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Abstract. We present a short Cook's tour of the possible effects of rotation coupled with superfluid 
properties of neutron star interiors. A suggestion is made to take advantage of forthcoming lunar 
occultations of the Crab Nebula in order to search for blackbody X-ray emission from the Crab pulsar. 

1. Introduction 

Let me begin by summarizing our beliefs (this is the correct term) concerning the 
internal structure of neutron stars. (Extensive reviews, with references, have been 
given by Ruderman, 1969a, 1972; Pines, 1970; and Cameron, 1970.) As one penetrates 
from the surface of a neutron star inwards the density rises rapidly, the electrons 
quickly become degenerate, and the atoms completely ionized. The nuclei arrange 
themselves into a rigid lattice. At densities of about 3 x 1 0 1 1 g c m " 3 neutrons evapo­
rate from the nuclei. Beneath this point the lattice of nuclei coexists with two uniform 
gases; a relativistic degenerate gas of electrons and a non-relativistic degenerate gas of 
neutrons. The number of neutrons outside the nuclei is greater than the number within 
them. At densities of about 2 x 1 0 1 4 g c m " 3 the nuclei dissolve. Beneath this point we 
have three uniform degenerate gases; relativistic electrons, non-relativistic neutrons 
and non-relativistic protons. In this regime too the neutrons outnumber the protons. 
At densities above about 1 0 1 5 g c m " 3 hyperons appear and rapidly become the 
dominant component. 

We know that at densities below about 2 x 1 0 1 4 g c m " 3 the 1S0 phase shift between 
two neutrons is negative; the interaction of two neutrons of opposite spin, in a state 
of zero relative angular momentum, is attractive. Precisely the same situation holds 
for electrons in an ordinary metal, although in this case the origin of the attraction is 
different (in neutron stars the attraction is due to the strong interaction whereas in 
metals it arises through the electron-phonon interaction). Within the BCS theory of 
superconductivity the existence of such an attractive interaction constitutes the nec­
essary condition that the electrons become superconducting at sufficiently low tem­
peratures. This result is independent of the origin of the attraction. By analogy, one 
then reasons that those neutrons in neutron stars for which the 1S0 phase shift is 
negative - i.e., those within the crust - form a neutral superconductor - a superfluid. 

Near the base of the crust, at 1.6 x 1 0 1 4 g c m " 3 , the XSQ phase shift becomes positive. 
At higher densities the 3P2 phase shift becomes negative, leading to anisotropic 
superfluidity - a state that has never been observed in the laboratory. In what'follows 
we will treat this anisotropic superfluid in precisely the same way as'the more familiar 
isotropic superfluid - not necessarily a safe procedure. 

The strong interaction between protons is the same as that between neutrons. Thus 
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the protons lying below the crust may form a superconductor (isotropic, since the 
density of protons always remains relatively small). 

The picture, then, is this; a neutron star consists of an outer crust, an inner crust 
coexisting with an isotropic superfluid, an anisotropic superfluid coexisting with an 
isotropic superconductor, and finally a hyperon core of largely unknown properties. 
Most of the moment of inertia of the star resides in the superfluid. 

Calculated superfluid energy gaps vary with density by a factor of perhaps ten. 
Resulting transition temperatures then vary from about 10 9 to about 1 0 1 0 K, depend­
ing on position within the star. It seems clear that neutron stars cool below 1 0 1 0 K 
quite rapidly. It is not clear, though it seems likely, that the Crab and Vela pulsars have 
cooled far below 10 9 K. Thus much, but not necessarily all, of the superfluid in those 
two pulsars lies far below its transition temperature. All older pulsars lie very far below 
their transition temperatures. 

It is often said that neutron stars of sufficiently low mass are entirely solid. This is 
true but misleading. Such stars do remain solid all the way down to their cores. 
However, they also contain a superfluid whose moment of inertia exceeds that of the 
crust. There are, however, neutron stars for which superfluidity is unimportant. These 
are the most massive stars, which consist almost entirely of hyperons surrounded by 
thin shells of superfluid and crust. (I am neglecting here the possibility that the neutral 
hyperons may be superfluid; we will have enough to worry about as it is.) 

It is sobering to realize that the whole picture I have drawn has received no direct 
observational test whatsoever, and only two indirect tests. The first indirect test relates 
to the observed lack of cool white dwarfs. This phenomenon has been successfully 
interpreted as resulting from the existence, in the cores of these stars, of the same solid 
lattice we expect to find in the outer regions of neutron stars. As the lattice cools below 
its Debye temperature its specific heat drops dramatically. The star then rapidly cools 
to invisibility (Greenstein, 1969). Our only other piece of confirming observational 
evidence is the very elegant interpretation, which I will describe below, of the post-
speedup behavior of the Crab and Vela pulsars. Two indirect tests do not add up to 
very much. To be conservative I believe we should keep in the back of our minds the 
possibility that our picture of neutron star interiors is entirely wrong. If you don' t 
believe me, consider the solar neutrino experiment. 

