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Abstract 

We study how the CARP statistics from different item pairs can be aggregated into a single overall 

test of monotone homogeneity. As pairwise statistic we use the mean conditional covariance (MCC) 

or its standardized value (𝑍). We use three different estimates of the covariance matrix of the 

pairwise test statistics: (1) the covariance matrix of the MCCs, based on the sample moments; (2) the 

covariance matrix of the MCCs or 𝑍s, based on bootstrapping; (3) the covariance matrix of the 𝑍s 

equated to the identity matrix. We consider various aggregation methods, including (a) the chi-bar-

square statistic; (b) the preselected standardized partial sum of pairwise statistics; (c) the product of 

preselected 𝑝-values; and (d) the minimum of pre-selected 𝑝-values; (e-h) the same statistics, but 

now conditioned by post-selecting only the negative values in the test sample. We study the Type 1 

error rate and power of the ensuing 20 tests, based on simulations. The tests with the highest power 

among the tests that control the Type I error rate are based on 𝑍-statistics with the identity matrix: 

the conditional likelihood ratio test, the conditionalized product of 𝑝-values, the conditionalized sum 

of Z-values, and the preselected product of 𝑝-values. 

 

Keywords: unidimensional measurement; multidimensional measurement; monotone latent variable 

model; monotone homogeneity model; conditional association 
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In this paper we develop new statistics for confirmatory tests of unidimensionality based on the 

nonparametric item response theory (IRT) model of monotone homogeneity (MH) (Mokken, 1971) 

with binary items. This model assumes that there is unidimensional (i.e., real valued) variable Θ such 

that the items are conditionally independent given Θ, and such that the item regressions on Θ are 

monotone increasing. Many parametric IRT models, such as the 2PL model and the Rasch model, are 

a special case of MH. We develop our statistical tests for the context where researchers have the 

theory or hypothesis that items of a certain specified set or category all have a monotone regression 

on the same latent variable, while the specific shape of the regressions is unspecified; that is, it does 

not have to be logistic, as in the 2PL or the Rasch model, or any other function, such as the normal 

ogive. We assume that the objective of the test is to falsify the theory of unidimensionality. Thus, the 

objective is entirely aimed at fundamental theory development, and not at the more pragmatic goal 

of building an efficient measurement tool. 

Our objective of fundamental theory development rules out the possibility to assess 

dimensionality with flexible parametric models such as latent class models (Douglas & Cohen, 2001; 

Van Onna, 2002; Vermunt, 2001) or monotone polynomial models (Falk & Cai, 2016): If such a 

parametric model is violated, it does not provide a convincing falsification of the theory, because the 

violation may be caused by failure of the specific parametric assumptions. Conversely, if such a 

restrictive parametric model is not rejected, one may wonder whether maybe the statistical test 

used was not sensitive to some assumptions (e.g., van den Wollenberg, 1982).   

The new test statistics will be based on the recently developed CARP statistics of Ellis and 

Sijtsma (2023). The CARP testing approach is a generalization of Rosenbaum’s (1984) case 5, in which 

one tests nonnegativity of the covariance of an item pair, conditionally on decile groups defined by 

the sum score on the other items. The generalization Ellis and Sijtsma proposed uses a weighted sum 

score instead of a simple sum score, where the weights are based on regression analysis in a training 

sample. Ellis and Sijtsma (2023) argued that this is currently the only known partial test of conditional 
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association (see next section) that can detect multidimensionality within monotone IRT models. This 

is the reason why we focus on this test statistic. 

An important limitation of the CARP test is that is pertains to a single item pair. Generally, a 

test has many item pairs, and it would seem logical to apply a test to each item pair, but hitherto it 

has not been studied how such pairwise tests can be compounded into a single test statistic. The 

same is true for Rosenbaum’s case 5 test. For example, if a psychological test consists of 10 items, 

the CARP tests would yield 45 𝑝-values, one for each item pair. The main question of this article is: 

How can the pairwise CARP statistics be aggregated into a single omnibus test?  

 The next section provides some background information about the CARP tests. After the 

specification of the hypothesis and the relevant pairwise statistics (mean conditional covariances and 

their 𝑍-values), we consider various methods to estimate the covariance matrix of the pairwise 

statistics. These estimated matrices are used in the theory of order-restricted statistical inference 

(Robertson et al., 1988) and multiple testing (Davidov, 2011; Ellis et al., 2018) to compound them 

into overall statistics in 20 different ways. We will compare the mathematical structure of some of 

these aggregated statistics to the most prominent competitor, which is the DETECT index (Zhang & 

Stout, 1999a, 1999b). Next, we use Monte Carlo simulations to study the Type 1 error rates and 

power of the ensuing tests, and select the best tests. 

Conditional Association and CARP Tests 

Rosenbaum (1984) showed that MH implies that the item score variables have the property of 

conditional association, which means that any two increasing functions of any subtest have a 

nonnegative covariance conditionally upon any function of the items that were not included in the 

subtest. Holland and Rosenbaum (1986) generalized this result to non-binary items. Clarke and Yuan 

(2001) and De Gooijer and Yuan (2011) developed statistical tests for conditional association, but it is 

well known that a full test of conditional association is not feasible for realistic sizes of item sets 

because of the large number of tested conditions and the sparseness of the relevant response 

patterns. Several authors have therefore focussed on what Ligtvoet (2022) recently called “partial 
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tests of conditional association”. These tests include MTP2 (Bartolucci & Forcina, 2000; Ellis, 2015), 

nonnegative partial correlations (Ellis, 2014), nonnegative correlations (Mokken, 1971), and 

increasing item-rest regressions (“manifest monotonicity”; Junker & Sijtsma, 2000). Ellis and Sijtsma 

(2023) showed that all these conditions are insensitive to violations of unidimensionality if the data 

are generated by multiple latent variables that are independent or MTP2. They developed the 

Conditioning on Added Regression Predictions (CARP) test, which includes Rosenbaum’s case 5 as a 

special case. This is currently the only known partial tests of conditional association that can detect 

such violations. That is the reason why we focus on the CARP test. 

Definitions 

Definitions of Variables 

Assume that the item scores are binary manifest variables. Let variable 𝑋𝑖  represent the 

scores (1 = positive, 0 = negative) a random subject obtained on the 𝑖-th item, and denote the full 

vector of item scores as 𝑿 = (𝑋1, … , 𝑋𝐽). For each item pair (𝑖, 𝑗) we assume that there is a discrete 

variable 𝑅𝑖𝑗  that is used for creating groups in which the conditional covariances are computed. We 

call the 𝑅𝑖𝑗s the conditioning variables, and we assume that they attain integer values ranging from 1 

to max𝑅𝑖𝑗. For example, in Case 2 of Rosenbaum (1984), 𝑅𝑖𝑗  is defined as the sum score on the other 

items; that is, the items 𝑋𝑘 with 𝑘 ≠ 𝑖, 𝑗. Then, we have 𝑅𝑖𝑗 = (∑ 𝑋𝑘
𝐽
𝑘=1 ) − 𝑋𝑖 − 𝑋𝑗; we call this the 

pairwise rest score. In Case 5 of Rosenbaum (1984), 𝑅𝑖𝑗  consists of deciles of the pairwise rest score. 

In the CARP-test of Ellis and Sijtsma (2023), 𝑅𝑖𝑗  consists of deciles of a weighted sum score on the 

other items, with weights estimated from a training sample. Let 𝑹 be the vector of all 𝑅𝑖𝑗  (𝑖, 𝑗 =

1,… , 𝐽; 𝑖 ≠ 𝑗). 

The hypothesis 

The null hypothesis of interest is 

H0: 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|𝑅𝑖𝑗 = 𝑠) ≥ 0 for all 𝑖, 𝑗 = 1,… , 𝐽; 𝑠 = 1,… ,max𝑅𝑖𝑗 . 
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However, the version of the Mantel-Haenszel statistic Rosenbaum (1984) and Ellis and Sijtsma (2023) 

used for testing H0 is rather based on a weighted mean of sample covariances, and it would be more 

precise to say that the null hypothesis is 

H0: ∑ 𝑃(𝑅𝑖𝑗 = 𝑠)𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|𝑅𝑖𝑗 = 𝑠)

max𝑅𝑖𝑗

𝑠=1

≥ 0 for all 𝑖, 𝑗 = 1,… , 𝐽. 

Definition of the Pairwise Statistics 

In this section, we define two sample statistics per item pair (𝑖, 𝑗) that we aggregate later. 

First, we define the mean of conditional covariances that estimates the quantity 𝑃(𝑅𝑖𝑗 =

𝑠)𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|𝑅𝑖𝑗 = 𝑠) in the null hypothesis. Second, we define the Z-statistic, which is the 

standardized version of the first statistic. The formal definition is the following. 

Assume that there are 𝑁 i.i.d. copies of 𝑿, denoted by 𝑿(𝑛) = (𝑋1
(𝑛)
, … , 𝑋𝐽

(𝑛)
); 𝑛 = 1,2, … ,𝑁.  

𝑿(𝑛) contains the scores of the 𝑛th subject in the sample. Let  𝐼𝑖𝑗𝑠
(𝑛)
≔ 1[𝑅𝑖𝑗

(𝑛)
= 𝑠] denote the 

indicator function for the event 𝑅𝑖𝑗 = 𝑠 in subject 𝑛. That is, 1 [𝑅𝑖𝑗
(𝑛)
= 𝑠] = 1 if 𝑅𝑖𝑗

(𝑛)
= 𝑠, and 

1 [𝑅𝑖𝑗
(𝑛) = 𝑠] = 0 otherwise. Let 𝑁𝑖𝑗𝑠 = ∑ 𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1  denote the number of subjects with 𝑅𝑖𝑗

(𝑛) = 𝑠. The 

conditional covariance in the subgroup with 𝑅𝑖𝑗
(𝑛)
= 𝑠 is given by 

𝐶𝑖𝑗𝑠
⬚ =

∑ 𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠
−
∑ 𝑋𝑖

(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠

∑ 𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠
. 

The version of the Mantel-Haenszel statistic Rosenbaum (1984) used is based on standardization of  

𝐶𝑖𝑗+ =∑𝑁𝑖𝑗𝑠𝐶𝑖𝑗𝑠

𝑆

𝑠=1

. 

We refer to 𝐶𝑖𝑗+ as the mean conditional covariance (MCC). The standardization Rosenbaum used is 

based on the variance estimate 

𝑉𝑖𝑗 =∑
∑ 𝑋𝑖

(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1 ∑ (1 − 𝑋𝑖
(𝑛))𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1 ∑ 𝑋𝑗

(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1 ∑ (1 − 𝑋𝑗
(𝑛))𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
2 (𝑁𝑖𝑗𝑠 − 1)

𝑆

𝑠=1

. 

The Z-statistic is then defined as 
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𝑍𝑖𝑗 =
𝐶𝑖𝑗+ + 0.5

√𝑉𝑖𝑗
. 

The term 0.5 is a continuity correction. 

Estimation of the Covariance Matrix of the Pairwise Test Statistics 

In this section, we discuss estimation of the covariance matrix of the 𝐶𝑖𝑗+s and the covariance matrix 

of the 𝑍𝑖𝑗s. These covariance matrices are conceptually like the asymptotic covariance matrices in 

structural equation modelling, because they estimate the covariance across all possible samples. 

However, because the asymptotic covariance matrices in structural equation modelling are typically 

derived from the model and typically pertain to model estimates rather than conditional covariances, 

we further refrain from focusing on the apparent similarity. Next, we delineate three estimation 

methods. 

Estimation Based on Sample Moments 

The equation for MCC contains only sums of products and products of sums, divided by the 

𝑁𝑖𝑗𝑠. We worked out a formula for 𝐶𝑜𝑣(𝐶𝑖𝑗𝑠
⬚ , 𝐶𝑘𝑙𝑡

⬚ ), assuming that 𝑁𝑖𝑗𝑠  and  𝑁𝑘𝑙𝑡 are fixed values 

rather than random variables (see Appendix). This new equation uses only moments of the variables 

𝑋𝑖
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)

, 𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)

, 𝑋𝑘
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)

, 𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)

, and their products. By substituting the corresponding sample 

moments, one obtains an estimate 𝐶𝑜𝑣̂(𝐶𝑖𝑗𝑠
⬚ , 𝐶𝑘𝑙𝑡

⬚ ) for 𝐶𝑜𝑣(𝐶𝑖𝑗𝑠
⬚ , 𝐶𝑘𝑙𝑡

⬚ ). Next, the required covariance 

is estimated as 𝐶𝑜𝑣̂(𝐶𝑖𝑗+
⬚ , 𝐶𝑘𝑙+

⬚ ) ≔ ∑ ∑ 𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡𝐶𝑜𝑣̂(𝐶𝑖𝑗𝑠
⬚ , 𝐶𝑘𝑙𝑡

⬚ )𝑡𝑠 . 

It should be noted that in the IRT application of testing the MH model, the 𝑁𝑖𝑗𝑠  are not fixed. 

