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Abstract

The ramification of a polyhedral space is defined as the metric completion of the

universal cover of its regular locus. We consider mainly polyhedral spaces of two origins:

quotients of Euclidean space by a discrete group of isometries and polyhedral metrics on

CP2 with singularities at a collection of complex lines. In the former case we conjecture

that quotient spaces always have a CAT[0] ramification and prove this in several cases.

In the latter case we prove that the ramification is CAT[0] if the metric on CP2 is

non-negatively curved. We deduce that complex line arrangements in CP2 studied by

Hirzebruch have aspherical complement.

1. Introduction

The main objects of this article are Euclidean polyhedral spaces and their ramifications. The

ramification of a polyhedral space is the metric completion of the universal cover of its regular

locus. We are interested in the situation when the ramification is CAT[0].

Two classes of polyhedral spaces that will play the most important role are quotients of Rm
by discrete isometric actions, and polyhedral Kähler manifolds; that is, polyhedral manifolds

with a complex structure.

Quotients of Rm and ramification conjecture. We start with the case of Rm quotients where the

ramification space admits an alternative description in terms of arrangements of planes of (real)

codimension 2; we will call such planes hyperlines.

Consider a discrete isometric and orientation-preserving action Γ y Rm. Denote by LΓ the

arrangement of all hyperlines which are fixed by at least one non-identical element in Γ. Define

the ramification of Γ y Rm (briefly RamΓ) as the universal cover of Rm branching infinitely

along each hyperline in LΓ.

More precisely, if W̃Γ denotes the universal cover of

WΓ = Rm
∖( ⋃

`∈LΓ

`

)

equipped with the length metric induced from Rm, then RamΓ is the metric completion of W̃Γ.
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One of the main motivations of this paper is the following conjecture.

Ramification conjecture 1.1. Let Γ yRm be a properly discontinuous isometric orientation-
preserving action. Then:

(a) RamΓ is a CAT[0] space.

(b) the natural inclusion W̃Γ ↪→ RamΓ is a homotopy equivalence.

Assume for an action Γ y Rm that the ramification conjecture holds. Then since CAT[0]
spaces are contractible, W̃Γ is also contractible, and so WΓ is aspherical.

The ramification conjecture generalizes a conjecture of Allcock [All13, Conjecture 1.4] on
finite reflection groups (recall that a reflection group is a discrete group generated by a set of
reflections of a Euclidean space). Allcock considered the case of the action Γ y Cm of a finite
reflection group Γ that complexifies the orientation-reversing action of Γ on Rm generated by
reflections. Allcock’s conjecture is related to an earlier conjecture of Charney and Davis (see
[CD95, Conjecture 3]), which in turn is motivated by a conjecture of Arnold, Pham and Thom
on complex hyperplane arrangements.

In the following theorem we collect the partial cases of the ramification conjecture which we
can prove.

Theorem 1.2. The ramification conjecture holds in the following cases.

(R+) If the action Γ y Rm is the orientation-preserving index-two subgroup of a reflection
group.

(Z2) If Γ is isomorphic to Zk2.

(R3) If m 6 3.

(C2) If m = 4, and the action Γ y R4 preserves a complex structure on R4.

The most involved case is (C2); it is proved in § 9 and relies on Theorem 8.1, which is the
main technical result of this paper.

The proofs of other cases are simpler. The case (R+) follows from the more general
Proposition 4.1. In § 7, we give two proofs of the case (R3); one is based on Theorem 6.3 and
Zalgaller’s theorem 3.5 and the other on the case (R+).

Corollary 1.3. Let S3 y C3 be the action of a symmetric group by permuting coordinates of
C3. Then RamS3 is a CAT[0] space.

The above corollary is deduced from the (C2)-case of Theorem 1.2 since the action S3 y C3

splits as a sum of an action on C2 and a trivial action on C1. This corollary also follows from a
result of Charney and Davis in [CD93].

Polyhedral manifolds and Hirzebruch’s question. Our study of ramifications of polyhedral
manifolds sheds some light on a question of Hirzebruch on complex line arrangements in CP2

asked in [Hir85]. To state this question, recall the notion of complex reflection groups and
arrangements.

A finite complex reflection group is a group Γ acting on Cm by complex linear transformations
generated by elements that fix a complex hyperplane in Cm. The arrangement of complex
hyperplanes1 LΓ in Cm and its projectivization in CPm−1 are called complex reflection
arrangements.

1 That is, the set of hyperplanes fixed by at least one non-trivial element of Γ.
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Hirzebruch’s question 1.4 [Hir85]. Let L be a complex line arrangement in CP2 consisting of
3 · n lines such that each line of L intersects others at exactly n+ 1 points. Is it true that L is a
complex reflection arrangement?

The above property will be called Hirzebruch’s property. Hirzebruch noticed that all complex
reflection line arrangements in CP2 satisfy this property. These line arrangements consist of two
infinite series and five exceptional examples. The infinite series are called A0

m (m > 3) and
A3
m (m > 2) and correspond to reflection groups G(m,m, 3) and G(m, p, 3) (p < m) from the

Shephard–Todd classification. The five exceptional examples correspond to reflection groups
G23, G24, G25, G26 and G27.

Hirzebruch’s question is still open, but we are able to prove the following.

Theorem 1.5. All line arrangements satisfying Hirzebruch’s property have aspherical
complements.

Note that if the answer to Hirzebruch’s question were positive, this theorem would follow
from the work of Bessis [Bes15]. Bessis finished the proof of the old conjecture stating that
complements to finite complex reflection arrangements are aspherical. Namely, he proved this
statement for the cases of groups G24, G27, G29, G31, G33 and G34. As an immediate corollary
of our theorem, we get a new geometric proof of Bessis’s theorem for the cases of groups G24

and G27.
Theorem 1.5 has a generalization to a larger class of arrangements, described in

Corollary 11.3. Note that on the one hand line arrangements with aspherical complements
are quite rare; on the other hand no idea exists at the present of how to classify them.

About the proof of Theorem 1.5. It follows from [Pan09, Corollary 7.8] that for any arrangement
satisfying Hirzebruch’s property except the union of three lines, there is a non-negatively curved
polyhedral metric on CP2 with singularities at this arrangement. Hence to prove the theorem it
is enough to show that the ramification of this polyhedral metric satisfies conditions (a) and (b)
of Conjecture 1.1. Let us sketch how this is done.

