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Abstract

For families of smooth complex projective varieties, we show that normal functions arising from
algebraically trivial cycle classes are algebraic and defined over the field of definition of the family.
In particular, the zero loci of those functions are algebraic and defined over such a field of definition.
This proves a conjecture of Charles.
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1. Introduction

Let f : X→ B be a smooth surjective projective morphism of complex algebraic
manifolds, let n be an integer, and let J2n+1(X/B) → B be the (2n + 1)th
relative Griffiths intermediate Jacobian. If Z ∈ CHn+1(X) is an algebraic cycle
class such that for every b ∈ B the Gysin fiber Zb is algebraically (respectively
homologically) trivial, then there is an associated holomorphic function

νZ : B −→ J2n+1(X/B), νZ(b) = AJXb(Zb),

where AJXb : CHn+1(Xb)hom → J2n+1(Xb) is the Abel–Jacobi map on homologi-
cally trivial cycles in the fiber Xb. Such a function is called an algebraically
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motivated (respectively motivated) normal function motivated by the cycle
class Z.

More generally, let B be a complex manifold and let H be a variation of pure
negative weight integral Hodge structures over B. In [Sai96], Saito defines the
notion of an admissible normal function as a holomorphic section ν : B →
J(H) of the associated family of generalized intermediate Jacobians J(H)→ B
that satisfies a version of Griffiths horizontality and has controlled asymptotic
behavior near the boundary (see, for example, [BP13]). Despite the transcendental
nature of the definition of admissible normal functions, there is the following
conjecture due to Green and Griffiths (for example, [BP09, page 883], [Cha10,
Conjecture 1], [Sch12, Conjecture 1.1], [BP13, page 1914]).

CONJECTURE 1 (Green–Griffiths). The zero locus of an admissible normal
function on a complex algebraic manifold is algebraic.

Proofs of this conjecture were given in a series of papers: dim B = 1
[Sai08, Corollary 1], [BP09, Theorem 4.5], dim B > 1 [Sch12, Theorem C],
[BP13, Corollary 1.3] (see also [Cha14]). In this paper, we are interested in
algebraic and arithmetic questions concerning motivated normal functions. First,
for algebraically motivated (respectively motivated) normal functions, if X, B, f,
and Z are all defined over a subfield F ⊆ C, we say that the normal function νZ

is algebraically F-motivated (respectively F-motivated), and it is natural to ask
whether the zero locus of νZ in B is also defined over F [Cha10, page 2284] (see
also [KP11, Conjecture 81]).

CONJECTURE 2 (Charles). Let F ⊆ C be a subfield. The zero locus of
an algebraically F-motivated (respectively F-motivated) normal function is
algebraic and defined over F.

Several partial results are known. Regarding the F-motivated case of
Conjecture 2, a special case of a result of Saito [Sai16, Corollary 1] on admissible
normal functions implies that if an irreducible component of the zero locus of
an F-motivated normal function contains a point of B that is defined over F ,
then the entire component of the zero locus is defined over F (see also [Cha10,
Theorem 3], [KP11, Theorem 89]). Regarding the algebraically F-motivated
case of Conjecture 2, Kerr and Pearlstein have shown in [KP11, Conjecture 81,
Z̃L(D, 1)alg, Theorem 88] that the zero locus of an algebraically F-motivated
normal function is an algebraic subset of B defined over a finite extension
of F . All of the aforementioned results take as a starting point the validity of
Conjecture 1.
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In this paper, we directly prove Conjecture 2 in the algebraically F-motivated
case. (In particular, we do not rely on the earlier work on Conjecture 1.) In fact, we
prove a stronger result, namely that algebraically F-motivated normal functions
are themselves algebraic and defined over F .

THEOREM 1. Let f : X → B be a smooth surjective projective morphism
of complex algebraic manifolds (not necessarily connected), let n be a
nonnegative integer, and let J2n+1(X/B) → B be the (2n + 1)th relative
Griffiths intermediate Jacobian. There is a relative algebraic complex subtorus
J2n+1

a (X/B) ⊆ J2n+1(X/B) over B such that for very general u ∈ B, the fiber
J2n+1

a (X/B)u ⊆ J2n+1(Xu) is the image J2n+1
a (Xu) of the Abel–Jacobi map

AJXu : An+1(Xu)→ J2n+1(Xu), and for any algebraic cycle class Z ∈ CHn+1(X)
such that for every b ∈ B the Gysin fiber Zb is algebraically trivial:

(1) the normal function νZ : B → J2n+1(X/B) has image contained in
J2n+1

a (X/B) and is an algebraic map;

(2) if, moreover, X, B, f, and Z are all defined over a field F ⊆ C, then so are
J2n+1

a (X/B) and the morphisms J2n+1
a (X/B)→ B and νZ.

See Remark 5.2 for a caution about the notation J2n+1
a (X/B), and see

the notation and conventions below for a reminder on very general points.
Conjecture 1 in the algebraically motivated case follows immediately from
Theorem 1(1), and in this way, we obtain a short proof of this case of
the conjecture. Conjecture 2 in the algebraically F-motivated case follows
immediately from Theorem 1(2). In summary, we have the following.

COROLLARY 1. Let F ⊆ C be a subfield. The zero locus of an algebraically
F-motivated normal function is algebraic and defined over F.

We review some special easy cases of Theorem 1, with an eye toward
explaining why their generalization is not immediate. In the case of n + 1 = 1,
that is, of Pic0