By doing as if the 𝑁𝑖𝑗𝑠  are fixed anyway, we ignore the possibility of a correlation between 𝐶𝑖𝑗𝑠
⬚  and 

𝑁𝑖𝑗𝑠. This might still entail a better approximation than assuming the identity matrix, and we will use 

the simulation studies to decide whether this approximation is useful. 

Estimation Based on Bootstrapping  

Bootstrapping of the MCCs 

In this approach, we resample 𝑁 rows of the data matrix with replacement, and compute the 

MCC for each item pair (𝑖, 𝑗) in the resample. Denote the MCC of item pair (𝑖, 𝑗) in a resample as 
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𝐶𝑖𝑗+
∗ . We resample 𝑛𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 = 1000 times, thus constructing a matrix of 𝑛𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 rows and 𝐽(𝐽 −

1)/2 columns, in which each row 𝑚 contains the 𝐶𝑖𝑗+
∗  values of the 𝑚-th resample. Next, we 

compute the covariance matrix of the 𝐶𝑖𝑗+
∗ s. 

Bootstrapping of the Zs 

In this approach, we resample 𝑁 rows of the data matrix with replacement, and compute the 

Z-statistic for each item pair (𝑖, 𝑗) in the resample. Denote the Z-value of item pair (𝑖, 𝑗) in a resample 

as 𝑍𝑖𝑗
∗ . We resample 𝑛𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 = 1000 times, thus constructing a matrix of 𝑛𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 rows and 𝐽(𝐽 −

1)/2 columns, in which each row 𝑚 contains the 𝑍𝑖𝑗
∗  values of the 𝑚-th resample. Next, we compute 

the covariance matrix of the 𝑍𝑖𝑗
∗ s. 

Estimation With the Identity Matrix 

In this approach, the third method, we simply assume that the asymptotic covariance matrix 

of the 𝑍𝑖𝑗s is the identity matrix. This is comparable to the diagonally weighted least squares (DWLS) 

method often used for polychoric correlations in ordinal factor analysis (Li, 2015). The reason why we 

suspect that the identity matrix may work well is that under MH, each conditioning group with a 

fixed pairwise rest score has only a small remaining variance of the latent variable, which implies that 

the response variables are close to independent; and independent Bernoulli variables have 

covariances that are asymptotically uncorrelated (Anderson & Goodman, 1957). 

Aggregation of the Pairwise Statistics 

In this section, we consider the lower-diagonal matrix of 𝐶𝑖𝑗+s or 𝑍𝑖𝑗s as a vector 𝒚 in ℝ𝐽(𝐽−1)/2. Let 

𝑾 be the covariance matrix of 𝒚 as estimated in any method of the previous section. We consider 

various methods to aggregate 𝒚 into an omnibus test. 

Distance to the Nonnegative Cone 

The theory in this section is based on order restricted statistical inference (Robertson et al., 

1988). We project 𝒚 onto the nonnegative cone in ℝ𝐽(𝐽−1)/2, defined by 𝒞 = {𝒙 ∈ ℝ
𝐽(𝐽−1)

2 |𝑥1 ≥

0, 𝑥2 ≥ 0,… , 𝑥𝐽(𝐽−1)/2 ≥ 0}. We define the projection 𝒚∗ as the point in 𝒞 that minimizes the 
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squared Mahalanobis distance (𝒚 − 𝒚∗)𝑇𝑾−1(𝒚 − 𝒚∗). The chi-bar-square statistic is then defined as 

this squared distance, i.e. 

𝜒̅2 ≔ (𝒚 − 𝒚∗)𝑇𝑾−1(𝒚 − 𝒚∗). 

This result serves as the overall test statistic in the decision rules discussed in the next section. The 

following algorithm was used to obtain 𝒚∗ and 𝜒̅2:  

1. Obtain the Cholesky decomposition 𝑾−1 = 𝑩T𝑩, and let 𝑨 = 𝑩−1. 

2. Compute 𝒛 = 𝑩𝒚. If 𝑾 is the covariance matrix of 𝒚, then the covariance matrix of 𝒛 is the 

identity matrix. 

3. Project 𝒛 onto the cone 𝑨𝒙 ≥ 0 with the function coneA of the R-package coneproj (Liao & 

Meyer, 2014). Let 𝒛∗ be the result of this projection; then 𝒚∗ = 𝑨𝒛∗. 

4. Compute 𝜒̅2 = ‖𝒛 − 𝒛∗‖2, where ‖∙‖ is the Euclidian distance. 

Preselected Standardized Partial Sum of Pairwise Statistics 

In their CARP statistics, Ellis and Sijtsma (2023) split the total sample of subjects into a 

training sample and a test sample. In our treatment hitherto, all statistics were computed with the 

test sample. However, one can compute 𝐶𝑖𝑗+ in the training sample as well; denote this as 𝐶𝑖𝑗+
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

. 

Let 𝑇− be the set of pairs (𝑖, 𝑗) with 𝐶𝑖𝑗+
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

< 0 and 𝑖 > 𝑗, and denote its size as |𝑇−|. We add the 

corresponding values of 𝒚 and divide the sum by its standard error. More specifically, let 

𝑦(𝑖−1)(𝑖−2)
2

+𝑗
= 𝐶𝑖𝑗+ for all 𝐽 ≥ 𝑖 > 𝑗 ≥ 1, and define 𝒚− as the subvector of 𝒚 containing the elements 

𝑦(𝑖−1)(𝑖−2)
2

+𝑗
 for which (𝑖, 𝑗) ∈ 𝑇−. Let 𝑾− be the submatrix of 𝑾 corresponding to the elements of 

𝒚−; Ellis and Sijtsma (2023) defined the omnibus statistic as 

𝑍PS ≔
∑𝒚−

√∑𝑾−

, 

where ∑⬚ indicates the sum over all elements in the following vector or matrix. Here, we call this 

omnibus test statistic the preselected standardized partial sum of pairwise statistics (PS). For clarity, 

if 𝒚 contains the 𝑍𝑖𝑗s and 𝑾 is assumed to be the identity matrix, then  

https://doi.org/10.1017/psy.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.21


10 
 

𝑍PS =
∑{𝑍𝑖𝑗|(𝑖, 𝑗) ∈ 𝑇−}

√|𝑇−|
. 

Conditionalized Multiple Testing Procedures 

Ellis et al. (2018) argued that multiple testing procedures for interval hypotheses can be 

enhanced with the following general adaptation: Pick some real number 𝜆 ∈ (0,1], and select only 

the p-values with 𝑝𝑖 < 𝜆, and divide each 𝑝𝑖  by 𝜆; then, apply an ordinary multiple testing procedure, 

such as the Bonferroni correction or the Benjamini-Hochberg correction, to the resulting set. That is, 

apply an ordinary multiple testing procedure to the set of corrected 𝑝-values {𝑝𝑖/𝜆 ∶ 𝑝𝑖 < 𝜆}. Ellis et 

al. argue that this procedure often controls the Type 1 error; certainly with independent 𝑝-values, 

and also with non-independent 𝑝-values if the number of 𝑝-values is large and the Bonferroni-

correction is used. They show that this procedure increases the power if the 𝑝-values are supra-

uniform; that is, if most 𝑝-values are higher than would be expected in a uniform distribution. We 

expect that the latter condition is often fulfilled in the situation under investigation here, where the 

𝑝-values test whether conditional covariances are nonnegative in the context of MH. If MH holds and 

the item response functions are not flat, then the conditional covariances will be positive, yielding 

supra-uniform 𝑝-values. 

 Ellis et al. (2018) investigated their conditionalization procedure with the multiple testing 

methods Davidov (2011) discussed in the context of independent 𝑝-values, and we will apply some of 

these multiple testing methods here. Davidov recommended using the 𝐼+ statistics, but the method 

that he labelled “normal” achieved similar power (Davidov, p. 2439-2440). The latter method means 

that the 𝑝-values are converted to standard normal 𝑍-statistics and added, and this method is the 

natural candidate if the test statistics underlying the 𝑝-values are normal. Applied to the present 

situation with the conditionalization rule of Ellis et al. (2018) and 𝜆 = 0.5, this amounts to the 

following. Let 𝑆 be the set of pairs 𝑖 > 𝑗 with 𝑍𝑖𝑗 < 0 in the test sample, and denote its size as |𝑆|. A 

test statistic based on the conditionalized sum is 

https://doi.org/10.1017/psy.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.21


11 
 

𝑍CS ≔
∑{Φ−1 (2Φ(𝑍𝑖𝑗)) |(𝑖, 𝑗) ∈ 𝑆}

√|𝑆|
, 

where 𝑆 is the number of pairs 𝑖 < 𝑗 with 𝑍𝑖𝑗 < 0. However, the statistic that was most powerful in 

the simulations Ellis et al. reported was the product of 𝑝-values, which Davidov attributed to Fisher. 

In the present situation, after a log-transformation of the conditionalized product, we obtain, 

𝑄CP ≔ −2∑{log (2Φ(𝑍𝑖𝑗)) |(𝑖, 𝑗) ∈ 𝑆}, 

which is compared to a chi-square distribution with 𝑑𝑓 = 2|𝑆|.  

Finally, we consider the Bonferroni correction, because it is so easy and well-known despite 

the general consensus that more powerful alternatives exist. In conditionalized form, this amounts to 

𝑝CB = min{|𝑆|Φ(𝑍𝑖𝑗)|(𝑖, 𝑗) ∈ 𝑆}. 

 Note that all three statistics, 𝑍CS, 𝑄CP, and 𝑝CB, ignore the correlations of the 𝑍𝑖𝑗s. In 𝑍CS and 

𝑄CP, it is implicitly assumed that the 𝑍𝑖𝑗s are uncorrelated, and we are not certain that they control 

the Type 1 error in correlated cases. However, the correlations between pairwise CARP statistics 

might be so small that it hardly affects the distribution, as we argued in the section where we 

proposed the identity matrix. Therefore, we study these statistics despite the uncertainty about 

possibly correlated 𝑍𝑖𝑗s. 

Preselection with Multiple Testing Procedures 

The idea of a preselection of item pairs based on the training sample can also be applied to 

multiple testing procedures, like the conditionalization principle Ellis et al. (2018) discussed. Suppose 

the data sample is randomly split into a training sample and a test sample. Let the training data 

matrix be denoted as 𝑫1 and the test data matrix as 𝑫2, where 𝑫1 and 𝑫2 are independent. Suppose 

that for each subset 𝐿 of pairs of variables in 𝑫2 there is a multiple testing procedure 𝑀𝐿 that 

controls the Type I error when it is applied to 𝐿. More precisely, 𝑀𝐿 is a function that is applied to 𝑫2 

and only uses the pairs of variables in 𝐿, resulting in a 1 (reject) or 0 (no reject) decision, with 

𝑃(𝑀𝐿(𝑫2) = 1) ≤ 𝛼 if the null hypothesis is true, where 𝛼 is the nominal level of significance. 
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Suppose that we chose 𝐿 as a function of 𝑫1; let this function be denoted as Λ with range 𝑅(Λ). An 

example of this would be that Λ selects the pairs with negative conditional covariances and 𝑀𝐿 uses 

the p-values 𝑝𝑖𝑗 = Φ(𝑍𝑖𝑗) of (𝑖, 𝑗) ∈ 𝐿 with the Bonferroni correction. That is, Λ(𝑫1) =

{(𝑖, 𝑗): 𝐶𝑖𝑗+
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

< 0 and 𝑖 > 𝑗} and 𝑀𝐿 = 1⟺ min {𝑝𝑖𝑗|𝐿|} ≤ 𝛼. Then 𝑀Λ(𝑫1)(𝑫2) is the 

procedure that applies the Bonferroni correction to p-values in the test sample using only pairs that 

have a negative conditional covariance in the training sample. Such procedures control the Type I 

error rate: Since 𝑫1 and 𝑫2 are independent, the conditional distribution of 𝑫2 given Λ(𝑫1) is the 

same as the unconditional distribution of 𝑫2, so the rejection rate is 

𝑃(𝑀Λ(𝑫1)(𝑫2) = 1) = 𝔼(𝑃 (𝑀Λ(𝑫1)(𝑫2) = 1|Λ(𝑫1))) 

= ∑ 𝑃(𝑀𝐿(𝑫2) = 1)𝑃(Λ(𝑫1) = 𝐿)

𝐿 ∈ 𝑅(Λ)

≤ ∑ 𝛼𝑃(Λ(𝑫1) = 𝐿)

𝐿 ∈ 𝑅(Λ)

= 𝛼. 

Thus, we may calculate p-values for conditional covariances in the test data using only the pairs that 

have a negative conditional covariance in the training sample, and then apply a multiple testing 

procedure to this selection as if it was the entire test data set from the outset. Applying this 

procedure to the statistics of the previous section, we obtain the following results. Let 𝑇− be the set 

of pairs (𝑖, 𝑗) with 𝐶𝑖𝑗+
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

< 0 and 𝑖 > 𝑗. Then 

𝑄PP ≔ −2∑{log (Φ(𝑍𝑖𝑗)) |(𝑖, 𝑗) ∈ 𝑇−}, 

with 𝑑𝑓 = 2|𝑇−|, where |𝑇−| is the size of 𝑇−. Similarly, 

𝑝PB ≔ min{|𝑇−|Φ(𝑍𝑖𝑗)|(𝑖, 𝑗) ∈ 𝑇−}. 