The intense magnetic field pervading the star (the superconductor is not expected to 
exhibit a Meissner effect) will force the crust, the electrons, the protons (whether 
superconducting or not) and the charged hyperons to rotate uniformly. The rotation of 
this 'charged particle system' determines the rate of ticking of the pulsar. The super-
fluid, however, need not rotate uniformly and, if it does, need not rotate at the same 
rate as the pulsar. In order to find out what the superfluid is doing we need to under­
stand the ways it has of interacting with the charged particle system. 

Because the superfluid is probably far below its transition temperature, these 
interactions will take place via the superfluid vortex lines. Those neutrons that lie 
within the normal cores of these lines will scatter against charges. Only one scattering 
process has been quantitatively considered so far: this is the scattering of neutrons 
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in the isotropic superfluid against electrons. Others include scatterings against phonons 
in the crust, and protons in the cores of proton flux lines. As yet we do not know which 
of these is the dominant process. 

All of these processes lead to a force per c m 3 f between superfluid and charges of 
the following form 

f = ( v n - v c ) , ( 1 ) 
QX 

where gn is the mass-energy density of neutrons, QC that of charges, Q = gn + QC9 (v n — v c) 
is the relative velocity between neutrons and charges and T has the dimensions of a 
time. In the absence of external forces acting on the system velocity differences between 
neutrons and charges are damped out in this time T . All the physics of the problem 
is buried in the calculation of T . If the protons and neutrons are normal T is micro­
scopic - something like 10" 2 0 s. The rotation of the neutrons is then locked with that 
of the pulsar. If the protons are normal and the neutrons are superfluid then T is on the 
order of fractions of a second. If the neutrons are superfluid and the protons are 
superconducting then x is increased enormously - one finds values on the order of 
years. 

The pulsar is slowing down. A torque, presumably electromagnetic in origin, acts 
to decelerate the charges. They are rotating more slowly than the neutrons. If we 
multiply both sides of (1) by r sin0, where r, 0 are the spherical coordinates of the 
point in question, then the resulting expression gives the torque density acting on the 
neutrons. Let us assume for now that this is the only torque acting on the neutrons. 
(In general this is not so.) The velocity v c is directed in the ^-direction. We are not 
assured that the neutrons are rotating in any such simple way. Let us, however, assume 
for now that the velocities of any bulk circulation currents within the superfluid are 
small compared with local rotation velocities. Then v n is almost in the 0-direction, 
as is the torque acting on the neutrons. This torque acts to slow their rotation. 
Equating the torque density to the rate of change of angular momentum yields 

4, = - ( G „ - G C ) , (2) 

QX 

where the Q's are angular velocities. In the steady state tin = $ c and we can solve (2); 

^C Qc U 

where tc = \QjCic\. So the superfluid is rotating somewhat faster than the pulsar. 
2. The Simplest Possible Model of a Superfluid Neutron Star 

Equations (2) and (3) rest on certain assumptions. For now I wish to consider an 
approximation within which the assumptions are valid. It consists in considering the 
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quantity (TQ/QC) constant throughout the star. Then the right-hand side of (3) is 
constant. Since Qc is constant Qn is also. Therefore the neutrons are rotating uniformly. 
In this case both assumptions leading to (2) and (3) are valid - the approximation is 
consistent. There is, however, not the slightest chance that it is correct. I consider it 
now because the resulting picture is easy to work with and guides our thoughts in 
fruitful directions. Later on, in the interests of masochism and rigor, the approxima­
tion will be relaxed. 

2.1. S P I N D O W N F O L L O W I N G A P E R I O D J U M P 

In the first application of these ideas I want to discuss the observed behavior of the 
Crab and Vela pulsars following their period jumps. So far each of these pulsars has 
undergone two such jumps and in each case Qc and \ fic\ increased. In a seminal paper 
Baym et al. (1969) were able to show that, if neutron star interiors are superfluid, an 
increase in Qc naturally leads to one in | i ) c | . Their interpretation is elegant and the 
numerical results too good to be wrong. Their approach is as follows. 

