = Ml. By Proposition 3.5(c), we may assume instead that 
/ is principal over R and seek a contradiction. Take / = Ri for some / E /?\{0}. Note 
that Ki a VI = I — Ri, whence cancellation of / yields K C R. Thus K = k, the desired 
contradiction, completing the proof. 

An interesting direct calculation shows, in the context of Corollary 3.6 and without 
appeal to Proposition 3.5(c), that/ is LCM-stable over/? if and only if/ = Ml. We leave 
the details to the reader. Note also, via Proposition 3.5(c) and Nakayama's lemma, that 
any finitely generated LCM-stable ideal of k + M must be principal. Of course, the 
condition k =£ K assures that k + M has some nonprincipal finitely generated ideals, 
for k + M is not a Bézout domain (cf. [8], Exercise 12(3), p. 287). These observations 
help to motivate Proposition 3.7 below. 

Besides its ideals, the most natural examples of torsion-free modules over an integral 
domain are afforded by its overrings. In this regard, Uda ([16], Proposition 1.7) has 
recently extended some work of Richman ([13], Lemma 1 and Theorem 1) by showing 
that if T is an overring of an integral domain R, then T is LCM-stable over R (if and) 
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only if T is /?-flat. We may find motivation for our study of LCM-stableness for ideals 
by pursuing additional analogies with Uda's studies of LCM-stableness for ring exten­
sions. For instance, the ideal-theoretic analogue of ([16], Proposition 1.9) would assert, 
"If each 2-generated submodule of an ̂ -module E is LCM-stable over R, then so is £." 
This assertion is easily established, as is the evident generalization for ^-flatness. More 
substantially, the characterization of Priifer domains in ([16], Corollary 1.8), based on 
the above-cited result on LCM-stableness for overrings, motivates the following. 

PROPOSITION 3.7. For an integral domain R, the following are equivalent: 
(1) Each 2-generated ideal of R is LCM-stable over R; 
(2) Each ideal of R is LCM-stable over R; 
(3) (Ra +Rb)a D (Ra + Rb)b = (Ra + Rb)(Ra D Rb) for all a,b E fl; 
(4) R is a Priifer domain. 

PROOF. (4) =̂> (2): As noted in §2, each ideal of a Priifer domain is (2-) flat. Apply 
Theorem 3.3(b). 

(2) =̂> (1): Trivial. 
(1) ẑ> (3): Immediate from the definition of LCM-stableness. 
(3) =̂> (4): By Corollary 2.3, (3) implies that each nonzero 2-generated ideal of R is 

invertible. As noted in §2, this condition in turn implies (4), completing the proof. 
It is convenient to recall here that an integral domain R is said to be finite-conductor 

in case Ra D Rb is a finitely generated ideal of R for each pair of elements a, b of R. 
The natural examples of finite-conductor domains are arbitrary GCD-domains and 
arbitrary coherent integral domains (cf. [3], Theorem 2.2). In particular, all UFD's, 
Noetherian integral domains, and Priifer domains are finite-conductor domains. We 
shall next give a relevant characterization of Priifer domains, by reworking an argument 
of Vasconcelos ([18], Lemma 3.9). 

THEOREM 3.8. R is a Priifer domain if and only ifR is a finite-conductor domain each 
of whose maximal ideals is LCM-stable. 

PROOF. The "only i f assertion is immediate from Proposition 3.7 and the above 
remarks. For the converse, we may suppose that (R>M) is quasilocal, since localization 
preserves the finite-conductor property and LCM-stableness (cf. Proposition 3.5(a)). 
By ([12], Theorems 63 and 64), we need only show that/? is a Bézout domain, i.e. that 
I = Ra + Rb is a principal ideal for each nonzero a, b G R. To this end, consider the 
short exact sequence 

0-> K-+R ®R£I-* 0 

where/(r, s) = ra - sb for each r,s G R. Of course, K = Ra P\ Rb =£ 0. By the 
finite-conductor hypothesis, K is finitely generated over R and so by Nakayama's 
lemma, dimR/M(K/MK) > 1. By similar reasoning, it is enough to prove that 
dimR/M(I/MI) < 1, which would in turn follow by dimension-counting from a short 
exact sequence of the form 
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0 -» K/MK -> R/M © R/M -> I/MI -* 0. 