Decision Rules 

Decision Rules: The LR test and the Conditional LR test 

In this section, we consider two decision rules based on  𝜒̅2. The first decision rule uses the 

unconditional distribution of 𝜒̅2. The second decision rule uses the conditional distribution of  𝜒̅2 

given the dimensionality of the boundary hyperplane that contains 𝒚∗. If 𝑾 is the identity matrix, 

then this dimensionality is equal to the number of negative MCCs. Both the 𝐶𝑖𝑗+s and the 𝑍𝑖𝑗s have 
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an asymptotic multivariate normal distribution as 𝑁 → ∞ (Browne, 1984, proposition 2). Therefore, 

we assume a multivariate normal distribution for 𝒚, which is either the vector of 𝐶𝑖𝑗+s or the vector 

of 𝑍𝑖𝑗s. 

First, we consider the likelihood ratio (LR) test. Using this test, we reject the null hypothesis if 

𝜒̅2 exceeds a critical level (Robertson et al., 1988). Under the least favorable case of the null 

hypothesis, where 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|𝑅𝑖𝑗 = 𝑠) = 0 for all 𝑖, 𝑗 = 1,… , 𝐽; 𝑠 = 1,… ,max𝑅𝑖𝑗, the distribution of 

𝜒̅2 is a weighted average of chi-square distributions (Robertson et al., 1988): 

𝑃(𝜒̅2 > 𝑐) = ∑ 𝑃(𝜒𝑟
2 > 𝑐)𝑃(𝑑𝑓(𝒚∗) = 𝑟)

𝐽(𝐽−2)
2

𝑟=1

. 

We estimated the weights 𝑃(𝑑𝑓(𝒚∗) = 𝑟) by drawing from a multivariate normal distribution with 

covariance matrix 𝑾, and counting for each draw how many coordinates are negative. We used 106 

draws. Denote the estimated probability of getting 𝑟 negative coordinates as 𝑝̃𝑟. The 𝑝-value for the 

observed chi-bar-squared is obtained as  

𝑝LR ≔ ∑ 𝑃(𝜒𝑟
2 > 𝜒̅𝑜𝑏𝑠

2 )𝑝̃𝑟

𝐽(𝐽−2)
2

𝑟=1

. 

The null hypothesis is rejected if 𝑝LR < 𝛼. 

Second, we consider the conditional test based on Wollan and Dykstra (1986). Ellis et al. 

(2018) generalized the conditionalization principle to other multiple testing procedures with one-

sided hypotheses, and demonstrated that conditionalization achieves a strong gain in power if most 

null hypotheses are true, a situation that can be expected here. We also discuss other conditional 

tests; therefore, we call this test the conditional likelihood ratio test (CL). 

 Let 𝑑ℎ(𝒚∗) be the dimensionality of the boundary hyperplane on which 𝒚 is projected, and 

let 𝑑𝑓(𝒚∗) =
𝐽(𝐽−1)

2
−  𝑑ℎ(𝒚∗). Wollan and Dykstra explain that the conditional distribution of  𝜒̅2 

given 𝑑𝑓(𝒚∗) = 𝑟 is a chi-square distribution with 𝑟 degrees of freedom if 𝑟 > 0. Let 𝜒𝑟
2(𝛼) be the 

right-sided critical value for nominal significance level 𝛼 in a chi-square distribution with 𝑟 degrees of 
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freedom; that is, 𝑃(𝜒𝑟
2 > 𝜒𝑟

2(𝛼)) = 𝛼. In the conditional test, we reject the null hypothesis if both  

𝑑𝑓(𝒚∗) > 0 and  𝜒̅2 > 𝜒𝑑𝑓(𝒚∗)
2 (𝛼). Assuming a multivariate normal distribution, the Type 1 error rate 

of the conditional test is less than 𝛼, because, as pointed out by Wollan and Dykstra, 

𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 H0) = ∑ 𝑃(𝜒̅2 > 𝜒𝑟
2(𝛼)|𝑑𝑓(𝒚∗) = 𝑟)

𝐽(𝐽−2)
2

𝑟=1

𝑃(𝑑𝑓(𝒚∗) = 𝑟) = ∑ 𝛼

𝐽(𝐽−2)
2

𝑟=1

𝑃(𝑑𝑓(𝒚∗) = 𝑟)

= 𝛼(1 − 𝑃(𝑑𝑓(𝒚∗) = 0)). 

The event 𝑑𝑓(𝒚∗) = 0 corresponds to 𝒚∗ = 𝒚, which would happen if all 𝐶𝑖𝑗+ or 𝑍𝑖𝑗  are nonnegative. 

Wollan and Dykstra continue to estimate this factor, but this probability is small for five items or 

more, and therefore it is ignored here, consistent with Ellis et al. (2018). In sum, we define 

𝑝CL ≔ 𝑃(𝜒𝑑𝑓(𝒚∗)
2 > 𝜒̅𝑜𝑏𝑠

2 )     if 𝑑𝑓(𝒚∗) > 0 

𝑝CL ≔ 1     if 𝑑𝑓(𝒚∗) = 0 

Decision Rules: Other Tests 

The p-values of the other tests are computed using 

𝑝PS ≔ Φ(𝑍PS); 

𝑝CS ≔ Φ(𝑍CS); 

𝑝PP ≔ 𝜒2|𝑇−|
2 (𝑄PP); 

𝑝CP ≔ 𝜒2|𝑆|
2 (𝑄CP), 

where Φ is the standard normal cumulative distribution function and 𝜒𝑘
2 is the chi-square distribution 

function with 𝑘 degrees of freedom. The corrected p-values 𝑝CB and 𝑝PB are used without further 

correction. 

Comparison With Competing Methods 

We compare our statistics with the two prominent alternative methods for the proposed 

test, which are the DIMTEST or DETECT procedures for analysis of essential dimensionality. DIMTEST 

and DETECT are two procedures based on Stout’s (1987) theory of essential dimensionality. DIMTEST 

has a confirmative approach that tests unidimensionality, whereas DETECT was created as an 

https://doi.org/10.1017/psy.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.21


15 
 

explorative approach that divides the set of test items into clusters that are associated with different 

dimensions. Li et al. (2017, p. 210) summarize DIMTEST as follows: 

The DIMTEST procedure (Nandakumar, Yu, Li, & Stout, 1998; Stout, 1987; Stout, Froelich, & 

Gao, 2001) is often used to test the null hypothesis that an exam is locally independent and 

unidimensional. It does this by dividing the test to two subtests (an assessment subtest called 

AT and a partitioning subtest called PT) and testing whether there are any local dependencies 

among the AT items, conditioned on the score on the partitioning test. DIMTEST has been 

widely studied for dichotomous item exams and has good power when AT and PT are chosen 

well (e.g., Froelich & Habing, 2008). If AT and PT are chosen poorly (e.g., both are random 

samples of items), the procedure will have power near 0. 

Like a non-aggregated CARP test, DIMTEST uses conditional covariances, but whereas a CARP test 

rejects unidimensionality if the conditional covariances are negative, DIMTEST rejects 

unidimensionality if the conditional covariances are too high. Both CARP tests and DIMTEST divide 

the set of items into a partitioning test and an assessment test first, but CARP tests restrict the 

assessment test to a pair of items. Our new aggregated CARP (ACARP) test avoids this problem of 

selecting an assessment test by aggregating the individual CARP tests across item pairs. DIMTEST 

handles this problem by splitting the test based on factor analysis in a training sample, and the 

procedure can be improved further with bootstrapping (Froelich & Habing, 2008). DIMTEST is based 

on the statistic 

𝑇 = ∑ 𝔼(𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|Θ))
𝑖,𝑗 ∈ 𝐴𝑇
𝑖 ≠ 𝑗

. 

A sample estimate 𝑇̂ of 𝑇 is obtained by replacing Θ with an estimate Θ̂ based on the partitioning 

test, usually the sum score. Stout (1987) argued that 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|Θ) = 0 if the test is unidimensional, 

and, therefore, 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|Θ̂) ≈ 0 if Θ̂ is a good estimate of Θ. A high value of  𝑇̂ means that the test 

is not unidimensional. This may be due to multi-dimensionality or lack of local independence. Several 

adjustments and improvements of DIMTEST have been suggested to estimate or reduce the bias in 𝑇̂ 
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caused by Θ̂ being a fallible estimate of Θ (e.g., Kieftenbeld & Nandakumar, 2015), especially if the 

number of items is small.  

DETECT is a method to cluster items based on their conditional covariances. The clustering is 

based on Zhang and Stout’s (1999) theory of conditional covariances for tests with a simple structure. 

The procedure produces a clustering of the items, and a unidimensional test should result in one 

cluster that contains all items. This is an explorative method, and not a statistical significance test. 

For a given partition 𝒫 of the set of test items (that is, {1, … , 𝐽} in our notation), the theoretical 

DETECT index is  

𝐷 ≔
1

𝐽(𝐽 − 1)
∑ 𝛿𝑖𝑗

𝒫𝔼(𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|Θ))
𝑖,𝑗 ∈ 𝑇𝑇
𝑖 ≠𝑗

, 

where 𝑇𝑇 is the set of all items in the test, and 𝛿𝑖𝑗
𝒫 = 1 if 𝑖 and 𝑗 are elements of the same cluster in 

𝒫, and 𝛿𝑖𝑗
𝒫 = −1 otherwise. DETECT searches for the partition that maximizes 𝐷, using an estimate Θ̂ 

that replaces Θ, leading to a sample estimate 𝐷̂ of 𝐷. Many adjustments and improvements of 

DETECT have been suggested to estimate or reduce the bias in 𝐷̂ caused by Θ̂ being a fallible 

estimate of Θ (Roussos & Ozbek, 2006), especially if the number of items is small. 

Considering the relationship between DIMTEST and DETECT, we study how DETECT could be 

used as confirmatory test of unidimensionality. It would then be logical to define 𝒫 as one cluster 

that contains all items, and the theoretical DETECT index for this would be  

𝐷1 ≔
1

𝐽(𝐽 − 1)
∑ 𝔼(𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|Θ))

𝑖,𝑗 ∈ 𝑇𝑇
𝑖 ≠𝑗

. 

Aside from the factor 1 𝐽(𝐽 − 1)⁄ , one could describe 𝐷1 as an instance of 𝑇 where both the 

assessment test and the partitioning test contain all items. A high value of 𝐷1 would lead to the 

conclusion that the test is not unidimensional.  

 For the sake of comparison, a single CARP test would test whether 𝔼(𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|Θ̂𝑖 + Θ̂𝑗)) ≥

0, where Θ̂𝑖 and Θ̂𝑗 are predictors of 𝑋𝑖  and 𝑋𝑗, respectively, based on the items excluding 𝑖 and 𝑗. 
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The 𝑍PS statistic based on the pairwise mean conditional covariances 𝐶𝑖𝑗+, as defined earlier, can be 

considered a sample estimate of the theoretical index 

𝜁𝑃𝑆 ≔
∑ 𝔼(𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|Θ̂𝑖 + Θ̂𝑗))(𝑖,𝑗)∈ 𝑇−

√∑𝛀−
, 

where 𝑇− consists of the pairs for which 𝔼(𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗|Θ̂𝑖 + Θ̂𝑗)) < 0 and 𝑖 < 𝑗 in the training 

sample, and 𝛀− is the covariance matrix used for normalization. A negative value of 𝜁𝑃𝑆 would lead 

to the conclusion that the test is not unidimensional. The DIMTEST index 𝑇̂ and the DETECT index 𝐷̂1 

thus have a structure that is very similar to the 𝑍PS statistic before the latter is normalized with 

√∑𝛀−. The main difference is that they are computed using different pairs (𝑖, 𝑗). While DIMTEST 

would use pairs with high conditional covariances in the training sample, 𝑍PS would use pairs with 

low conditional covariances in the training sample. Note that if Θ̂𝑖 and Θ̂𝑗 are poor estimates, 

𝔼(𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|Θ̂𝑖 + Θ̂𝑗)) must still be nonnegative, and therefore ACARP does not require bias 

corrections in order to control the Type I error rate. 

 DIMTEST, DETECT, and the ACARP tests developed here are closely related. The main 

difference is the choice of the targeted item pairs and the conditioning variable, and the implications 

that this has for the sign of the covariances. In DIMTEST and DETECT, the conditioning variable is 

supposed to capture the partitioning test, and unidimensionality is rejected if the conditional 

covariances in the assessment test are high. In the ACARP tests, one would rather combine 

covariances of pairs from different dimensions, the conditioning variables are supposed to predict 

the assessment items, and unidimensionality is rejected if the conditional covariances are negative. 

For example, if the test has two dimensions 𝐴 and 𝐵, DIMTEST would use 𝐴 as the assessment test 

and 𝐵 as the partitioning test, or conversely; but  𝑍PS would use pairs (𝑖, 𝑗) with 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵. 

