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1. Introduction. For a (bounded, linear) operator A in a (complex, infinite-
dimensional, separable) Hilbert space $?, the inner derivation DA, as an operator on
S8(?if), is defined by DAX = AX - XA. Johnson and Williams [4] showed that, when A is a
normal operator, range inclusion DB38($?)cDA38(2iO is equivalent to the condition that
B =f(A), where / is a Lipschitz function on a(A) such that t(z, w)(f(z)-f(w))l(z-w) is a
trace class kernel on L2(JA) whenever t(z, w) is such a kernel. (Here ix is the dominating
scalar valued spectral measure of A constructed in multiplicity theory.) This result is deep
and its proof is difficult. In the present paper, we establish the following analogous result
which is easier to prove: for a normal operator A, range inclusion DB^2(5if) s D A ^ C ^ )
holds if and only if B =f(A) for some Lipschitz function / on <x(A). Here cg2(^

>) stands
for the Hilbert-Schmidt class of operators on $?. As by-products of our argument, we
generalize some results in [4], [8], [9] concerning the non-existence of a one-sided ideal
contained in certain derivation ranges; for example, we show that if A is hyponormal and
if the point spectrum aP(A*) of A* is empty, then DA38(3i?) does not contain any nonzero
right ideal.

Now let us fix some notation. For p > l , we write "#„($?) for the Schatten Cp-class of
operators on $f and ||-||p for its associated Cp-norm. Let us recall that 58(2f) can be
regarded as the dual of ^(Sif): each A e 38($?) determines a bounded linear functional on
^xidK) given by X»-»tr(AX) and vice versa, where tr(-) stands for the trace of an
operator. In the same fashion, ^^€) can be regarded as the dual of 3iT(2if), the ideal of all
compact operators. For x, y e 3f, we write x<8>y for the rank-one operator defined by
(x<8>y)w = (w, x)y. The following identities are standard and easy to verify: (x&>y)* =
y(g>x, A(x(g>y) = x<g)Ay, (x(g)y)A = A*x(g)y, ||x<8>y||p = ||x||||y|| and tr(x<8>y) = (y,x). For
nonzero yoe51f, we write yo<8>2i? for the minimal left ideal {yo®x:xe2i?} and $?<8>y0 for
the minimal right ideal {x®yo:xe $?}.

2. Right ideals in a derivation range. The following lemma on range inclusion can
be found in [2] and [4]. A short proof is included for the reader's convenience.

LEMMA 2.1. If%u%e2, <3/ are Banach spaces, if S:%\-*<Sf and T:Se2^<W are bounded
linear maps, and if S%!x c T3?2» then there exists a positive constant k such that \\S'<t>\\ ^
fc ||T'4>|| for all 4> e <3/'. (Here <3/' stands for the dual of <2/ and S' stands for the transpose
ofS.)
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Proof. Let %fc2 be the quotient space 3?2/ker T and Q:^£2~^^i be the quotient map.
Then T induces a map f:£2-+<y such that fQ = T. Since t is one-one and SSEl<= T^,,
there is a unique linear map A :t3£x-»$?2 such that S = TA. By means of the closed graph
theorem, it is easy to check that A is bounded. For </>e<2/', since Q':2£'2—*9E-L is an
isometry, we have

| = ||A'f >|| <||A'|| ||f'«|| = HA'll HQ'f >|| = ||A'|| ||T>||.

Therefore we may choose ||A|| to be k.

THEOREM 2.2. If A e38(2i?), y0 e %C and f̂<S>y0S DA98 ($?), then there exists k > 0 such
that

(1)

/or a// X€(S1(3if) and, furthermore,

(2) p

where a-ap(A) stands for the approximate point spectrum of A.

Proof. For convenience, we write B = A*. Then, by taking adjoints, we see that the
condition ^(g)yoSDA98(3if) is equivalent to yo<8)5if£DBS8(3if). Each X in <g,(3if) gives
rise to a linear functional <t>x on 38($f) given by <£x(Y) = tr(XY). Hence we may identify
^,(3?) with a subspace of S8(9if)'. On this subspace, we have D'BX = XB-BX, since
for Ye38(3i?), we have (D^X)(y) = tr(X(DBY)) = tr(XBY-XYB) = tr(XBY-BXY) =
tr((XB-BX)Y). Define S:%-+ 38(3(0 by Sx = yo®x. Then, for Xe<g,(SJO and x e 3if, we
have

(S'X)(x) = tr(X(Sx)) = tr(X(yo(g)x)) = tr(yo®Xx) = (Xx, y0) = (x, X*y0).