X/B, and n + 1 = dimB X, that is, of AlbX/B, it is well known that
algebraically F-motivated normal functions are algebraic and defined over F (for
example, [Gro62, Theorem VI.3.3], [Kle05, Definition 4.6 and Theorem 4.8]).
In the case where B is quasiprojective, X = B × Y for some smooth projective
complex manifold Y, and f : X → B is the first projection, part (1) of the
theorem is elementary by embedding B in a smooth complex projective manifold
B, extending the cycle class Z to a cycle class Z on B×Y, and obtaining a normal
function νZ : B → B × J2n+1

a (Y) that is a holomorphic map between complex
projective manifolds. From our work in [ACMV18], one can then easily deduce
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(2) of the theorem in this case, as well. The difficulty in using the same strategy
to prove part (1) of the theorem in general is twofold. First, the family f : X→ B
may not extend to a smooth family over B, in which case it is difficult to know
how to extend J2n+1(X/B) and νZ to the boundary. Second, even if one can extend
f : X → B to a smooth family f : X → B, the geometric coniveau of the family
can jump along a countable union of algebraic subsets of B, and so there is no
obvious algebraic target J2n+1

a (X/B) for an extended normal function.
One faces similar difficulties in trying to prove Conjecture 1, and the approach

taken in [Sai08, BP09, Sch12] overcomes these complications by constructing
Néron models for the relative intermediate Jacobians (see also [GGK10]) that
provide manageable targets for extending admissible normal functions. In the
special case where dim B = 1, Schnell and Kerr independently communicated
to us arguments using these techniques to prove part (1) of the theorem, up to
replacing the normal function νZ with M · νZ for some integer M , depending on Z.
It appears, however, that it would be difficult to extend these arguments to the case
where dim B > 2. It also appears that it would be difficult to use these techniques
to prove part (2) of the theorem regarding the field of definition, even in the case
where dim B = 1.

The starting point of our proof consists in showing that, for a smooth projective
variety X defined over a subfield K ⊆ C, the kernel of the Abel–Jacobi map
restricted to algebraically trivial cycles defined over K is independent of the
choice of field embedding K ⊆ C. This is embodied in Corollary 3.3; in fact, a
stronger result is proved in Proposition 3.1 where it is shown that the distinguished
model of [ACMV18] does not depend on a choice of field embedding. The proof
uses in an essential way the fact proven in [ACMV19] that algebraically trivial
cycles defined over K are parameterized by abelian varieties, and builds on our
previous work [ACMV18]. Consequently, the relevant material of [ACMV18] is
reviewed in Section 2. An important consequence of Proposition 3.1 is that an
algebraically F-motivated normal function vanishes at a very general point if and
only if it vanishes on a Zariski open subset and is therefore identically zero; see
Example 3.6 and Remarks 3.7 and 3.8.

In fact, the initial step of our strategy is to consider a very general fiber Xu and,
thanks to Proposition 3.1, to descend the image of the Abel–Jacobi map J2n+1

a (Xu)

for this fiber to an abelian variety over the generic point of B, which admits a
natural section related to the normal function. We then spread this abelian variety
and section to a Zariski open subset of B, all defined over F . In Theorem 4.1,
we compare this abelian scheme together with the induced section to the analytic
normal function. This is achieved through comparing the related variations of
Hodge structures via an algebraic correspondence defined over K , provided by
Theorem 2.1. There is a technical point here—the correspondence only identifies
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the integral Hodge structures as well as our algebraic section and the analytic
normal function, up to an integer multiple M ; in Theorem 4.1, we show that the
image of the morphism of abelian varieties induced by the correspondence, inside
the Griffiths intermediate Jacobian, is in fact the spread of our distinguished model
and that the algebraic section and analytic normal function are identified. The
final step is to extend this to all of B (Section 5). We extend the relative algebraic
torus over the generic points of codimension-1 boundary loci by using the good
reduction of X and the Néron–Ogg–Shafarevich criterion and then extend over
codimension-2 loci using the Faltings–Chai Extension Theorem. The normal
function is handled separately at each step. In short, rather than having to worry
about extending admissible normal functions to projective compactifications in
order to obtain algebraicity as a consequence of Chow’s theorem, we extend
algebraic maps defined over F on a Zariski open subset of B to all of B, and,
in this way, we also manage to maintain control over the field of definition.

In forthcoming work [ACMV], we will study the notion of regular
homomorphisms in the relative setting; Theorem 1 shows that the Abel–Jacobi
map provides such a relative regular homomorphism.

Finally, although our results are algebraic in nature and only concern
algebraically trivial cycle classes, there are important instances of families
of varieties for which homological and algebraic equivalence of cycles in certain
codimensions agree and for which the corresponding intermediate Jacobians
are algebraic [BS83]. For example, a direct application of Theorem 1 concerns
codimension-2 cycles on uniruled threefolds.

COROLLARY 2. Let f : X → B be a smooth projective family of uniruled
threefolds, defined over a field F ⊆ C, and let Z ∈ CH2(X) be a cycle class
defined over F that is fiberwise homologically trivial. Then the analytic normal
function νZ is algebraic and defined over F. In particular, its zero locus is an
algebraic subvariety of B defined over F.

In the opposite direction, as a specific example of a case where it is not clear
how to apply our results to the F-motivated case of Conjecture 2, one can consider
families of Calabi–Yau threefolds; specifically, for very general quintic threefolds,
Voisin [Voi00, Theorem 2,3] has shown that the image of the Abel–Jacobi map
on algebraically trivial codimension-2 cycle classes is trivial, while the image of
the Abel–Jacobi map on homologically trivial codimension-2 cycle classes is a
countable abelian group of infinite rank. In general, it seems to us that it would
be interesting to construct a canonical arithmetic structure on the image of all
homologically trivial cycles under the Abel–Jacobi map. Such a construction is a
necessary first step for extending our methods to normal functions motivated by
homologically trivial cycles.
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1.1. Notation and conventions. Let X be a scheme of finite type over a field
F ⊆ C. We denote by X (F) the set of F-morphisms Spec F → X . We denote by
X = Xan the associated complex analytic space. After identifying the sets

X = {p ∈ |XC| : p is closed in the underlying topological space |XC|}

= {x ∈ XC(C) : x(SpecC) is closed in |XC|},

we say that x ∈ X is F-very general if the corresponding morphism x : SpecC→
X has image a generic point of |X |. If F is countable, then so is the collection of
all closed algebraic subsets of X that are defined over F and not equal to X; any
F-very general point x is in the complement of the union of these closed algebraic
subsets. If Y is merely a complex algebraic variety, then a very general point of
Y is an F-very general point for some field of definition F of Y which is of finite
type over Q.

A variety over a field is a geometrically reduced separated scheme of finite
type over that field. Given a smooth projective variety X over a field F ⊆ C,
we denote by CHi(X) (respectively CHi(X)) the Chow group of codimension-i
algebraic cycle classes on X (respectively X), and by Ai(X) (respectively Ai(X))
the subgroup of algebraically trivial algebraic cycle classes on X (respectively X).