Simulation Study I: Preliminary Selection of Test Methods 

We investigated whether the Type 1 error rate is under control in typical IRT cases, and we 

compared our test methods on statistical power. In the first simulation study we aimed to make a 
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preliminary selection of the most promising test methods, which we investigated further in the 

second and third simulation study. We used 𝐽 items and a logistic model,  

𝑃(𝑋𝑖 = 1| Θ1, Θ2) = (1 + exp(−(𝛼𝑖1Θ1 + 𝛼𝑖2Θ2 + 𝛽𝑖)))
−1

, 

where (Θ1, Θ2) has a bivariate standard normal distribution with correlations 0. Denote the number 

of items that load on dimensions 1 and 2 as 𝐽1 and 𝐽2, respectively, so that 𝐽1 + 𝐽2 = 𝐽. 

 For the first simulations, we used 𝐽 = 10. We studied three possible dimensionality cases: 

• Dimensionality 0: In this case, 𝛼𝑖1 = 𝛼𝑖2 = 0 for 1 ≤ 𝑖 ≤ 𝐽 

• Dimensionality 1: In this case, 𝛼𝑖1 > 0 and 𝛼𝑖2 = 0 for 1 ≤ 𝑖 ≤ 𝐽 

• Dimensionality 2: In this case, 𝛼𝑖1 > 0 and 𝛼𝑖2 = 0 for 1 ≤ 𝑖 ≤ 𝐽1, and  𝛼𝑖2 > 0 and 𝛼𝑖1 = 0 

for 𝐽1 < 𝑖 ≤ 𝐽2. We used 𝐽1 = ceiling(𝐽/2) . 

The methods discussed allow several ways to obtain a 𝑝-value: based on 𝐶𝑖𝑗+ or 𝑍𝑖𝑗; 

aggregated with LR, CL, PS, PP, PB, CS, CP, or CB; and their covariance matrix estimated with the 

sample moments or bootstrapping or set to the identity matrix. We adopt the following convention 

to name the tests with four-letter acronyms: The first letter indicates the pairwise statistic (Z for the 

𝑍𝑖𝑗  and M for the mean conditional covariances, 𝐶𝑖𝑗+); the second letter indicates the covariance 

matrix (B for bootstrapping, M for moments, I for identity matrix, N for none); the last two letters 

indicate the aggregation method (LR, CL, PS, PP, PB, CS, CP, or CB). For example, ZICS is based on  𝑍𝑖𝑗s 

with the identity matrix and aggregation with the conditionalized sum. An asterisk will be used to 

indicate a group of tests; for example, ZI** is the group of tests based on the  𝑍𝑖𝑗s with the identity 

matrix. Not all combinations are reasonable: The identity matrix is only reasonable for the 𝑍𝑖𝑗s but 

not for the 𝐶𝑖𝑗+s, and the sample moments and bootstrap method make sense only for LR, CL, and 

PS. The remaining 20 relevant combinations are displayed in the first column of Table 1. In addition 

to these tests, we studied the DETECT index 𝐷̂1. 

The simulations were conducted in R. Statistical testing was done at nominal level of 

significance 𝛼 = 0.05. We programmed the CARP tests with the training sample size equal to 30% of 

the total sample. For DETECT we used the confirmatory DETECT function conf.detect of the sirt R-
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package (Robitzsch, 2022), with all items in one cluster; this gives 𝐷̂1. We rejected unidimensionality 

if 𝐷̂1 > 0.20, as recommended in the sirt documentation and Roussous and Ozbek (2006, p. 220). 

DETECT had a rejection rate of 0 in all circumstances. In the Discussion we reflect on this 

result. Tables 1 and 2 show the rejection rates for all other methods. Table 1 shows the rejection 

rates with all 𝛼𝑖𝑑 ∈ {0, 1}, 𝛽𝑖 = 0 for 1000 samples of 1000 subjects. All 1000 samples in a column 

are generated with the same parameters. Table 2 shows the rejection rates if the 𝛼𝑖𝑑 that are not 

constrained to be zero have distribution 𝛼𝑖𝑑~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2) and the 𝛽𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2). The 

1000 samples in a column of Table 2 all have different parameters, and all contain 1000 subjects. 

Table 1 

Rejection rates for various tests, based on 1000 samples with fixed item parameters. 

Pairwise 
Statistic 

Estimation 
Covariance 
Matrix 

Aggregation 
Method 

Rejection Rate  
Dimensionality 0 

Rejection Rate 
Dimensionality 1 

Rejection Rate 
Dimensionality 2 

M bootstrap CL 0.074 0.000 0.557 

M bootstrap LR 0.062 0.000 0.182 

M bootstrap PS 0.028 0.000 0.596 

Z bootstrap CL 0.061 0.000 0.529 

Z bootstrap LR 0.055 0.000 0.168 

Z bootstrap PS 0.028 0.000 0.592 

Z identity CL 0.044 0.000 0.554 

Z identity CP 0.043 0.000 0.584 

Z identity CS 0.036 0.000 0.587 

Z identity LR 0.023 0.000 0.336 

Z identity PP 0.029 0.000 0.755 

Z identity PS 0.026 0.000 0.686 

M moments CL 0.042 0.000 0.190 

M moments LR 0.028 0.000 0.000 

M moments PS 0.023 0.000 0.312 

Z moments CL 0.054 0.000 0.349 

Z moments LR 0.033 0.000 0.000 

Z moments PS 0.026 0.000 0.368 

Z none CB 0.027 0.000 0.242 

Z none PB 0.038 0.000 0.296 

Note. M = mean conditional covariance (𝐶𝑖𝑗+); Z = pairwise Z-statistic (𝑍𝑖𝑗); LR = likelihood ratio; CL = 

conditional likelihood ratio; CS = conditional sum; CP = conditional product; CB = conditional 
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Bonferroni; PS = preselected sum; PP = preselected product; PB = preselected Bonferroni. The item 

parameters were fixed to 𝛼𝑖𝑑 ∈ {0, 1}, 𝛽𝑖 = 0. Each of the 1000 samples contained 1000 subjects. 

Table 2 

Rejection rates for various tests, based on 1000 samples with random item parameters. 

Pairwise 
Statistic 

Estimation 
Covariance 
Matrix 

Aggregation 
Method 

Rejection Rate  
Dimensionality 0 

Rejection Rate 
Dimensionality 1 

Rejection Rate 
Dimensionality 2 

M bootstrap CL 0.055 0.010 0.293 

M bootstrap LR 0.038 0.000 0.125 

M bootstrap PS 0.012 0.000 0.232 

Z bootstrap CL 0.055 0.009 0.288 

Z bootstrap LR 0.038 0.000 0.123 

Z bootstrap PS 0.011 0.000 0.217 

Z identity CL 0.024 0.009 0.289 

Z Identity CP 0.023 0.008 0.292 

Z identity CS 0.030 0.010 0.264 

Z identity LR 0.012 0.000 0.160 

Z identity PP 0.016 0.003 0.306 

Z identity PS 0.009 0.000 0.248 

M moments CL 0.017 0.006 0.065 

M moments LR 0.008 0.000 0.000 

M moments PS 0.006 0.000 0.078 

Z moments CL 0.039 0.021 0.179 

Z moments LR 0.014 0.000 0.000 

Z moments PS 0.010 0.000 0.112 

Z none CB 0.031 0.020 0.168 

Z none PB 0.025 0.011 0.190 

Note. M = mean conditional covariance (𝐶𝑖𝑗+); Z = pairwise Z-statistic (𝑍𝑖𝑗); LR = likelihood ratio; CL = 

conditional likelihood ratio; CS = conditionalized sum; CP = conditionalized product; CB = 

conditionalized Bonferroni; PS = preselected sum; PP = preselected product; PB = preselected 

Bonferroni. The item parameters had distribution  𝛼𝑖1 = 𝛼𝑖2 = 0 (dimensionality 0), 

𝛼𝑖1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), 𝛼𝑖2 = 0 (dimensionality 1), or 𝛼𝑖1, 𝛼𝑖2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2) (dimensionality 2), 

and 𝛽𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2). Each of the 1000 samples contained 1000 subjects. 

 

We conclude that only the following combinations keep the Type 1 error rate under control in 

both dimensionality 0 and dimensionality 1, at least in the above cases: 
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• If the covariance matrix is replaced by the identity matrix: all aggregation methods based on 

the pairwise 𝑍𝑖𝑗-statistics. 

• If the covariance matrix is estimated from sample moments: all aggregation methods based 

on pairwise 𝐶𝑖𝑗+ or 𝑍𝑖𝑗-statistics. 

• If the covariance matrix is estimated by bootstrapping: only PS, based on pairwise 𝐶𝑖𝑗+ or 

𝑍𝑖𝑗-statistics. 

The test MBCL has a Type I error rate that significantly exceeds 0.05 in Table 1 (p = 0.0006).  If we 

omit this tests, and compare the other tests that use a covariance matrix (CL, LR, and PS) across the 

different versions (M or Z; bootstrap, moments, or identity) then the tests based on the pairwise 𝑍𝑖𝑗-

statistics with the identity matrix have the highest power. The tests where the covariance matrix was 

based on the sample moments had the lowest power, and we conclude that this method has no 

advantages.  

The maximum discrimination parameter 𝛼𝑖𝑑 = 1.0 in the simulations of Table 1 and 2 is 

rather low. For a broader view, we also conducted simulations with discrimination parameters 𝛼𝑖𝑑 =

1.7 (medium) and 𝛼𝑖𝑑 = 7.0 (extremely high) if the item loads on dimension 𝑑, using 100 simulations 

of 1000 subjects per case. Figure 1 shows the plots of the p-values (Schweder & Spjøtvoll, 1982) for 

the cases with dimensionality 0 and 1, and Figure 2 shows these plots for dimensionality 2. If the p-

values have a uniform distribution, they lay on the diagonal line 𝑦 = 𝑥 in the plot. These plots 

confirm the conclusions of Tables 1 and 2: in cases with dimensionality 0 (𝛼𝑖1 = 𝛼𝑖2 = 0), all tests 

produce p-values that are approximately uniformly distributed or slightly higher. In cases with 

dimensionality 1, (𝛼𝑖1 > 0,𝛼𝑖2 = 0), all tests produce p-values that higher than uniform, and this 

effect increases with the discrimination parameter. This is to be expected, because the population 

values of the conditional covariances are positive in unidimensional cases with 𝛼𝑖1 > 0. The power is 

generally lowest if the covariance matrix is estimated with the moments method. With 

bootstrapping, each Z***-test produces p-values that are very close to the p-values of the 

corresponding M***-test. However, the power of the tests based on the identity matrix match or 
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outperform the power of the corresponding tests based on bootstrapping. The next simulation study 

will therefore focus on the tests based on the identity matrix. 

Figure 1 

Plots of p-values showing the Type I error rates. 

𝛼𝑖𝑑 Identity Moments Bootstrap 
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1.7 

   

7 

   
Note. The vertical axis is the p-value, the horizontal axis is the rank of the p-value. Dashed curve = 

M***, solid curve = Z***, black = CT, red = LR, green = PS, blue = CS, light blue = PP, magenta = CP. 
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Figure 2 

Plots of p-values showing the power. 

𝛼𝑖𝑑 Identity Moments Bootstrap 
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Note. The vertical axis is the p-value, the horizontal axis is the rank of the p-value. Dashed curve = 

M***, solid curve = Z***, black = CT, red = LR, green = PS, blue = CS, light blue = PP, magenta = CP. 

Simulation Study II: Comparison of Aggregation Methods 

In this second simulation study, we focussed on the tests that use the identity matrix as the 

covariance matrix of the 𝑍-statistics. The goal was to determine which aggregation methods (CL, LR, 

PS, CS, PP, CP, PB, CB) have the highest power and whether this depends on the number of items, 

number of subjects, and discrimination parameters. The goal was furthermore to determine whether 

there are cases with unexpected low power. We investigate the effects of the number of items (𝐽), 

sample size (𝑁) and discrimination parameter (𝛼𝑖𝑑) on the rejection rates, with fixed item difficulty 

𝛽𝑖 = 0, using 100 simulations per combination. The rejection rates of the two-dimensional cases with 

low discrimination parameters, 𝛼𝑖𝑑 ∈ {0, 1}, are shown in Figure 3.  
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Figure 3 

Rejection rates as a function of the number of items and sample size. 
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 For medium-valued discrimination parameters, 𝛼𝑖𝑑 ∈ {0, 1.7}, the estimated power was 

generally 0.99 or 1.00 even with 𝑁 = 500 and 𝐽 = 10, except for PB and CB. We did not display 

these excellent power rates in a figure because they do not help discern any pattern. For low 

discrimination parameters, 𝛼𝑖𝑑 ∈ {0, 1}, and 𝑁 = 2,000 the power was usually about .90 or higher, 

with exception of ZIPB and ZICB. The power differences between the tests are more pronounced for 

𝛼𝑖𝑑 ∈ {0, 1} and 𝑁 = 500 or  𝑁 = 1000. There we see that the power of ZICL, ZICS and ZICP 

increases with the number items, and that the power of these three tests is generally the highest, 

except that the power of ZIPP is higher if the number of items is small. The power of ZIPB and ZICB is 

generally among the lowest and tends to remain low if the number of items increases with 𝑁 = 500 

or 𝑁 = 1000. The power of ZIPS tends to decrease with the number of items if 𝑁 = 500 or 𝑁 =

1000. The power of ZILR tends to remain low if the number of items increases with 𝑁 = 500, but 

slowly increases if 𝑁 = 1000. In sum, the highest power is observed for ZICL, ZICS, ZICP and 

sometimes ZIPP. Therefore, we will focus on these tests in the next section. 