Hence ||S'X|| = ||X*yo||. By Lemma 2.1, there is a positive constant k such that ||S'X||<
fc||DBX||for Xe«,(??), or

||X*yo||</c||A*X-XA*||1.

Replacing X* by X, we obtain (1).
Let Keaap(A). We have to exhibit xoe5if such that yo = (A-A)xo. Let {xn} be a

sequence of unit vectors such that ||(A -A)xJ—>0. We put X= y ® ^ in (1) to obtain

= k||z®(A-A)xn-((A-A)*z)(g)xn||1
<k|NIII(A-A)xn|| + /c||(A-A)*2||.

By letting n —» oo, we have
|(2,yo)|<k||(A-A)*2||.

The mapping sending (A-A)*z to (z, y0) is well-defined, linear and bounded. It can be
extended to a bounded linear functional on the whole space $?. Hence, by the Riesz
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representation theorem, there exists xoe2i? such that ((A — k)*z, x0) = (z, y0) for all
xe%. Therefore yo = (A- A)x0.

COROLLARY 2.3 (Johnson and Williams [4, Theorem 2.5]). If A is a normal operator,
then DAS8($?) does not contain any nonzero right ideal.

Proof. This result is an immediate consequence of the above theorem and the
following lemma.

LEMMA 2.4 (Johnson [3], Putnam [5]). If A is a normal operator, E is its spectral
measure and 8 is a closed set in cr(A), then

in particular

COROLLARY 2.5 (Williams [9, Theorem 1]). If S is an isometry, then DSS3(S(?) does not
contain any nonzero right ideal.

Proof. If SS* = I, then S is unitary, and this case is covered by Corollary 2.3. Hence
we assume that SS* ̂  I. Therefore the unit circle T is contained in o-ap(S). Suppose on the
contrary that $?<8>yo£.DsS8($?) for some y o ^0. By Theorem 2.2, we have yoe
fl {(S-A)Si?:AeT}. Let l/e9B(3if) be a unitary extension of S. Then we have yoe
D {(U-k)3C: A eT}, contradictory to Lemma 2.4.

From the proof of the above corollary we see that if S is a subnormal operator and
<x(N)£o-Qp(S), where JV is the minimal normal extension of S, then Ds38(2i?) does not
contain any nonzero right ideal.

Lemma 2.4 can be generalized for hyponormal operators (see Clancy [1]): if A is a
hyponormal operator, then f] {(A —A)Si?: A eC} = {0}. From this result and Theorem 2.2
we obtain the following corollary.

COROLLARY 2.6. If A is a hyponormal operator and if DAS8 ($f) contains a nonzero right
ideal, then <xap(A) ^= <x(A) and, in particular, <xp(A*) is nonempty.

COROLLARY 2.7. If A e 98($?) and if there exists a sequence {Fn} of finite rank operators
such that the linear span of their ranges is dense in $€ and AF* = F*A for all n, then
DAS8(S<?) does not contain any nonzero right ideal.

Proof. Suppose that SJ?(8>yo£DAS8(Si?). Then, by Theorem 2.2, there exists k > 0
such that ||Xyo||<fc ||AX-XA||i. Hence F*yo = 0 for all n. In other words, yo is perpen-
dicular to the range of Fn for all n. Therefore y0 = 0.

COROLLARY 2.8 (Stampfli [7]). For each Ae38(2i?), DAS8(5i?) does not contain any
nonzero two-sided ideal.

Proof. Suppose to the contrary that DAS8(Si?) contains all finite rank operators. Then,
for each yoe%, 2i?<g)yocDA38(2i?) and hence, by Theorem 2.2, yoe{A-k)W for Ae
<rap(A). Therefore A - A is surjective for all Ae<rap(A). On the other hand, for each
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if, yo®^£DAS8(5if) and hence ^®yo£DA.98(3if). In the same way, we see that
A* - IX is surjective for /x e crap(A*). Now let Ao be a point at the boundary of cr(A). Then
Aoe<xap(A) and Aoecrap(A*). Hence both A-A o and (A-Ao)* are surjective, contradict-
ing the fact that Aoecr(A).

