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We employ the methods of statistical mechanics to obtain closures for the balance
equations of momentum and fluctuation kinetic energy that govern the ballistic motion
of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent
shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations.
We obtain semi-analytical solutions for steady and fully developed saltation over
horizontal beds for the vertical profiles of particle concentration and stresses and fluid
and particle velocities. These compare favourably with measurements in discrete-element
numerical simulations in the wide range of conditions of Earth and other planetary
environments. The predictions of the particle horizontal mass flux and its scaling with
the amount of particles in the system, the properties of the carrier fluid and the intensity
of the shearing also agree with numerical simulations and wind-tunnel experiments.
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1. Introduction

Saltation, that is the motion of solid particles driven by a shearing flow in a gravitational
field through successive jumps and rebounds from a base driven by a shearing flow,
has been established as the main mode of transport of wind-blown sand (Bagnold 1941;
Owen 1964; Andreotti 2004; Charru, Andreotti & Claudin 2013; Valance et al. 2015) and
is crucial to the dynamics of dunes (Sauermann, Kroy & Herrmann 2001). Although
originally identified as the means of transport of sand grains by the wind on Earth, it
has been recognized as significant also for the transport of sand or gravel in water on
Earth (Fernandez Luque & Van Beek 1976; Abbott & Francis 1977; Niño & García 1998;
Ancey et al. 2002), basalt particles on Venus (Iversen & White 1982; Greeley et al.
1984) and Mars (Iversen et al. 1976; Iversen & White 1982), and ice particles on Titan
(Burr et al. 2015). While these studies considered the carrier fluid to be turbulent, saltation
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in viscous, non-turbulent fluids has also been investigated (Charru & Mouilleron-Arnould
2002; Ouriemi, Aussillous & Guazzelli 2009; Seizilles et al. 2014), given its practical
relevance in limiting the transport capacity of oil in pipes (Dall’Acqua et al. 2017; Leporini
et al. 2019).

There is a large body of mathematical models of saltation in the literature (see, e.g.
the reviews of Kok et al. 2012; Valance et al. 2015; Pähtz et al. 2020). As highlighted by
Valance et al. (2015), the different models can be said to be Lagrangian or Eulerian, based
upon the point of view adopted in the description of the particle motion.

In many Lagrangian approaches (Anderson et al. 1988; Werner 1990; Creyssels et al.
2009; Kok & Renno 2009), particle trajectories are calculated from a distribution of
the take-off velocities by solving the differential equations of their momentum balances,
influenced by fluid drag and gravity, when immersed in a fluid with a prescribed velocity
profile and for a given distribution of initial take-off velocity at the basal boundary. The
calculation is repeated once the fluid velocity profile and the distribution of the take-off
velocities are updated. This is done using a simple constitutive relation for the fluid shear
stress (in the case of turbulent fluid, usually based on a mixing length approach) and a
suitable set of boundary conditions that govern the impact of the particles at the base
(Oger et al. 2005; Beladjine et al. 2007; Crassous, Beladjine & Valance 2007), until a
steady state is attained.

Simpler Lagrangian approaches, in which the distribution of the particle trajectories is
replaced by a single trajectory (Jenkins & Valance 2014) or a pair of trajectories (Andreotti
2004), have also been recently proposed and successfully compared against experiments
and numerical simulations. In particular, the one trajectory models, also called periodic
trajectory (PT) models, have been applied to saltation in both turbulent (Berzi, Jenkins
& Valance 2016) and viscous (Pähtz et al. 2021; Valance & Berzi 2022) shearing flows,
for values of the ratio of the grain-to-fluid mass densities encountered on Earth and other
planetary bodies (Berzi, Valance & Jenkins 2017). The PT models are simple enough to
allow for fully analytical solutions of steady and fully developed saltation, and permit
rather accurate determination of global quantities, such as the particle mass flux, as a
function of the intensity of the shearing flows. On the other hand, many variables of
interest, such as the profile of the particle concentration and the total depth of the saltation
layer, are poorly predicted. It is also not obvious how to extend this model to unsteady
and/or inhomogeneous problems.

Another family of Lagrangian approaches is based on the framework of the discrete
element method (DEM, Cundall & Strack 1979), and solves Newton’s laws of motion for
the individual grains that are allowed to collide with other particles and with the base,
while the surrounding fluid is replaced by forces (such as drag and buoyancy) acting on
the particles themselves (Tsuji, Kawaguchi & Tanaka 1993). The corresponding forces
transmitted by the particles on the fluid are then introduced in the fluid momentum balance,
ensuring an instantaneous two-way coupling. These discrete-continuum (DC) numerical
simulations are a powerful tool, in that they greatly reduce the number of assumptions
necessary to solve for the transport process. For instance, the dynamics of the impact
of the particles with the base must not be modelled in advance, but is an output of the
simulations. Likewise, the possibility of interparticle collisions above the base is naturally
accounted for. On the other hand, the number of particles that it is feasible to simulate
is severely limited by the computational power and is nowhere near to the actual number
of grains involved in real-scale applications. Discrete-continuum simulations have been
applied to saltation in turbulent (Durán, Andreotti & Claudin 2012; Pähtz et al. 2015;
Pähtz & Durán 2020; Ralaiarisoa et al. 2020) and viscous flows (Valance & Berzi 2022)
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and provide a large number of measurements, some of which are simply unattainable in
physical experiments. Hence, they serve as severe tests of more sophisticated approaches.

Eulerian approaches, in which both the fluid and the saltating particles are treated as
two superimposed continuum phases, offer the most promising perspective for modelling
large-scale phenomena. In the model of Sauermann et al. (2001), the motion of the
two phases is depth averaged over the saltation layer, and cannot therefore predict the
distribution of the variables of interest with height. A key point of the model is that the
wind profile in the saltation layer is determined by assuming an exponential distribution of
the particle shear stress there. The same assumption is adopted in more recent Eulerian
models (Lämmel, Rings & Kroy 2012; Pähtz, Kok & Herrmann 2012). Assuming an
a priori distribution of velocity is crucially different from phrasing a constitutive relation
for the particle shear stress, and obtaining the distribution from the usual momentum
balance.

Pasini & Jenkins (2005) were the first to average the equations governing the trajectory
of the single particles to obtain boundary conditions for collisional saltation. Later,
Jenkins, Cantat & Valance (2010) proposed a constitutive relation for the particle shear
stress based on substituting averaging of products with products of averaging. They also
equated the particle pressure to the product of the particle concentration and the granular
temperature, the mean square of the particle velocity fluctuations. They assumed, as in
Creyssels et al. (2009), that the latter is uniformly distributed with the distance from
the base, which holds only if the vertical drag on the particles is negligible. From the
uniform distribution of the granular temperature, they obtained the exponential decay
of the particle concentration and distributions of particle and fluid mean horizontal
velocities that agreed reasonably well with experiments (Creyssels et al. 2009; Chassagne,
Bonamy & Chauchat 2023). The model was later extended to deal with unsteadiness and
inhomogeneities (Jenkins & Valance 2018). Interestingly, the constitutive relation for the
particle shear stress of Jenkins et al. (2010) coincides with the dilute and collisionless limit
of the expression derived by Garzó et al. (2012) by solving the Enskog kinetic theory for
monodisperse gas–solid flows, as already pointed out in Chassagne et al. (2023). However,
in the present context, such a relation for the particle shear stress is too simple in that it
ignores a contribution from the difference in velocities and results from assuming that
the vertical particle velocity fluctuations are not influenced by drag (Jenkins et al. 2010;
Jenkins & Valance 2014) or are distributed isotropically (Garzó et al. 2012).

Here, our goal is to employ a kinetic theory that includes drag, gravity and a distribution
of particle velocities to obtain continuum expressions for the stresses and energy flux in a
collisionless flow of particles in shearing flows of a general fluid above a horizontal, rigid,
bumpy boundary. Such a boundary is particularly effective in transferring momentum
from the horizontal to the vertical. As a consequence, in a steady, uniform flow, the
vertical component of the velocity after a collision is likely to be larger than the particle
settling velocity. We distinguish between ascending and descending particles, approximate
the trajectories based on the characteristics of a rigid bumpy boundary in the limit of
large vertical velocity of the ascending particles with respect to the settling velocity, and
assume that the velocity distribution function of the ascending particles is an anisotropic
Maxwellian, as in Creyssels et al. (2009). In this case, the second velocity moment of
the distribution is a second-rank tensor, rather than a scalar. Also, it is assumed that, at
each position above the bed, the fluid velocity profile, when expanded at that position,
is linear for viscous flows and logarithmic for turbulent flows. Averaging, then, permits
approximate analytical forms to be obtained for the particle stresses and energy flux in
both viscous and turbulent flows.
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As suggested by Pasini & Jenkins (2005), collisions above the base can be ignored if the
mean free path of kinetic theory is larger than the length of the ballistic trajectory. Given
that the mean free path strongly decreases if the particle concentration increases (Chapman
& Cowling 1970), and that the particle concentration near erodible beds that are composed
of particles at rest identical to those in saltation is large (Tholen et al. 2023), we argue that
collisionless saltation is possible only over a rigid bed.

We phrase and solve the balances of fluid and particle momenta and particle fluctuation
energy for steady, fully developed saltation over a horizontal, rigid, bumpy bed, driven
by either a viscous or turbulent shearing flow, using the boundary layer approximation
for the fluid flow, with appropriate boundary conditions. As in all previous models of
saltation, we assume that the fluid velocity is solely in the horizontal direction and neglect
its fluctuations. This permits us to uncouple the determination of quantities associated
with the particle vertical motion, such as the intensity of the vertical velocity fluctuations,
particle concentration and normal stress, from those that involve the particle horizontal
motion and are, therefore affected by the flow regime of the fluid, such as the particle shear
stress and particle and fluid mean horizontal velocity. Depending on the flow regime of the
fluid, only one or two differential equations must be solved numerically to determine the
vertical profiles of the corresponding quantities. The remainder of the profiles, including
the depth of the saltation layer, are obtained algebraically.

After deriving scaling laws for flow quantities in some special limits, we successfully
test the results of the theory against quasi-two-dimensional DC simulations of saltation in
viscous and turbulent shearing flows. These were carried out by suppressing the possibility
of mid-trajectory collisions for a wide range of particle-to-fluid mass density ratios,
ranging from Mars to Earth, at different values of the strength of the shearing flows,
the amount of particles in the system and the viscosity of the fluid. We also test the
relation between the particle mass flux and the amount of particles in the system against
measurements made in wind-tunnel experiments (Ho 2012).

In § 2, we present the constitutive relations, the balance equations and the boundary
conditions that we employ to obtain semi-analytical solutions to steady and fully developed
saltation over rigid, bumpy beds. In § 3, we show how to obtain scaling laws for various
quantities in the limit of rarefied saltation in both viscous and turbulent flows, at least
when the drag coefficient reduces to its asymptotic expressions. Comparisons against
DC simulations and experiments are detailed in § 4. Finally, in § 5, we conclude with a
summary of the main findings and an outline of future work.