For the remainder of the paper, the domain of the Abel–Jacobi map AJ :
An+1(X)→ J2n+1(X) is the group of algebraically trivial algebraic cycle classes.
We denote by J2n+1

a (X) the image of this Abel–Jacobi map, and by i2n+1
a,X :

J2n+1
a (X)→ J2n+1(X) the natural inclusion.

2. Distinguished models of intermediate Jacobians and distinguished
normal functions

In this section, we recall some results from [ACMV17, ACMV18] regarding
descending intermediate Jacobians to a field of definition.

2.1. Distinguished models of intermediate Jacobians. We start by recalling
the main result of [ACMV18]. We note that while in Sections 2.1 and 2.2 we work
over a field K ⊆ C, starting from Section 3.2, we will implement these results in
the case where the field K is the residue field of the generic point of the integral
base B of a smooth projective family f : X → B, all defined over a field F ⊆ C.

THEOREM 2.1 (Distinguished models [ACMV18, Theorem 1]). Suppose X is a
smooth projective variety over a field K ⊆ C, with associated complex analytic
space X, and let n be a nonnegative integer. Then J2n+1

a (X), the algebraic complex
torus that is the image of the Abel–Jacobi map AJ : An+1(X)→ J2n+1(X), admits
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a distinguished model J 2n+1
a,X/K over K such that the Abel–Jacobi map is Aut(C/K )-

equivariant. Moreover, there exist a positive integer M and a correspondence Γ ∈
CHdim(J 2n+1

a,X/K )+n(J 2n+1
a,X/K ×K X) such that the induced morphism Γ∗ : J2n+1

a (X) →
J2n+1(X) is M · i2n+1

a,X ; that is, M times the natural inclusion.

REMARK 2.2 (Uniqueness of the distinguished model). By Chow’s rigidity
theorem, an abelian variety A/C descends to at most one model defined over K .
On the other hand, an abelian variety A/K may descend to more than one model
defined over K . Nevertheless, since AJ : An+1(X) → J2n+1

a (X) is surjective, the
algebraic complex torus J2n+1

a (X) admits at most one structure of a variety over
K such that AJ is Aut(C/K )-equivariant. More precisely, setting J 2n+1

a (XC) to
be the abelian variety associated with the algebraic complex torus J2n+1

a (X), there
is an abelian variety J 2n+1

a,X/K which is unique up to unique isomorphism, such that
there is an isomorphism (J 2n+1

a,X/K )C → J 2n+1
a (XC) such that the induced action of

Aut(C/K ) on J2n+1
a (X) makes the Abel–Jacobi map Aut(C/K )-equivariant. This

is the sense in which J2n+1
a (X) admits a distinguished model over K .

In [ACMV18, Theorem 1], we show that the correspondence Γ in Theorem 2.1
induces a morphism of complex tori Γ∗ : J2n+1

a (X) → J2n+1(X) with image
J2n+1

a (X). In fact, this morphism respects K -structures.

LEMMA 2.3. In the situation of Theorem 2.1, the morphism Γ∗ : J2n+1
a (X) →

J2n+1
a (X) is induced by an isogeny ψ : J 2n+1

a,X/K → J 2n+1
a,X/K over K .

Proof. It suffices to show that Γ∗ is Aut(C/K )-equivariant on torsion. This is
achieved (as in [ACMV18, (2.3)]) by identifying the map on N -torsion with the
map Γ∗ : H 1(J 2n+1

a (XC),µµµN )→ H 1(J 2n+1
a (XC),µµµN ) ⊆ H 2n+1(XC,µµµ

⊗(n+1)
N ). Let

M be the exponent of ψ and let ψ̃ : J 2n+1
a,X/K → J 2n+1

a,X/K be such that ψ̃ ◦ ψ = M .
With Γψ̃ the correspondence associated with the morphism ψ̃ , let Γ ′ = Γψ̃ ◦Γ . It
follows that the induced morphism Γ ′

∗
: J2n+1

a (X)→ J2n+1(X) has image J2n+1
a (X)

and is given as M · i2n+1
a,X ; that is, M times the natural inclusion.

REMARK 2.4 (Extensions K ⊆ L ⊆ C). In the notation of the theorem, suppose
we have an intermediate field extension K ⊆ L ⊆ C. Then the base change
(J 2n+1

a,X/K )L is the distinguished model for X L . Indeed, the distinguished model over
L is determined uniquely by the fact that the Abel–Jacobi map for X is Aut(C/L)-
equivariant; but if the Abel–Jacobi map is Aut(C/K )-equivariant with respect to
the K -structure on J 2n+1

a,X/K , then it is Aut(C/L)-equivariant for the L-structure on
(J 2n+1

a,X/K )L .
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2.2. Distinguished normal functions. In [ACMV17], we established some
results regarding equivariant regular homomorphisms. In this section, we recall
the consequences of that work in the context of normal functions and the
distinguished model.

Let X be a smooth projective variety over K ⊆ C. Given Z ∈ CHn+1(X)
with the base change ZC algebraically trivial, and σ ∈ Aut(C/K ), we showed
in [ACMV17] that the following diagram commutes:

(SpecC)C(C)
wZC // An+1(XC)

AJ //

σ ∗
��

J 2n+1
a (XC)(C)

σ(C)
��

(SpecC)C(C)
wZC // An+1(XC)

AJ // J 2n+1
a (XC)(C)

where (SpecC)C(C) = {IdC} and wZC(IdC) = ZC. Indeed, the right-hand side is
the precise meaning of the statement in Theorem 2.1 that the Abel–Jacobi map
is Aut(C/K )-equivariant, while the left-hand side is elementary (see [ACMV17,
Remark 4.3] for more on this). This corresponds to the commutativity of the
diagram of sets:

(SpecC)an
wZ // An+1(X) AJ // //

σ ∗
��

J2n+1
a (X)

σ
��

(SpecC)an
wZ // An+1(X) AJ // // J2n+1

a (X)

where wZ((SpecC)an) = Z, the complex analytic cycle class associated with Z ,
and σ : J2n+1

a (X)→ J2n+1
a (X) is the map of sets induced by σ(C) in the previous

diagram. Note that AJ ◦ wZ = νZ, the normal function associated with Z. As
mentioned in [ACMV17, Remark 4.3], the commutativity of the diagrams above
implies that AJ ◦ wZC , and hence νZ, descend to K to give a morphism

δZ : Spec K → J 2n+1
a,X/K . (2.1)

We call this the distinguished normal function associated with Z .