Equation (2), after an obvious transformation, now reads 

4 , = £ ( f l B - Q E ) , (4) 

where the / ' s are total moments of inertia. Two torques act on the charges - an 
accelerating torque equal and opposite to that which decelerates the neutrons and the 
decelerating radiation torque which we write as ICM. The torque equation for the 
charges is 

£ C = - M + ^ ( f l n - f l c ) . (5) 
IT 

Now the pulsar speeds up. The accelerating torque in (5) is now less since it is 
proportional to Qn — Qc. The decelerating torque is unchanged. Therefore, as observed, 
the charges - which constitute the pulsar - decelerate more rapMly. A trivial manipula­
tion of (5) gives the fractional change in Cic divided by that in Qc9 i.e., 

C AQJQC I t 
(6) 

There are a number of well-known predictions of this model; the change in & c decays 
exponentially away with time constant T , the instantaneous change in Qc is related to a 
permanent change in Qc through 

(^permanent = 0 " G) (^c)initial, (7) 
where 
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and 

^ • > ' . - e . <9) 
(AO.) (AO.) * W 

Most of these predictions are independent of the mechanism producing the period 
jump. 

Because the observed decay times of the Crab and Vela pulsars are long (days and 
years, respectively) we have strong evidence that these pulsars possess superfluid 
interiors. It has been claimed that they must also be superconducting. But this is not 
necessarily so if the coupling time describing the interaction of the superfluid with 
phonons in the crust is long. If it is then one can imagine that the protons are not 
superconducting and spin up in fractions of a second following a period jump. The 
observed period decay would then represent the spin-up of the isotropic superfluid 
within the crust. To resolve this point we will need a calculation of the phonon-
superfluid interaction. 

I wish to point out a further testable consequence of this theory. It is that in every 
model of what caused the period jump, £ should be constant from one jump to the next 
(though different for different pulsars). This will be true whether successive jumps 
have the same or different amplitudes, and whether the time between jumps is long 
or short compared to the spin-down time T . It is almost certainly also true within the 
context of the more realistic model to be described in the next section, although other 
predictions of the theory (most notably, that of a purely exponential decay) will not 
remain true. The proof depends upon the process producing the jump. 

The first process that comes to mind (Borner and Cohen, 1971) is that a flying saucer 
crashed onto the surface of the star, striking a glancing blow in such a direction as to 
speed it up. If we don't like flying saucers we can talk in terms of planets - masses on 
the order of 1/10 that of the Earth are required in order to understand Vela. In this 
case AQn = 0 and f = / n r c / / r , a quantity characteristic of the pulsar and depending in 
no way on the circumstances of the jump. 

A second process in a neutron starquake (Ruderman, 1969b; Baym and Pines, 1971;. 
It is not obvious what to take for AQn here. Since the mass of the crust is small 
compared with that of the neutrons AQn<^AQc seems appropriate, leading to an 
identical conclusion. If AQn is comparable to AQC we would require their ratio to be 
independent of AQC for the proof to hold. 

A third process is a sudden change in the pulsar magnetosphere (Scargle and Pacini, 
1971). Here one imagines a massive cloud of plasma to suddenly detach from the 
corotating magnetic field and escape to infinity. This has two effects. First, it reduces 
the moment of inertia of the charged particle system - an effect identical to that of a 
starquake, with the added attraction that AQn is always zero. Secondly, the explosive 
release of plasma can produce an impulsive reaction torque on the star - an effect 
identical to that of a collision with a planet. Again, £ is constant in time. 

Finally, consider a sudden transfer of angular momentum from neutrons to charges. 
Whether this might conceivably be accomplished will be discussed later but for now we 
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simply note that typical values of (Qn — Qc)/Qc amount to several percent. The neutron 
superfluid thus represents an enormous storehouse of 'excess' angular momentum 
relative to the charges. The transfer of even a small fraction of this excess could easily 
account for the observed jumps . 

In this picture the neutrons slow down as the charges speed up and In(AQn) = 
— IC(AQC). Then f = f c / T , again constant from one jump to the next. Note that this 
model would predict 2 = 1 . 

What is the observational situation? With regard to Vela we do not yet know the 
value of A\tic\ for the second jump. It does seem to be positive (Reichley and Downes, 
1 9 7 1 ) . The situation with regard to the Crab pulsar is almost equally ambiguous. The 
Princeton group (Boynton et al, 1 9 7 2 ) has published what seems to be the most 
complete analysis of its first jump. The only published analysis of its second jump 
(Lohsen, 1 9 7 2 ) does not discuss the post-jump behavior in terms of an exponential 
period decay. The physical meanings of the values of £ derived from the two analyses 
are then quite different, and no comparison is possible. (If we neglect this difficulty 
and baldly compare values we find £ (first jump) ^ 1 0 x ^ (second jump).) It is fortunate 
that Lohsen's observations do provide a continuous string of data during the period 
immediately following the jump . Re-analysis of these data should provide a detailed 
check of the theory. 