2. Governing equations and semi-analytical solutions

The saltating particles are assumed to be identical spheres of diameter d and mass density
ρs. A shearing flow of a fluid of mass density ρf and molecular viscosity μf drives the
flow in the presence of gravity, with g the gravitational acceleration. The mean horizontal
velocities of the particles and the fluid are u and U, respectively. We assume that the flow
is steady and uniform, so that the velocities are only functions of the vertical distance
from the bed y. We imagine that the bed is made bumpy by gluing identical particles
of diameter dw, in close contact to each other, over a flat plate. Hence, the ratio of dw
to d is a natural measure of the bed roughness. We characterize the particles through the
fall particle Reynolds number R = ρ f √g(r − 1)/rd3/2/μ f , where r = ρs/ρf is the density
ratio. A sketch of the flow configuration is shown in figure 1. In what follows, all quantities
are made dimensionless using the diameter and mass density of the particles and the
reduced gravitational acceleration, g(r − 1)/r. Then, lengths, velocities and stresses are
expressed in units of d, [g(r − 1)d/r]1/2 and ρsg(r − 1)d/r, respectively.
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Rigid bumpy bed

Saltating particle

Diameter dw
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Figure 1. Sketch of a particle driven into saltation over a rigid, bumpy bed by a shearing flow.

The balance equations for the y and x-momenta of the particles, under steady and fully
developed conditions, are, respectively,

dσy

dy
= −c; (2.1)

and
ds
dy

= −cCD(U − u), (2.2)

where σy and s are the particle normal stress in the y-direction and the particle shear stress,
respectively; c is the particle volume concentration; and CD is the drag coefficient that, for
a single particle, has a component independent of the relative velocity between the single
particle and the fluid and a component proportional to the absolute value of that velocity
difference. Here, we assume perhaps the simplest form of CD (Dallavalle 1943), which we
make independent of y by evaluating it at the bed in the case of saltation in viscous flows,

CD = 18
St

+ 0.3
r

|U0 − u0|, (2.3a)

where St = rR is the fall Stokes number and the subscript 0 indicates quantities evaluated
at the bed. We employ the terms Stokes drag to refer to situations in which CD � 18/St,
form drag for situations in which CD � 0.3|U0 − u0|/r and nonlinear drag for the generic
case in which both Stokes and form drag are present. A more appropriate expression for the
average CD should also involve the strength of the particle velocity fluctuations (Jenkins
& Hanes 1998). However, including it would have only a small quantitative effect on the
results. Also permitting the drag coefficient to vary along y does not significantly alter the
solution to the continuum model. We anticipate that, while (2.3a) works well for saltation
in viscous shearing flows over rigid, bumpy beds, where the fluid and particle velocity
profiles are approximately linear, a more appropriate expression for saltation in turbulent
flows should incorporate the difference in the concentration-weighted average velocities
between the two phases, as proposed by Pähtz et al. (2021)

CD = 18
St

+ 0.3
r

|Ū − ū|, (2.3b)

where Ū − ū = ∫ h
0 c(U − u) dy/

∫ h
0 c dy, with h the depth of the saltation layer.
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For flows over rigid beds, we take the no-slip boundary condition for the fluid

U0 = 0. (2.4)

If saltating particles with a large value of the coefficient of sliding friction impact a rigid,
bumpy bed at a small mean angle θ with respect to the horizontal (figure 1), then, using
the analysis of Lämmel et al. (2017) in Appendix C,

u0 = αu
1

CDθ
, (2.5)

where αu is a strictly positive coefficient of order unity that is weakly dependent on the
rebound properties of the particles and the flow regime of the fluid. The reason for the
latter dependence is that the probability distributions of impact angles are qualitatively
different for saltation in viscous and turbulent shearing flows (Appendix C).

In a steady, uniform flow, in the absence of a horizontal pressure gradient, the sum of
the fluid and particle shear stress, S and s, respectively, is constant and equal to the far-field
fluid shear stress, which, in dimensionless terms, is the Shields parameter

s + S = Sh. (2.6)

To close the problem, we require constitutive relations for the particle and fluid stresses.
In the absence of particle collisions above the bed, the only mechanism responsible for

the particle stresses is the transfer of momentum associated with the particles crossing a
reference surface. Hence, the particle normal stress in the y-direction is simply given by
the average vertical flux of y-momentum

σy = cTy, (2.7)

where Ty is the mean square of the vertical velocity fluctuations of the particles . There is
a corresponding mean square of the horizontal velocity fluctuations Tx, where Tx and Ty
are the diagonal components of the second moment of the particle velocity tensor.

The distribution of the additional hydrodynamic field, Ty, along y is governed by
the balance of kinetic energy associated with the particle vertical motion, that is,
the yy-component of the particle second-moment tensor, which, in a steady and fully
developed flow, and in the absence of mid-trajectory collisions and fluid velocity
fluctuations, reduces to (Saha & Alam 2016, 2017)

−dQyyy

dy
− 2CDσy = 0. (2.8)

Here, Qyyy is the y-component of the flux of the kinetic energy associated with the vertical
particle velocity fluctuations and 2CDσy is its dissipation due to the fluid drag.

Assuming that the fluid motion is only horizontal and that the drag coefficient is
independent of y, we can obtain approximate analytical expressions for the trajectories of
the saltating particles even in the turbulent case (Appendix A). In doing so, we distinguish
between ascending and descending particles. Then, the horizontal, ξ−

x , and vertical, ξ−
y ,

velocities of any descending particle at a given distance y from the bed can be obtained
analytically from the horizontal, ξ+

x , and vertical, ξ+
y , velocities of the same particle at the

same distance y from the bed during its ascending motion. In the classical framework of
statistical mechanics, we introduce a velocity distribution function, f +, for the ascending
particles, so that (π/6)

∫
all ξ+ f + d2ξ+ gives the concentration of the ascending particles.

With this, Qyyy = (π/6)
∫

all ξ+ (ξ+2
y − ξ−2

y )ξ+
y f + d2ξ+. With the further assumptions that
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the velocity distribution function is an anisotropic Maxwellian (Creyssels et al. 2009)
and that the vertical velocity ξ+

y of the ascending particles is much larger than 1/CD (the
settling velocity), we derive a simple expression for Qyyy in Appendix B

Qyyy =
√

8
π

c+(T+
y )3/2. (2.9)

Here, c+ and T+
y are the volume concentration and the mean square of the vertical velocity

fluctuations of the ascending particles, respectively. In a steady state, c+ and T+
y are related

to c and Ty through (see Appendix B)

c = c+
⎛
⎝2 + 3

4
CD

√
2T+

y

π

⎞
⎠ ; (2.10)

and

Ty =
4
√

πCDT+
y + 4

√
2T+

y

8
√

πCD + 3C2
D

√
2T+

y

. (2.11)

As explicitly shown in Appendix B, the assumption that the vertical velocity of the
ascending particles is much larger than the settling velocity is a good approximation for
CD

√
Ty > 1. We will see in § 4 that this condition is not satisfied only near the top of the

saltation layer.
Using (2.7), (2.10) and (2.11) into (2.1) leads to

dc+

dy
= −c+ 8CD + 3C2

D

√
2T+

y /π

4CDT+
y + 4

√
2T+

y /π

− c+ 2CD +
√

2/πT+
y

2CDT+
y + 2

√
2T+

y /π

dT+
y

dy
, (2.12)

that, combined with (2.8) and (2.9), permits an ordinary differential equation for T+
y to be

obtained

[
√

8πCD(T+
y )3/2 + 8T+

y ]
dT+

y

dy
= (6 − 4π)C2

D(T+
y )2 − 8T+

y . (2.13)

The analytical solution of this, with the boundary condition T+
y ( y = 0) = T+

y,0, for the
vertical particle velocity fluctuations at the rigid boundary, is

4
√

2π(2π − 3)tan−1

(√
2π − 3

2
CD

√
T+

y

)

− 2(2π − 3)

{√
2πCD

√
T+

y + 2 log[4 + (2π − 3)C2
DT+

y ]
}

= (3 − 2π)2C2
Dy + 4

√
2π(2π − 3)tan−1

(√
2π − 3

2
CD

√
T+

y,0

)

− 2(2π − 3)
{√

2πCD

√
T+

y,0 + 2 log[4 + (2π − 3)C2
DT+

y,0]
}

. (2.14)
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0.4

0.6

0.8

1.0

Ty/T +
y,0, T +

y/T +
y,0 Ty/Ty,0

y/h

(a) (b)

Figure 2. (a) Normalized profiles of T+
y (dot-dashed lines) and Ty (dashed lines) obtained from (2.14) and

(2.11), respectively, when C2
DT+

y,0 = 2.5 (blue lines), C2
DT+

y,0 = 10 (orange lines) and C2
DT+

y,0 = 100 (purple
lines). (b) Normalized profiles of Ty (dashed lines, same colour legend of figure 2a) and the linear distribution
of (2.16) (solid black line).

The non-zero value of T+
y,0 is associated with the rebound velocity of the particles at a

rigid, bumpy bed.
Under the same assumptions that were employed to derive equation (2.5), a simple

dependence of T+
y,0 calculated at the bed on the impact angle θ is obtained in

Appendix C

T+
y,0 = αT

1
C2

Dθ

2dw

1 + dw
, (2.15)

where αT is another strictly positive coefficient of order unity that is weakly dependent on
the rebound properties of the particles and the flow regime of the fluid. We emphasize that
the impact angle, and consequently T+

y,0, remains an unknown at this stage of the analysis.
We will determine it in the next two sub-sections, when we describe quantities associated
with the horizontal motion of the particles that are influenced by the flow regime of the
fluid.

Equation (2.14) provides the analytical distribution of T+
y along y, which, when

employed in (2.11), gives the analytical distribution of Ty shown in figure 2(a) for

different values of CD

√
T+

y,0, corresponding to an impact angle θ in (2.15) in the range
1° to 20°. As shown in figure 2(b), the distribution of Ty is roughly linear and well
approximated as

Ty = h − y
h

Ty,0, (2.16)

where the depth of the saltation layer, h, is to be determined. The mean square of the
particle velocity fluctuations at the bed, Ty,0, can be obtained from (2.11), when T+

y,0 is
known.
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Inserting (2.7) into (2.1), with (2.16), and integrating gives the following power-law
distribution of the particle concentration:

c = c0

(
h − y

h

)(h−Ty,0)/Ty,0

, (2.17)

where c0 is the particle concentration at the bed. Integrating equation (2.1) with (2.17) also
gives

σy = c0Ty,0

(
h − y

h

)h/Ty,0

. (2.18)

Upon introducing the hold-up, M = ∫ h
0 c dy, i.e. the particle mass per unit basal area, by

integrating the concentration through the saltation layer, with σ y = 0 at y = h, we obtain

c0 = M
Ty,0

. (2.19)

Integrating the energy balance, (2.8) with (2.18) and (2.19), provides

Qyyy = 2CDMTy,0
h

h + Ty,0

[(
h − y

h

)(h+Ty,0)/Ty,0

− 1

]
+ Qyyy,0, (2.20)

where the value of Qyyy at the bed can be obtained from the ratio of (2.9) and (2.7), with
(2.10), (2.11) and (2.19), as

Qyyy,0 =
4CDT+

y,0

CD

√
2πT+

y,0 + 2
M. (2.21)

Given that Qyyy must vanish at the top of the saltation layer, the depth h of the saltation
layer is determined from (2.20) as

h = Qyyy,0

2CDMTy,0 − Qyyy,0
Ty,0. (2.22)

The governing equations, constitutive relations and analytical results described so far
apply to saltation in both viscous and in turbulent shearing flows and can be calculated
only after the determination of the impact angle θ , required in (2.5) and (2.15). To proceed,
we must distinguish between the two regimes of the fluid shearing flow.