Simulation Study III 

In Simulation Study I we investigated the Type I error rate only for 𝐽 = 10 items and a sample 

size of 𝑁 = 1000 subjects. The present section discusses the Type I error rate more thoroughly, with 

simulations with varying 𝐽 and 𝑁, but only for the ZI** tests, which were selected in Simulation Study 

I, and we focus especially on the tests ZICL, ZICS, ZICP, and ZIPP, based on their power in Simulation 

Study II. We label tests with 𝐽 ≤ 10 small and tests with 𝐽 > 10 large. Further, we consider 𝑁 ≤

1000 small and 𝑁 > 1000 large. 

Zero-dimensional Cases 

We investigated the effects of the number of items (𝐽), sample size (𝑁) on the rejection rates 

for a nominal significance level of 5%, with fixed discrimination parameters 𝛼𝑖𝑑 = 0 and fixed item 

difficulties 𝛽𝑖 = 0, using 100 simulations per combination. For the number of items we used all small 

values (𝐽 = 3, 4, 5, 6, 7, 8, 9, 10) and two large values (𝐽 = 20, 30). For the number of subjects we 

used several small values (𝑁 = 250, 500, 750, 1000) and two large values (𝑁 = 2000,𝑁 = 104). For 
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each of the test statistics ZICL, ZICS, ZICP, and ZIPP, the cumulative distribution of rejection counts 

was larger than the cumulative binomial distribution with 𝑛 = 100, 𝜋 = 0.05, that is, the rejection 

rates were smaller than expected under the binomial distribution. The highest rejection rates (0.07, 

0.08, 0.09 and 0.10) were mostly observed with 𝐽 = 3, 4, 5, 6 and 𝑁 = 104. Therefore a second 

simulation conducted with these values of 𝐽 and 𝑁, but with 1000 simulations per combination. The 

rejection rates for ZICL, ZICS, ZICP, and ZIPP varied between 0.041 and 0.061, and none were 

significantly greater than 0.05. We also studied this for cases where the 𝐽, 𝑁, 𝛼𝑖𝑑 , 𝛽𝑖 were chosen 

randomly and independently from uniform distributions with 𝐽 between 3 and 30, 𝑁 between 250 

and 104, and 𝛽𝑖 ∈ (−2, 2). We sampled 100 cases of (𝐽, 𝑁, 𝜷), and generated 100 data sets with a 

zero-dimensional model for each case. The cumulative distribution of rejection counts were larger 

than the cumulative binomial distribution with 𝑛 = 100, 𝜋 = 0.05 for all ZI** tests except ZIPB. ZIPB 

had two cases with rejection rates 0.11. We conclude that the Type I error rate is under control for 

the tests ZICL, ZICS, ZICP, and ZIPP in these cases. 

Unidimensional Cases 

We investigated the effects of the number of items (𝐽), sample size (𝑁) on the rejection rates 

for a nominal significance level of 5%, with fixed discrimination parameters 𝛼𝑖1 = 1,𝛼𝑖2 = 0 and 

fixed item difficulties 𝛽𝑖 = 0, using 100 simulations per combination. For the number of items we 

used all small values (𝐽 = 3, 4, 5, 6, 7, 8, 9, 10) and two large values (𝐽 = 20, 30). For the number of 

subjects we used several small values (𝑁 = 250, 500, 750, 1000) and two large values (𝑁 =

2000,𝑁 = 104). The highest rejection rate was 0.01. We also studied this for cases where the 

𝐽, 𝑁, 𝛼𝑖1, 𝛽𝑖 were chosen randomly and independently from uniform distributions with 𝐽 between 3 

and 30, 𝑁 between 250 and 104, 𝛼𝑖1 ∈ (0, 2), and 𝛽𝑖 ∈ (−2, 2). We sampled 100 cases of (𝐽, 𝑁, 𝜷), 

and generated 100 data sets with a unidimensional model for each case. The rejection rates are given 

in the first nine rows of Table 3. The rejection rates of ZICP, ZICL, ZICS, and ZIPP were at most 0.04. 

The cumulative distribution of rejection counts of each of the tests was larger than the cumulative 

binomial distribution with 𝑛 = 100, 𝜋 = 0.05, that is, the rejection rates were smaller than expected 
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under the binomial distribution. Table 3 also shows the rejection rates in various other settings of 𝐽 

and 𝑁, with similar conclusions. 

Table 3 

Distribution of rejection rates in various settings of 𝐽 and 𝑁 with unidimensional models.  

𝐽 𝑁          
min max min max Rejection rate ZICP ZICL ZICS ZIPP ZILR ZIPS ZICB ZIPB 

3 30 250 104 0.00 73 71 70 93 99 93 41 60 
    0.01 18 19 22 5 1 4 25 25 
    0.02 7 8 8 1 0 2 19 10 
    0.03 2 1 0 1 0 1 10 4 
    0.04 0 1 0 0 0 0 2 0 
    0.05 0 0 0 0 0 0 2 0 
    0.06 0 0 0 0 0 0 0 0 
    0.07 0 0 0 0 0 0 0 0 
    0.08 0 0 0 0 0 0 1 0 
    0.09 0 0 0 0 0 0 0 1 
10 10 103 104 0.00 46 44 47 79 100 92 36 49 
    0.01 29 29 24 17 0 6 22 20 
    0.02 12 11 16 2 0 0 18 13 
    0.03 6 7 9 2 0 2 12 13 
    0.04 5 6 3 0 0 0 3 3 
    0.05 1 1 0 0 0 0 7 1 
    0.06 1 2 1 0 0 0 2 1 
10 20 103 104 0.00 71 67 65 95 100 96 31 47 
    0.01 16 16 25 3 0 2 18 27 
    0.02 5 10 6 0 0 2 25 16 
    0.03 5 4 2 1 0 0 15 6 
    0.04 2 1 1 1 0 0 3 2 
    0.05 0 1 0 0 0 0 5 1 
    0.06 0 0 0 0 0 0 3 0 
    0.07 1 1 1 0 0 0 0 1 
3 10 102 103 0.00 40 39 43 78 95 82 29 49 
    0.01 36 36 32 12 5 11 28 29 
    0.02 12 12 12 6 0 5 22 13 
    0.03 5 4 7 3 0 2 11 4 
    0.04 3 5 3 1 0 0 5 4 
    0.05 0 1 0 0 0 0 3 0 
    0.06 2 1 2 0 0 0 0 0 
    0.07 2 1 1 0 0 0 2 0 
    0.08 0 0 0 0 0 0 0 1 
    0.09 0 1 0 0 0 0 0 0 

Note. In each setting of 𝐽 and 𝑁, 100 parameter cases were generated with 

𝐽~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑚𝑖𝑛 𝐽 ,𝑚𝑎𝑥 𝐽),  𝑁~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑚𝑖𝑛𝑁 ,𝑚𝑎𝑥 𝑁), 𝛼𝑖1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), 𝛼𝑖2 = 0 and 

𝛽𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2). In each of these 100 parameter cases, 100 samples were simulated. Each cell 
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shows the number of parameter cases with the rejection rate specified in that row. For example, for 

ZICP there were 18 cases out of 100 that had a rejection rate of 0.01 over 100 samples. 

Simulation Study IV: Without Continuity Correction 

The previous simulations were conducted with the 𝑍𝑖𝑗-statistics corrected for continuity with the 

addition of a term 0.5 in the numerator, as proposed by Rosenbaum (1984) and adopted by Ellis and 

Sijtsma (2023). Many other continuity corrections exist (Andrés et al., 2024), and we are not sure 

that a continuity correction is necessary for the sample sizes ordinarily found in IRT. Therefore, we 

repeated the simulation studies of the ZI-statistics without continuity correction. The simulations of 

Table 1 and Table 2 are repeated in Table 4 and Table 5 without continuity correction.  

As was to be expected, the rejection rates were now generally larger than in Table 1 and 2. In 

Table 4, most Type I error rates (Dimensionality  0) were now 0.05 or slightly higher, and the power 

(Dimensionality 2) was substantially higher than in Table 1. In Table 5, all Type I error rates are below 

0.05, and the power is still larger than in Table 2. The power rates in Table 4 and 5 are low, but note 

that these results were obtained for low discrimination parameters (𝛼𝑖𝑑 ≤ 1). We also repeated 

Simulation Study III without continuity correction, and our conclusion is that the rejection rates were 

dominated by a binomial distribution with probability 0.05 in all cases, meaning that the Type I error 

rate is under control. The rejection rates of these versions of ZICL, ZICP, and ZICS are close to 0.05 in 

the zero-dimensional cases. 
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Table 4 

Rejection rates for various tests without continuity correction with fixed item parameters. 

Pairwise 
Statistic 

Covariance 
Matrix 

Aggregation 
Method 

Rejection Rate  
Dimensionality 0 

Rejection Rate 
Dimensionality 1 

Rejection Rate 
Dimensionality 2 

Z identity CL 0.058 0.000 0.657 

Z identity CP 0.058 0.000 0.686 

Z identity CS 0.057 0.000 0.684 

Z identity LR 0.052 0.000 0.447 

Z identity PP 0.053 0.000 0.835 

Z identity PS 0.050 0.000 0.756 

Z none CB 0.039 0.000 0.278 

Z none PB 0.051 0.000 0.334 

Note. Z = pairwise Z-statistic (𝑍𝑖𝑗); LR = likelihood ratio; CL = conditional likelihood ratio; CS = 

conditional sum; CP = conditional product; CB = conditional Bonferroni; PS = preselected sum; PP = 

preselected product; PB = preselected Bonferroni. The item parameters were fixed to 𝛼𝑖𝑑 ∈

{0, 1}, 𝛽𝑖 = 0. Each rate is based on 1000 samples of 1000 subjects. 

 

Table 5 

Rejection rates for various tests without continuity correction with random item parameters. 

Pairwise 
Statistic 

Covariance 
Matrix 

Aggregation 
Method 

Rejection Rate  
Dimensionality 0 

Rejection Rate 
Dimensionality 1 

Rejection Rate 
Dimensionality 2 

Z identity CL 0.045 0.007 0.354 

Z Identity CP 0.048 0.008 0.361 

Z identity CS 0.047 0.009 0.332 

Z identity LR 0.038 0.000 0.212 

Z identity PP 0.035 0.002 0.381 

Z identity PS 0.039 0.000 0.300 

Z none CB 0.035 0.024 0.200 

Z none PB 0.038 0.013 0.221 

Note. Z = pairwise Z-statistic (𝑍𝑖𝑗); LR = likelihood ratio; CL = conditional likelihood ratio; CS = 

conditionalized sum; CP = conditionalized product; CB = conditionalized Bonferroni; PS = preselected 

sum; PP = preselected product; PB = preselected Bonferroni. The item parameters had distribution  

𝛼𝑖1 = 𝛼𝑖2 = 0 (dimensionality 0), 𝛼𝑖1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), 𝛼𝑖2 = 0 (dimensionality 1), or 

𝛼𝑖1, 𝛼𝑖2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2) (dimensionality 2), and 𝛽𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2, 2). Each rate is based on 1000 

samples of 1000 subjects. 
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Table 6 shows the power rates for the simulations underlying Figure 3, but now repeated 

without continuity correction, with the positive discrimination parameters set to 1 (low). If the 

objective is to have power > 0.90, then all four tests achieved this goal with 𝑁 = 2000 and 𝐽 ≥ 10, 

and also with 𝑁 = 1000 and 𝐽 ≥ 14, but not with 𝑁 = 500. However, if the positive discrimination 

parameters are equal to 1.7 (medium), then the power rates were 1.00 even with 𝑁 = 500 and  𝐽 ≥

10. We did not display these excellent power rates in a table, because they were all 1.00. 

 

Table 6 

Rejection rates for various tests without continuity correction with low discrimination parameters. 