2 . 2 . F R I C T I O N A L H E A T I N G 

Cameron (unpublished) has added a further critical element to our picture of super-
fluid neutron stars. He noted that because the bulk of the mass of the star is slowed by 
frictional means, heat must be steadily dissipated in the process. Consider 1 c m 3 of 
superfluid. The frictional force f of ( 1 ) on this fluid element multiplied by (v n —v c ) is 
the rate that work is being done on the neutrons. All this work is dissipated as heat. 
The rate of dissipation is then 

£ h e a t = f ' ( V n - V c ) 

= (torque) (fl B - Q c ) 

= Q n (r sin Of Hn (Q B - Q c ) erg c m " 3 s " 1 . (10) 

Neglecting the rotational energy in the charges the rate of loss of rotational energy is 
firotation = ̂ n (^s in0) 2 i )A erg c m " 3 s " 1 so that 

r̂otation 
Neutron stars are end points of stellar evolution. As such they are generally thought 

to possess no internal sources of energy. We now see that this is not so. If superfluid 
they are able to convert a fraction, given by ( 1 1 ) , of their rotational energy into internal 
heat. (The mechanism outlined here is not the only way this can be done. Henriksen 
et al. ( 1 9 7 2 ) have shown that rotational energy can also be dissipated into heat by the 
action of a steady wobble.) An analysis of where this takes place (Greenstein, 1 9 7 1 ) 
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within the star shows the frictional energy generation to be predominantly confined 
o a thin shell lying within the lower regions of the crust. 

The rate of energy generation integrated throughout the star must equal the rate 
he star radiates energy. For internal temperatures 10 8 K the cooling mechanism 
s predominantly photon emission from the surface. Confining attention to this case 

where R is the stellar radius, a the Stephan-Boltzmann constant and Te the surface 
temperature. The right-hand side of (12) contains T , which is a function of T. If the 
relation between Tand Te is known (12) becomes an equation which can be solved for 
the temperature. A rough treatment (Greenstein, 1971) yields 

where p is the pulsar period in seconds and r y = p/p in years. This result gives the 
lowest surface temperature such a star can attain. Because of the crudeness of the 
approximations leading to (13), detailed predictions based upon it are subject to 
doubt. Keeping this in mind I wish to apply it to three specific examples. 

Before doing so a general comment should be made. Before 1967 the way one 
searched for neutron stars was to search for blackbody X-ray emission from their 
surfaces. No such sources were ever found. Since the discovery of pulsars and their 
identification with rotating neutron stars this project has been largely dropped. I wish 
to emphasize that the evidence that pulsars are neutron stars, though strong, is 
indirect. It would be nice to find something direct. The discovery of a point source of 
blackbody X-ray emission at a position coinciding with that of a pulsar would 
constitute such evidence. 

The first example I want to discuss is the closest pulsar, CP 0950. Equation (13) 
predicts its surface temperature to be 2 x 10 5 K. The spectrum peaks at 0.1 keV 
energies. The X-ray flux at this energy at the top of the Earth's atmosphere is 1 0 " 2 8 

erg c m " 2 s " 1 H z " 1 (estimating the pulsar's distance from its dispersion measure and 
neglecting interstellar absorption). Such a flux, were it concentrated at keV ener­
gies, would be detectable. Because it is concentrated at 0.1 keV energies the obser­
vations will be harder. Whether they are impossible is not clear. 

The next example is the Crab pulsar. Its predicted temperature is 5 x 10 6 K. The 
spectrum peaks at 2 keV at which point the flux is 3 x 1 0 " 2 7 erg c m " 2 s " 1 H z " 1 . 
Such a flux is eminently detectable. Why, then, has it not been detected? Because it 
represents a small fraction (about 15%) of the flux from the nebula as a whole at this 

(12) 
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energy. It seems that the only way to detect this flux would be to observe the nebula 
during a lunar occultation. 