Consider a three-dimensional pseudomanifold Σ with a piecewise-spherical metric. Define the
singular locus Σ? of Σ as the set of points in Σ which do not admit a neighbourhood isometric
to an open domain in the unit 3-sphere.

Then the ramification of Σ is defined as the completion of the universal cover Σ̃◦ of the
regular locus Σ◦ = Σ\Σ?. The obtained space will be denoted as Ram Σ.

In Theorem 8.1, we characterize spherical polyhedral 3-manifolds Σ admitting an isometric
R1-action with geodesic orbits such that Ram Σ is CAT[1]. The key condition in Theorem 8.1 is
that all points in Σ lie sufficiently close to the singular locus.

The existence of an R1-action as above on Σ is equivalent to the existence of a complex
structure on the Euclidean cone over Σ; see Theorem 3.9. The latter permits us to apply
Theorem 8.1 in the proof of Theorem 1.5 since any non-negatively curved polyhedral metric
on CP2 has complex holonomy. It follows then that the ramification of CP2 is locally CAT[0]
and by an analogue of the Cartan–Hadamard theorem it is globally CAT[0]; see Proposition 3.7.

2. More questions and observations

Ramification of a polyhedral space. A Euclidean polyhedral space with non-negative curvature
in the sense of Alexandrov has to be a pseudomanifold, possibly with a non-empty boundary.

In fact, a stronger statement holds, a Euclidean polyhedral space P has curvature bounded
from below in the sense of Alexandrov if and only if its regular locus P◦ is connected and convex
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in P; that is, any minimizing geodesic between points in P◦ lies completely in P◦ (compare
[Mil69, Theorem 5]).

Recall that the ramification of P is defined as the completion of the universal cover P̃◦ of
the regular locus P◦. The next question is intended to generalize the ramification conjecture to
a wider setting that is not related to group actions.

Question 2.1. Let P be a Euclidean polyhedral space. Suppose that P has non-negative curvature
in the sense of Alexandrov. What additional conditions should be imposed on P to guarantee
that RamP is a CAT[0] space and the inclusion P̃◦ ↪→ RamP is a homotopy equivalence?

For a while we thought that no additional condition on P should be imposed; that is, RamP
is always a CAT[0] space. But then we found a counterexample in dimension 4 and higher; see
Theorem 10.1.

Nevertheless, Theorem 6.3 joined with Zalgaler’s theorem 3.5 imply that no additional
condition is needed if dimP 6 3. Theorem 11.1 also gives an affirmative answer in a particular
four-dimensional case. The latter theorem is used to prove Theorem 1.5; it also proves [Pan09,
Conjecture 8.2].

We do not know what conditions should be imposed in general if dimP > 4 but would like
to formulate a conjecture in one interesting non-trivial case.

Conjecture 2.2. Let P be a Euclidean polyhedral space with non-negative curvature in the
sense of Alexandrov. Suppose that P is homeomorphic to CPm and its singularities form a
complex hyperplane arrangement on CPm. Then RamP is CAT[0] and the inclusion P̃◦ ↪→
RamP is a homotopy equivalence.

This conjecture holds for m = 2 by Theorem 11.1. Existence of higher-dimensional examples
of such polyhedral metrics on CPm can be deduced from [CHL05].

Two-convexity of the regular locus. The same argument as in [PP14] shows that the regular locus
P◦ of a polyhedral space is two-convex, that is, it satisfies the following property.

Assume that ∆ is a flat tetrahedron. Then any locally isometric geodesic immersion in P◦
of three faces of ∆ which agrees on three common edges can be extended to a locally isometric
immersion ∆ # P◦.

From the main result of Alexander et al. in [AB93], it follows that every simply connected
two-convex flat manifold with a smooth boundary is CAT[0]. Therefore, if one could approximate
(RamP)◦ by flat two-convex manifolds with smooth boundary, the Alexander–Berg–Bishop
theorem would imply that RamP ∈ CAT[0].

This looks as a nice plan to approach the problem, but it turns out that such a smoothing
does not exist even for the action Z2

2 y C2 which changes the signs of the coordinates; see the
discussion after [PP14, Proposition 5.3] or Two convexity in [Pet09] for more details.

Ramification around a subset. Given a subset A in a metric space X, define RamAX as the
completion of the universal cover of X\A. Then results of Charney and Davis in [CD93] imply
the following.

(i) Let x, y and z be distinct points in S2. Then

Ram{x,y,z} S2 ∈ CAT[1]

if and only if the triangle [xyz] has perimeter 2 · π. In particular, the points x, y and z lie on a
great circle of S2.
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(ii) Let X, Y and Z be disjoint great circles in S3. Then

RamX∪Y ∪Z S3 ∈ CAT[1]

if and only if X, Y and Z are fibers of the Hopf fibration S3
→ S2 and their images x, y, z ∈ S2

satisfy condition (i).2

The following two observations give a link between the above results and Question 2.1.
It turns out that if Pn is a sequence of two-dimensional spherical polyhedral spaces with

exactly three singular points that approach S2 in the sense of Gromov–Hausdorff, then the limit
position of singular points on S2 satisfies (i).

With a bit more work one can show that a similar statement holds in the three-dimensional
case. More precisely, let Pn be a sequence of three-dimensional spherical polyhedral spaces with
the singular locus formed by exactly three circles. If Pn approaches S3 in the sense of Gromov–
Hausdorff, then the limit position of the singular locus satisfies (ii).

We finish the discussion with one more conjecture.

Conjecture 2.3. Let H be a complex hyperplane arrangement in Cm. Then RamHCm is
CAT[0] if and only if the following condition holds.

Let ` be any complex hyperline3 that belongs to more than one complex hyperplane of H.
Then for any complex hyperplane h ⊂ Cm containing ` there is a hyperplane h′ ∈ H containing
` such that the angle between h′ and h is at most π/4.