REMARK 2.5 (Uniqueness of the distinguished normal function). The distin-
guished normal function is unique in the sense that given the distinguished model
J 2n+1

a,X/K (unique up to unique isomorphism by Remark 2.2), there is a unique
morphism δZ : Spec K → J 2n+1

a,X/K such that (δZ )an : (SpecC)an → J2n+1
a (X) is

equal to the analytic normal function νZ.

REMARK 2.6 (Extensions K ⊆ L ⊆ C). In the notation of Theorem 2.1, suppose
we have an intermediate field extension K ⊆ L ⊆ C. In light of Remark 2.4,
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we have a fibered product diagram

J 2n+1
a,X L/L

��

// J 2n+1
a,X/K

��

Spec L //

δZL

EE

Spec K

δZ

YY

2.3. Review of the construction of the distinguished model. Because it
will be relevant later, we recall the construction of the distinguished model
J 2n+1

a,X/K from [ACMV18]. The starting point is [ACMV18, Proposition 1.1], which
provides a smooth projective geometrically integral curve C/K (admitting a
K -point) and a correspondence γ ∈ CHn+1(C ×K X) such that the induced
morphism of complex tori γ∗ : J(C) → J2n+1(X) has image J2n+1

a (X). We thus
obtain a short exact sequence of algebraic compact complex analytic groups
0→ P→ J(C)→ J2n+1

a (X)→ 0, where P is defined to be the kernel.
The next step is to show that P descends to K . For this, it suffices to show that

for every natural number N , the N -torsion P[N ] is preserved by Aut(C/K ) (since
torsion is dense in any subgroup scheme of an abelian variety; see, for example,
[ACMV18, Lemma 2.3]). For this, one shows that P[N ] is equal to the kernel of
the morphism γ∗ : H 1(CC,µµµN ) → H 2n+1(XC,µµµ

⊗(n+1)
N ) (see [ACMV18, (2.3)]),

which is equivariant as it is induced by a correspondence defined over K . Thus,
P[N ] is preserved by Aut(C/K ) so that P descends to a group scheme P/K , and,
consequently, J2n+1

a (X) descends to a model J 2n+1
a,X/K over K , as well. This is the

distinguished model.

REMARK 2.7. We reiterate here that the distinguished model is unique up to
unique isomorphism (see Remark 2.2) so that J 2n+1

a,X/K is, in fact, independent of the
curve C and the correspondence γ used in the construction. In other words, given
any smooth projective geometrically integral curve C ′/K (admitting a K -point)
and a correspondence γ ′ ∈ CHn+1(C ′ ×K X) such that the induced morphism of
complex tori γ ′

∗
: J(C′) → J2n+1(X) defines a short exact sequence of algebraic

compact complex analytic groups 0→ P′→ J(C′)→ J2n+1
a (X)→ 0, the descent

datum on C ′C defines J 2n+1
a,X/K .

3. Changing the embedding K ⊆ C

In this section, we show that if K is a field of finite transcendence degree
over Q, then up to isomorphism, the distinguished model and distinguished
normal function do not depend on the embedding K ⊆ C. An important
consequence is that the normal function associated with a fiberwise algebraically
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trivial cycle defined over a field F of finite transcendence degree over Q (that is,
an algebraically F-motivated normal function in our terminology) vanishes at an
F-very general point if and only if it vanishes at all F-very general points; see
Example 3.6 and Remark 3.8.

3.1. The distinguished normal function is independent of the field
embedding. The following proposition complements, in particular,
Theorem 2.1 by showing that the distinguished model does not depend on
the choice of an embedding K ⊆ C.

PROPOSITION 3.1. Let X be a smooth projective variety over a field K of finite
transcendence degree over Q, let n be a nonnegative integer, and let Z ∈ An+1(X)
be an algebraically trivial cycle class. Let b1, b2 : K ↪→ C be two inclusions of
fields and let L i = bi(K ), and denote by σ : C→ C an automorphism inducing
a commutative diagram of field homomorphisms

L1
� � //

b2b−1
1

��

C
σ

��
K

b1

∼

66

b2

∼

((
L2
� � // C

which exists due to the assumption that K is of finite transcendence degree over Q.
For i = 1, 2, let Xbi be the base change of X over bi : SpecC→ Spec K , with

associated complex analytic space Xbi , let J 2n+1
a,X Li /Li

be the distinguished model
of J2n+1

a (Xbi ) over L i , and let δZLi
: Spec L i → J 2n+1

a,X Li /Li
be the distinguished

normal function. Let J 2n+1
a (Xbi ) be the complex abelian variety associated with

J2n+1
a (Xbi ).
Then J 2n+1

a,X L2 /L2
is the pullback of J 2n+1

a,X L1 /L1
by b−1

1 b2 : Spec L2 → Spec L1, and
there is a commutative fibered product diagram

J 2n+1
a,X/K

oo

��

hh
J 2n+1

a,X L1 /L1
oo J 2n+1

a (Xb1)

��

J 2n+1
a,X L2/L2

��

66

oo

��

J 2n+1
a (Xb2)

��

55

Spec K

δZ

FF

oo Spec L1
b1

δZL1

GG

oo SpecC

Spec L2
b2

ii

δZL2

FF

55

oo SpecC
σ

44

(3.1)
where J 2n+1

a,X/K and δZ : Spec K → J 2n+1
a,X/K are defined from the rest of the diagram

via fibered product.
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REMARK 3.2. Proposition 3.1 allows one to define the distinguished model
J 2n+1

a,X/K of the image of the Abel–Jacobi map, and the distinguished normal
function δZ associated with a cycle class Z ∈ CHn+1(X), without first needing
to specify a particular inclusion K ↪→ C.