Accordingly, by applying -(x)RR/M to the first-displayed sequence, we have only to 
prove that T = Tor](/,R/M) is 0. 

From here on, our methods must differ from those in [ 18]. Let g : / (x)R M -> R denote 
the multiplication map. As T = ker(g), it will suffice to prove that any element 
e E ker(g) is trivial. Express e as a ® mx + b (x) m2 for suitable mx,m2 E M. By 
construction of g, we have amx + bm2 — 0. Since the hypothesis, as interpreted via 
Theorem 3.3(b), assures that M is 2-flat, we obtain mx — S rX]nh m2 = 2 r2jnJy and 
arXj + br2j = 0 for suitable n} E M and r^, r2/ G /?. Therefore, e = X{arXj + br2j) 
® rij = 0, completing the proof. 

By means of Corollary 3.6, it is easy to see that one cannot delete the 
"finite-conductor" hypothesis in Theorem 3.8: cf. ([5], Theorem 3). 

Corollary 3.9(a) generalizes a result of Vasconcelos ([17], Proposition A) character­
izing valuation domains. Corollary 3.9(c) sharpens the characterization of Dedekind 
domains as the Noetherian integral domains whose nonzero maximal ideals are 
invertible (cf. [12], Exercise 12, p. 73). 

COROLLARY 3.9. (a) i? w a Bézout domain if and only if R is a GCD-domain each 
of whose maximal ideals is LCM-stable. 

(b) R is a PID if and only ifR is a UFD each of whose maximal ideals is LCM-stable. 
(c) R is a Dedekind domain if and only ifR is a Noetherian integral domain each of 

whose maximal ideals is LCM-stable. 

PROOF. By Proposition 3.7 and the above remarks concerning finite-conductor 
domains, the assertions are direct consequences of Theorem 3.8 and the following 
well-known material. 

(a) Each invertible ideal of a GCD-domain is principal (cf. [12], Exercise 15, p. 42). 
(b) If R is a UFD and a Prufer domain, then R is a PID (cf. [8], Proposition 38.6). 
(c) Each Noetherian Prufer domain is a Dedekind domain. 
The proof is complete. 
The following direct proof of Corollary 3.9(a) is of some interest. As above, we may 

take (R,M) a quasilocal GCD-domain for which M is LCM-stable. If R is not a 
valuation domain, there exist a,b EM such that a )f b and b )f a. Let d = gcd(a, b). 
Thus a — axd and b = bxd, for suitable relatively prime aubx E M. Since R is an 
LCM-domain (i.e., a GCD-domain), Ra Pi Rb = R(abd~]) = Raxbxd. Observe that 
axbxd E Ma H Mb. As M is LCM-stable, axbxd E M(Ra Pi Rb) = Maxbxd, whence 
1 E M, the desired contradiction. 

The reader may also wish to compare Corollary 3.9(a) with a result of Sheldon 
([15], Theorem 3.7), giving a rather different characterization of Bézout domains 
within the class of GCD-domains. 

In closing, we record an application of the above ideas. Let X and Y be algebraically 
independent indeterminates over a field k, set/? = k[X, Y], and consider/ = RX + RY. 
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It is known (cf. [2], Exercise 3(a), p. 41) that/ is not/?-flat. We can actually show that 
/ is not LCM-stable over R. Indeed, if/ were LCM-stable, the Proposition 3.5(a) and 
Corollary 3.9(b) would imply that S = k[X, Y]{ is a PID and hence of Krull dimension 
at most 1. However dim(S) = 2, the desired contradiction. 
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