3. Rank one majorization.

THEOREM 3.1. If A, Be38(2i?) and if \\DBX\\^k \\DAX\\P for all rank one operators X,
then we have

(1) for each Aecrap(A*)*, there exists /xsC such that, for all xeffl,

(2) there is a Lipschitz function f on crap(A) D crap(A*)* such that, for all xe$? and
A £<Tap(A)n<Tap(A*)*, we have

||(B-/(A))*x||<fc||(A-A)*x||.

Proof. Assume that Aeo-ap(A*). Then there exists a sequence {x,,} of unit vectors in
$? such that ||(A —A)*^!! tends to zero. Now

l|DA(xn®y)||p=||xB®((A-A)y)-((A-A)*xll)®y||p,

which tends to ||(A-A)y||. On the other hand,

- (B*xB ® y)xn|| = ||By - (Bxn, xn)y||.

Therefore, if JX is a cluster point of the bounded sequence {(Bxm x,,)}, then
(a) ||(B-fA)y||<k||(A-A)y||.

Thus we have proved (1).
Note that the relation ||DBX|| < k \\DAX]\P is equivalent to ||DB.Y||<fc ||DA.Y||P, where

Y = X*. Hence we can apply (1) for A*, B* to conclude that, for each A eaap(A), there
exists fx'eC such that, for xe$f,

(b) ||(B-n')*xNfc|l(A-A)*x||.
Now we suppose A e crop(A) D aap(A*)*. Then there exists a sequence {Xn} of unit vectors
such that ||(A-A)*xJ|-»0. Also, there exist |u., n' in C such that both inequalities in (a)
and (b) are satisfied. From the proof of (a) we see that /x can be chosen to be a cluster
point of {(Bx,,, xj}. From
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we see that /x = n'. This shows the existence of the function / on aap(A) C\ aap{A*)* such
that both inequalities in (2) are satisfied. It remains to show that / is a Lipschitz function.

Let A,, A2ecrap(A)ncrap(A*)*. Then there exists a sequence {xn} of unit vectors such
that | |(A-A2)xJ->0. Then, by (a), we also have | |(B-/(A2))xJ-»0. Hence

= lim ||(B - / ( A ^ J C J < k lim inf ||(A - A,)xJ

= fcliminf||(A-A1)xn-(A-A2)xJ|=k|A1-A2|.

4. Main result.

THEOREM 4.1. Let A e 38 ($f) be a normal operator and B e 38 (2f). Then the following
conditions are mutually equivalent.

(1)
(2)
(3) B = f(A) for some Lipschitz function on a(A).
(4) AB = BA and there exist k>0 and a Lipschitz function f on cr(A) such that, for all

Aecr(A), all xe %,

(5) B is normal and there exists a Lipschitz function f on <x(A) such that (B -
(A -k)X for all A ea(A).

Proof. That (1) implies (2) is obvious. Next we assume (2) and prove (4) and (5). By
means of Lemma 2.1, we can use an argument similar to that in the first part of the proof
of Theorem 2.2 to show that there exists a positive constant fc > 0 such that, for each finite
rank operator X, we have ||DBX||<fe HOAX^. Notice that, since A is normal, a(A) =
o"ap(A)= crapCA*)*. Hence, from Theorem 3.1, we see that there is a Lipschitz function /
on cr(A) and a constant fc>0 such that

||(B-/(A))*x||<fc||(A-A)*x||.

The last inequality guarantees the factorization B-/(A) = (A-A)T for some Te
from which the inclusion (B-/(A))^s(A-A)3if follows. To finish the proof of (4) and
(5), it remains to show that B is normal and commutes with A. For this purpose, it suffices
to show that Be{A}". This follows from Corollary 2.3 and the fact that, for each C in
{A}', (BC-CB)tg1(5if)cDA38(?if), which can easily be deduced from the assumption

Now we assume (4) and proceed to show (3). Let E(-) be the spectral measure of
A. Let e be an arbitrary positive number. Write <x(A) as a disjoint union of finitely
many disjoint Borel subsets cru a2,..., <rn of diameters less than e such that
fi.o'i), /(o"2)> • • • > / V J also have diameters less than e. For x e E(a,)5if and A,- e a-,-, we have

fc ||(A - A,)x|| + e ||x||<(k + l)e ||x||
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Since B commutes with A, it commutes with £(a,) for each j . Hence, for each