Let me describe a possible observation one might perform during such an occulta­
tion. As the limb of the moon sweeps across the nebula the received X-ray flux 
diminishes steadily. As the limb sweeps across the pulsar the flux decreases discon-
tinuously. Of this sudden kink some is due to the obscuration of the X-ray pulsar. 
Suppose that one accurately knows the pulsar intensity. The difference between it and 
the observed kink represents the steady, non-pulsed, X-ray emission from the pulsar. 
If we assume this to be blackbody radiation from a neutron star we can take a canoni­
cal radius for the star and calculate its temperature. But there is far more we can do if 
the spectrum of the point source can be determined (by performing the above observa­
tion at several energies). If the spectrum is blackbody we will have strong reason to 
attribute it to thermal radiation from a neutron star. The spectrum determines the 
temperature. The received flux then determines the radius of the star. If this radius 
does not agree with expected neutron star radii we will have an interesting contra­
diction. If it does, and if we trust our models, the radius will determine the mass of the 
star. Now we can use the formula 

4;r 2

 7R6 

P P = C 3 * j > (14) 

to determine B9 the pulsar's magnetic field. 
(Equation [14] is true in those simple magnetospheric models such as those of 

Ostriker and Gunn (1969), and Goldreich and Julian (1969), which predict a braking 
index N=3. It is presumably not too badly off for the Crab, for which N^2.5.) 
Finally, T , the relaxation time describing the post-speedup decay of the Crab pulsar, 
is known to be « 4 days. Theoretically, T is a function of temperature and mass. 
A number of fruitful comparisons between theory and observation are possible here 
too. So, in one fell swoop, we would have gained an enormous amount of information. 

I would not have wasted so much time on this were the next lunar occultation some 
time in the 1980's. In fact the next lunar occultation is only a year and a half away on 
March 29, 1974. From then on the Moon will occult the Crab every month till late 
1975, a total of 20 occultations. Some details concerning the occultations are given in 
Table I. The years 1974-75 are going to present golden opportunities, not to return for 
something like a decade. I believe that reliable observations such as I have described 
could provide crucial data to the theoreticians. I hope they will be performed. So tell 
all your friends. 

We already have one observational handle on the temperature of the Crab pulsar. 
This is the historic lunar occultation experiment of Bowyer et al (1964) which showed 
the bulk of the X-ray emission to be nebular in origin. This experiment just missed 
detecting the X-ray pulsar. At a temperature predicted by (13) the thermal radiation 
from the star at 2 keV would be slightly higher than that from the pulsar. Thus, were 
its temperature significantly higher than 5 x 106 K, thermal X-rays from the Crab 
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neutron star would already have been detected. Again, this result neglects interstellar 
(or nebular) absorption. 

The last example is the recently discovered X-ray source GX340 + 0 (Margon et al, 
1971). This is the only source we know of whose spectrum has been definitely estab­
lished to be blackbody. The observed temperature is 1.5 x 10 7 K - quite hot. From 
distance estimates (4 kpc) and the observed flux the radius of the emitting body is 
found to be 8 ± 4 km. It^looks exactly like a neutron star. How old is it? 

We can get a cooling curve from (13) (Greenstein, 1972) if we assume a magneto-
spheric model. If we assume the approximate validity of those for which the braking 
index N=3 then pp is constant in time. Writing / c = p 2 / p p and noting that if N=39 

/ c = 2 / w e can find the temperature in terms of the t ime: 

10 8 

r ~ K (15) 
J e — 1 / 1 2 , 5 / 1 2 ^ > V 1 J ' 

where t is the age in years. Here x has been defined to be pp x 1 0 1 5 . In known pulsars 
X ranges from 0.06 to 150 with a mean value of order unity. Specializing to the observed 
temperature of GX340 + 0 yields an age for this object of 125 x~1/s v r > a period of 
0.003 x2/s s and a luminosity (rate of loss of rotational energy) of ( 1 0 4 0 to 10 4 2 ) x~3/5 

ergs s " 1 . It makes sense to search carefully for a supernova remnant and a pulsar at 
the location of this source. If we assume the supernova remnant expands at « 1 0 3 km 
s " 1 its angular diameter would be a few seconds of arc. 

TABLE I 
Forthcoming lunar occupations of Crab Nebula* 

Adopted position (1950) 05h31m30 s.5 
+ 21°59'01" 

Date Time of Elongation Area of visibility 
Conjunction of Moon 
(nearest hour) from Sun 

1974 (hours) (degrees) 
March 29 22 77 

April 26 04 50 

May 23 11 23 

June 19 21 356 

July 17 08 329 

Aug. 13 17 302 

Sept. 10 01 275 

Arctic and North Scandinavia at low 
altitude 
Central and Northern Asia, Arctic, Alaska, 
Canada and North USA. 
Northeast America, Greenland, Arctic, 
North Scotland, Scandinavia, Finland, 
Central Asia 
Northeast Asia, Arctic, Alaska, Canada, 
Northeast of USA 
Northeast Canada, Greenland, Arctic, N. 
Scotland, Scandinavia, Finland, Central 
Asia 
Japan, E. Asia, Alaska, Arctic, Greenland, 
N. America 
N. Africa, Europe (west at low altitude), 
Central Asia, Japan 
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Table I (continued) 