Before doing that, we support the assumption that particle collisions above the bed
can be neglected. As suggested by Pasini & Jenkins (2005), chances of mid-trajectory
collisions are low if the mean free path, λ, the average distance travelled by a particle in
between two successive collisions predicted by the kinetic theory of granular gases, is less
than twice the height of the particle trajectory, here determined by gravity and fluid drag.
If we use the expression for the mean free path in a dilute gas of Chapman & Cowling
(1970), evaluate this at the bed and take h as the average height of the particle trajectories,
we obtain

λ0 = 1

6c0
√

2
≥ 2h. (2.23)

Equation (2.23), used with (2.22), implies that, for given values of r, St and Sh, there
is a maximum hold-up above which mid-trajectory collisions play a role. That is, because
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the mean free path is a decreasing function of the particle concentration, as the hold-up
increases, collisions become more likely. However, there is also a limiting hold-up at
which particles begin to deposit on the bed. Analysis of periodic trajectories over rigid
beds (Jenkins & Valance 2014) and discrete simulations of the present paper indicate
that the concentration at the bed at which deposition begins is greater than that at which
collisions begin to occur. Consequently, in saltation over such beds, collisions occur before
deposition.

2.1. Saltation in viscous shearing flows
In the absence of turbulence, the expression for the fluid shear stress is (Valance & Berzi
2022)

S = 1 − c
St

dU
dy

� 1
St

dU
dy

, (2.24)

where we have neglected the particle concentration with respect to unity. Equation (2.24)
implies that, in the absence of particles and in the boundary layer approximation that we
have employed, the fluid velocity distribution would be linear.

Using statistical mechanics arguments, the particle shear stress can be obtained as
s = −(π/6)

∫
all ξ+ (ξ+

x − ξ−
x )ξ+

y f + d2ξ+. To determine ξ−
x , we assume in Appendix A

that the fluid velocity profile encountered by an ascending particle during its ballistic
trajectory above a certain position y is locally linear; that is, it is linear in the region
between y and the top of the trajectory. However, the slope of the linear profile changes
with y due to the drag of the particles. This assumption and the assumptions on the form
of the velocity distribution function f + and CDξ+

y � 1, that we have already employed in
the derivation of the expression for Qyyy in (2.9), permit the derivation in Appendix B of
a simple expression for the particle shear stress

s = 3
5

CDσy

(
U − u + 2

3
1

C2
D

dU
dy

)
. (2.25)

Interestingly, the particle shear stress does not depend on the particle shear rate, as in
Jenkins et al. (2010), but only on the velocity difference and on the fluid shear rate. The
physical reason is that the particles do not interact with each other, but only with the
surrounding fluid.

As explained in Appendix C, for saltation in viscous flows the mean angle θ between
the particle velocity and the horizontal before the impact with the bed is estimated in the
limit of large vertical velocity of ascending particles in Appendix A as

θ = CD

St(Sh − s0)
, (2.26)

where s0 is the particle shear stress at the bed.
Using (2.4) and (2.5) in (2.3a), with (2.26), we obtain a relationship between the drag

coefficient and the particle shear stress at the bed

C3
D = 18

St
C2

D + 0.3
r

αuSt(Sh − s0). (2.27)

The particle shear stress at the bed is obtained from (2.25), with (2.4)–(2.6), (2.19) and
(2.24), as

s0 = (2 − 3αu)MStSh
5CD + (2 − 3αu)MSt

. (2.28)
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Collisionless kinetic theory for saltation over a rigid

M
10–110–210–3

100

10–2

10–4

10–4

θ 
(d

eg
.)

, 
C
D

, 
s 0

Figure 3. Predicted impact angle in degrees (solid line, –), drag coefficient (dashed line, --) and particle shear
stress at the bed (dot-dashed line, ·-) as functions of the hold-up for saltation in viscous shearing flows when
dw = 1, St = 100, r = 50, and Sh = 0.05 (with αu = 0.60).

Equation (2.28) implies that for the particle shear stress at the bed to be positive, αu must
be less than 2/3. The system of (2.27) and (2.28) can be solved to determine the drag
coefficient and the particle shear stress at the bed once the values of dw, r, St, Sh and M
are given. Then, the impact angle (2.26), the values of all the variables at the bed ((2.5),
(2.15) and (2.21)), the depth of the saltation layer (2.22), and the analytical distributions of
T+

y , Ty, c, σ y and Qyyy ((2.14), (2.16)–(2.18) and (2.20)) can also be calculated for saltation
in viscous shearing flows.

Figure 3 shows the variation of the impact angle, the drag coefficient and the particle
shear stress at the bed with the particle hold-up, as predicted by ((2.26)–(2.28)), for, e.g.
saltation of 100 μm basalt grains in viscous shearing flows on Venus, assuming that
αu = 0.60 (§ 4 provides more details on the choice of the parameters). Equation (2.23)
is satisfied for the range of hold-up in figure 3. Notice that for almost the entire range of
hold-up, the particle shear stress at the bed increases linearly with M, while θ and CD are
constant.

Using (2.25) in (2.2), with (2.6), (2.18) and (2.24), gives a first-order, linear,
non-homogeneous, differential equation for the particle shear stress

ds
dy

= −
[

5
3

1
Ty,0

(
h − y

h

)−1

+ 2
3

c0St
CD

(
h − y

h

)(h−Ty,0)/Ty,0
]

s + 2
3

c0StSh
CD

(
h − y

h

)(h−Ty,0)/Ty,0

.

(2.29)

The analytical solution of (2.29) is

s = Sh
(

2
3

MSt
CD

)5/3

Γ

[
−2

3
,

2
3

MSt
CD

(
h − y

h

)h/Ty,0
]

× exp

{
ln

[(
h − y

h

)(5/3)(h/Ty,0)
]

+ 2
3

MSt
CD

(
h − y

h

)h/Ty,0
}

− Sh
(

2
3

MSt
CD

)5/3

Γ

[
−2

3
,

2
3

MSt
CD

]
991 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.520


D. Berzi, A. Valance and J.T. Jenkins

× exp

{
ln

[(
h − y

h

)(5/3)(h/Ty,0)
]

+ 2
3

MSt
CD

(
h − y

h

)h/Ty,0
}

+ s0 exp

{
ln

[(
h − y

h

)(5/3)(h/Ty,0)
]

+ 2
3

MSt
CD

(
h − y

h

)h/Ty,0

− 2
3

MSt
CD

}
, (2.30)

in which Γ (s, x) ≡ ∫∞
x ts−1 e−t dt is the upper incomplete gamma function.

The fluid velocity profile is determined by integrating the constitutive relation (2.24)
dU/dy = St(Sh − s), with the particle shear stress given by (2.30). Unfortunately, there
is no general analytical solution. Hence, we obtain the distribution of U by numerically
solving this ordinary differential equation, with the no-slip condition, (2.4), at the bed.
Once U is determined, the particle horizontal velocity is given by (2.25) as

u = U − 5
3

s
CDσy

+ 2
3

St(Sh − s)

C2
D

. (2.31)

We can now calculate the particle flux q per unit basal area through numerical
integration as

q =
∫ h

0
cu dy. (2.32)

In the special case of rarefied saltation, that is for M → 0 and Sh � s, the analytical
solution of (2.29) simplifies to

s = s0

(
h − y

h

)(5/3)(h/Ty,0)

+ MStSh
CD

[(
h − y

h

)h/Ty,0

−
(

h − y
h

)(5/3)(h/Ty,0)
]

, (2.33)

and the fluid velocity profile is simply

U = (StSh)y. (2.34)

Then, from (2.18), (2.28), (2.31), (2.33) and (2.34), the particle horizontal velocity is

u =
[
(1 + αu)

(
h − y

h

)(2/3)(h/Ty,0)

+ C2
Dy − 1

]
StSh

C2
D

. (2.35)

Notice that, in the rarefied limit of saltation in viscous shearing flows, the particle and the
fluid velocity profiles are independent of the hold-up. Using (2.17), (2.19) and (2.35) in
(2.32), and integrating, gives the particle flux as

q = MStShTy,0
h

h + Ty,0
. (2.36)

The above equations permit the determination of profiles of particle concentration,
particle and fluid velocities and particle and fluid stresses in viscous shearing
flow that will be compared with the results of DC numerical simulations
in § 4.
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2.2. Saltation in turbulent shearing flows
In the case of saltation in turbulent shearing flows, we model the fluid shear stress using
the classical mixing length approach (Jenkins et al. 2010)

S = 1 − c
r

κ2( y + y0)
2
(

dU
dy

)2

� κ2( y + y0)
2

r

(
dU
dy

)2

, (2.37)

where κ = 0.41 is von Kármán’s constant and y0 = √
r/Sh/(9St) + (ks/30)[1 −

exp(−ksSt
√

Sh/r/26)] is an empirical expression for the origin of the logarithmic fluid
velocity profile that encompasses hydrodynamically smooth, rough and transitional beds
(Guo & Julien 2007). The roughness length scale ks is taken to be equal to dw (Ho 2012).

Equation (2.37) implies that, in the absence of particles and in the boundary layer
approximation that we have employed, the fluid velocity distribution would be logarithmic.
We assume, as in Pähtz et al. (2021), that the fluid velocity profile encountered by an
ascending particle during its ballistic trajectory is logarithmic even if other particles are
present. This assumption, and the assumptions that we have already employed in the
derivation of the expression for Qyyy, (2.9), permits the derivation in Appendix B of an
expression for the particle shear stress, s = −(π/6)

∫
all ξ+ (ξ+

x − ξ−
x )ξ+

y f + d2ξ+

s = 3
5

CDσy

{
U − u −

√
rS
κ

exp

[
C2

D

√
rS
κ

(
dU
dy

)−1
]

Ei

[
−C2

D

√
rS
κ

(
dU
dy

)−1
]}

,

(2.38)

in which Ei(x) ≡ − ∫∞
−x e−tt−1 dt is the exponential integral. As in the viscous case of

(2.25), the particle shear stress in turbulent shearing flows does not depend on the particle
shear rate. The saltating particles, when treated as a continuous medium, can experience
shear stress even if the horizontal particle velocity is uniform across the flow domain.

As explained in Appendix C, the mean impact angle θ for saltation in turbulent flows in
the limit of large vertical velocity of ascending particles is estimated as

θ � −
[

CD

√
r(Sh − s0)

κ
exp(C2

Dy0)Ei(−C2
Dy0)

]−1

. (2.39)

Integrating equation (2.2) between y = 0 and y = h, with vanishing particle shear stress at
the top of the saltation layer gives s0 = MCD(Ū − ū) (Pähtz et al. 2021). Using this in
(2.3b) gives the drag coefficient in terms of the particle shear stress at the bed

CD = 9
St

+
√

81
St2

+ 0.3
r

s0

M
. (2.40)

Equation (2.38) evaluated at the bed, with (2.5) and (2.39) gives the particle shear stress
at the bed as a function of the impact angle

s0 = 3
5

M
θ

(1 − αu). (2.41)

Equation (2.41) implies that, for the particle shear stress at the bed to be positive, αu must
be less than 1. Then, (2.39) with (2.40) and (2.41) results in an implicit equation for θ

1
θ

(
9
St

+
√

81
St2

+ 0.9
5r

1 − αu

θ

)−1

� − 1
κ

√
r
(

Sh − 3M
5

1 − αu

θ

)
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M
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Figure 4. Predicted impact angle in degrees (solid line, –), drag coefficient (dashed line, --) and particle shear
stress at the bed (dot-dashed line, ·-) as functions of the hold-up for saltation in turbulent shearing flows with
dw = 1.5, St = 1681, r = 2208 and Sh = 0.04 (with αu = 0.85).