J  𝑁 = 500  𝑁 = 1000  𝑁 = 2000 

  CL CS PP CP  CL CS PP CP  CL CS PP CP 

10  0.30 0.31 0.37 0.31  0.66 0.77 0.89 0.72  0.95 0.98 1.00 0.96 

12  0.35 0.39 0.32 0.37  0.86 0.87 0.93 0.89  1.00 0.99 1.00 1.00 

14  0.41 0.43 0.37 0.40  0.92 0.91 0.94 0.92  1.00 1.00 1.00 1.00 

16  0.62 0.61 0.51 0.65  0.98 0.98 0.99 0.98  1.00 1.00 1.00 1.00 

18  0.61 0.60 0.38 0.64  1.00 0.99 0.99 1.00  1.00 1.00 1.00 1.00 

20  0.69 0.64 0.35 0.68  1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

22  0.68 0.71 0.33 0.71  1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

24  0.74 0.78 0.29 0.81  1.00 1.00 0.99 1.00  1.00 1.00 1.00 1.00 

26  0.78 0.74 0.20 0.81  1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

28  0.84 0.83 0.23 0.84  1.00 1.00 0.99 1.00  1.00 1.00 1.00 1.00 

30  0.81 0.78 0.15 0.82  1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

Note. Z = pairwise Z-statistic (𝑍𝑖𝑗); CL = conditional likelihood ratio; CS = conditional sum; CP = 

conditional product; PP = preselected product. The item parameters were fixed to 𝛼𝑖𝑑 ∈ {0, 1}, 𝛽𝑖 =

0. Each rate is based on 100 samples. 

 

Conclusions and Discussion 

We conclude that the pairwise CARP tests Ellis and Sijtsma (2023) proposed can best be aggregated 

with four of the tests developed here: ZICL, ZICP, ZICS, and ZIPP. These tests control the Type I error 

rate in a wide variety of test length and sample size, and their power against two-dimensional 

alternatives is larger than the power of other aggregate statistics that we studied. ZIPP had the 
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greatest relative power if there were less than 18 items with 𝑁 = 1000, but not in most other cases. 

Further investigations are needed to determine whether this is also true for alternatives with more 

than two dimensions. 

 The Type I error rates of the ZI-tests are well below the nominal rate of 0.05, and this 

suggests that improvement is possible. The pairwise Z-statistic, as defined by Ellis and Sijtsma (2023), 

includes a continuity correction that might be too conservative. Based on our simulations we 

conclude that the continuity correction may be abandoned for the sample sizes we studied (𝑁 ≥

500). Without continuity correction, the Type I error rate is still under control, and the power 

increases. The Type I error rates of ZICL, ZICP, and ZICS is then close to 0.05 in the zero-dimensional 

cases of Tables 4 and 5. 

The Type I error rate in unidimensional cases is far below 0.05, even without continuity 

correction, but this does not imply that the tests are too conservative. As an analogy, consider the 

elementary normal-theory one-sided Z-test for a mean 𝜇 with known variance 𝜎2. For the null 

hypothesis 𝜇 ≥ 0 and sample mean 𝑋̅ one would use 𝑍 = (𝑋̅ /𝜎)√𝑁 and reject the null hypothesis if 

Φ(𝑍) < 𝛼. If real data were generated with 𝜇 > 0, then 𝑃(Φ(𝑍) < 𝛼) < 𝛼, meaning that the Type I 

error rate is less than 𝛼. This is usually not viewed as a sign that something is wrong with the one-

sided Z-test. The situation in our case is similar, because we have a one-sided test for a mean, but in 

our case it is a mean of conditional covariances. In the unidimensional case, this mean is positive, 

which reduces the Type I error rate. 

 If the discrimination parameters equal 1 and the intercepts equal 0, the power rates of ZICL, 

ZICP, ZICS, and ZIPP are well above 0.90 for 𝑁 = 2000, regardless of whether the continuity 

correction is used. For these item parameters, if there are at least 14 items and the continuity 

correction is abandoned, the power is also above 0.90 for 𝑁 = 1000, but the power is substantially 

below 0.90 for 𝑁 = 500 for all studied test lengths between 𝐽 = 10 and 𝐽 = 30. We emphasize that 

these power rates were obtained for low discrimination parameters. We consider discrimination 

parameters of 1 as low, because we did not use the general factor 1.7 in our parametrization (unlike 
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e.g., Roussos & Ozbek, 2006). If the positive discrimination parameters equal 1.7 (medium), then the 

power rates of ZICL, ZICP, ZICS, and ZIPP are 1.00, even with 𝑁 = 500 and all investigated test 

lengths from 10 to 30, based on simulations using 100 samples. 

 We also compared our statistics with the DETECT index, applied in a confirmatory manner, 

using the criterion 𝐷1 < 0.20. To our surprise, despite the theoretical similarity of this index to the 

ZIPS statistic, this index appeared to lack discriminatory power, as it never rejected the hypothesis of 

unidimensionality. This is a puzzling result, seemingly at odds with the positive evaluations reported 

by the index’s creators. While we have concerns about the validity of our results for DETECT, we 

were unable to identify any errors in our code. We believe this issue warrants further investigation.  

 Our study provides three new statistics for a confirmatory test of unidimensionality in 

monotone IRT models, and they seem to outperform older methods—at least in the cases we 

simulated. Still, the power of these methods is somewhat disappointing for sample size 𝑁 = 1000 

and discrimination parameter 1, and better methods may be possible. A simple improvement might 

be found in the size of the training sample, which was set at 30% in all our analyses. Furthermore, 

aggregation of different splits into training sample and test sample might be useful. Finally, it would 

be worthwhile to investigate which of the four tests can be recommended as most powerful under 

various circumstances. 
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Appendix 

Proposition A1. If 𝑍 is independent of (𝑋, 𝑌) then 𝐶𝑜𝑣(𝑋, 𝑌𝑍) = 𝐶𝑜𝑣(𝑋, 𝑌)𝔼(𝑍). 

Proof. 𝐶𝑜𝑣(𝑋, 𝑌𝑍) =  𝔼(𝑋𝑌𝑍) − 𝔼(𝑋)𝔼(𝑌𝑍) = 𝔼(𝑋𝑌)𝔼(𝑍) − 𝔼(𝑋)𝔼(𝑌)𝔼(𝑍) = 𝐶𝑜𝑣(𝑋, 𝑌)𝔼(𝑍). 

The Covariance of Two Sample Covariances 

In asymptotic distribution free (ADF) structural equations modelling (SEM) it is common to 

obtain the covariance matrix of sample covariances as the sample grows to infinity, which is called 

the asymptotic covariance matrix (e.g., Browne, 1984). However, it is also possible to obtain an exact 

formula for the covariance of two sample covariances for finite 𝑁, provided that the variables have 

finite fourth moments.  

We develop the covariance of two sample covariances, assuming finite fourth moments of 

the involved variables. Denote the variables to be studied as 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝐽). Suppose that a 

random sample of 𝑁 subjects is drawn, and denote the score of subject 𝑛 on variable 𝑖 as 𝑋𝑖
(𝑛), and 

let  𝑿(𝑛) = (𝑋1
(𝑛)
, … , 𝑋𝐽

(𝑛)
), the score pattern of subject 𝑛. We assume that the 𝑁 subjects are drawn 

independently, and that therefore their score patterns 𝑿(1), 𝑿(2), … , 𝑿(𝑁) are independent, and that 

each 𝑿(𝑛) has the same multivariate distribution as 𝑿. Thus, the 𝑿(𝑛) are independent copies of 𝑿. 

We study two sample covariances, given by 

𝐶𝑖𝑗
𝑁 =

∑ 𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)𝑁

𝑛=1

𝑁
−
∑ 𝑋𝑖

(𝑛)𝑁
𝑛=1

𝑁

∑ 𝑋𝑗
(𝑛)𝑁

𝑛=1

𝑁
 

 

𝐶𝑘𝑙
𝑁 =

∑ 𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)𝑁

𝑛=1

𝑁
−
∑ 𝑋𝑘

(𝑛)𝑁
𝑛=1

𝑁

∑ 𝑋𝑙
(𝑛)𝑁

𝑛=1

𝑁
 

Using the summation rules for covariances, the covariance of these sample covariances is 
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𝐶𝑜𝑣(𝐶𝑖𝑗
𝑁 , 𝐶𝑘𝑙

𝑁) = 𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)
𝑋𝑗
(𝑛)𝑁

𝑛=1

𝑁
−
∑ 𝑋𝑖

(𝑛)𝑁
𝑛=1

𝑁

∑ 𝑋𝑗
(𝑛)𝑁

𝑛=1

𝑁
,
∑ 𝑋𝑘

(𝑛)
𝑋𝑙
(𝑛)𝑁

𝑛=1

𝑁

−
∑ 𝑋𝑘

(𝑛)𝑁
𝑛=1

𝑁

∑ 𝑋𝑙
(𝑛)𝑁

𝑛=1

𝑁
) = 

𝑁−2𝐶𝑜𝑣(∑𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)

𝑁

𝑛=1

, ∑𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)

𝑁

𝑛=1

) − 𝑁−3𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑘
(𝑛)

𝑁

𝑛=1

∑𝑋𝑙
(𝑛)

𝑁

𝑛=1

)

− 𝑁−3𝐶𝑜𝑣 (∑𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑖
(𝑛)

𝑁

𝑛=1

∑𝑋𝑗
(𝑛)

𝑁

𝑛=1

)

+ 𝑁−4𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)

𝑁

𝑛=1

∑𝑋𝑗
(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑘
(𝑛)

𝑁

𝑛=1

∑𝑋𝑙
(𝑛)

𝑁

𝑛=1

) 

We will now develop the four terms in this sum, which will be called the four main terms. For 

the first main term we need 

𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)𝑋𝑗

(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑘
(𝑛)𝑋𝑙

(𝑛)

𝑁

𝑛=1

) = ∑ ∑ 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑚))

𝑁

𝑚=1

𝑁

𝑛=1

 

This sum has 𝑁2 terms, but if 𝑛 ≠ 𝑚 then 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
, 𝑋𝑘
(𝑚)
𝑋𝑙
(𝑚)
) = 0, and in the remaining 𝑁 

terms with 𝑛 = 𝑚, 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑚)) = 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑛)𝑋𝑙

(𝑛)) =  𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙). 

Therefore, we obtain 

𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)𝑋𝑗

(𝑛)

𝑁

𝑛=1

,∑𝑋𝑘
(𝑛)𝑋𝑙

(𝑛)

𝑁

𝑛=1

) = ∑ ∑ 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑚))

𝑁

𝑚=1

𝑁

𝑛=1

= 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙) 

For the second main term, we need 

𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)𝑋𝑗

(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑘
(𝑛)

𝑁

𝑛=1

∑𝑋𝑙
(𝑛)

𝑁

𝑛=1

) = ∑ ∑∑𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟))

𝑁

𝑟=1

𝑁

𝑚=1

𝑁

𝑛=1

 

Similar to the previous term, the outcome of the generic covariance term in this sum, 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)), depends on which of the indices 𝑛,𝑚, 𝑟 are equal. To keep track of this, 
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we constructed table A1, in which all possible truth values of the equalities 𝑛 = 𝑚, 𝑛 = 𝑟, and 𝑚 = 𝑟 

are listed. Each row contains one combination of truth values and the number of terms with that 

combination. Each row also contains the intermediate expression of the covariance, where the true 

equalities of that row are substituted in the generic expression 𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
, 𝑋𝑘
(𝑚)
𝑋𝑙
(𝑟)
), and the 

final expression, where this is intermediate expression is rewritten in terms of the central moments 

of 𝑿. A few examples may clarify this: 

In the second row, we consider the generic terms 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)) with 𝑛 ≠ 𝑚, 𝑛 ≠

𝑟,𝑚 = 𝑟. There are 𝑁(𝑁 − 1) such terms, and substitution of the equality 𝑚 = 𝑟 leads to the 

intermediate expression 𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
, 𝑋𝑘
(𝑚)
𝑋𝑙
(𝑚)
). Since 𝑛 ≠ 𝑚, 𝑋𝑖

(𝑛)
𝑋𝑗
(𝑛)

 is independent of 

𝑋𝑘
(𝑚)𝑋𝑙

(𝑚), and therefore this covariance is 0, which is the final expression. 

In the third row, we consider the generic terms 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)) with 𝑛 ≠ 𝑚, 𝑛 =

𝑟,𝑚 ≠ 𝑟. There are 𝑁(𝑁 − 1) such terms, and substitution of the equality 𝑛 = 𝑟 leads to 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
, 𝑋𝑘
(𝑚)
𝑋𝑙
(𝑛)
). Since 𝑛 ≠ 𝑚, 𝑋𝑖

(𝑛)
𝑋𝑗
(𝑛)

 is independent of 𝑋𝑘
(𝑚)

 but not of 𝑋𝑙
(𝑛)

. Here we 

can use proposition A1, and obtain 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑙)𝔼(𝑋𝑘). 

In the fourth row, we consider the terms with 𝑛 ≠ 𝑚, 𝑛 = 𝑟,𝑚 = 𝑟. This is a logical 

contradiction, and therefore there are 0 of such terms. 

Table A1 

Development of the term ∑ ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟))𝑁
𝑟=1

𝑁
𝑚=1

𝑁
𝑛=1 . 