Proof. From the diagram (3.1), it is clear that it suffices to establish that there is
a commutative fibered product diagram

J 2n+1
a,X L2 /L2

//

��

J 2n+1
a,X L1 /L1

��

Spec L2
b−1

1 b2
//

δZL2

FF

Spec L1

δZL1

XX

(3.2)

that is, it is enough to focus on the subdiagram that is the left-hand face of the cube
in diagram (3.1). We break the proof into two parts. First, we establish the result
for the distinguished models and, second, for the distinguished normal functions.

Step 1. The distinguished models. Let C be a geometrically integral curve over K
(admitting a K -point) and let γ ∈ CHn+1(C×K X) be a correspondence such that,
for i = 1, 2, the induced morphisms of complex tori γi ∗ : J(Ci)→ J2n+1(Xi) have
respective images equal to J 2n+1

a (Xi) [ACMV18, Proposition 1.1]. Here, Xi and
Ci are the complex analytic spaces associated with the pullbacks of X and C to
SpecC via the given inclusions bi : K ↪→ C. Thus, for i = 1, 2, we obtain short
exact sequences

0 // Pi
// J(Ci) // J2n+1

a (Xi) // 0

where Pi is defined to be the kernel of the morphism of complex tori induced by γ .
Moreover, we have seen in Remark 2.7 that Pi descends to an abelian scheme Pi

over L i . This gives short exact sequences

0 // Pi
// J (CL i )

// J 2n+1
a,X Li /L i

// 0

defining the distinguished models J 2n+1
a,X Li /Li

. We want to show that the distinguished
models differ by base change over b−1

1 b2 : Spec L2 → Spec L1. We will do this
by showing that P1 and P2 differ by base change over b−1

1 b2.
Let P1,L2 ⊆ J (CL2) be the base change of P1 to L2. To show that P1,L2 = P2, it

suffices to show that for all natural numbers N , the N -torsion of P1,L2 and P2 are
equal; that is, P1,L2[N ] = P2[N ]. But the N -torsion Pi [N ] is equal to the kernel of
the morphism γi∗ : H 1(Cbi ,µµµN ) → H 2n+1(Xbi ,µµµ

⊗(n+1)
N ); see [ACMV18, (2.3)].
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These are related by the diagram

H 1(Cb1,µµµN )

' σ ∗��

(γ1)∗ // H 2n+1(Xb1,µµµ
⊗(n+1)
N )

' σ ∗��

H 1(Cb2,µµµN )
(γ2)∗ // H 2n+1(Xb2,µµµ

⊗(n+1)
N )

implying that P1,L2[N ] = P2[N ], completing the proof.

Step 2. The distinguished normal functions. We now show that the distinguished
normal functions δZL1

and δZL2
fit into the fibered product diagram (3.2); that

is, they agree under base change. To begin, recall that the distinguished normal
function δZLi

is characterized by the condition that (δZLi
)an = ν(Zbi )an ; that

is, the analytic map induced by δZL agrees with the analytic normal function
(Remark 2.5). Algebraically, this is the condition that (δZLi

)bi = AJ ◦ wZbi
(see

Section 2.2). In other words, to complete the proof of the theorem, it suffices to
show that (δZL1

)b2 = (δZL2
)b2 . Put differently, by virtue of the fact that J 2n+1

a (Xb1)

and J 2n+1
a (Xb2) have been identified in Step 1 via base change over σ : SpecC→

SpecC, it suffices to show that the outer rectangle of the diagram

(SpecC)C(C)
wZb1 //

σ
��

An+1(Xb1)
AJ //

σ ∗
��

J 2n+1
a (Xb1)(C)

σ(C)
��

(SpecC)C(C)
wZb2 // An+1(Xb2)

AJ // J 2n+1
a (Xb2)(C)

(3.3)

is commutative. In other words, it suffices to show that σ AJ (Zb1) = AJ ((Zb2)).
To do this, we first show the commutativity of the right-hand side of (3.3) on

torsion (see also Remark 3.4). For this, one considers the diagram

An+1(Xb1)[N ]
AJ //

σ ∗[N ]
��

J 2n+1
a (Xb1)[N ]

σ(C)[N ]
��

� � // H 2n+1(Xb1,µµµ
⊗(n+1)
N )

σ ∗
��

An+1(Xb2)[N ]
AJ // J 2n+1

a (Xb2)[N ]
� � // H 2n+1(Xb2,µµµ

⊗(n+1)
N )

which is commutative for all integers N > 1 due to the fact that, by construction,
the right-hand square is commutative and the fact that the outer square is
commutative because the composition of horizontal arrows is the Bloch map,
which is functorial with respect to automorphisms of the field (see, for example,
[ACMV18, Section 2.3]).

Now, since Z is defined over K , there exist, by [ACMV19, Theorem 1],
an abelian variety A over K , a K -point p ∈ A(K ), and a correspondence
Ξ ∈ CHn+1(A ×K X) such that Z = Ξp − Ξ0. Since the Abel–Jacobi map is a
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regular homomorphism, the base change of Ξ along bi induces a homomorphism
ψΞ,i : Abi → J 2n+1

a (Xbi ) with ψΞ,i(q) = AJ (Ξq−Ξ0), in particular, (ψΞ )i(p) =
AJ (Zbi ). We have then a not a priori commutative diagram

Ab1

ψΞ,1
//

σ ∗

��

J 2n+1
a (Xb1)

σ
��

Ab2

ψΞ,2
// J 2n+1

a (Xb2)

However, since the right-hand side of (3.3) is commutative on torsion, this
diagram is also commutative on torsion (note thatΞq−Ξ0 is torsion in An+1(Xbi )

whenever q is a torsion point in Abi ; for example, [ACMV18, Lemma 3.2])
and since torsion points are dense, the diagram is, in fact, commutative, thereby
establishing the desired identity σ AJ (Zb1) = AJ (Zb2).

According to the Bloch–Beilinson philosophy (see, for example, [Gre14,
Lecture 3]), if X is a smooth projective variety defined over a subfield K ⊆ C,
then the kernel of the Abel–Jacobi map AJ : CHn+1(X)hom → CHn+1(XC)hom →

J 2n+1(XC) defined on homologically trivial cycles defined over K should be
independent of the choice of embedding K ↪→ C after tensoring with Q. Even
such a concrete consequence of the Bloch and Beilinson conjectures remains wide
open. As a noteworthy consequence of Proposition 3.1, we can establish this, with
integral coefficients, for algebraically trivial cycle classes.