× exp

⎡
⎣( 9

St
+
√

81
St2

+ 0.9
5r

1 − αu

θ

)2

y0

⎤
⎦

× Ei

⎡
⎣−

(
9
St

+
√

81
St2

+ 0.9
5r

1 − αu

θ

)2

y0

⎤
⎦ . (2.42)

This can be solved to determine the impact angle. Once θ is known, s0 (2.41), CD (2.40),
the boundary values of the remaining variables at the bed ((2.5), (2.15) and (2.21)), the
depth of the saltation layer (2.22), and the analytical distributions of T+

y , Ty, c, σ y and Qyyy
((2.14), (2.16)–(2.18) and (2.20)) can also be calculated in saltation in turbulent shearing
flows.

Figure 4 shows the variation of the impact angle, the drag coefficient and the particle
shear stress at the bed with the particle hold-up, as predicted by ((2.40)–(2.42)), for
saltation of 240 μm sand grains in a turbulent wind on Earth, with αu = 0.85 (see § 4
for more details about the choice of the parameters). The range of the hold-ups in figure 4
is that for which (2.23) is satisfied. As for saltation in viscous shearing flows (figure 3),
the particle shear stress at the bed increases linearly with M, while θ and CD are almost
constant.

Equation (2.2), with (2.38) and (2.6), and (2.37) can be written as a system of two
ordinary differential equations

ds
dy

= −CDc
√

r(Sh − s)
κ

exp[C2
D( y + y0)]Ei[−C2

D( y + y0)] − 5
3

s
Ty

; (2.43)

and
dU
dy

=
√

r(Sh − s)
κ( y + y0)

; (2.44)

these can be numerically integrated, with the boundary conditions of (2.4) and (2.41),
to obtain the distributions of the particle shear stress and the fluid horizontal velocity.
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Collisionless kinetic theory for saltation over a rigid

Then, the particle horizontal velocity is given by (2.38), with (2.6), as

u = U −
√

r(Sh − s)
κ

exp[C2
D( y + y0)]Ei[−C2

D( y + y0)] − 5
3

s
CDσy

. (2.45)

Finally, the particle flux q per unit basal area is determined through numerical
integration of (2.32), with the profiles of u and c obtained under turbulent conditions.

The above equations permit the determination of profiles of particle concentration,
particle and fluid velocities and particle and fluid stresses in turbulent shearing flow that
will be compared with the results of DC numerical simulations in § 4.

3. Scaling laws for rarefied saltation

The semi-analytical solutions to particle saltation in shearing flows described in the
previous section permit simple asymptotic scalings to be obtained in the limit of rarefied
saltation, M → 0 and s0 	 Sh, and: (i) only Stokes drag, CD = 18/St, that is when the
particle Reynolds number based upon the relative velocity between the particles and the
fluid at the bed, u0St/r, is less than unity; or (ii) only form drag, CD = 0.3u0/r, that is
when 103 < u0St/r < 105. In the following, we will consider that at leading order, (2.11)
and (2.22) imply that Ty,0 ∝ h ∝ T+1/2

y,0 /CD.
We emphasize that there is no feedback of the particles on the fluid velocity profile,

which, in rarefied saltation, is exactly linear in the viscous case, and logarithmic in
the turbulent case. As a consequence, the particle hold-up only affects the particle
concentration, is linearly proportional to it, and does not influence the particle velocity.
Given that the mass flux involves the product of particle concentration and horizontal
velocity, q must also be linearly related to the hold-up.

3.1. Rarefied saltation in viscous shearing flows with Stokes drag
In this case, the density ratio plays no role in the equations governing the saltation process.
As mentioned, CD ∝ St−1. Then, with (2.26), we obtain that θ ∝ St−2Sh−1. With this,
(2.5), (2.15), (2.19) and (2.36) imply the scalings for the various quantities that we report
in table 1. In particular, we note that the scaling for the particle flux, q ∝ MSt4Sh3/2, was
also derived in Valance & Berzi (2022) using an approach in which all particles were
assumed to follow the same PT, and not a distribution of trajectories as in the present
work.

3.2. Rarefied saltation in viscous shearing flows with form drag
In the case of form drag, CD ∝ u0r−1, and we expect the scaling laws to involve also
the density ratio. With (2.5), we obtain u0 ∝ r1/2θ−1/2, and, with (2.26) and (2.15), θ ∝
r−1/3St−2/3Sh−2/3 and T+

y,0 ∝ r. Hence, (2.5), (2.15), (2.19) and (2.36) imply the scalings
for the various quantities that we report in table 1.

3.3. Rarefied saltation in turbulent shearing flows with Stokes drag

In this case, CD ∝ St−1. At leading order, (2.39) gives θ ∝ C−1
D r−1/2Sh−1/2 ∝

r−1/2StSh−1/2 and (2.15) gives T+
y,0 ∝ r1/2StSh1/2. With (2.5), we obtain u0 ∝ r1/2Sh1/2,

and from (2.21) and (2.22), h ∝ Ty,0 ∝ T+1/2

y,0 /CD ∝ r1/4St3/2Sh1/4. Equation (2.19),
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Viscous
saltation with
Stokes drag

Viscous
saltation with

form drag

Turbulent
saltation with
Stokes drag

Turbulent
saltation with

form drag

Drag coefficient, CD St−1 St1/3Sh1/3r−1/3 St−1 Sh1/2r−1/2

Impact angle, θ St−2Sh−1 St−2/3Sh−2/3r−1/3 StSh−1/2r−1/2 Sh−1

Particle slip
velocity, u0

St3Sh St1/3Sh1/3r2/3 Sh1/2r1/2 Sh1/2r1/2

Depth of saltation
layer, h

St3Sh1/2 St−1/3Sh−1/3r5/6 St3/2Sh1/4r1/4 Sh−1/2r

Particle
concentration at
the bed, c0

MSt−3Sh−1/2 MSt1/3Sh1/3r−5/6 MSt−3/2Sh−1/4r−1/4 MSh1/2r−1

Particle mass flux, q MSt4Sh3/2 MSt2/3Sh2/3r5/6 MSh1/2r1/2 MSh1/2r1/2

Table 1. Summary of the scaling laws for rarefied saltation.

then, provides c0 ∝ Mr−1/4St−3/2Sh−1/4. As shown later, the concentration and particle
velocity profiles in the case of turbulent saltation are approximately uniform across
the flow. Therefore, we expect q ∝ c0u0h ∝ Mr1/2Sh1/2. See the summary of the scalings
in table 1.

3.4. Rarefied saltation in turbulent shearing flows with form drag
In this limiting case, the fall Stokes number, St, plays no role in the equations governing
saltation and cannot be involved in the scalings. With CD ∝ (Ū − ū)r−1 and s0 =
MCD(Ū − ū) with (2.41), we obtain Ū − ū ∝ r1/2θ−1/2, and, with (2.39) and (2.15), at
leading order, θ ∝ C−1

D r−1/2Sh−1/2 and T+
y,0 ∝ C−2

D θ−1. Hence, θ ∝ Sh−1, T+
y,0 ∝ r, u0 ∝

r1/2Sh1/2, CD ∝ r−1/2Sh1/2 and h ∝ Ty,0 ∝ T+1/2

y,0 /CD ∝ rSh−1/2. Equation (2.19), then,
provides c0 ∝ Mr−1Sh1/2. As mentioned, the concentration and particle velocity profiles
in the case of turbulent saltation are approximately uniform across the flow. Therefore,
we expect q ∝ c0u0h ∝ MSh1/2r1/2. We incorporate the scaling laws for rarefied turbulent
saltation with form drag in table 1.

4. Comparisons with numerical simulations and experiments

Here, we make comparisons between the predictions of the present theory and the results
of DC numerical simulations of saltation of spheres over a rigid bumpy bed made of a layer
of particles in close contact. The simulations are performed in a quasi-two-dimensional
cell of streamwise length equal to 5120 particle diameters and transverse width equal to one
particle diameter, with periodic boundary conditions in the streamwise direction. The cell
is not bounded above. We checked that increasing the length in the streamwise direction
up to ten times had no effect on the results. Data are available at https://doi.org/10.5281/
zenodo.11264272 (Valance 2024).

We solve Newton’s equations of motion for the individual spherical particles under
the influence of fluid drag, buoyancy, gravity and contact forces in collisions with the
bed. Mid-trajectory collisions are forbidden. The fluid is treated as either a viscous or a
turbulent flow, depending on the closure for the fluid shear stress, which is governed by a
balance equation. The sum over all particles of drag and buoyancy enters the momentum
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Collisionless kinetic theory for saltation over a rigid

Description Regime St r Sh dw

60 or 75 μm basalt particles on Mars viscous (Stokes drag) 60, 100 150 000 0.05, 0.075 1
100 μm basalt particles on Venus viscous (nonlinear drag) 100 50 0.05 1
650 μm sand particles in water on

Earth or, equivalently, 3 mm sand
particles in crude oil on Earth

viscous (nonlinear drag) 100 2.5 0.05 1

240 μm sand particles in air on Earth turbulent (nonlinear drag) 1681 2208 0.025, 0.04 1.5

Table 2. Summary of the combination of parameters employed in the numerical simulations.

balance for the fluid with a change in sign, thus ensuring the two-way coupling between the
phases. In the numerical simulations, we assume that the fluid possesses only horizontal
velocity and suppress the possibility of interparticle collisions above the bed.

The individual particles experience vertical and horizontal components of fluid drag
based upon the local difference between the instantaneous velocity of the particle and the
average velocity of the fluid. As in the theoretical treatment, we control the amount of
particles in the simulations (the particle hold-up, M); the bumpiness of the rigid bed (the
wall-particle diameter, dw); the fluid viscosity (the inverse of the fall Stokes number, St);
the fluid mass density (the inverse of the density ratio, r); and the intensity of the shearing
flow (the Shields number, Sh). All measurements have been taken once a steady state
is attained and, subsequently, time averaged. Such numerical simulations have already
been used in the context of saltation in both turbulent (Durán et al. 2012; Pähtz et al.
2015; Pähtz & Durán 2020; Ralaiarisoa et al. 2020) and viscous (Valance & Berzi 2022)
shearing flows. A more detailed description of the numerical simulations, including the
contact parameters that we employ, can be found in Appendix D.

In a total of 50 simulations, we have numerically investigated the saltation process
of four different types of solid particles in terrestrial and extra-terrestrial environment,
as summarized in table 2, by changing the particle hold-up between 0.0004 and
approximately 0.0300, that is, from the rarefied limit to the maximum hold-up for
which the mid-trajectory collisions can be neglected and (2.23) is satisfied. Although the
fluid regime on Mars and Venus is almost certainly turbulent, one can at least imagine
performing experiments in pressurized wind tunnels, in which the turbulence is somehow
suppressed, thus recovering the conditions reported in the first two rows of table 2. The
conditions reported in the last two rows of table 2 are, instead, much closer to actual
physical applications.