Date Time of Elongation Area of visibility 
Conjunction of Moon 
(nearest hour) from Sun 

Oct. 07 07 248 Central and N. America (but not White 
Sands), N. Atlantic, S. and S. W. Europe, 
N. Africa 

Nov. 03 12 221 Central Pacific, Hawaii, Central America 
and north of S. America at low altitude 

Nov. 30 20 194 Central Africa (west at low altitude), 
Arabia, India, S. E. Asia, northern cost of 
Australia at very low altitude. 

Dec. 28 06 167 Central Pacific, Hawaii, Central and N. 
America, north of S. America, central 
Atlantic 

1975 
Jan. 24 17 140 Central Africa, Arabia, India, S. E. Asia, 

northern coast of Australia at low altitude. 
Feb. 21 02 113 S. Pacific, S. America (east at low altitude), 

Mexico 
March 20 10 86 Indian Ocean, East Indies, Australia, New 

Zealand at low altitude 
April 16 15 60 E. coast of S. America at very low altitude, 

S. Atlantic, S. Africa and Madagascar 
May 13 21 33 S. Pacific, S. America, Antarctic 
June 10 04 6 Indian Ocean, Australia, New Zealand 
July 07 13 339 S. America, Antarctic, very near Cape of 

Good Hope at low altitude 
Aug. 03 23 312 Australia, New Zealand, Antarctic 
Aug. 31 08 285 Tip of South America, Antarctic 

* Source: L. V. Morrison, H. M. Nautical Almanac Office, Royal Greenwich Observatory, 
Herstmonceux Castle, England. 

I am grateful to Dr. Morrison for furnishing me with this information. 

3 . The Most Complicated Possible Model of Superfluid Neutron Star 

None of the results we have derived so far are rigorous. Indeed, they may be off by 
orders of magnitude. Why? 

They were derived under the assumption that QT/QC is constant. In fact it varies by 
orders of magnitude throughout the star. Thus the right-hand side of (3) is a strong 
function of density. Since Qc cannot be then Qn must be. Therefore the neutrons are in 
a state of differential rotation. This does not sound particularly horrible. Were the 
neutrons to form an ordinary fluid it would not be. But because they form a superfluid 
it makes all the difference in the world. 

3.1. S U P E R F L U I D T U R B U L E N C E (Greenstein, 1970). 

A rotating superfluid must contain vortex lines. These lines are in a state of tension 
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and would like to form a uniform array parallel to the rotation axis. The tension in a 
line is finite, however, so that a sufficiently strong shearing force can disturb this state. 
Let us first completely neglect line tension. At every point within the superfluid the 
lines move with essentially the same velocity as the superfluid (the relative velocity 
between line and fluid, determined by the Magnus effect, amounts to « 1 0 " 4 cm s " 1 ) . 
Different regions of the superfluid rotate with different angular velocities. Each vortex 
line is therefore steadily lengthening and twisting about the rotation axis (in the same 
way that a rubber band, stretched between two cars moving with different speeds, 
steadily lengthens). Every time one region of the superfluid has lapped another once, 
the vortex lines passing between them have wrapped once more about the star. 
Eventually the wrapping is very tight. Along the equator lines of opposite senses are 
brought near each other. This situation is unstable and eventually two opposing lines 
will be brought sufficiently close to reconnect, forming a vortex ring and a shorter 
vortex line. The ring migrates away, the line steadily lengthens, new rings form and the 
process continues. As a given ring migrates about it collides with others and with 
lines, exciting vortex waves in them. Eventually a ring will be broken into two smaller 
rings. Feynman (1955) speculates that the ring of smallest possible diameter is a roton. 
If so, the breaking up of large rings leads in the end to the heating of the fluid. The 
whole process constitutes the superfluid version of the dissipation of velocity 
differentials into heat. In the steady state the superfluid contains tightly wrapped 
vortex lines, no longer parallel to the rotation axis, plus large numbers of rings. The 
distribution of lines fluctuates irregularly. The superfluid velocity field, determined by 
the distribution of lines, also fluctuates irregularly. This state is a superfluid version of 
fully developed turbulence. The turbulence is microscopic with typical eddy sizes being 
the distance between lines ( ^ 1 0 " 2 cm). 