COROLLARY 3.3. Let X be a smooth projective variety over a field K of finite
transcendence degree over Q and let Z ∈ An+1(X) be an algebraically trivial
cycle class. Let b : K ↪→ C be an inclusion of fields. Then AJ (Zb) = 0 for one
such embedding if and only if AJ (Zb) = 0 for all such embeddings.

REMARK 3.4. In fact, one can also show that the right-hand side of (3.3) is
commutative on all cycle classes (that is, not just the ones defined over K ). In
particular, the kernel of the Abel–Jacobi map restricted to algebraically trivial
cycles (not necessarily defined over K ) is independent of the choice of an
embedding K ↪→ C in the sense that if Z ∈ An+1(XC) is such that AJ (Z) = 0,
then AJ (Zσ ) = 0 for all automorphisms σ ∈ Aut(C). For brevity, we have
omitted the proof.

3.2. Distinguished models and distinguished normal functions of very
general fibers. We now focus on the main case of interest in this paper. Let
F ⊆ C be a field of finite transcendence degree over Q. Let f : X → B be a
smooth surjective projective morphism of smooth integral schemes of finite type
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over F and let n be a nonnegative integer. Let f : X→ B be the associated map of
complex manifolds. Let η be the generic point of B with residue field K , which
is also of finite transcendence degree over Q.

EXAMPLE 3.5 (Distinguished model of a very general fiber). In the notation
above, fix an inclusion K ⊆ C, let Xη be the generic fiber, and let J 2n+1

a,Xη/K
be the corresponding distinguished model associated with (XC)an (see also
Proposition 3.1). Now let u ∈ B be an F-very general point; that is, u corresponds
to a closed C-point u : SpecC→ BC, which is itself a morphism of C-schemes,
so that the composition u : SpecC→ BC→ B has image the generic point of B,
given by a second inclusion i : K ↪→ C. From Proposition 3.1, the distinguished
model of J2n+1(Xu) is (after pullback to K ) isomorphic over K to J 2n+1

a,Xη/K . In fact,
the distinguished models of all F-very general fibers agree up to isomorphism
over K . Put another way, for any F-very general point u ∈ B, corresponding to a
point u : SpecC→ BC,

((J 2n+1
a,Xη/K )u)an = J2n+1

a (Xu).

EXAMPLE 3.6 (Distinguished normal function of a very general fiber). In the
same situation as Example 3.5, let Z ∈ CHn+1(X) be such that every Gysin fiber
is algebraically trivial. Let δZ : Spec K → J 2n+1

a,Xη/K be the distinguished normal
function (2.1), which a priori depends on the inclusion K ⊆ C. However, from
Proposition 3.1, the distinguished normal function associated with any F-very
general point u ∈ B (corresponding to an inclusion i : K ↪→ C) agrees (after
pullback to K ) with δZ . Put another way, for any F-very general point u ∈ B,
corresponding to a point u : SpecC→ BC,

((δZ )u)an = (νZ)u : u→ J2n+1
a (Xu),

where νZ : B→ J2n+1(X/B) is the analytic normal function associated with Z .

REMARK 3.7 (The geometric generic fiber). Another way to frame the
relationship between the distinguished models and distinguished normal functions
associated with different F-very general points of B is to observe that the C-
scheme Xu associated with an F-very general fiber Xu of f : X→ B is isomorphic
as a K -scheme to a geometric generic fiber XC(B). In fact, after choosing a K -
isomorphism α : C→ C(B), we have that Xu and XC(B) are isomorphic over α
(see, for example, [Via13, Lemma 2.1]).

REMARK 3.8 (First consequence for zero loci of normal functions: Conjecture 2
in the algebraically F-motivated case). Already, we obtain a quick proof of much
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of Corollary 1, that is, the zero locus of νZ is a countable union of algebraic subsets
of B defined over F . Indeed, from Example 3.6, we have that if (νZ)u is zero for
one F-very general point u ∈ B, then it is zero for every F-very general point
u′ ∈ B (see also Corollary 3.3). By continuity, if νZ is not identically zero, then
the zero locus of νZ is contained in the complement of the F-very general points,
which is a countable union of algebraic subsets of B defined over F , and not equal
to B. Restricting νZ to an F-desingularization of each irreducible component and
arguing recursively on each component, one obtains the claim. Note that together
with Conjecture 1, one obtains a proof of Corollary 1. We will, however, give
below a direct proof of Theorem 1, and, hence, of Corollary 1, that does not rely
on the validity of Conjecture 1.

4. Spreading the distinguished model and distinguished normal function

We now consider a family of smooth complex projective varieties and descend
the image of the Abel–Jacobi map of a very general fiber to the generic point of
the base of the family. We then spread this to an open subset of the base. The
following theorem collects some properties of this spread. (Note that the caveat
of Remark 5.2 already applies to the abelian scheme J2n+1

a (XU/U) constructed
below.)

THEOREM 4.1. Let F ⊆ C be a subfield of finite transcendence degree over Q,
let f : X → B be a smooth surjective projective morphism of smooth integral
varieties of finite type over F, and let n be a nonnegative integer. Let f : X→ B
be the associated morphism of complex analytic spaces.

Let η be the generic point of B with residue field K , and fix an inclusion K ↪→

C. Let Xη be the generic fiber of X over K , let J 2n+1
a,Xη/K be the distinguished model

of J2n+1
a ((XC)an) over K , and let

Γ ∈ CHdim(J 2n+1
a,Xη/K )+n

(J 2n+1
a,X/K ×K Xη) and M ∈ Z>0 (4.1)

be the correspondence and integer, respectively, from Theorem 2.1 (see also
Proposition 3.1). Spread this data to a Zariski open subset U ⊆ B. More precisely,
let U ⊆ B be a Zariski open subset over which there is an abelian scheme

g : J 2n+1
a,XU /U → U

with generic fiber isomorphic to J 2n+1
a,Xη/η and a cycle

ΓU ∈ CHdim(J 2n+1
a,Xη/K )+n

(J 2n+1
a,XU /U ×U XU )
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with (ΓU )η = Γ . Let U ⊆ B be the Zariski open subset corresponding to U ⊆ B
and let ΓU be the corresponding complex analytic correspondence.