Note that all complex reflection hyperplane arrangements satisfy the conditions of this
conjecture. The two-dimensional version of this conjecture is Corollary 8.5, and the ‘only if’
part follows from this corollary. If this conjecture holds, then, using the orbi-space version
of the Cartan–Hadamard theorem 3.7 and Allcock’s lemma 3.6 in the same way as in the
proof of Theorem 1.2, one shows that the inclusion (RamHCm)◦ ↪→ (RamHCm) is a homotopy
equivalence. Hence, this conjecture gives an alternative geometric approach to Bessis’s result
[Bes15] on asphericity of complements to complex reflection arrangements.

3. Preliminaries

Three types of ramifications. Recall that we consider three types of ramifications which are closely
related: for group actions, for polyhedral spaces and for subsets.
� Given a subset A in a metric space X, we define RamAX as the completion of the universal

cover of X\A. We assume here that X\A is connected.
� Given a polyhedral space P (Euclidean, spherical or hyperbolic), the ramification RamP

is defined as RamA P, where A is the singular locus of P.
� Given an isometric and orientation-preserving action Γ yRm, the ramification RamΓ P can

be defined as Ram(Rm/Γ); this definition makes sense since Rm/Γ is a polyhedral space.

Curvature bounds for polyhedral spaces. A Euclidean polyhedral space is a simplicial complex
equipped with an intrinsic metric such that each simplex is isometric to a simplex in a Euclidean
space.

A spherical polyhedral space is a simplicial complex equipped with an intrinsic metric such
that each simplex is isometric to a simplex in a unit sphere.

2 More precisely, the quotient metric on the base S2 has curvature 4, so [xyz] should have perimeter π.
3 That is, an affine subspace of complex codimension 2.
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The link of any simplex in a polyhedral space (Euclidean or spherical) equipped with the
angle metric forms a spherical polyhedral space.

The following two propositions give a more combinatorial description of polyhedral spaces
with curvature bounded from below or above.

Proposition 3.1. An m-dimensional Euclidean (spherical) polyhedral space P has curvature
> 0 (correspondingly > 1) in the sense of Alexandrov if and only if each of the following conditions
holds.

(i) The link of any (m − 1)-simplex is isometric to the one-point space p or S0; that is, the
two-point space with distance π between the distinct points.

(ii) The link of any (m − 2)-simplex is isometric to a closed segment of length 6 π or a circle
with length 6 2 · π.

(iii) The link of any k-simplex with k 6 m− 2 is connected.

Corollary 3.2. The simplicial complex of any polyhedral space P with a lower curvature bound
is a pseudomanifold.

The following proposition follows from the Cartan–Hadamard theorem and its analogue is
proved by Bowditch in [Bow95]; see also [AKP], where both theorems are proved nicely.

Proposition 3.3. A polyhedral space P is a CAT[0] space if and only if P is simply connected
and the link of each vertex is a CAT[1] space.

A spherical polyhedral space P is a CAT[1] space if and only if the link of each vertex of P
is a CAT[1] space and any closed curve of length < 2 · π in P is null-homotopic in the class of
curves of length < 2 · π.

We say that a polyhedral space has finite shapes if the number of isometry types of simplices
that compose it is finite. The following proposition is proved in [BH99, II. 4.17].

Proposition 3.4. Let P be a Euclidean (spherical) polyhedral space with finite shapes and
suppose that P has curvature 6 0 (or 6 1 correspondingly). If P is not a CAT[0] (correspondingly,
not a CAT[1]) space, then P contains an isometrically embedded circle (correspondingly, a circle
with length smaller than 2 · π).

Spherical polyhedral metrics on S2. The following theorem appears as an intermediate statement
in Zalgaller’s proof of rigidity of spherical polygons; see [Zal56].

Zalgaller’s theorem 3.5. Let Σ be a spherical polyhedral space homeomorphic to the 2-sphere
and with curvature > 1 in the sense of Alexandrov. Assume that there is a point z ∈ Σ such that
all singular points lie at the distance > π/2 from z. Then Σ is isometric to the standard sphere.

A sketch of Zalgaller’s proof. We apply an induction on the number n of singular points. The
base case n = 1 is trivial. To do the induction step, choose two singular points p, q ∈ Σ, cut Σ
along a geodesic [pq] and patch the hole so that the obtained new polyhedron Σ′ has curvature
> 1. The patch is obtained by doubling4 a convex spherical triangle across two sides. For a unique

4 Given a metric length space X with a closed subset A ⊂ X, the doubling of X across A is obtained by gluing
two copies of X along A.
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choice of triangle, the points p and q become regular in Σ′ and exactly one new singular point
appears in the patch.5 In this way, the case with n singular points is reduced to the case with
n− 1 singular points. 2

A test for homotopy equivalence. The following lemma is a slight modification of [All13, Lemma
6.2]; the proofs of these lemmas are almost identical.

Allcock’s lemma 3.6. Let S be an m-dimensional pure6 simplicial complex.
Let K be a subcomplex in S of codimension > 1; set W = S\K. Assume that the link in S

of any simplex in K is contractible. Then the inclusion map W ↪→ S is a homotopy equivalence.

Proof. Denote by Kn the n-skeleton of K; set Wn = S\Kn and set K−1 = ∅.
For each n ∈ {0, 1, . . . ,m− 1}, we will construct a homotopy

Fn [0, 1]×Wn−1 → Wn−1

of the identity map idWn−1 into a map with the target in Wn.
Note that Wm−1 = W and W−1 = S. Therefore, joining all the homotopies Fn, we construct

a homotopy of the identity map on S into a map with the target in W . Therefore, the lemma
follows once we construct Fn for all n.

Existence of Fn. Note that each open n-dimensional simplex ∆ in S admits a closed
neighbourhood N∆ in Wn−1 which is homeomorphic to

∆× (p ? Link ∆),

where Link ∆ denotes the link of ∆, p denotes a one-point complex and ? denotes the join.
Moreover, we can assume that ∆ lies in N∆ = ∆× (p ∗ Link ∆) as ∆× p and N∆ ∩N∆′ = ∅ for
any two open (n− 1)-dimensional simplices ∆ and ∆′ in S.

Note that if Link ∆ is contractible, then Link ∆ is a strict deformation retract of p ? Link ∆.
It follows that for any (n − 1)-dimensional simplex ∆ in K, the relative boundary ∂Wn−1N∆ is
a deformation retract of N∆. Clearly, ∂Wn−1N∆ ⊂Wn. Hence, the existence of Fn follows. 2

An orbi-space version of the Cartan–Hadamard theorem.