Recall that r, the relaxation time describing the coupling between charges and 
superfluid, depends on scattering processes taking place within the normal cores 
of vortex lines (and rings). It is therefore inversely proportional to the total 
length of vortex line present. If the lines are greatly lengthened t is proportionately 
shortened. 

It is difficult to estimate the magnitude of this effect. A given line must wrap very 
many times about the star before opposing ends come sufficiently close to reconnect 
and form rings. These rings can themselves survive for long periods of time before 
being broken apart. In the absence of detailed knowledge it seems safe to say that T is 
decreased by this effect by orders of magnitude. The problem is we don' t know by 
how many orders of magnitude! 

Of course vortex lines are in a state of tension. This tension acts to 'rigidify' the 
rotation of the superfluid. Let us begin with a uniformly rotating superfluid and ask if 
line tension is sufficient to maintain this state. In uniform rotation each line is parallel 
to the rotation axis. The scattering force/act ing upon it, given by (1), varies by orders 
of magnitude along its length. The line will be able to maintain the state of uniform 
rotation if its tension force F t e n s i o n is greater than the total scattering force F l a t t e r i n g 

(equal to / i n t eg ra t ed along the line) acting upon it. Numerically 
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^tension = ^Qn J ^ ^~ 

S 5 x 1 0 8 d y n e (16) 

at gn = 1 0 1 4 g c m - 3 . Here mn is the mass of the neutron, b the distance between vortex 
lines and a the vortex core radius. We can find FmiUt-in% as follows. In the steady state 
it adjusts itself until the total torque on the neutrons is sufficient to slow them down at 
the same rate as the charges. Thus 

Also 

Thus 

torque = Intin s MR2tic. (17) 

/ n u m b e r of\ 
torque s ( lines in ) K F s c a t t e r i n g 

\ the star / 

= ( 4 x 1 0 1 5 O c ) ^ s c a t t e r i n g . (18) 

MR2tic / M \ 1 0 1 7 

' s ca t ter ing " ^ Q I S = \M^>)~fy ^ 

(ty = \QJQc\ in years). The condition F t e n s i o n > F s c a t t e H n g then yields 

t y > 3 { ^ e ) X l 0 ? y r ' ( 2 0 ) 

So all pulsars whose characteristic age is less than » 3 x 10 7 yr will exhibit superfluid 
turbulence. 

There may be a flaw in this proof. A uniform vortex lattice exerts forces that cannot 
be understood in terms of the properties of isolated lines. These forces are generally 
(see, e.g., Fetter and Stauffer, 1970) thought to be far weaker than tension forces. 
Ruderman (1972), however, has argued against this point of view. He will briefly de­
scribe his arguments elsewhere in these proceedings. 

3.2. H Y D R O D Y N A M I C S O F T H E S U P E R F L U I D 

If vortex tension is unable to enforce rigid body rotation we are left with the task of 
finding out what the superfluid is doing. It is well known that fully developed turbu­
lence possesses a turbulent kinematic viscosity v=(mean velocity in an eddy) x (mean 
diameter of an eddy). The velocity field of a superfluid about a vortex line is v = nh/2mnr 
where n= 1,2,3... . Therefore, v = nh/2mn. This estimate is in agreement with observed 
properties of the turbulent flow of superfluid helium (Vinen, 1961). The existence of 
this viscosity will result in the formation of a boundary layer just below the base of the 
crust in which the superfluid corotates with the crust. 

The existence of this boundary layer, produced by turbulent viscosity, fulfills the 
conditions required for Eckman pumping to begin. This process spins down the super-
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fluid in a time 

tExRljvQn*\lJnQcyv. 

This time scale (one month for the Crab) is always short compared with tc. The 
neutron superfluid, then, will almost exactly corotate with the crust. Thus the domi­
nant interaction between superfluid and charges may well be classical (viscous) in 
nature. Whether this îs so depends on whether the turbulence develops sufficiently 
fully for such ideas to be applicable. There is a further problem. Are we correct in 
regarding the crust as 'containing' the superfluid? It may be that vortex lines interact 
with the crust quite weakly. If so, no boundary layer would form and, though viscous, 
the superfluid would not exhibit Eckman pumping. 

If not, what does it do? The following ideas are exceedingly tentative. If we look at 
the rotation curve obtained from (3) we find two regions in the star in which Qn 

decreases outwards. These regions coincide with those in which the superfluid energy 
gap decreases with decreasing density, i.e., at densities between 1 0 1 4 and 1 0 1 5 g c m - 3 , 
and at densities < 2 x 1 0 1 3 g c m - 3 . In these two regions Qn may be decreasing out­
wards sufficiently rapidly for the quantity r2Qn to decrease outwards. / / it does the 
flow is hydrodynamically unstable (the Rayleigh instability) towards the development 
of classical turbulence. Because only the neutrons undergo these motions there is no 
composition gradient acting to stabilize the flow. 