\\(B-f(A))x\\2 = | (B-/(A)) I E(a,)x|2

Since e is arbitrary, we have B =/(A).
Next we show that (5) implies (3). Let E(-) and F(-) be the spectral measure of A and

B respectively. By Lemma 2.4, for a closed set T in a(B), we have

<= D {(A -

On the other hand, there is an increasing sequence {rn} of closed sets in a(B) such that

U Tn = cr(B)\T and hence
n = l

F(Tn)X\

Thus we conclude that F(T) = E(f~l(j)) for all closed sets r in <r(A). Now it is routine to
show that A = f(B).

Finally, we show that (3) implies (1). Again, let E(-), F(-) be the spectral measures of
A and B respectively. We assume that / has the Lipschitz constant k. We write <r(B) as
the union of finitely many, mutually disjoint Borel subsets TU ..., Tn, each of which has
diameter less than a given positive number e. For /' = 1 , . . . , n, we write / ^ ( T , ) =
U {<Xj:ielj}, where Ilt...,In are mutually disjoint finite index sets and crf are mutually
disjoint Borel sets of diameter less than e. We notice that a(A)=\Jah where 1 =

i\ UI2U . . . U/n. For each /, take a point /u,, in Tj and, for each i, take a point \.t in o-t. We
put

Ae = I

Then we have

iel ( = 1
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Since

we have | | /(Ae)-Be| |<e. Also notice that | | A - A j < e and | | B - B j < e . Next, for
X e «2(SJr), let Xre = E(<Tr)XE(crs) for r,sel. Then

(/(Ar)-/(As))xJf
r.se I 112

Let e -»0, we have ||DBX||2 < fc ||DAX||2.

5. Remarks. In this final section we give some variants of Theorem 2.2.

PROPOSITION 5.1. For every A in 93(2£), DA^SM) does not contain any nonzero
one-sided ideal.

Proof. Assume that ?(?(8)yoSDA
cg1(^'). Note that ^ W can be identified with

and proceed as in the beginning of the proof of Theorem 2.2. We deduce that there exists
a constant k >0 such that ||Xyo||<fc ||AX-XA|| for all X in 58(2i?). Let X = I in the above
inequality; we obtain y0 = 0.

For an operator A, it is natural to ask the following question: for each finite rank
operator Fo in DA58(2if), does there always exist a finite rank operator F such that
Fo= DAF1 Proposition 5.1 tells us that, if A is an operator such that DA38(2if) contains a
nonzero one-sided ideal, then the answer is no. In fact, if %!<8)yo^DA$l(ffl) with yo^O,
then, by Proposition 5.1, there exists some xeffl such that x^yo^D^^S^); but of
course we have x®yoeDAS8(5if).

PROPOSITION 5.2 (Weber [8, Theorem 3]). // A is a Hilbert-Schmidt operator, then
DA38(2i0 does not contain any nonzero one-sided ideal.

Proof. Assume that ^0yo£DA98(3if). We may regard DA as a map from 58($f) into
%o2ffl) and hence its transpose D'A becomes a map from c€2(^) into c€1(^6). Hence there
exists fc>0 such that ||Xyo||<fc HAX-XAH, for all Xec$2(W). Letting X = A, we obtain
Ay0 = 0. Now the proposition follows from the following lemma which is implicit in [8].

LEMMA 5.3. // A is an operator in 2ft(ffl) with the property that, for each
implies Ayo = 0, then DA38($?) does not have any nonzero right ideal.

Proof. Suppose that ^€®yo<^DA^{^€). We have to show that yo = O. By the assumed
property of A, we have Ayo = 0. On the other hand, there exists Xe*M(dlC) such that

Hence HyolP >"o= (yo<S>yo)yo= AX^y0. It suffices to show that
since, in view of the assumed property of A, this inclusion implies
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AXyo = 0, which in turn implies yo = 0. Now for each ye$f, there exists YeS8(§if) such
that y<8>y0 = AY- YA and hence

y ® Xy0 = X(y ® y0) = XA Y - XYA
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