𝑛 = 𝑚 𝑛 = 𝑟 𝑚 = 𝑟 Count Intermediate expression Final expression 

0 0 0 𝑁(𝑁 − 1)(𝑁 − 2) 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)) 0 

0 0 1 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑚)) 0 

0 1 0 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑛)) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑙)𝔼(𝑋𝑘) 

0 1 1 0   

1 0 0 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑛)𝑋𝑙

(𝑟)) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘)𝔼(𝑋𝑙) 

1 0 1 0   

1 1 0 0   

1 1 1 𝑁 𝐶𝑜𝑣(𝑋𝑖
(𝑛)𝑋𝑗

(𝑛), 𝑋𝑘
(𝑛)𝑋𝑙

(𝑛)) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙) 
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Summarizing from table A1, we obtain  

𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)𝑋𝑗

(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑘
(𝑛)

𝑁

𝑛=1

∑𝑋𝑙
(𝑛)

𝑁

𝑛=1

)

= 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑙)𝔼(𝑋𝑘) + 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑘)𝔼(𝑋𝑙)

+ 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑘𝑋𝑙) 

For the third main term, we obtain analogously, 

𝐶𝑜𝑣 (∑𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)

𝑁

𝑛=1

,∑ 𝑋𝑖
(𝑛)

𝑁

𝑛=1

∑𝑋𝑗
(𝑛)

𝑁

𝑛=1

)

= 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑗)𝔼(𝑋𝑖) + 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙, 𝑋𝑖)𝔼(𝑋𝑗)

+ 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑘𝑋𝑙) 

For the fourth term, we need to develop 

𝐶𝑜𝑣 (∑𝑋𝑖
(𝑛)

𝑁

𝑛=1

∑𝑋𝑗
(𝑛)

𝑁

𝑛=1

, ∑𝑋𝑘
(𝑛)

𝑁

𝑛=1

∑𝑋𝑙
(𝑛)

𝑁

𝑛=1

) = 𝐶𝑜𝑣(∑ ∑ 𝑋𝑖
(𝑛)𝑋𝑗

(𝑚)

𝑁

𝑚=1

𝑁

𝑛=1

,∑∑𝑋𝑘
(𝑞)
𝑋𝑙
(𝑟)

𝑁

𝑟=1

𝑁

𝑞=1

)

= ∑ ∑∑∑𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝑋𝑗
(𝑚)
, 𝑋𝑘
(𝑞)
𝑋𝑙
(𝑟)
)

𝑁

𝑟=1

𝑁

𝑞=1

𝑁

𝑚=1

𝑁

𝑛=1

 

The generic expression for the covariances in this sum is 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑞)
𝑋𝑙
(𝑟)). There are now 

four indices, 𝑛,𝑚, 𝑞, 𝑟 and therefore there are six equalities that may or may not be true: 𝑚 = 𝑛, 𝑞 =

𝑛, 𝑞 = 𝑚, 𝑟 = 𝑛, 𝑟 = 𝑚, 𝑟 = 𝑞. All possible truth values of these equalities are listed in table A2, 

together with their count, the intermediate expression, and the final expression. For example, in the 

third row, we consider the case where 𝑟 = 𝑚, while all other indices are unequal. There are 𝑁(𝑁 −

1)(𝑁 − 2) such terms. Substitution of 𝑟 = 𝑚 leads to 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑞)
𝑋𝑙
(𝑟)) =

𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)), and then proposition A1 leads to 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑟)) =
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𝔼(𝑋𝑖
(𝑛)
)𝐶𝑜𝑣 (𝑋𝑗

(𝑚)
, 𝑋𝑘
(𝑚)
)𝔼(𝑋𝑙

(𝑟)
) =  𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑙)𝔼(𝑋𝑖)𝔼(𝑋𝑘). In row 13 of table A2, we used the 

following reasoning: 

𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑛)) = 𝔼(𝑋𝑖
(𝑛)𝑋𝑗

(𝑚)𝑋𝑘
(𝑚)𝑋𝑙

(𝑛)) − 𝔼(𝑋𝑖
(𝑛)𝑋𝑗

(𝑚))𝔼 (𝑋𝑘
(𝑚)𝑋𝑙

(𝑛)) = 

𝔼(𝑋𝑖
(𝑛)𝑋𝑙

(𝑛))𝔼(𝑋𝑗
(𝑚)𝑋𝑘

(𝑚)) − 𝔼(𝑋𝑖
(𝑛))𝔼(𝑋𝑗

(𝑚))𝔼(𝑋𝑘
(𝑚))𝔼(𝑋𝑙

(𝑛)) = 

𝔼(𝑋𝑖𝑋𝑙)𝔼(𝑋𝑗𝑋𝑘) − 𝔼(𝑋𝑖)𝔼(𝑋𝑗)𝔼(𝑋𝑘)𝔼(𝑋𝑙) 

A similar argument leads to the final expression in row 19 of table A2. 

Table A2 

Development of the term ∑ ∑ ∑ ∑ 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)𝑋𝑗

(𝑚), 𝑋𝑘
(𝑞)
𝑋𝑙
(𝑟))𝑁

𝑟=1
𝑁
𝑞=1

𝑁
𝑚=1

𝑁
𝑛=1 . 

 𝑚
= 𝑛 

𝑞
= 𝑛 

𝑞
= 𝑚 

𝑟
= 𝑛 

𝑟
= 𝑚 

𝑟
= 𝑞 

Count Final expression 

1 0 0 0 0 0 0 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁
− 3) 0 

2 0 0 0 0 0 1 𝑁(𝑁 − 1)(𝑁 − 2) 0 

3 0 0 0 0 1 0 𝑁(𝑁 − 1)(𝑁 − 2) 𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑙)𝔼(𝑋𝑖)𝔼(𝑋𝑘) 

4 0 0 0 0 1 1 0  

5 0 0 0 1 0 0 𝑁(𝑁 − 1)(𝑁 − 2) 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑙)𝔼(𝑋𝑗)𝔼(𝑋𝑘) 

6 0 0 0 1 0 1 0  

7 0 0 0 1 1 0 0  

8 0 0 0 1 1 1 0  

9 0 0 1 0 0 0 𝑁(𝑁 − 1)(𝑁 − 2) 𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑘)𝔼(𝑋𝑖)𝔼(𝑋𝑙) 

10 0 0 1 0 0 1 0  

11 0 0 1 0 1 0 0  

12 0 0 1 0 1 1 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑗)𝔼(𝑋𝑖) 

13 0 0 1 1 0 0 𝑁(𝑁 − 1) 𝔼(𝑋𝑖𝑋𝑙)𝔼(𝑋𝑗𝑋𝑘)

− 𝔼(𝑋𝑖)𝔼(𝑋𝑗)𝔼(𝑋𝑘)𝔼(𝑋𝑙) 

14 0 0 1 1 0 1 0  

15 0 0 1 1 1 0 0  

16 0 0 1 1 1 1 0  

17 0 1 0 0 0 0 𝑁(𝑁 − 1)(𝑁 − 2) 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)𝔼(𝑋𝑗)𝔼(𝑋𝑙) 

18 0 1 0 0 0 1 0  

19 0 1 0 0 1 0 𝑁(𝑁 − 1) 𝔼(𝑋𝑗𝑋𝑙)𝔼(𝑋𝑖𝑋𝑘)

− 𝔼(𝑋𝑖)𝔼(𝑋𝑗)𝔼(𝑋𝑘)𝔼(𝑋𝑙) 

20 0 1 0 0 1 1 0  

21 0 1 0 1 0 0 0  
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 𝑚
= 𝑛 

𝑞
= 𝑛 

𝑞
= 𝑚 

𝑟
= 𝑛 

𝑟
= 𝑚 

𝑟
= 𝑞 

Count Final expression 

22 0 1 0 1 0 1 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑖)𝔼(𝑋𝑗) 

23 0 1 0 1 1 0 0  

24 0 1 0 1 1 1 0  

25 0 1 1 0 0 0 0  

26 0 1 1 0 0 1 0  

27 0 1 1 0 1 0 0  

28 0 1 1 0 1 1 0  

29 0 1 1 1 0 0 0  

30 0 1 1 1 0 1 0  

31 0 1 1 1 1 0 0  

32 0 1 1 1 1 1 0  

33 1 0 0 0 0 0 𝑁(𝑁 − 1)(𝑁 − 2) 0 

34 1 0 0 0 0 1 𝑁(𝑁 − 1) 0 

35 1 0 0 0 1 0 0  

36 1 0 0 0 1 1 0  

37 1 0 0 1 0 0 0  

38 1 0 0 1 0 1 0  

39 1 0 0 1 1 0 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑙)𝔼(𝑋𝑘) 

40 1 0 0 1 1 1 0  

41 1 0 1 0 0 0 0  

42 1 0 1 0 0 1 0  

43 1 0 1 0 1 0 0  

44 1 0 1 0 1 1 0  

45 1 0 1 1 0 0 0  

46 1 0 1 1 0 1 0  

47 1 0 1 1 1 0 0  

48 1 0 1 1 1 1 0  

49 1 1 0 0 0 0 0  

50 1 1 0 0 0 1 0  

51 1 1 0 0 1 0 0  

52 1 1 0 0 1 1 0  

53 1 1 0 1 0 0 0  

54 1 1 0 1 0 1 0  

55 1 1 0 1 1 0 0  

56 1 1 0 1 1 1 0  

57 1 1 1 0 0 0 𝑁(𝑁 − 1) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘)𝔼(𝑋𝑙) 

58 1 1 1 0 0 1 0  

59 1 1 1 0 1 0 0  

60 1 1 1 0 1 1 0  

61 1 1 1 1 0 0 0  

62 1 1 1 1 0 1 0  

63 1 1 1 1 1 0 0  

64 1 1 1 1 1 1 𝑁 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙) 

 

Taking all four main terms together, we obtain: 

https://doi.org/10.1017/psy.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.21


43 
 

𝐶𝑜𝑣(𝐶𝑖𝑗
𝑁 , 𝐶𝑘𝑙

𝑁) = 𝑁−2 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙)

− 𝑁−3 (𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑙)𝔼(𝑋𝑘) + 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑘)𝔼(𝑋𝑙)

+ 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙))

− 𝑁−3 (𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑗)𝔼(𝑋𝑖) + 𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙, 𝑋𝑖)𝔼(𝑋𝑗)

+ 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙)) + 

𝑁−4

(

 
 
 
 
 

𝑁(𝑁 − 1)(𝑁 − 2)(
𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑙)𝔼(𝑋𝑖)𝔼(𝑋𝑘) + 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑙)𝔼(𝑋𝑗)𝔼(𝑋𝑘) +

𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑘)𝔼(𝑋𝑖)𝔼(𝑋𝑙) + 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑘)𝔼(𝑋𝑗)𝔼(𝑋𝑙)
)

+𝑁(𝑁 − 1)(
𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑗)𝔼(𝑋𝑖) + 𝐶𝑜𝑣(𝑋𝑘𝑋𝑙 , 𝑋𝑖)𝔼(𝑋𝑗) +

𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑙)𝔼(𝑋𝑘) + 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗 , 𝑋𝑘)𝔼(𝑋𝑙)
) +

𝑁(𝑁 − 1) (𝔼(𝑋𝑖𝑋𝑙)𝔼(𝑋𝑗𝑋𝑘) + 𝔼(𝑋𝑗𝑋𝑙)𝔼(𝑋𝑖𝑋𝑘) − 2𝔼(𝑋𝑖)𝔼(𝑋𝑗)𝔼(𝑋𝑘)𝔼(𝑋𝑙)) +

𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗, 𝑋𝑘𝑋𝑙) )

 
 
 
 
 

 

The Covariance of Two Sums of Conditional Covariances With Fixed Weights 

In the test proposed by Rosenbaum’s (1984) case 2, the covariance of two items is 

considered conditionally on the sum of the other items. The statistics used by Rosenbaum is a 

standardization of a weighted sum of covariances, where the subgroup sizes act as weights. We will 

now develop a formula for the covariance of a weighted sum of conditional covariances. Let 𝑅𝑖𝑗  be 

the variable that is used for the conditioning of pair (𝑋𝑖 , 𝑋𝑗). In the case of Rosenbaum’s case 2, 𝑅𝑖𝑗  

would be the sum of the other items, but for our purposes it is sufficient to assume that the range of 

𝑅𝑖𝑗  is some finite set. The null hypothesis would now be that 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗|𝑅𝑖𝑗 = 𝑠) ≥ 0 for each 𝑠 in 

the range of 𝑅𝑖𝑗. Denote the corresponding sample covariance as 

𝐶𝑖𝑗𝑠 = 𝑐𝑜𝑣̂(𝑋𝑖, 𝑋𝑗|𝑅𝑖𝑗 = 𝑠) 

Let 𝑁𝑖𝑗𝑠  be the number of subjects in the subsample with 𝑅𝑖𝑗 = 𝑠. Rosenbaum’s statistics is based on 

standardization of  

𝐶𝑖𝑗+ =∑𝑁𝑖𝑗𝑠𝐶𝑖𝑗𝑠
𝑠
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The goal of this section is to obtain a formula for 𝐶𝑜𝑣(𝐶𝑖𝑗+, 𝐶𝑘𝑙+). As a first step, 

𝐶𝑜𝑣(𝐶𝑖𝑗+, 𝐶𝑘𝑙+) =∑∑𝐶𝑜𝑣(𝑁𝑖𝑗𝑠𝐶𝑖𝑗𝑠, 𝑁𝑘𝑙𝑡𝐶𝑘𝑙𝑡)

𝑡𝑠

 

We will now first develop 𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡). In this section we will assume that 𝑁𝑖𝑗𝑠  and 𝑁𝑘𝑙𝑡 are fixed 

numbers instead of random variables. Then ∑ ∑ 𝐶𝑜𝑣(𝑁𝑖𝑗𝑠𝐶𝑖𝑗𝑠, 𝑁𝑘𝑙𝑡𝐶𝑘𝑙𝑡)𝑡𝑠 =

∑ ∑ 𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡)𝑡𝑠 , so a formula for 𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡) would solve the problem. In 

Rosenbaum’s (1984) application, the 𝑁𝑖𝑗𝑠  and 𝑁𝑘𝑙𝑡 are actually random variables, and we will deal 

with this in the next section. 