The flow conditions chosen serve to isolate and test the assumptions that we have made
in building the theory: (i) an anisotropic Maxwellian velocity distribution for the particles,
the vertical velocity of the ascending particles much larger than the settling velocity and
a locally linear velocity for the fluid in the viscous regime, with Stokes drag (the first row
in table 2); (ii) the additional assumption of drag coefficient uniform and equal to that
evaluated at the bed in the viscous regime, with nonlinear drag (the second and third rows
in table 2); and (iii) the fluid velocity profile encountered by ascending particles uniform
and equal to the average of the logarithmic profile for the turbulent regime, with nonlinear
drag (the fourth row in table 2).

The parameters of the turbulent case in table 2 match those of physical experiments
of saltation on rigid, bumpy beds performed in a wind tunnel (Ho 2012). For these,
measurements of particle mass flux and profiles of particle concentration and horizontal
particle and fluid velocities at different values of the particle hold-up are available.
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In the experiments, unlike the numerical simulations, the vertical velocity of the fluid
surrounding the particles is non-zero, due to the no-slip condition on the particle surface,
and this would permit a test of its influence on the results. However, as shown later,
the predicted depth of the saltation layer in the absence of an upper bound and that
measured in the numerical simulations is of the order of 4000 particle diameters; while the
experiments were performed in a rectangular closed conduit, with a horizontal lid placed
at approximately 1200 particle diameters above the rigid base. As a consequence, the top
boundary conditions are different from those of the present numerical simulations and the
semi-analytical treatment. For this reason, we do not show the profiles of the experiments.
Although the order of magnitude of the profiles measured in the experiments is in good
agreement with the predictions, their shape reveals the influence of the upper boundary.
We postpone to a future work the solution of the appropriate two-point boundary value
problem, with our proposed constitutive relations for the particle stresses and energy flux,
and detailed comparisons against the experimental measurements.

Figures 5 and 6 show the comparisons between profiles of Ty, c, σ y, s, u and U relative to
selected values of the hold-up for saltation in viscous shearing flows with Stokes drag (the
first column of plots in both figures), saltation in viscous shearing flows with nonlinear
drag (the second column) and saltation in turbulent shearing flows with nonlinear drag
(the third column). A similar agreement between the predictions and the simulations, not
shown here for brevity, is obtained for all admissible values of M.

In determining the semi-analytical solution that we have highlighted in § 2, we have
employed αu = 0.60 and αT = 0.50 for saltation in viscous flows, and αu = 0.85 and
αT = 0.18 for saltation in turbulent flows. We have fitted these values to exactly match
the depth of the saltation layer, h, and the particle shear stress at the bed, s0, in one of the
discrete simulations of saltation in viscous flows and one of the simulations of saltation
in turbulent flows. Different values of these parameters would not alter the qualitative
features of our semi-analytical solution, but impact the values of Ty, c and u at the bed,
therefore causing a shift to the right or to the left in the relative profiles. As an overall
estimate of their influence, we checked that a ten per cent change in either of the alphas
would result in a ten per cent change in the mass flux.

Figures 5(a)–5(c) confirm that the intensity of the velocity fluctuations of the particles
decreases linearly with the distance from the rigid bed, and that the model captures both
the weak dependence of Ty on M for viscous saltation and Stokes drag (figure 5a), and its
independence for nonlinear drag (figures 5b and 5c). The depth of the saltation layer is well
predicted by the continuum model, but the slope of the linear decrease is underestimated
with respect to the numerical simulations for nonlinear drag. Also, the non-monotonic
behaviour of Ty near the rigid bed is not captured. These are the consequences of
neglecting the dependence of the drag coefficient on the vertical direction. The agreement
with the measurements in the numerical simulations would indeed improve if CD is
allowed to vary locally; however, this would prevent obtaining semi-analytical solutions of
the governing equations, with little improvement on the results. The condition CD

√
Ty > 1

that ensures that the assumption of large vertical velocities of ascending particles with
respect to the settling velocity is sufficiently accurate, is satisfied in the flows of figures 5
and 6 everywhere, but for the upper quarter of the flow, where indeed the deviations
between the simulations and the predictions are more significant.

In all cases, the continuum model satisfactorily reproduces the profiles of particle
concentration and normal stress in the y-direction (figure 5d–i), which indeed follow
the power-law distributions of (2.17) and (2.18). In the turbulent case, as anticipated,
the particle concentration is rather uniform across the flow (figure 5f ). The values of

991 A15-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.520


Collisionless kinetic theory for saltation over a rigid

0

100

y

200

(g)

0

20

40

(h)

0

2000

4000

(i)

σy σy σy

0

100

y

200

(d )

0

20

40

(e)

0

2000

4000

( f )

cc c

0

100

y

200

(a)

0 20

20

40

(b) (c)

0

2000

4000

Ty Ty Ty

10–210–410–6 10–210–410–6 10–210–4

10–410–6 10–310–510–7 10–610–710–8

100 40 40002000

Figure 5. Profiles of (a–c) mean square of particle velocity fluctuations in the vertical direction, (d–f ) particle
concentration and (g–i) particle normal stress along y measured in numerical simulations of: saltation in viscous
shearing flows with dw = 1, St = 100, r = 150 000, Sh = 0.05 (first column) and M = 0.0008 (blue circles),
M = 0.0033 (red circles), M = 0.0131 (purple circles); saltation in viscous shearing flows with dw = 1, St = 100,
r = 50, Sh = 0.05 (second column) and M = 0.0008 (blue squares), M = 0.0033 (squares), M = 0.0131 (purple
squares); saltation in turbulent shearing flows with dw = 1.5, St = 1681, r = 2208, Sh = 0.04 (third column) and
M = 0.0008 (blue diamonds), M = 0.0033 (red diamonds), M = 0.0119 (purple diamonds). The solid lines are
the predictions of the present theory.
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Figure 6. Profiles of (a–c) particle shear stress, (d–f ) fluid and (g–i) particle mean horizontal velocities
measured in numerical simulations of: saltation in viscous shearing flows with dw = 1, St = 100, r = 150 000,
Sh = 0.05 (first column) and M = 0.0008 (blue circles), M = 0.0033 (red circles), M = 0.0131 (purple circles);
saltation in viscous shearing flows with dw = 1, St = 100, r = 50, Sh = 0.05 (second column) and M = 0.0008
(blue squares), M = 0.0033 (squares), M = 0.0131 (purple squares); saltation in turbulent shearing flows with
dw = 1.5, St = 1681, r = 2208, Sh = 0.04 (third column) and M = 0.0008 (blue diamonds), M = 0.0033 (red
diamonds), M = 0.0119 (purple diamonds). The solid lines are the predictions of the present theory. The insets
of figures 6( f ) and 6(i) show the corresponding velocity profiles in semi-log scale.
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the particle concentration are also much smaller in the case of turbulent shearing flows
(figure 5f ), as a consequence of the greater agitation of the particles (figure 5c).

Figure 5 shows profiles of quantities associated with the vertical motion of the saltating
particles, which is sensitive to the horizontal motion of the fluid only through the
dependence of the drag coefficient on U. The horizontal motion of the fluid and, in
particular, its flow regime, strongly affects the distribution of particle shear stress and
particle and fluid horizontal velocity shown in figure 6.

The proposed constitutive relations for the particle shear stress ((2.25) and (2.38)) permit
the qualitative and quantitative reproduction of the measurements in numerical simulations
(figure 6a–c). In particular, the position and the magnitude of the peak in the particle shear
stress are well captured. The physical reason for the presence of this maximum value of the
particle shear stress above the bed is in the change of sign of the horizontal force exerted
by the fluid on the particles. The particles slip at the rigid bed, while the fluid does not;
hence, the particles drag the fluid near the bed, while the fluid drags the particles as the
top of the saltation layer is approached. Interestingly, the particle shear stress can reach
values up to 50 %–60 % of the total shear stress – the Shields parameter – for saltation in
viscous shearing flows, but only up to 10 % of the total shear stress for saltation in turbulent
shearing flows.

For saltation in viscous shearing flows (Figure 6d–h), the fluid and particle horizontal
velocity profiles become progressively nonlinear as the particle hold-up increases; but the
continuum model is capable of capturing this behaviour. For saltation in turbulent shearing
flows, the fluid velocity profile is logarithmic, and the hold-up has little influence on it
(figure 6f ). The horizontal velocity of the particles is almost uniform vertically (figure 6i).
This confirms our finding that, in the absence of particle interactions, the particle shear
stress does not depend on the particle shear rate. The slight discrepancies between the
predictions of the continuum model and the results of the numerical simulations are likely
due to the assumption of a drag coefficient independent of y.

Finally, we compare the dependence of the particle flux on the particle hold-up
in figure 7. The continuum model notably reproduces the measurements in numerical
simulations in both the viscous and turbulent shearing flows. The experimental results on
turbulent saltation in a wind tunnel (Ho 2012) are in relatively good agreement with both
the numerical simulations and the continuum model (figure 7b). The overestimate of the
experimental mass flux is likely due to the additional resistance induced by the presence of
the horizontal lid above the rigid bed. Figure 7(a) also assesses the validity of the scaling
for q reported in table 1 for the case of viscous saltation and Stokes drag, in the rarefied
limit.

5. Conclusions

We have derived constitutive relations for the particle stresses and flux of particle kinetic
energy associated with the fluctuating vertical velocities that apply to saltation of particles
in viscous and turbulent shearing flows, in the absence of collisions above the bed.
To do this, we have employed the averaging methods of statistical mechanics based on
an anisotropic Maxwellian velocity distribution function for the ascending particles and
approximate analytical expressions for the particle trajectories under the influence of fluid
drag, gravity and buoyancy, in the limit of large vertical velocity of ascending particles
relative to the settling velocity.

Given that we neglect the possibility of particle–particle interactions, we have obtained
the perhaps unexpected result that the particle shear stress does depend on the local relative
velocity between the grains and the carried fluid and the fluid shear rate, but not on the
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Figure 7. (a) Particle flux against scaled particle hold-up measured in DC numerical simulations (open
symbols) and predicted from the present theory (lines) in the case of saltation in viscous shearing flows with
dw = 1, r = 150 000 and: St = 60 and Sh = 0.05 (blue circles); St = 100 and Sh = 0.05 (orange circles); St = 100
and Sh = 0.075 (purple circles). The inset depicts the same data in terms of q against M. (b) Particle flux against
particle hold-up measured in DC numerical simulations (open symbols) and in wind-tunnel experiments (filled
symbols, after Ho 2012) and predicted from the present theory (lines) in the case of saltation in viscous shearing
flows with dw = 1, St = 100 Sh = 0.05 and r = 2.5 (orange squares) and r = 50 (blue squares); and in the case
of saltation in turbulent shearing flows with dw = 1.5, St = 1681, r = 2208 and Sh = 0.025 (purple diamonds)
and Sh = 0.04 (green diamonds).

particle shear rate. We have combined the constitutive relations for the particle phase and
well-known expressions for the fluid shear stress with momentum and energy balances to
obtain semi-analytical solutions of steady, fully developed saltation over horizontal, rigid
beds. We have employed boundary conditions appropriated for particles rebounding at a
bumpy base with no upper bound to the flow. We have assumed that the carrier fluid has
only mean horizontal velocity. Hence, the regime of the carrier fluid, viscous or turbulent,
does not affect the profiles of particle concentration and normal stress, which follow a
power-law decrease with height, and mean square of the vertical velocity fluctuations,
linearly decreasing with the distance from the bed. These results are in contrast with
previous theoretical (e.g. Jenkins et al. 2010; Jenkins & Valance 2014) and experimental
(Creyssels et al. 2009) works in which the granular temperature was assumed to be uniform
and the concentration was shown to decrease exponentially with height.