(1) For every prime number `, the correspondence ΓU induces a morphism of
sheaves on U

(ΓU )∗ : R1g∗Q` −→ R2n+1( f |U )∗Q`(n), (4.2)

which, at the geometric generic point u : Spec K → Spec K → U, induces
an inclusion of Gal(K/K )-representations

(ΓU,u)∗ : H 1((J 2n+1
a,Xη/K )K ,Q`) ↪→ H 2n+1(X K ,Q`(n)) (4.3)

(with image Nn H 2n+1(X K ,Q`(n)), where N• denotes the geometric coniveau
filtration).

(2) The correspondence ΓU induces a morphism of variations of pure integral
Hodge structures and thus a morphism of relative complex tori over U

(ΓU)∗ : (J 2n+1
a,XU /U )an → J2n+1(X/B)|U. (4.4)

The image of (4.4) is an algebraic relative complex torus AU ⊆ J2n+1(X/B)|U
over U, induced by an abelian scheme

AU/U,

defined over F, with generic fiber (AU )η isomorphic to J 2n+1
a,Xη/K over K .

For F-very general u ∈ U, the morphism (4.4) restricts to a morphism

((ΓU)∗)u : J2n+1
a (Xu)→ J2n+1(Xu) (4.5)

that is given by M · i2n+1
a,Xu

, that is, M times the natural inclusion (where M is
defined in (4.1)). In particular, the image of (4.5), that is, the fiber AU,u, is
equal to J2n+1

a (Xu).

(3) Let Z ∈ CHn+1(X) be a cycle class with every Gysin fiber algebraically
trivial, let Zη be the restriction of Z to the generic fiber Xη, and let

δZη : Spec K → J 2n+1
a,Xη/K

be the associated distinguished normal function (see (2.1) and
Proposition 3.1). After possibly replacing the Zariski open subset U ⊆ B
with a smaller Zariski open subset, let δ : U → J 2n+1

a,XU /U be the spread of
the distinguished normal function and let δan : U→ (J 2n+1

a,XU /U )an denote the
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associated morphism of complex analytic spaces. We have the following
formula relating the normal function νZ, the spread δan of the distinguished
normal function, and the morphism (4.4):

(ΓU)∗ ◦ δan = M · νZ|U, (4.6)

and M · νZ|U is algebraic and defined over F.

Proof. (1) Correspondences induce morphisms of sheaves, giving (4.2). Equation
(4.3) is just a statement about fibers of correspondences and follows from
Theorem 2.1 (but see also [ACMV18, Theorem A]).

(2) Correspondences induce morphisms of Hodge structures, giving (4.4). To
show that the image AU of (4.4) is algebraic, one shows that the kernel of the
morphism of relative complex tori is algebraic. For this, it suffices to check that
torsion is preserved by Aut(C/F), and it is easy to see this holds from the fact that
the morphism is induced by an algebraic cycle defined over F (as in Lemma 2.3);
alternatively, it is dominated by the relative algebraic complex torus (J 2n+1

a,XU /U )an .
The assertion (4.5) is just a statement about fibers of correspondences, and

Theorem 2.1 and Example 3.5 provide the needed identification of fibers. One
also uses the general observation that the image of the multiplication by M map
is the same complex torus.

The final statement, that the generic fiber (AU )η is isomorphic to J 2n+1
a,Xη/K over

K , can be established as follows. Let G be the kernel of the K -isogeny J 2n+1
a,Xη/K →

(AU )η. The isogeny, when pulled back to u, gives a morphism

J2n+1
a (Xu) // // AU,u

∼= // J2n+1
a (Xu)

with composition equal to the multiplication by M map. Thus, G and J 2n+1
a,Xη/K [M]

are reduced K -subschemes of J 2n+1
a,Xη/K with the same C-points and are, therefore,

the same scheme. It follows that (AU )η ∼= J 2n+1
a,Xη/K/J 2n+1

a,Xη/K [M] = J 2n+1
a,Xη/K .

(3) The only thing to show is (4.6). Since both sides of the equation are
continuous functions, it suffices to prove the assertion for a dense subset of U,
and, in particular, we can focus on F-very general points u ∈ U. The assertion
then follows from (2) together with Example 3.6.

We now use Theorem 4.1 to prove Theorem 1 over a Zariski dense open subset
of the base.

COROLLARY 4.2. Let f : X → B be a smooth surjective projective morphism
of complex algebraic manifolds, let n be a nonnegative integer, and let
J2n+1(X/B) → B be the (2n + 1)th relative Griffiths intermediate Jacobian.
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There is a Zariski open subset U ⊆ B, a relative algebraic complex subtorus
J2n+1

a (XU/U) ⊆ J2n+1(X/B)|U over U such that for very general u ∈ U, the
fiber Ja(XU/U)u ⊆ J2n+1(Xu) is the image J2n+1

a (Xu) of the Abel–Jacobi map
AJXu : A

n+1(Xu)→ J2n+1(Xu), and for any Z ∈ CHn+1(X) with every Gysin fiber
algebraically trivial:

(1) the restriction of the normal function νZ|U : U → J2n+1(X/B)|U has image
contained in the relative algebraic complex torus J2n+1

a (XU/U) and is an
algebraic map;

(2) if, moreover, X, B, f, and Z are all defined over a subfield F ⊆ C, then so are
J2n+1

a (XU/U) and the morphisms J2n+1
a (XU/U)→ U and νZ|U.

Proof. In case (1), since f : X → B is defined over some field F ⊆ C that is
finitely generated over Q, we may as well make this assumption from the start. In
case (2), we may take our field of definition F ′ to be contained in the given field F
and can base change to F at the end, if necessary, and so we may as well assume
F is finitely generated over Q in case (2), as well. We are then in the situation of
Theorem 4.1, and we will use the notation from that theorem moving forward.

First, we can take J2n+1
a (XU/U) = AU ⊆ J2n+1(X/B)|U, the image of (4.4).