Proposition 3.7. Let P be a polyhedral pseudomanifold. Suppose that for any point x ∈ P the
ramification of the cone at x is CAT[0]. Then:

(i) RamP is CAT[0];

(ii) for any y ∈ RamP that projects to x ∈ P, the cone at y is isometric to the ramification of
the cone at x.

The proposition can be proved along the same lines as the Cartan–Hadamard theorem; see
for example [AKP].

A closely related statement was rigorously proved by Haefliger in [Hae90]; he showed that
if the charts of an orbi-space are CAT[0] then its universal orbi-cover is CAT[0]. Haefliger’s
definition of orbi-space restricts only to finite isotropy groups, but the above proposition requires
only minor modifications of Haefliger’s proof.

5 This patch construction was introduced by Alexandrov; the earliest reference we found is [Ale48, VI, § 7].
6 That is, each simplex in S forms a face in an m-dimensional simplex.
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Polyhedral Kähler manifolds. Let us recall some definitions and results from [Pan09]. We will
restrict our consideration to the case of non-negatively curved polyhedra.

Definition 3.8. Let P be an orientable non-negatively curved Euclidean polyhedral manifold
of dimension 2 · n. We say that P is polyhedral Kähler if the holonomy of the metric on P◦
belongs to U(n) ⊂ SO(2 · n).

In the case when P is a metric cone piecewise linearly isomorphic to R2·n, we call it a
polyhedral Kähler cone.

Recall that from a result of Cheeger (see [Che86] and [Pan09, Proposition 2.3]), it follows
that the metric of an orientable simply connected non-negatively curved polyhedral compact 4-
manifold not homeomorphic to S4 has unitary holonomy. Moreover in the case when the (unitary)
holonomy is irreducible, the manifold has to be diffeomorphic to CP2. Metric singularities form
a collection of complex curves on CP2; see [Pan09] for the details.

The following theorem summarizes some results on non-negatively curved four-dimensional
polyhedral Kähler cones proven in [Pan09, Theorems 1.5, 1.7 and 1.8].

Theorem 3.9. Let C4 be a non-negatively curved polyhedral Kähler cone and let Σ be the unit
sphere of this cone centred at its tip.

(a) There is a canonical isometric R-action on C such that its orbits on Σ are geodesics. This
action is generated by the vector field J(r(∂/∂r)) in the non-singular part of C, where J is
the complex structure on C and r(∂/∂r) is the radial vector field on C.

(b) If the metric singularities of the cone are topologically equivalent to a collection of n > 3
complex lines in C2, then the action of R on Σ factors through S1 and the map Σ → Σ/S1

is the Hopf fibration.

(c) If the metric singularities of the cone are topologically equivalent to a union of two complex
lines, then the cone splits as a metric product of two two-dimensional cones.

Reshetnyak gluing theorem. Let us recall the formulation of the Reshetnyak gluing theorem,
which will be used in the proof of Proposition 4.1.

Theorem 3.10. Suppose that U1, U2 are CAT[κ] spaces7 with closed convex subsets Ai ⊂ Ui
which admit an isometry ι : A1 → A2. Let us define a new space W by gluing U1 and U2 along
the isometry ι; that is, consider the new space

W = U1 t∼ U2,

where the equivalence relation ∼ is defined by a ∼ ι(a) with the induced length metric. Then
the following holds.

The space W is CAT[κ]. Moreover, both canonical mappings τi Ui → W are distance
preserving, and the images τi(Ui) are convex subsets in W.

The following corollary is proved by repeated application of Reshetnyak’s theorem.

Corollary 3.11. Let S be a finite tree. Assume that a convex Euclidean (or spherical)
polyhedron Qν corresponds to each node ν in S and for each edge [νµ] in S there is an isometry
ιµν from a facet8 F ⊂ Qν to a facet F ′ ⊂ Qµ.

7 We always assume that CAT[κ] spaces are complete.
8 A facet is a face of codimension 1.
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Then the space obtained by gluing all the polyhedra Qν along the isometries ιµν forms a
CAT[0] space (correspondingly a CAT[1] space).

Flag complexes.

Definition 3.12. A simplicial complex S is flag if whenever {v0, . . . , vk} is a set of distinct
vertices which are pairwise joined by edges, then {v0, . . . , vk} spans a k-simplex in S.

Note that every flag complex is determined by its 1-skeleton.
Spherical polyhedral CAT[1] spaces glued from right-angled simplices admit the following

combinatorial characterization discovered by Gromov [Gro87, p. 122].

Theorem 3.13. A piecewise-spherical simplicial complex made of right-angled simplices is a
CAT[1] space if and only if it is a flag complex.

4. On the reflection groups

If the singular locus of a polyhedral space P coincides with its (m−2)-skeleton, then P◦ has the
homotopy type of a graph (its vertices correspond to the centres of m-simplices of P). We will
show that in this case the ramification conjecture can be proven by applying the Reshetnyak
gluing theorem recursively.

We will prove the following stronger statement.

Proposition 4.1. Assume that P is an m-dimensional polyhedral space which admits a
subdivision into closed sets {Qi} such that each Qi with the induced metric is isometric to
a convex m-dimensional polyhedron and each face of dimension m − 2 of each polyhedron Qi
belongs to the singular locus of P. Then RamP ∈ CAT[0].

Note that Theorem 1.2(R+) follows directly from the above proposition. Also the condition
in the above proposition holds if P is isometric to the boundary of a convex polyhedron in
Euclidean space and, in particular, by Alexandrov’s theorem, it holds if P is homeomorphic
to S2.

Proof of Proposition 4.1. In the subdivision of P into Qi, colour all the facets in different colours.
Consider the graph Γ with a node for each Qi, where two nodes are connected by an edge if
the corresponding polyhedra have a common facet. Colour each edge of Γ in the colour of the
corresponding facet.

Denote by Γ̃ the universal cover of Γ. Note that Γ̃ has to be a tree.
For each node ν of Γ̃, prepare a copy of Qi which corresponds to the projection of ν in Γ.
Note that the space RamP can be obtained by gluing the prepared copies. Two copies should

be glued along two facets of the same colour z if the nodes corresponding to these copies are
connected in Γ̃ by an edge of colour z.