We have confirmed our findings through a number of comparisons with DC simulations
in both viscous and turbulent regimes. Thus, we are inclined to blame mid-fluid collisions
for the above mentioned qualitative difference in the distribution of particle concentration.
We have also shown that the predictions of the theory in terms of profiles of particle shear
stress, and particle and fluid mean horizontal velocities, are in excellent agreement with
the numerical simulations. In natural units of particle mass density, diameter and reduced
gravity, we have determined that the saltation process is controlled by the mass of particles
in the system, the intensity of the shearing flow, the fluid mass density and viscosity and
the bumpiness of the rigid base.

We have successfully tested the dependence of the horizontal particle flux per unit basal
area of the particles as a function of the particle hold-up obtained with our theory against
DC numerical simulations and wind-tunnel experiments, for a large range of the control
parameters. We have also determined simple scaling laws for the dependence of various
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quantities of interest on the control variables in the special limits of rarefied viscous and
turbulent saltation, and solely Stokes or form drag on the particles.

In a future, we plan to apply our theory to two-point boundary value problems, to e.g.
mimic available experiments of saltation in enclosed wind tunnels. We also wish to extend
the present work to deal with unsteady and/or developing flows. More importantly, the
inclusion of mid-fluid collisions, that is the transition from a collisionless to a collisional
kinetic theory of saltation, is a crucial future step, especially in view of modelling transport
phenomena over erodible beds, of more interest for geophysical and planetary science
applications.
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Appendix A. Approximate analytical trajectories for the saltating particles

We characterize the drag exerted on the particles through a drag coefficient, CD, that we
take to be independent of y, as in Pasini & Jenkins (2005), to obtain analytical expressions
for the particle trajectories.

Integrating the vertical momentum balance for the particle

dξy

dt
+ CDξy + 1 = 0, (A1)

with ξ y the vertical component of the particle velocity, we obtain the vertical velocity at
any time t after the particle reaches a certain ascending velocity ξ+

y at a certain location yr

ξy = CDξ+
y + 1 − exp(CDt)

CD exp(CDt)
; (A2)

and, with another integration, the position y as a function of time

y − yr = (CDξ+
y + 1)[1 − exp(−CDt)] − CDt

C2
D

. (A3)

From (A3) we obtain an implicit expression for the time that the particle spends at y ≥ yr

tf = CDξ+
y + 1

CD
[1 − exp(−CDtf )]. (A4)

Then, from (A2), with t = tf , the downward vertical velocity of the particle at y = yr is

ξ−
y = ξ+

y − tf . (A5)

991 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0533-2373
https://orcid.org/0000-0003-0533-2373
https://orcid.org/0000-0001-8076-2192
https://orcid.org/0000-0001-8076-2192
https://orcid.org/0000-0002-9731-0528
https://orcid.org/0000-0002-9731-0528
https://doi.org/10.1017/jfm.2024.520


D. Berzi, A. Valance and J.T. Jenkins

To permit subsequent analytical integrations, we propose the following explicit expression
for the time of flight

tf = ξ+
y + 1

CD
− 1

CD
exp(−CDξ+

y ), (A6)

which has the right limits at both small CDξ+
y , i.e. tf = 2ξ+

y , and large CDξ+
y , i.e. tf =

ξ+
y + C−1

D . With this, (A5) gives

ξ−
y = − 1

CD
+ 1

CD
exp(−CDξ+

y ). (A7)

In the limit of large CDξ+
y , (A7) reduces to

ξ−
y = − 1

CD
. (A8)

We next integrate the horizontal particle momentum balances, and distinguish between
saltation in viscous and in turbulent shearing flows.

A.1. Saltation in viscous shearing flows
In the case of saltation in viscous shearing flows, we assume that the fluid velocity profile
is locally linear (that is for y ≥ yr), so that the horizontal momentum balance for the
particles is

dξx

dt
= CD

[
U + dU

dy
( y − yr) − ξx

]
, (A9)

with ξ x the horizontal component of the particle velocity, and U and dU/dy the fluid
horizontal velocity and shear rate at the reference level. In the following integrations,
we treat dU/dy for saltation in viscous shearing flows as if it were constant. Then, after
inserting equation (A3) into (A9), and integrating with the initial condition ξx(t = 0) = ξ+

x

ξx = U + dU
dy

(CDξ+
y + 1)

C2
D

[1 − CDtexp(−CDt) − exp(−CDt)]

− dU
dy

CDt − 1 + exp(−CDt)

C2
D

+ (ξ+
x − U) exp(−CDt). (A10)

The horizontal velocity after the time tf is, then, with (A4) and (A6)

ξ−
x = U + 1

C2
D

dU
dy

1
CDξ+

y + 1
[CDξ+

y + 1 − exp(−CDξ+
y )][1 − exp(−CDξ+

y )

− CDξ+
y exp(−CDξ+

y )] + ξ+
x − U

CDξ+
y + 1

exp(−CDξ+
y ), (A11)

which in the limit of large CDξ+
y gives

ξ−
x = U + 1

C2
D

dU
dy

. (A12)

Equation (A10) can be integrated with the boundary condition x(t = 0) = xi to obtain
the horizontal displacement from the initial position at the reference level as a function of
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time

x = xi + Ut + (CDξ+
y + 1)

C2
D

dU
dy

[
exp(−CDt)

(
2

CD
+ t

)
+ t − 2

CD

]

− 1
C2

D

dU
dy

[
CDt2

2
− t − 1

CD
exp(−CDt) + 1

CD

]
+ 1

CD
(ξ+

x − U)[1 − exp(−CDt)].

(A13)

The horizontal displacement 	 after the time tf is

Δ = Utf + (CDξ+
y + 1)

C2
D

dU
dy

[
exp(−CDtf )

(
2

CD
+ tf

)
+ tf − 2

CD

]

− 1
C2

D

dU
dy

[
CDt2f

2
− tf − 1

CD
exp(−CDtf ) + 1

CD

]
+ 1

CD
(ξ+

x − U)[1 − exp(−CDtf )].

(A14)

In the limit of large CDξ+
y , tf = ξ+

y + C−1
D and (A14) reduces to

Δ = 1
2CD

dU
dy

ξ+2
y + Uξ+

y + ξ+
x − U

CD
. (A15)

A.2. Saltation in turbulent shearing flows
In the case of saltation in turbulent shearing flows, we assume that the fluid velocity
above a reference location yr is the classical logarithmic, U + √

rS ln[1 + κ(dU/dy)( y −
yr)/

√
rS]/κ , obtained by integrating equation (2.44) with the assumption that the fluid

shear stress S is independent of y, in which U and dU/dy are the fluid horizontal velocity
and shear rate at the reference level. Then, the horizontal momentum balance for the
particles reads, with (A3)

dξx

dt
= CDU + CD

√
rS
κ

ln

{
1 + κ√

rS

(CDξ+
y + 1)[1 − exp(−CDt)] − CDt

C2
D

dU
dy

}
− CDξx.

(A16)

After integrating equation (A16) with the initial condition ξx(t = 0) = ξ+
x

ξx = ξ+
x exp(−CDt) + U[1 − exp(−CDt)] +

√
rS
κ

exp(−CDt)

×
∫ CDt

0
exp(CDt) ln

{
1 + κ

(CDξ+
y + 1)[1 − exp(−CDt)] − CDt

C2
D

√
rS

dU
dy

}
d(CDt).

(A17)

The horizontal velocity after the time tf is, then,

ξ−
x = ξ+

x exp(−CDtf ) + U[1 − exp(−CDtf )] +
√

rS
κ

exp(−CDtf )

×
∫ CDtf

0
exp(CDt) ln

{
1 + κ

(CDξ+
y + 1)[1 − exp(−CDt)] − CDt

C2
D

√
rS

dU
dy

}
d(CDt).

(A18)
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In the limit of large CDξ+
y , that is large CDtf , (A18), with (A6), gives the following

analytical solution:

ξ−
x = U + exp(−CDtf )

√
rS
κ

∫ CDtf

0
exp(CDt) ln

⎛
⎜⎜⎝1 + CDtf − CDt

C2
D

√
rS
κ

dU
dy

⎞
⎟⎟⎠ d(CDt)

= U −
√

rS
κ

exp

[
C2

D

√
rS
κ

(
dU
dy

)−1
]

Ei

[
−C2

D

√
rS
κ

(
dU
dy

)−1
]

, (A19)

in which Ei(x) ≡ − ∫∞
−x e−tt−1 dt is the exponential integral.

Appendix B. Constitutive relations

We define the average of a quantity ϕ at a certain distance y from the bed as

〈ϕ〉 = π

6c

∫
all ξ

ϕf d2ξ = π

6c

∫
all ξ+

ϕ+f + d2ξ+ + π

6c

∫
all ξ−

ϕ−f − d2ξ−, (B1)

where f is the velocity distribution of particles at that height and 6c/π is the dimensionless
number density. As in Creyssels et al. (2009), we distinguish between ascending or
descending particles and introduce velocity distributions for both species. We assume that
the velocity distribution of the ascending particles is an anisotropic Maxwellian

f + = 6
π

c+

π

√
T+

x T+
y

exp

[
−(ξ+

x − u)
2

2T+
x

]
exp

(
− ξ+2

y

2T+
y

)
, (B2)

where u = 〈ξx〉 and T+
x = (π/6c+)

∫
all ξ+ (ξ+

x − u)
2f + d2ξ+ and T+

y = (π/6c+)
∫

all ξ+

ξ+2
y f + d2ξ+ are the mean squares of the horizontal velocity fluctuations of the

ascending particles. The concentration of the ascending particles, c+, is equal to
(π/6)

∫
all ξ+ f + d2ξ+, while that of the descending particle is c− = (π/6)

∫
all ξ− f − d2ξ−.

When ϕ = 1, (B1) gives c = c+ + c−.
Given that we are dealing with steady states, 〈ξy〉 = 0, so that

〈ξy〉 = π

6c

∫
all ξ+

ξ+
y f + d2ξ+ + π

6c

∫
all ξ−

ξ−
y f − d2ξ− = 0. (B3)

Then, we take the limit for large CDξ+
y of ξ−

y (A9) and, inserting equation (B2) into (B3),
and integrating, we obtain

c+CD

√
2Ty

+

π
= c−. (B4)

This is a relation between the concentrations of the two species of particles. As shown later,
we find that (B4) does not capture the correct limit as T+

y tends to zero, and also slightly
underestimates c−. This is because the limit of large take-off velocity does not capture the
fact that the vertical velocity of the descending particles near the top of the saltation layer
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Collisionless kinetic theory for saltation over a rigid
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/
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T +
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Figure 8. Concentration ratios c/c+ (circles) and c−/c+ (squares) as functions of T+
y measured in numerical

simulations of saltation in a viscous shearing flow with dw = 1, St = 100, r = 150 000, Sh = 0.05 (so that the
Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0131. The dashed and solid lines are the predictions
of (B5) and (B6), respectively.

is less than the settling velocity. An almost perfect agreement can be obtained, instead,
with

c− = c+ + 3
4

c+CD

√
2T+

y

π
. (B5)

From this and the definition of c

c = c+ + c− = c+
⎛
⎝2 + 3

4
CD

√
2T+

y

π

⎞
⎠ . (B6)

Taking the limit for large CDξ+
y permits (B4)–(B6) to be obtained without assuming a

velocity distribution for the descending particles. We show the comparisons between (B5)
and (B6) and the results of numerical simulations on saltation of particles in a viscous
shearing flow experiencing Stokes drag in figure 8.