Let AU be the corresponding abelian scheme over U ⊆ B. From Theorem 4.1(2),
we have that the generic fiber (AU )η is isomorphic over K to the distinguished
model J 2n+1

a,Xη/K . With cycle class Z ∈ CHn+1(X) as in the theorem, let

δZη : Spec K → J 2n+1
a,Xη/K

∼= (AU )η (4.7)

be the distinguished normal function. This then spreads to an F-morphism δ :

U → AU , after possibly replacing U with a smaller Zariski open subset. The
associated complex analytic map δan : U→ AU ⊆ J2n+1(X/B)|U has the property
that for F-very general u ∈ U, we have (δan)u : u→ AU,u = J2n+1

a (Xu) has image
νZ(u); that is, it agrees with the complex analytic normal function. This follows
from (4.7) and Example 3.6. Therefore, since δan and νZ|U are continuous and
agree on the dense open subset of F-very general points of U, they agree on all
of U.

5. Extending the distinguished model and distinguished normal function

In light of Corollary 4.2, in order to prove Theorem 1, we only need to show
that the distinguished model and distinguished normal function extend over the
entire base B. We do this now.
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Proof of Theorem 1. We use the notation from Theorem 1 and the partial result,
Corollary 4.2. As mentioned above, we only need to show that the spread of
the distinguished model J2n+1

a (XU/U) ⊆ J2n+1(X/B)|U and distinguished normal
function δan : U→ J2n+1

a (XU/U) extend over the entire base B to give algebraic
objects over F . To begin, we switch to the algebraic setting, and let J 2n+1

a,XU /U/U
be the algebraic model of J2n+1

a (XU/U) and let δ : U → J 2n+1
a,XU /U be the associated

morphism of F-schemes.
First, we show that J 2n+1

a,XU /U extends to an abelian scheme g : J̃ 2n+1
a,X/B → B over B.

If dim B = 1, we use the inclusion (4.3) and the Néron–Ogg–Shafarevich criterion
as in [ACMV17, Lemma 6.1(a)]. If dim B > 2, using the dimension 1 case, we
can extend over the generic points of divisors in the boundary B − U , and, thus,
we can assume that codimB(B − U ) > 2. The assertion now follows from the
Faltings–Chai extension theorem [FC90, Corollary 6.8, page 185].

Next, we show that the relative algebraic complex torus J̃2n+1
a (X/B) :=

( J̃ 2n+1
a,X/B)an induces an algebraic relative subtorus J2n+1

a (X/B) ⊆ J2n+1(X/B)which
extends J2n+1

a (XU/U). For this, we use the basic fact that any morphism of
variations of Hodge structures extends over a locus of codimension at least 2.
(Indeed, by purity, the natural map π1(U,u)→ π1(B,u) is an isomorphism; now
use [PS08, Theorem 10.11, page 243] or the proof of [Hai95, Lemma 6.3, page
117].) It now follows that the inclusion J2n+1

a (XU/U) ⊆ J2n+1(X/B)|U extends to
a morphism

J̃2n+1
a (X/B) −→ J2n+1(X/B) (5.1)

with finite kernel, which a priori may be nontrivial only over B − U. We define
J2n+1

a (X/B) ⊆ J2n+1(X/B) to be the image of (5.1). Although it is not needed, we
note that by Zariski’s main theorem, the morphism of relative algebraic complex
tori J̃2n+1

a (X/B)→ J2n+1
a (X/B) is an isomorphism.

The normal function νZ has image contained in J2n+1
a (X/B), since J2n+1(X/B)

is separated, and νZ|U has image contained in J2n+1
a (X/B), which is closed in

J2n+1(X/B). Finally, it is straight forward to check that νZ is algebraic, and defined
over F , since νZ|U is algebraic and defined over F . For completeness, we include
this last assertion as Lemma 5.1.

LEMMA 5.1. Let X, Y be schemes of finite type over F ⊆ C, with X reduced
and Y separated, let U ⊆ X be a Zariski open subset, let fU : U → Y be a
morphism of F-schemes, and assume that the associated morphism of analytic
spaces ( fU )an : U→ Y extends to a morphism f : X→ Y. Then fU extends to a
morphism f : X → Y over F with fan = f.
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Proof. We may immediately reduce to the case with X integral and Y reduced.
Now consider the graph Γ fU ⊆ U ×F Y ⊆ X ×F Y , which is closed in U ×F Y
since Y is separated. Let Γ ⊆ X ×F Y be the closure of Γ fU , which we observe
is an integral subscheme. Now let Γ = Γan ⊆ X × Y be the associated complex
analytic space. We have by assumption that (Γ fU )an = (Γf)|U×Y. Now Γf is the
analytic closure of (Γf)|U×Y in X× Y. Since (Γf)|U×Y = (Γ fU )an ⊆ Γ , we have Γf

is equal to the analytic closure of (Γ fU )an in Γ . But Γ fU is a Zariski open subset
of an integral scheme Γ of finite type over F , and so Γf = Γ . (In general, if T is
a locally closed subset of a scheme Z/C which is locally of finite type, then T is
dense in Z if and only if T is dense in Z [Gro71, Exposé XII, Corollary 2.3].)

Now we just need to conclude that Γ induces a morphism X → Y . It suffices to
show that the second projection q1 : Γ → X is an isomorphism. But this follows
from the fact that a morphism between the complex analytic spaces associated
with two F-schemes descends to F if and only if it is Aut(C/F)-equivariant
(apply, for example, [Voi13, Section 5.2] to its graph) and the fact that q1 : Γ → X
is an isomorphism.

REMARK 5.2. The notation J2n+1
a (X/B) may be slightly misleading, in the sense

that the formation of this object is not compatible with base change in B. While
the very general fiber J2n+1

a (X/B)u is equal to the image of the Abel–Jacobi map
J2n+1

a (Xu), in some cases, there is a countably infinite union of algebraic subsets
of B over which the geometric coniveau of the fiber Nn H 2n+1(Xb,Q) jumps. If
this is the case, then over these points, the fiber J2n+1

a (X/B)b is strictly contained
in J2n+1

a (Xb). Nonetheless, we feel that J2n+1
a (X/B) is a good notation in the sense

that this is the smallest relative algebraic subtorus of J2n+1(X/B) that interpolates
between the very general J2n+1

a (Xu). Moreover, by part (1) of Theorem 1, it serves
as a target for every algebraically motivated normal function.
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