Given a finite subtree S of Γ̃, consider the subset QS ⊂ RamP formed by all the copies of
Qi corresponding to the nodes of S.

Note that QS is a convex subset of RamP. Indeed, if a path between points of QS escapes
from QS , it has to cross the boundary ∂QS at the same facet twice, say at the points x and y in
a facet F ⊂ ∂QS . Further note that the natural projection RamP → P is a short map which is
distance preserving on F . Therefore, there is a unique geodesic from x to y and it lies in F . In
particular, a geodesic with ends in QS cannot escape from QS ; in other words, QS is convex.
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Finally, by Corollary 3.11, the subspace QS is CAT[0] for any finite subtree S. Clearly, for
every triangle 4 in RamP there is a finite subtree S such that QS ⊃ 4. Therefore, the CAT[0]
comparison holds for any geodesic triangle in RamP. 2

5. Case (Z2)

In this section we reduce the case (Z2) of Theorem 1.2 to the case (R+).

Proof of Theorem 1.2; case (Z2). Every orientation-preserving action of a group Zk2 on Rm arises
as the action of a subgroup of the group Zm2 generated by reflections in coordinate hyperplanes.
By the definition of ramification, we can assume that the action of Zk2 is generated by reflections
in hyperlines.

Let us write i ∼ j if i = j or the reflection in the hyperline xi = xj = 0 belongs to Γ. Note
that ∼ is an equivalence relation.

It follows that Rm/Γ splits as a direct product of the subspaces corresponding to the
coordinate subspaces of Rm for each equivalence relation.

Finally, for each of the factors in this splitting, the statement holds by Theorem 1.2(R+). 2

6. Two-dimensional spaces

Definition 6.1. An m-dimensional spherical polyhedral space Σ is called α-extendable if for
any ε > 0, every isometric immersion into Σ of a ball of radius α + ε from Sm extends to an
isometric immersion of the whole Sm.

In other words, Σ is α-extendable if either the distance from any point x ∈ Σ to its singular
locus Σ? is at most α or Σ is a space form.

Theorem 6.2. Let Σ be a two-dimensional spherical polyhedral manifold. Then Ram Σ is
CAT[1] if and only if Σ is π/2-extendable.

Proof. Note that if Σ? = ∅, then Σ is a spherical space form. So we assume that Σ? 6= ∅.
Let us show that in the case when Σ is π/2-extendable one can decompose Σ into a collection

of convex spherical polygons with vertices in Σ?. The proof is almost identical to the proof of
[Thu98, Proposition 3.1], so we just recall the construction.

In the case where Σ? consists of two points, Σ can be decomposed into a collection of two-gons.
It remains to consider the case when Σ? has at least three distinct points.

Consider the Voronoi decomposition of Σ with respect to the points in Σ?. The vertices of
this decomposition consist of points x that have the following property. If D is the maximal open
ball in Σ◦ = Σ\Σ? with the centre at x, then the radius of D is at most π/2 and the convex hull
of points in ∂D∩Σ? contains x. Note that such a convex hull is a convex spherical polygon P (x)
and Σ is decomposed into the union of P (x) for various vertices x.

Consider finally the Euclidean cone over Σ with the induced decomposition into cones over
spherical polygons. Applying Proposition 4.1 to the cone, we see that its ramification is CAT[0].
So Ram Σ ∈ CAT[1] by Proposition 3.3. 2

The next result follows directly from Theorem 6.2 and Proposition 3.3.

Theorem 6.3. Let Y be a three-dimensional polyhedral cone. Then RamY is CAT[0] if and
only if Y satisfies one of the following conditions.

2452

https://doi.org/10.1112/S0010437X16007648 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007648


Ramification conjecture and Hirzebruch’s property of line arrangements

(i) The singular locus Y? is formed by the tip or it is empty.

(ii) For any direction v ∈ Y, there is a direction w ∈ Y? such that ](v, w) 6 π/2.

Indeed, the link Σ of Y is a space form if and only if Y? is formed by the tip or it is empty.
If Y? contains more than one point, the condition 2 of this theorem means literally that Σ is
π/2-extendable.

7. Case (R3)

Here we present two proofs of Theorem 1.2 case (R3); the first one is based on Theorem 6.3 and
the second on Theorem 1.2 case (R+).

In both of these proofs we assume that Γ is finite. The case when Γ is infinite can be done
in the same way as the C2 case; see § 9.

Proof 1. Since Γ is finite, without loss of generality we may assume that Γ fixes the origin.
By Zalgaller’s theorem 3.5, the link of the origin in the quotient R3/Γ is π/2-extendable.

Applying Theorem 6.3, we get the result. 2

Proof 2. By Theorem 1.2, it is sufficient to prove that Γ is an index-two subgroup in a group Γ1

generated by reflections in planes.
If Γ fixes a line in R3, then it is a cyclic group and it is an index-two subgroup of a dihedral

group.
Otherwise S2/Γ is an orbifold with three orbi-points glued from two copies of a

Coxeter spherical triangle. Such an orbifold has an involution σ such that (S2/Γ)/σ is a Coxeter
triangle ∆. So Γ1 is the group generated by reflections in the sides of ∆. 2

8. 3-spaces with a geodesic actions

The following theorem is the main technical result.

Theorem 8.1. Let Σ be a three-dimensional spherical polyhedral manifold. Assume that Σ
admits an isometric action of R with geodesic orbits.

Then Ram Σ is CAT[1] if and only if Σ is π/4-extendable or Ram Σ is the completion of the
universal cover of S3\S1.

Example. We will further apply this theorem to unit spheres of polyhedral cones that are
quotients of C2 by a finite group of unitary isometries. The action of R in this case comes
from the action on C2 by multiplication by complex units.

The proof of Theorem 8.1 relies on several lemmas. The following lemma is the spherical
analogue of the theorem proved by Pestov and Ionin in [PI59]; a different proof via curve-
shortening flow was given by Pankrashkin in [Pan15]; see also The moon in the puddle in [Pet09].