Equation (B1) can be rewritten as

〈ϕ〉 = π

6c

∫
all ξ+

ϕ+f + d2ξ+ + π

6c

∫
all ξ−

ϕ−f − d2ξ−

= π

6c

∫
all ξ+

ϕ+f + d2ξ+ + π

6c

∫
all ξ+

ϕ−f −|J−| d2ξ+

= π

6c

∫
all ξ+

[ϕ+f + + ϕ−f −|J−|] d2ξ+, (B7)
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where J− is the Jacobian of the transformation from ξ+ into ξ−. When we calculate the
average vertical flux of the generic quantity

〈ϕξy〉 = π

6c

∫
all ξ+

[ϕ+ξ+
y f + + ϕ−ξ−

y f −|J−|] d2ξ+ = π

6c

∫
all ξ+

[ϕ+ − ϕ−]ξ+
y f + d2ξ+,

(B8)

where we made use of the fact that, at steady state, 〈ξy〉 = 0 and, therefore, from (B3), if
the trajectories are independent of each other (that is for small particle hold-ups), ξ+

y f + =
−ξ−

y f −|J−| (Pasini & Jenkins 2005).
The particle normal stress in the y-direction, in the absence of particle interaction, is

simply given by the average vertical flux of y-momentum, σy ≡ c〈ξyξy〉 = cTy, where Ty =
〈ξ2

y 〉 is the mean square of the vertical velocity fluctuation for all the particles. However,
using (B8)

σy = π

6

∫ +∞

0

∫ +∞

−∞
(ξ+

y − ξ−
y )ξ+

y f + dξ+
x dξ+

y . (B9)

Then, upon taking the limit for large CDξ+
y of ξ−

y (A8) and, inserting equation (B2) into
(B9), and integrating, we obtain

σy = c+

π

√
T+

x T+
y

∫ +∞

0

(
ξ+

y + 1
CD

)
ξ+

y exp

(
− ξ+2

y

2T+
y

)∫ +∞

−∞
exp

[
−(ξ+

x − u)
2

2T+
x

]
dξ+

x dξ+
y

= c+

π

√
T+

x T+
y

√
2πT+

x

∫ +∞

0

(
ξ+

y + 1
CD

)
ξ+

y exp

(
− ξ+2

y

2T+
y

)
dξ+

y

= c+T+
y + c+ 1

CD

√
2T+

y

π
. (B10)

The limit for large CDξ+
y permits a simple expression for σ y (and for the other constitutive

relations) to be obtained. This approximation is valid whenever the Maxwellian vertical
velocity distribution of the ascending particles is wide, that is for large T+

y , so that the
contribution of the large ξ+

y is significant. Conversely, it becomes less accurate near the
top of the saltating layer, where we expect small values of T+

y and a subsequent narrower
distribution of ξ+

y around zero. If we use the more accurate equation (A7) in (B9), we
would obtain the following constitutive relation for the particle normal stress

σ ∗
y = c+

π

√
T+

x T+
y

∫ +∞

0

(
ξ+

y + 1
CD

− 1
CD

exp(−CDξ+
y )

)

× ξ+
y exp

(
− ξ+2

y

2T+
y

)∫ +∞

−∞
exp

[
−(ξ+

x − u)
2

2T+
x

]
dξ+

x dξ+
y

= c+

π

√
T+

x T+
y

√
2πT+

x

∫ +∞

0

(
ξ+

y + 1
CD

− 1
CD

exp(−CDξ+
y )

)
ξ+

y exp

(
− ξ+2

y

2T+
y

)
dξ+

y
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Figure 9. (a) Ratio of particle normal stress over particle concentration of ascending particles as a function
of T+

y measured in numerical simulations of saltation in a viscous shearing flow with dw = 1, St = 100, r =
150 000, Sh = 0.05 (so that the Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0131. The solid and
dashed lines are the predictions of (B10) and (B11), respectively. (b) Approximation error on the normal stress

as a function of CD

√
T+

y (solid line) and CD
√

Ty (dashed line).

= c+T+
y + c+T+

y exp

(
C2

DT+
y

2

)
erfc

⎛
⎝
√

C2
DT+

y

2

⎞
⎠ . (B11)

The difference between the approximate (B10) and the more accurate (B11) is shown in
figure 9(a) when the drag coefficient is equal to 0.18. We see that the mismatch becomes
relevant only at small T+

y , as expected. The agreement with the measurements in the
numerical simulations of saltation of particles in a viscous shearing flow experiencing
Stokes drag is remarkable. Figure 9(b) shows the approximation error, |σy − σ ∗

y |/σ ∗
y , as a

function of CD

√
T+

y , that is the ratio of the root-mean-square vertical velocity of ascending

particles at a certain position y,
√

T+
y , over the settling velocity, 1/CD.

From σy = cTy, (B10) and (B6), we obtain

Ty =
4
√

πCDT+
y + 4

√
2T+

y

8
√

πCD + 3C2
D

√
2T+

y

; (B12)

while, with (A10),

T−
y = π

6c−

∫
all ξ−

(ξ−
y )

2f − d2ξ− = 1
C2

D
. (B13)

We show the agreement between (B12) and (B13) and the measurements in the numerical
simulations of saltation of particles in a viscous shearing flow experiencing Stokes drag in
figure 10. Equation (B12) can be employed to plot the approximation error on the normal
stress as a function of CD

√
Ty, that is the ratio of the magnitude of the vertical velocity

fluctuations at a certain position y,
√

Ty, over the settling velocity, 1/CD (figure 9b).
This plot can be used ‘a posteriori’ to assess the validity of the large take-off velocity
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Figure 10. Values of Ty (circles) and T−
y (squares) as functions of T+

y measured in
numerical simulations of saltation in a viscous shearing flow dw = 1, St = 100, r =
150 000, Sh = 0.05 (so that the Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0131. The
solid and dashed lines are the predictions of (B12) and (B13), respectively.

assumption, after the determination of the drag coefficient and the profile of Ty. Figure 9(b)
indeed shows that the approximation error is less than 10 % for CD

√
Ty > 1.

The yyy-element of the vertical flux of the particle second moment is Qyyy ≡ c〈ξyξyξy〉,
so that, with (B8),

Qyyy = π

6

∫ +∞

0

∫ +∞

−∞
(ξ+2

y − ξ−2
y )ξ+

y f + dξ+
x dξ+

y . (B14)

Then, In the limit of large CDξ+
y , upon using (A8) and (B2) in (B14), and integrating

Qyyy = c+

π
√

T+
x T+

y

∫ +∞

0

∫ +∞

−∞

(
ξ+2

y − 1
C2

D

)
ξ+

y exp

[
− (ξ+

x − u)
2

2T+
x

]
exp

(
− ξ+2

y

2T+
y

)
dξ+

x dξ+
y

= c+

π
√

T+
x T+

y

√
2πT+

x

∫ +∞

0
ξ+3

y

(
1 − 1

C2
Dξ+2

y

)
exp

(
− ξ+2

y

2T+
y

)
dξ+

y � 2c+T+
y

√
2T+

y

π
.

(B15)

So,

Qyyy =
√

8
π

c+T+3/2
y . (B16)

Figure 11 indicates that the prediction of (B16) is in excellent agreement with the
measurements in numerical simulations of saltation of particles in a viscous shearing flow
experiencing Stokes drag.

The yy-element of the dissipation tensor due to fluid drag in the balance of particle
second moment is Dyy ≡ 2cCD〈ξyξy〉 (Saha & Alam 2017), so that, with the definition of
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Figure 11. Ratio of energy flux Qyyy over particle concentration of ascending particles as a function of T+
y

measured in numerical simulations of saltation in a viscous shearing flow with dw = 1, St = 100, r = 150 000,
Sh = 0.05 (so that the Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0131. The solid line is the
prediction of (B16).

–
(1

/
c+
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Figure 12. Negative of the derivative of Qyyy over particle concentration of ascending particles as a function
of T+

y measured in numerical simulations of saltation in a viscous shearing flow with dw = 1, St = 100, r =
150 000, Sh = 0.05 (so that the Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0131. The solid line
is the predictions of Dyy/c+ from (B17).

σ y and (B10),

Dyy = 2CDσy = 2CDc+T+
y + 2c+

√
2T+

y

π
. (B17)

Equation (2.9) indicates that Dyy should be equal to the negative of the derivative
of Qyyy. Figure 12 shows that the values of −(1/c+) dQyyy/dy measured in numerical
simulations of saltation of particles in a viscous shearing flow experiencing Stokes drag as
a function of T+

y do indeed match the predictions of Dyy/c+ from (B17).
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Finally, the particle shear stress is equal to the negative of the average vertical flux of
x-momentum, s ≡ −c〈ξxξy〉, so that, from (B8),

s = −π

6

∫ +∞

0

∫ +∞

−∞
(ξ+

x − ξ−
x )ξ+

y f + dξ+
x dξ+

y . (B18)

To proceed, because of the influence of the fluid velocity on the particle horizontal
velocity, we must distinguish between saltation in viscous and turbulent shearing flows.

B.1. Saltation in viscous shearing flows
Using (A12) and (B2) into (B18), in the limit of large CDξ+

y , and integrating, we obtain
the following expression for the particle shear stress:

s = − c+

π

√
T+

x T+
y

∫ +∞

0
ξ+

y exp

(
− ξ+2

y

2T+
y

)

×
∫ +∞

−∞

[
(ξ+

x − u) + u − U − 1
C2

D

dU
dy

]
exp

[
−(ξ+

x − u)
2

2T+
x

]
dξ+

x dξ+
y

= c+

π

√
T+

x T+
y

√
π2T+

x

(
U − u + 1

C2
D

dU
dy

) +∞∫
0

ξ+
y exp

(
− ξ+2

y

2T+
y

)
dξ+

y

= c+
√

2T+
y

π

(
U − u + 1

C2
D

dU
dy

)
.

(B19)

Equation (B19) indicates that there is no influence of T+
x on the shear stress, because the

assumed Gaussian distribution of ξ+
x causes the term involving (ξ+

x − u) in the integrand
of (B15) to disappear.

However, Valance & Berzi (2022) showed that the probability distribution function of
the downward velocity of the particles impacting the bed (dominated by the horizontal
component) is actually non-symmetric. Given the perfect agreement with respect to the
other constitutive relations obtained in this appendix, which do not involve the horizontal
velocity of the ascending particles, we are inclined to ascribe to the non-symmetric
distribution of ξ+

x the fact that the shear stress measured in simulations of saltation
particles in a viscous shearing flow experiencing Stokes drag (figure 13a) is not linear
in the velocity difference, U − u, as implied by (B19).

At small T+
y , (B10) in (B19) actually indicates that s ∝ CDσy(U − u + C−2

D dU/dy). We
found that

s = 3
5

CDσy

(
U − u + 2

3
1

C2
D

dU
dy

)
, (B20)

permits the reproduction of the behaviour of the particle shear stress for saltation in
viscous shearing flows with Stokes drag better than (B19) in almost the entire flow domain
(figure 13b). Although not shown here for brevity, we have assessed that (B20) with the
drag coefficient evaluated from the velocity difference at the bed (2.3a) works well also in
the case of saltation in viscous flows with nonlinear drag.
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Figure 13. Ratio of (a) particle shear stress s and the product of particle concentration of ascending particles
and the square root of T+

y and (b) particle shear stress and the particle normal stress as functions of the velocity
difference, U – u, measured in numerical simulations of saltation in a viscous shearing flow with dw = 1,
St = 100, r = 150 000, Sh = 0.05 (so that the Stokes drag is dominant and CD = 18/St = 0.18) and M = 0.0004.
The solid lines are the predictions of (B19) and (B20), respectively.