Suppose the fluid is turbulent in this classical sense. Now the turbulent eddies are 
macroscopic. Perhaps the superfluid resembles a pan of boiling water. We know that 
such a pan occasionally spits up a blob of water into the air. Suppose the superfluid 
lying within the inner crust does this. The blob will penetrate into the outer crust and 
lodge there - but the superfluid is rotating more rapidly than the crust. Therefore, the 
blob will impart its excess angular momentum to the crust, and will suddenly speed 
it up. 

Should we identify this process with the observed intermittent large period jumps 
or with the smaller scale continuous fluctuations in the pulse repetition rate that the 
Princeton group (Boynton et al., 1972) claims to be random in nature? It is hard to be 
sure. Even the rotation curve derived from (3) cannot be correct, for (3) neglects 
strictly hydrodynamical forces acting on the superfluid. A rigorous analysis of the 
stability of the superfluid flow should begin from the full equations, averaged over 
many vortex lines, of superfluid hydrodynamics. For now we are only able to make a 
plausibility argument - that it seems reasonable that in those regions in which the 
coupling between neutrons and charges is weakest Qn should be greatest. If so we 
would expect instabilities to develop. 

I should emphasize that the problems we need to solve in order to understand what 
the superfluid is doing are soluble - an unusual state of affairs in neutron star physics. 
They are all problems in classical hydrodynamics (vortex lines are nineteenth century 
objects). We do not need to invent any new physics. It may even prove possible to 
exploit the strong resemblance between the neutron superfluid and superfluid helium 
to design laboratory experiments with which to gain insight into these phenomena. 
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D I S C U S S I O N 

Ruderman: When the force along an isolated superfluid vortex line varies by more than the tension 
in the line, then the vortex line will behave as described by Prof. Greenstein. It will bend and twist in 
response to the external force. But an array of vortex lines can behave quite differently and the crite­
rion that if an isolated line twists in a complicated way, then an array will likely become turbulent is 
generally not valid. From the vortex line point of view a group of N closely spaced vortices has 
N2 times the tension of a single vortex but only N times the differential force: the array is very 
much stiffer relative to the impressed force. 

A uniformly rotating neutron star superfluid is described by a dense parallel vortex array of spacing 
b ~ IO - 2 cm. The scale of spatial variation of the differential torques on the neutron star superfluid is 
of order R ~ 106 cm so that b/R ~ IO - 8 . The limit b/R-+0, almost reached here, should be the same as 
that in which h -*0, i.e. classical hydrodynamics. This classical problem, the response of a uniformly 
rotating gravitating, compressible, nonviscous fluid in an axially symmetric container to a paraxial 
torque which varies with position but not angle (<j>), can be solved. The results (an extension of the 
Taylor-Proudman theorem) show a uniform <J)-directed acceleration on each coaxial cylinder together 
with a slow circulation in the planes of constant <j> (i.e. planes through the symmetry axis). In the 
vortex line description, the vortex lines remain almost rigid and parallel to the rotation axis. The only 
change with time is a motion which changes their number density so that this density remains 
proportional to the classical V x v. 

The classical instability which can occur when the angular momentum per unit mass decreases with 
increasing radius corresponds to V x v changing sign. In the superfluid vortex picture, where V x v 
vanishes so does the vortex line density and, consequently, so does the torque upon the fluid in that 
region. Thus the torque would not convert a stable rotating fluid into an unstable one whatever its 
spatial distributions. (A sign reversal in V x v cannot be obtained merely by moving vortex lines 
around but would need the spontaneous creation of oppositely directed lines in the body of the 
fluid.) 
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Bethe: It seems that opposite statements have been made in the talk by Greenstein and in the 
discussion of it. Can someone elucidate what we should believe? 

Greenstein: Don't believe anything quite yet. The problem with my approach is that I have con­
sidered the properties of an isolated vortex line. In fact the vortices form a lattice because there are 
long-range interactions between them. These interactions are very difficult to understand rigorously. 
The problem with Ruderman's approach is that it has not yet been formulated sufficiently fully to 
decide whether or not it represents a satisfactory treatment. 

Stauffer has pointed out that, because the Tkachenko vortex lattice has a finite shear modulus, the 
system may split up into a few cylindrical regions, each rotating rigidly (if Ruderman's argument is 
correct). 
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