Drop lemma 8.2. Let D be a disk with a metric of curvature 1, whose boundary consists of
several smooth arcs of curvature at most κ that meet at angles larger than π at all points except
at most one. Then:

(a) D contains an isometric copy of a disk whose boundary has curvature κ;

(b) if the length of ∂D is less than the length of the circle with curvature κ on the unit sphere,
then D contains an isometric copy of a unit half-sphere.
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Proof. (a) Recall that the cut locus of D with respect to its boundary ∂D is defined as the closure
of the set of all points x ∈ D such that the restriction of the distance function distx|∂D attains
its global minimum at two or more points of ∂D. The cut locus will be denoted as CutLocD.

After a small perturbation of ∂D, we may assume that CutLocD is a graph embedded in D
with a finite number of edges.

Note that CutLocD is a deformation retract of D. The retraction can be obtained by moving
each point y ∈ D\CutLocD towards CutLocD along the geodesic containing y and the point
ȳ ∈ ∂D closest to y. In particular, CutLocD is a tree.

Since CutLocD is a tree, it has at least two vertices of valence one. Among all points of
∂D only the non-smooth point of ∂D with angle less than π belongs to CutLocD. So there is
at least one point z of CutLocD of valence one contained in the interior of D. The point z has
to be a focal point of ∂D; this means that the disk of radius dist∂Dz centred at z touches ∂D
with multiplicity at least two at some point z̄. At z̄ the curvature of the boundary of the disk
centred at z equals the curvature of ∂D and so it is at most κ. So this disk contains a disk with
boundary of curvature κ.

(b) By (a), we can assume that κ > 0. Consider a locally isometric immersion of D into the
unit sphere, ϕ : D # S2. Since the length of ∂D is less than 2 · π, by Crofton’s formula, ∂D
does not intersect one of the equators. Therefore, the curve ϕ(∂D) is contained in a half-sphere,
say S2

+.
Note that it is sufficient to show that ϕ(D) contains the complement of S2

+. Suppose the
contrary; note that in this case ϕ(D) ⊂ S2

+. Applying (a), we get that ϕ(D) contains a disk
bounded by a circle, say σκ, of curvature κ. Note that ∂[ϕ(D)] cuts σκ from its antipodal circle;
therefore,

length ∂[ϕ(D)] > lengthσκ.

Note that
length ∂D > length ∂[ϕ(D)].

On the other hand, by the assumptions,

length ∂D < lengthσκ,

which is a contradiction. 2

Lemma 8.3. Assume that Σ is a spherical polyhedral 3-manifold with an isometric R-action,
whose orbits are geodesic. Then the quotient Λ = (Ram Σ)/R is a spherical polyhedral surface
of curvature 4, and there are two possibilities.
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(a) If Λ is not contractible, then it is isometric to the sphere of curvature 4, further denoted as
1
2 · S

2. In this case, Ram Σ is isometric to the unit S3 or to RamS1 S3, where S1 is a closed
geodesic in S3.

(b) If Λ is contractible, then a point x ∈ Ram Σ is singular if and only if so is its projection
x̄ ∈ Λ. Moreover, the angle around each singular point x̄ ∈ Λ is infinite.

Proof. We will consider two cases.

Case 1. Assume that the action R y Σ is not periodic; that is, it does not factor through an
S1-action. Then the group of isometries of Σ contains a torus T2.

From [Pan09, Proposition 3.9], one can deduce that the Euclidean cone over Ram Σ is
isometric to the ramification of R4 in one 2-plane or in a pair of two orthogonal 2-planes. It
follows that Ram Σ is either

RamS1 S3 or RamS1
a∪S1

b
S3,

where S1
a and S1

b are two opposite Hopf circles. In both cases, the R-action is lifted from the Hopf
S1-action on S3.

If Ram Σ = RamS1 S3, then Λ = 1
2 · S

2 and therefore (a) holds.
If Ram Σ = RamS1

a∪S1
b
S3, then Λ = Ram{a,b}(

1
2 · S

2), where a and b are two poles of the

sphere; therefore, (b) holds.

Case 2. Assume that the R-action is periodic. Let s be the number of orbits in the singular locus
Σ? and let m be the number of multiple orbits in the regular locus Σ◦.

Note that the space Σ◦/S1 is an orbifold with constant curvature 4; it has m orbi-points.
Passing to the completion of Σ◦/S1, we get Σ/S1. In this way we add s points to Σ◦/S1, which
we will call the punctures; this is a finite set of points formed by the projection of the singular
locus Σ? in the quotient space Σ/S1.

Now we will consider a few subcases.
Assume that s = 0; in other words, Σ? = ∅. Then Ram Σ is isometric to S3 and the R-action

factors through the standard Hopf action; that is, the first part of (a) holds.
Assume that either s > 2 or s > 1 and m > 2. Then the orbifold fundamental group of Σ◦/S1

is infinite, the universal orbi-cover is a disk and it branches infinitely over every puncture of
Σ/S1. The completion of the cover is contractible; that is, (b) holds.

It remains to consider the subcase s = 1 and m = 1. In this subcase the universal orbi-cover
of Σ◦/S1 is a once-punctured S2 of curvature 4 and Ram Σ = RamS1 S3; that is, (a) holds. 2

Proof of Theorem 8.1. Suppose first that Λ = (Ram Σ)/R is not contractible. By Lemma 8.3, Λ
is isometric to S2, and the ramification Ram Σ is isometric either to S3 or RamS1 S3. Both of
these spaces are CAT[1]; so the theorem follows.

From now on we consider the case when Λ is contractible and will prove in this case that
Ram Σ ∈ CAT[1] if and only if Σ is π/4-extendable.

If part. From Lemma 8.3, it follows that Ram Σ branches infinitely over singular circles of Σ.
So Ram Σ is locally CAT[1] and we only need to show that any closed geodesic γ in Ram Σ has
length at least 2 · π (see Proposition 3.4).

Let γ be a closed geodesic in Ram Σ; denote by γ̄ its projection in Λ. The curve γ̄ is composed
of arcs of constant curvature, say κ, joining singularities of Λ. Moreover, for each singular point
p of Λ that belongs to γ̄, the angle between the arcs of γ̄ at p is at least π.

Both of the above statements are easy to check; the first one is also proved in [Pan11, Lemma
3.1]. The following lemma follows directly from [Pan11, Proposition 3.6(2))].
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Lemma 8.4. Assume that Σ and Λ are as in the formulation of Lemma 8.3. Then for every
geodesic γ in Ram Σ its projection γ̄ in Λ has a point of self-intersections.