B.2. Saltation in turbulent shearing flows
In the limit of large CDξ+

y , using (A19) and (B2) into (B18), and integrating, we obtain the
following expression, in the case of saltation in turbulent shearing flows:

s = c+
√

2T+
y

π

{
U − u −

√
rS
κ

exp

[
C2

D

√
rS
κ

(
dU
dy

)−1
]

Ei

[
−C2

D

√
rS
κ

(
dU
dy

)−1
]}

� 3
5

CDσy

{
U − u −

√
rS
κ

exp

[
C2

D

√
rS
κ

(
dU
dy

)−1
]

Ei

[
−C2

D

√
rS
κ

(
dU
dy

)−1
]}

,

(B21)

where we have kept the same dependency on the drag coefficient and the normal stress as
in the case of saltation in viscous shearing flows (B20). In the limit of rarefied saltation,
S → Sh, and with (2.37), (B21) becomes

5
3

s
CDσy

− U + u = −2
3

√
rSh
κ

exp[C2
D( y + y0)]Ei[−C2

D( y + y0)]. (B22)

The left-hand side of (B22) can be obtained from measurements of s, σ y, U and u in
the numerical simulations and plotted against the vertical position y, to test the validity
of the analytical expression on the right-hand side of (B22). If the drag coefficient is
evaluated using the concentration-weighted velocity difference (2.3b) the agreement is
notable (figure 14).

Appendix C. Boundary conditions for shallow impacts at a rigid, bumpy bed

For the case of a single angle of impact θ much less than π/2 of particles with a large
coefficient of friction, so that rolling rather than sliding takes place, the negative of the
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Figure 14. Profile of 5s/(3CDσy) − U + u, with CD given by (2.3b), measured in numerical simulations of
saltation in a turbulent shearing flow with dw = 1.5, St = 1681, r = 2208, Sh = 0 and M = 0.0008. The solid line
is the prediction of (B22).

average ratio of the vertical particle velocity after and before the impact is (Lämmel et al.
2017) 〈

−
ξ+

y,0

ξ−
y,0

〉
= −et + 2

3
(en + et)

√
2
θ

2dw

1 + dw
, (C1)

where en and et are the coefficients of normal and tangential restitution, respectively, and,
here and in what follows, we use the subscript 0 to indicate quantities evaluated at the bed.

For saltation over a rigid, bumpy bed in viscous shearing flows, in the limit of large
take-off velocity, (A8), (A12) and (2.24) give

θ = tan(−ξ−
y,0/ξ

−
x,0) � CD

St(Sh − s0)
. (C2)

In the case of saltation in turbulent shearing flows, instead, in the limit of large take-off
velocity, (A8), (A19) and (2.37) give

θ = tan(−ξ−
y,0/ξ

−
x,0) � −

[
CD

√
r(Sh − s0)

κ
exp(C2

Dy0)Ei(−C2
Dy0)

]−1

. (C3)

By inserting (A8) into (C1), we obtain

〈ξ+
y,0〉 = − et

CD
+ 2

√
2

3
(en + et)

1
CDθ1/2

√
2dw

1 + dw
. (C4)

Then, we can assume that T+
y,0 = 〈(ξ+

y,0)
2〉 ∝ 〈ξ+

y,0〉2, so that at leading order,

T+
y,0 = αT

1
C2

Dθ

2dw

1 + dw
, (C5)

with the coefficient of proportionality αT weakly dependent on the coefficients of normal
and tangential restitution. Measurements in DC numerical simulations, with θ evaluated
as the average angle of impact, shown in figure 15(a), confirm the validity of (C5), but
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Figure 15. Dependence of (a) the mean square of the vertical velocity of ascending particles at the bed and
(b) the mean horizontal slip velocity on the mean impact angle measured in DC simulations of saltation in
viscous (blue circles) and turbulent (orange diamonds) shearing flows. The lines are the predictions of (C5) and
(C9), respectively, with: αT = 0.50 and αu = 0.60 (blue solid lines); αT = 0.18 and αu = 0.85 (orange dashed
lines). The drag coefficient is evaluated using (2.3a) for saltation in viscous flows, and (2.3b) for saltation in
turbulent flows.
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Figure 16. Examples of measured probability distribution function of impact angles in DC simulations of
saltation in: (a) viscous and (b) turbulent shearing flows.

indicate that the coefficient αT also depends on the flow regime of the fluid. The reason is
that the angle of impact is not actually unique: there is a distribution of impact angles of
which either (C2) or (C3) provides the most likely value. Measurements in DC simulations
(figure 16) reveal that the probability distributions of impact angles for saltation in viscous
and turbulent shearing flows are indeed qualitatively different, with a tail respectively to
the right or to the left of the peak.
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Lämmel et al. (2017) also obtained〈
(ξ+

y,0)
2 + (ξ+

x,0)
2

(ξ−
y,0)

2 + (ξ−
x,0)

2

〉
=
[

et − (e2
t − e2

n)

2et
θ

2dw

1 + dw

]2

, (C6)

so that, with (A8) and (A12), and 〈(ξ+
x,0)

2〉 ∝ 〈ξ+
x,0〉2 = 〈u+

0 〉2,

u+
0 ∝

√√√√ 1
C2

D

(
1 + 1

θ2

)[
et − (e2

t − e2
n)

2et
θ

2dw

1 + dw

]2

− T+
y,0. (C7)

Then, we can determine the total particle slip velocity at the bed as

u0 = c+
0 u+

0 + c−
0 u−

0
c0

. (C8)

With (B5) and (B6), and u−
0 given by (A12), we obtain, at leading order,

u0 = αu
1

CDθ
, (C9)

where, once again, the coefficient of proportionality αu is a weak function of the
coefficients of restitution and the flow regime of the fluid (figure 15b). Using (C5) into
(C9) gives

u0 = αu

αT

1 + dw

2dw
CDT+

y,0. (C10)

It is worth mentioning that the values of αu that we employ do not exactly fit the
dependence of the slip velocity on the impact angle (figure 15b), but do permit a
satisfactory reproduction of the particle shear stress at the bed ((2.28) and (2.41)).

Appendix D. Discrete-continuum numerical simulations

The DC simulation is based on the combination of a DEM for the particle dynamics
coupled to a continuum description of hydrodynamics, as developed in Durán et al. (2012),
Ralaiarisoa et al. (2020) and Valance & Berzi (2022).

The particle motion is described by a Lagrangian approach according to which the
particle labelled p obeys the following dimensionless equations:

dξp

dt
= −ey +

∑
q

f p,q
c + f p

drag, (D1)

I
dωp

dt
= 1

2

∑
q

np,q × f p,q
c , (D2)

where ξp and ωp are the translational and angular velocity vectors of particle p,
respectively; ex and ey are the horizontal and vertical unit vectors, respectively; f p

drag =
CD[(U − ξ

p
x )ex − ξ

p
y ey] is the dimensionless drag force exerted by the fluid on the

p-particle and f p,q
c is the dimensionless contact force between particles p and q; I = 1/10

is the moment of inertia of a sphere; and np,q is the unit vector along the contact direction.
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The normal component fc,n of the contact force is modelled by a linear spring dashpot,
so that fc,n = (knδ + γnvn), where kn is the spring stiffness, δ the overlap between the
compliant spheres, γ n the viscous damping coefficient and vn the normal component of
the relative translational particle velocities. The negative of the ratio between the normal
relative velocity before and after the collision is the coefficient of normal restitution en.
If the values of en and kn are prescribed, γ n is deduced from the following relation:

γn = (π/6)

√
12kn/(1 + π2/ ln (en)

2). The tangential component fc,t of the contact force
is described via a Coulomb friction model regularized through a viscous damping: fc,t =
− min(μfc,n, γtvt)sign(vt), where μ is the Coulomb friction coefficient, vt the relative slip
velocity at contact and γ t the tangential viscous damping coefficient. The values chosen
for the parameters are: kn = π/6 · 107, γn = γt, en = 0.88 and μ = 0.5.

The fluid motion is solved by an Eulerian description based on (2.24) or (2.37) for
viscous and turbulent flows, respectively. The vertical component of the fluid velocity is
assumed to be zero, so that only the horizontal momentum balance is required and reads

dS
dy

= Fx, (D3)

where Fx = c〈∑p∈[y;y+dy] CD(U − ξx)〉/〈
∑

p∈[y;y+dy] 1〉, with the angular brackets
denoting ensemble averaging, represents the x-component of the average volume force
exerted on the fluid by the particles whose centres are located in the horizontal slice
between y and y + dy. The integration of (D3) gives

S = Sh −
∫ ∞

0
Fx dy, (D4)

where the infinite upper bound of the integral means that all moving grains located above y
must be accounted for. Once the vertical profile S(y) of the fluid shear stress is determined,
the horizontal fluid velocity profile can then be obtained from the integration equation
(2.24) or (2.37) for viscous and turbulent shearing flows, respectively, with the no-slip
boundary condition U = 0 at y = 0.

The simulated system is quasi-two-dimensional with a streamwise length equal to 5120
particle diameters and a transverse length equal to one diameter. We use spherical particles
with a polydispersity of ±10 % and adjust their number in the system to obtain the
desired value of the particle hold-up M. Periodic boundary conditions are employed in
the streamwise direction. The domain is not upper bounded, while the lower boundary
is composed of a layer of immobile particles of diameter dw in close contact (rigid,
bumpy bed; see figure 1). As mentioned earlier in the paper, we suppress the possibility of
particle–particle collisions above the bed.

Operatively, at every time step, we integrate equations (D1) and (D2) for every particle
in the system and determine its new velocity and position. We then use this information
to update the profiles of fluid shear stress and horizontal velocity via (2.4), and (2.24) for
viscous flows or (2.37) for turbulent flows and proceed with the next time step until we
reach a steady state, that is, when the horizontal mass flux averaged over a window of 100
unit time steps is stationary. Initially, the fluid profile is taken to be linear or logarithmic
for viscous and turbulent shearing flows, respectively, and corresponds to the unperturbed
profile in the absence of particles. The particles are initially displayed on a horizontal row
located at ten diameters from the rigid, bumpy bed, with a constant inter-particle distance
equal to two diameters and zero initial velocity. Importantly, the final state is independent
of the initial conditions as long as the number of particles in the flow does not surpass its
transport capacity.
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Figure 17. Particle flux against particle hold-up measured in DC numerical simulations with (orange
diamonds) and without (blue diamonds) mid-trajectory collisions, in the case of saltation in turbulent shearing
flows with dw = 1.5, St = 1681, r = 2208 and Sh = 0.04.

As mentioned, we have suppressed the possibility of mid-trajectory particle–particle
interactions in the numerical simulations. However, we have also carried out simulations
that incorporate mid-trajectory collisions. As shown in figure 17, such collisions begin to
influence the particle flux only for large particle hold-ups, with a concentration that results
in a mean free path that does not satisfy the condition of (2.23).
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