Summarizing all the above, we can choose two subloops in γ̄, say γ̄1 and γ̄2, which bound
disks on Ram Σ/R and both of these disks satisfy the conditions of Lemma 8.2 for some κ.
Clearly, we can choose γ̄1 and γ̄2 so that γ̄1 ∩ γ̄2 is at most a finite set.

By our assumptions, the disks bounded by γ̄i cannot contain points at distance more than π/4
from their boundary, otherwise Σ would not be π/4-extendable. So we deduce from Lemma 8.2(b)
that

length γ̄i > `(κ), (∗)

where `(κ) = (2 · π)/
√
κ2 + 4 is the length of a circle of curvature κ on the sphere of radius 1

2 .
Let α be an arc of γ and ᾱ be its projection in Λ. Note that

lengthα =
π

`(κ)
· length ᾱ.

Together with (∗), this implies that length γ > 2 · π.

Only if part. Suppose now that Σ contains an immersed copy of a ball with radius π/4 + ε.
Consider a lift of this ball to Ram Σ and denote it by B.

Set as before Λ = (Ram Σ)/R. The projection of B in Λ is a disk, say D, of radius π/4 + ε
and curvature 4, isometrically immersed in Λ. Since Λ is contractible, D has to be embedded
in Λ.

Consider a closed geodesic γ̄ ⊂ Λ\D which is obtained from ∂D by a curve-shortening process.
Such a geodesic has to contain at least two singular points; let x be one of such points. Choose
now a lift of γ̄ to a horizontal geodesic path γ on Ram Σ with two (possibly distinct) ends at the
R-orbit over x.

Finally, consider a deck transformation ι of Ram Σ that fixes the R-orbit over x and rotates
Ram Σ around it by an angle larger than π. The union of γ with ι ◦ γ forms a closed geodesic in
Ram Σ of length less than 2 · π. 2

The following statement is proved by the same methods as in the theorem.

Corollary from the proof 8.5. Let n > 2 be an integer and X be a union of n fibers of the Hopf
fibration on the unit S3. Then RamX S3 is CAT[1] if and only if there is no point on S3 at distance
more than π/4 from X.

9. Case (C2)

Proof of Theorem 1.2; case (C2). Let us show that RamΓ C2 is CAT[0].
First assume that Γ is finite. Without loss of generality, we can assume that the origin is fixed

by Γ. Let L be the union of all the lines in C2 fixed by some non-identity elements of Γ. Note
that RamΓ = RamLC2; here RamAX denotes the completion of the universal cover of X\A.

If L = ∅ or L is a single line, the statement is clear.
Set Θ = S3 ∩ L; this is a union of Hopf circles. If the circles in Θ satisfy the conditions of

Corollary 8.5, then RamΘ S3 is CAT[1]. Therefore,

RamΓ = RamLC2 = Cone(RamΘ S3) ∈ CAT[0].

Suppose now that the conditions of Corollary 8.5 are not satisfied. Denote by Ξ the projection
of Θ in 1

2 · S
2 = S3/S1; note that Ξ is a finite set of points. In this case there is an open
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half-sphere containing all points Ξ. Denote by P the convex hull of Ξ. Note that Ξ and therefore
P are Γ-invariant sets. Therefore, the action on S2 is cyclic. The latter means that L consists of
one line.

If Γ is infinite, we can apply the above argument to each isotropy group of Γ. We get that
RamΓx is CAT[0] for the isotropy group Γx at any point x ∈ C2. Then it remains to apply
Proposition 3.7(i).

Now let us show that the inclusion WΓ ↪→ RamΓ is a homotopy equivalence. Fix a singular
point y in RamΓ and let x be its projection to C2/Γ. By Proposition 3.7(ii), the link at y is
the same as the link of the ramification of the cone at x. The latter space is the ramification of
S3 in a non-empty collection of Hopf circles, which is clearly contractible. It remains to apply
Allcock’s lemma 3.6. 2

10. The counterexample

In this section we use the technique introduced above to show that the answer to the Question 2.1
is negative without additional assumptions on P.

Theorem 10.1. There is a positively curved spherical polyhedral space P such that RamP is
not CAT[1]. Moreover, one can assume that P is homeomorphic to S3 and it admits an isometric
S1-action with geodesic orbits.

Proof. Consider a triangle ∆ on the sphere of curvature 4 with one angle π/n and the other
two (π · (n+ 1))/(2 · n) + ε; here n is a positive integer and ε > 0. Note that two sides of ∆ are
longer than π/4.

Denote by Λ the doubling of ∆. The space Λ is a spherical polyhedral space with curvature 4;
it has three singular points which correspond to the vertices of ∆. Label the point with angle
(2 · π)/n by x.

According to [Pan09, Theorem 1.8], there is a unique up to isometry polyhedral spherical
space P with an isometric action S1 y P such that S1-orbits are geodesic, Λ is isometric to the
quotient space P/S1 and the point x corresponds to the orbit of multiplicity n, while the rest of
the orbits are simple.

Note that the points in P on the S1-fiber over x are regular. The distance from this fiber to
the singularities of S3 is more than π/4; that is, P is not π/4-extendable. By Theorem 8.1, we
conclude that RamP is not CAT[1]. 2

11. Line arrangements

The following theorem is the main result of this section.

Theorem 11.1. Let P be a non-negatively curved polyhedral space homeomorphic to CP2 whose
singularities form a complex line arrangement on CP2. Then RamP is a CAT[0] space and the
inclusion (RamP)◦ ↪→ RamP is a homotopy equivalence.

It follows that all complex line arrangements in CP2 appearing as singularities of
non-negatively curved polyhedral metrics have aspherical complements. The class of such
arrangements is characterized in Theorem 11.2; this class includes all the arrangements from
Theorem 1.5.
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Proof. According to [Che86] and [Pan09], the metric on P is polyhedral Kähler.
First let us show that RamP is CAT[0]. By Theorem 3.7, it is sufficient to show that the

ramification of the cone of each singular point x in P is CAT[0].
If there are exactly two lines meeting at x, then the cone of x is a direct product by

Theorem 3.9(c), and the statement is clear.
If more than two lines meet at x, consider the link Σ of the cone at x. According to

Theorem 3.9, there is a free S1-action on Σ inducing on it the structure of the Hopf fibration. The
quotient Σ/S1 is a 2-sphere with spherical polyhedral metric of curvature 4 and the conical angle
is at most 2 · π around any point. It follows from Zalgaller’s theorem that Σ is π/4-extendable.
So by Theorem 8.1 Ram Σ is CAT[1].

It remains to show that RamP◦ ↪→ RamP is a homotopy equivalence. The latter follows
from Allcock’s lemma 3.6 in the same way as at the end of the proof of Theorem 1.2, case C2. 2

Proof of Theorem 1.5. By Theorem 11.1, it suffices to know that there is a non-negatively curved
polyhedral metric on CP2 with singularities at the line arrangement. It is shown in [Pan09] that
for any arrangement of 3 ·n lines that satisfies Hirzebruch’s property and such that no 2 ·n lines
of the arrangement pass through one point, such a metric exists.

We are left with the case when at least 2 ·n lines of the arrangement pass through one point,
say p. Take any other line that does not pass through p. This line has at least 2 · n distinct
intersections with other lines of the arrangement. So n + 1 > 2 · n, and we conclude that the
arrangement is composed of three generic lines; hence, its complement is aspherical. 2

General line arrangements. Let (`1, . . . , `n) be a line arrangement in CP2. The number of lines
`i passing through a given point x ∈ CP2 will be called the multiplicity of x, briefly multx.

Let us associate to the arrangement a symmetric n× n matrix (bij). For i 6= j, put bij = 1 if
the point xij = `i∩ `j has multiplicity 2 and bij = 0 if its multiplicity is 3 or higher. The number
bjj + 1 equals the number of points on `j with the multiplicity 3 and higher.

The next theorem follows from [Pan09, Theorem 1.12 and Lemma 7.9]; it reduces the
existence of a non-negatively curved polyhedral Kähler metric on CP2 with singularities at a
given line arrangement to the existence of a solution of a certain system of linear equalities and
inequalities.

Theorem 11.2. Let (`1, . . . , `n) be a line arrangement in CP2 and (bij) be its matrix. There
exists a non-negatively curved polyhedral Kähler metric on CP2 with the singular locus formed
by the lines `i if and only there are real numbers (z1, . . . , zn) such that:

(i) for each k, we have
0 < zk < 1;

(ii) for each j, we have ∑
k

bjk · zk = 1

and ∑
k

zk = 3;

(iii) for each point x ∈ CP2 with multiplicity at least 3, we have

αx = 1− 1

2
·
∑

{k|x∈`k}

zk > 0.
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Let us explain the geometric meaning of the above conditions. If (z1, . . . , zn) satisfy the
conditions, then there is a polyhedral Kähler metric on CP2 with the conical angle around `i
equal to 2 · π · (1− zi). The inequalities (i) say that conical angles are positive and less than 2π.

Each of the n equalities (ii) is the Gauss–Bonnet formula for the flat metric with conical
singularities at a line of the arrangement; the additional equality expresses the fact that the
canonical bundle of CP2 is O(−3).

The link Σx at x with the described metric is isometric to a 3-sphere with an S1-invariant
metric. A straightforward calculation shows that the length of an S1-fiber in Σx is 2 ·π ·αx, where
αx is as in (iii). Equivalently, π · αx is the area of the quotient space Σx/S1.

The construction of the metric in this theorem relies on a parabolic version of Kobayshi–
Hitchin correspondence established by Mochizuki [Moc06]. Surprisingly, the system of n linear
equations in (ii) is equivalent to the following quadratic equation. (The equation implies the
system by [Pan09, Lemma 7.9] and the converse implication is a direct computation.)

∑
{x|multx>2}

(αx − 1)2 −
n∑
j=1

z2
j · bjj =

3

2
.

This equation is the border case of a parabolic Bogomolov–Miayoka inequality. Geometrically it
expresses the second Chern class of CP2 as a sum of contributions of singularities of the metric.

The following corollary generalizes Theorem 1.5.

Corollary 11.3. Any line arrangement (`1, . . . , `n) in CP2 for which one can find positive zj
satisfying equalities and inequalities of Theorem 11.2 has an aspherical complement.

The arrangements of lines as in Theorem 1.5 satisfy the conditions in Theorem 11.2 with
zi = 1/n at all 3 · n lines of the arrangement. This is proved by an algebraic computation; see
[Pan09, Corollary 7.8]. The restriction that at most 2 ·n− 1 lines pass through one point follows
from (iii). Therefore, the corollary above is a generalization of Theorem 11.2.

Proof. By Theorem 11.2, there is a non-negatively curved polyhedral metric on CP2 with
singularities along (`1, . . . , `n) and so one can apply Theorem 11.1. 2
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BH99 M. R. Bridson and A. Häfliger, Metric spaces of non-positive curvature (Springer, 1999).

2459

https://doi.org/10.1112/S0010437X16007648 Published online by Cambridge University Press

http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
http://www.math.psu.edu/petrunin/
https://doi.org/10.1112/S0010437X16007648


Ramification conjecture and Hirzebruch’s property of line arrangements

CD93 R. Charney and M. Davis, Singular metrics of nonpositive curvature on branched covers of
Riemannian manifolds, Amer. J. Math. 115 (1993), 929–1009.

CD95 R. Charney and M. Davis, The K(π, 1)-problem for hyperplane complements associated to
infinite reflection groups, J. Amer. Math. Soc. 8 (1995), 597–627.

Che86 J. Cheeger, A vanishing theorem for piecewise constant curvature spaces, in Curvature and
topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Mathematics, vol. 1201
(Springer, Berlin, 1986), 33–40.

CHL05 W. Couwenberg, G. Heckman and E. Looijenga, Geometric structures on the complement of a
projective arrangement, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 69–161.

Gro87 M. Gromov, Hyperbolic groups, in Essays in group theory, Mathematical Sciences Research
Institute Publications, vol. 8, ed. S. M. Gersten (Springer, New York, 1987), 75–264.

Hae90 A. Haefliger, Orbi-espaces, in Sur les groupes hyperboliques d’après Mikhael Gromov (Bern,
1988), Progress in Mathematics, vol. 83 (Birkhäuser, Boston, MA, 1990), 203–213.
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