Let  𝐼𝑖𝑗𝑠
(𝑛)
= 1[𝑅𝑖𝑗

(𝑛)
= 𝑠], the indicator function for the event 𝑅𝑖𝑗 = 𝑠 in subject 𝑛. That is, 

1 [𝑅𝑖𝑗
(𝑛)
= 𝑠] = 1 if 𝑅𝑖𝑗

(𝑛)
= 𝑠, and 1 [𝑅𝑖𝑗

(𝑛)
= 𝑠] = 0 otherwise, so that 𝑁𝑖𝑗𝑠 = ∑ 𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1 . Then  

𝐶𝑖𝑗𝑠
⬚ =

∑ 𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠
−
∑ 𝑋𝑖

(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠

∑ 𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠
 

𝐶𝑘𝑙𝑡
⬚ =

∑ 𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)𝑁

𝑛=1

𝑁𝑘𝑙𝑡
−
∑ 𝑋𝑘

(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)𝑁

𝑛=1

𝑁𝑘𝑙𝑡

∑ 𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)𝑁

𝑛=1

𝑁𝑘𝑙𝑡
 

Therefore 𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡) can be developed analogously to the one-sample case of the previous 

section. We start with rewriting it into four main terms. 

𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡) = 𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑚)𝑋𝑙
(𝑚)𝐼𝑘𝑙𝑡

(𝑚)𝑁
𝑚=1

𝑁𝑘𝑙𝑡
)

− 𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑚)𝐼𝑘𝑙𝑡
(𝑚)𝑁

𝑚=1

𝑁𝑘𝑙𝑡

∑ 𝑋𝑙
(𝑟)𝐼𝑘𝑙𝑡

(𝑟)𝑁
𝑟=1

𝑁𝑘𝑙𝑡
)

− 𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠

∑ 𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑛)𝑋𝑙
(𝑛)𝐼𝑘𝑙𝑡

(𝑛)𝑁
𝑛=1

𝑁𝑘𝑙𝑡
)

+ 𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠

∑ 𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑚)𝐼𝑘𝑙𝑡
(𝑚)𝑁

𝑚=1

𝑁𝑘𝑙𝑡

∑ 𝑋𝑙
(𝑟)𝐼𝑘𝑙𝑡

(𝑟)𝑁
𝑟=1

𝑁𝑘𝑙𝑡
) 
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=
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
∑∑ 𝐶𝑜𝑣 (𝑋𝑖

(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑚)
𝑋𝑙
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
)

𝑁

𝑚=1

𝑁

𝑛=1

−
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
2 ∑∑∑𝐶𝑜𝑣(𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛), 𝑋𝑘
(𝑚)𝐼𝑘𝑙𝑡

(𝑚)𝑋𝑙
(𝑟)𝐼𝑘𝑙𝑡

(𝑟))

𝑁

𝑟=1

𝑁

𝑚=1

𝑁

𝑛=1

−
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

∑∑∑𝐶𝑜𝑣(𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)
, 𝑋𝑖
(𝑚)
𝐼𝑖𝑗𝑠
(𝑚)
𝑋𝑗
(𝑟)
𝐼𝑖𝑗𝑠
(𝑟)
)

𝑁

𝑟=1

𝑁

𝑚=1

𝑁

𝑛=1

+
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

2 ∑∑∑∑𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
𝑋𝑗
(𝑚)
𝐼𝑖𝑗𝑠
(𝑚)
, 𝑋𝑘
(𝑞)
𝐼𝑘𝑙𝑡
(𝑞)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
)

𝑁

𝑟=1

𝑁

𝑞=1

𝑁

𝑚=1

𝑁

𝑛=1

 

Using the results of the previous section, we can express these terms as covariance of the variables 

𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, and 𝑋𝑙𝐼𝑘𝑙𝑡 and their products. The first main term is 

𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)𝑁

𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑚)𝑋𝑙
(𝑚)𝐼𝑘𝑙𝑡

(𝑚)𝑁
𝑚=1

𝑁𝑘𝑙𝑡
)

=
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
∑∑ 𝐶𝑜𝑣 (𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛), 𝑋𝑘
(𝑚)𝑋𝑙

(𝑚)𝐼𝑘𝑙𝑡
(𝑚))

𝑁

𝑚=1

𝑁

𝑛=1

=
𝑁

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡) 

The second main term is 

−𝐶𝑜𝑣 (
∑ 𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛)𝑁
𝑛=1

𝑁𝑖𝑗𝑠
,
∑ 𝑋𝑘

(𝑚)𝐼𝑘𝑙𝑡
(𝑚)𝑁

𝑚=1

𝑁𝑘𝑙𝑡

∑ 𝑋𝑙
(𝑟)𝐼𝑘𝑙𝑡

(𝑟)𝑁
𝑟=1

𝑁𝑘𝑙𝑡
)

= −
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
2 ∑∑∑𝐶𝑜𝑣(𝑋𝑖

(𝑛)𝑋𝑗
(𝑛)𝐼𝑖𝑗𝑠

(𝑛), 𝑋𝑘
(𝑚)𝐼𝑘𝑙𝑡

(𝑚)𝑋𝑙
(𝑟)𝐼𝑘𝑙𝑡

(𝑟))

𝑁

𝑟=1

𝑁

𝑚=1

𝑁

𝑛=1

= −
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
2 (𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡) + 𝑁(𝑁

− 1)𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) + 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡)) 

This is developed in table A3. 
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Table A3 

Development of the term ∑ ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
)𝑁

𝑟=1
𝑁
𝑚=1

𝑁
𝑛=1 . 

𝑛
= 𝑚 

𝑛
= 𝑟 

𝑚
= 𝑟 

Count   

0 0 0 𝑁(𝑁
− 1)(𝑁
− 2) 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
) 0 

0 0 1 𝑁(𝑁
− 1) 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
𝑋𝑙
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
) 0 

0 1 0 𝑁(𝑁
− 1) 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑚)
𝐼𝑘𝑙𝑡
(𝑚)
𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)
) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠 , 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡) 

0 1 1 0   

1 0 0 𝑁(𝑁
− 1) 

𝐶𝑜𝑣(𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠 , 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 

1 0 1 0   

1 1 0 0   

1 1 1 𝑁 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝑋𝑗
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
, 𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)
) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡) 

 

The third main term is analogously, 

−
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

∑∑∑𝐶𝑜𝑣(𝑋𝑘
(𝑛)
𝑋𝑙
(𝑛)
𝐼𝑘𝑙𝑡
(𝑛)
, 𝑋𝑖
(𝑚)
𝐼𝑖𝑗𝑠
(𝑚)
𝑋𝑗
(𝑟)
𝐼𝑖𝑗𝑠
(𝑟)
)

𝑁

𝑟=1

𝑁

𝑚=1

𝑁

𝑛=1

= −
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

(𝑁(𝑁 − 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠) + 𝑁(𝑁

− 1)𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠) + 𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡)) 

The fourth main term is  
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1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

2 ∑∑∑∑𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
𝑋𝑗
(𝑚)
𝐼𝑖𝑗𝑠
(𝑚)
, 𝑋𝑘
(𝑞)
𝐼𝑘𝑙𝑡
(𝑞)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
)

𝑁

𝑟=1

𝑁

𝑞=1

𝑁

𝑚=1

𝑁

𝑛=1

=
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑁(𝑁 − 1)(𝑁 − 2)

(

 
 

𝐶𝑜𝑣(𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)

+𝐶𝑜𝑣(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)

+𝐶𝑜𝑣(𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡)

+𝐶𝑜𝑣(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡))

 
 

+

𝑁(𝑁 − 1)

(

 
 

𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)

+𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)

+𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)

+𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡))

 
 

+

𝑁(𝑁 − 1)(
𝔼(𝑋𝑖𝐼𝑖𝑗𝑠𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠𝑋𝑘𝐼𝑘𝑙𝑡) + 𝔼(𝑋𝑗𝐼𝑖𝑗𝑠𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠𝑋𝑘𝐼𝑘𝑙𝑡)

−2𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡)
)

+
𝑁𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This is developed in table A4. 

Table A4 

Development of ∑ ∑ ∑ ∑ 𝐶𝑜𝑣 (𝑋𝑖
(𝑛)
𝐼𝑖𝑗𝑠
(𝑛)
𝑋𝑗
(𝑚)
𝐼𝑖𝑗𝑠
(𝑚)
, 𝑋𝑘
(𝑞)
𝐼𝑘𝑙𝑡
(𝑞)
𝑋𝑙
(𝑟)
𝐼𝑘𝑙𝑡
(𝑟)
)𝑁

𝑟=1
𝑁
𝑞=1

𝑁
𝑚=1

𝑁
𝑛=1  

  𝑚
= 𝑛 

𝑞
= 𝑛 

𝑞
= 𝑚 

𝑟
= 𝑛 

𝑟
= 𝑚 

𝑟
= 𝑞 

Count Final 

1  0 0 0 0 0 0 𝑁(𝑁
− 1)(𝑁
− 2)(𝑁
− 3) 0 

2  0 0 0 0 0 1 𝑁(𝑁
− 1)(𝑁
− 2) 0 

3  0 0 0 0 1 0 𝑁(𝑁
− 1)(𝑁
− 2) 𝐶𝑜𝑣(𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡) 

4  0 0 0 0 1 1 0  

5  0 0 0 1 0 0 𝑁(𝑁
− 1)(𝑁
− 2) 𝐶𝑜𝑣(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡) 

6  0 0 0 1 0 1 0  

7  0 0 0 1 1 0 0  

8  0 0 0 1 1 1 0  

9  0 0 1 0 0 0 𝑁(𝑁
− 1)(𝑁
− 2) 𝐶𝑜𝑣(𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 
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  𝑚
= 𝑛 

𝑞
= 𝑛 

𝑞
= 𝑚 

𝑟
= 𝑛 

𝑟
= 𝑚 

𝑟
= 𝑞 

Count Final 

10  0 0 1 0 0 1 0  

11  0 0 1 0 1 0 0  

12  0 0 1 0 1 1 𝑁(𝑁
− 1) 𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠) 

13  0 0 1 1 0 0 𝑁(𝑁
− 1) 

𝔼(𝑋𝑗𝐼𝑖𝑗𝑠𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠𝑋𝑙𝐼𝑘𝑙𝑡)

− 𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 

14  0 0 1 1 0 1 0  

15  0 0 1 1 1 0 0  

16  0 0 1 1 1 1 0  

17  0 1 0 0 0 0 𝑁(𝑁
− 1)(𝑁
− 2) 𝐶𝑜𝑣(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 

18  0 1 0 0 0 1 0  

19  0 1 0 0 1 0 𝑁(𝑁
− 1) 

𝔼(𝑋𝑗𝐼𝑖𝑗𝑠𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑖𝐼𝑖𝑗𝑠𝑋𝑘𝐼𝑘𝑙𝑡)

− 𝔼(𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 

 

20  0 1 0 0 1 1 0  

21  0 1 0 1 0 0 0  

22  0 1 0 1 0 1 𝑁(𝑁
− 1) 𝐶𝑜𝑣(𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡, 𝑋𝑖𝐼𝑖𝑗𝑠)𝔼(𝑋𝑗𝐼𝑖𝑗𝑠) 

23  0 1 0 1 1 0 0  

24  0 1 0 1 1 1 0  

25  0 1 1 0 0 0 0  

26  0 1 1 0 0 1 0  

27  0 1 1 0 1 0 0  

28  0 1 1 0 1 1 0  

29  0 1 1 1 0 0 0  

30  0 1 1 1 0 1 0  

31  0 1 1 1 1 0 0  

32  0 1 1 1 1 1 0  

33  1 0 0 0 0 0 𝑁(𝑁
− 1)(𝑁
− 2) 0 

34  1 0 0 0 0 1 𝑁(𝑁
− 1) 0 

35  1 0 0 0 1 0 0  

36  1 0 0 0 1 1 0  

37  1 0 0 1 0 0 0  

38  1 0 0 1 0 1 0  

39  1 0 0 1 1 0 𝑁(𝑁
− 1) 𝐶𝑜𝑣(𝑋𝑖𝐼𝑖𝑗𝑠𝑋𝑗 , 𝑋𝑙𝐼𝑘𝑙𝑡)𝔼(𝑋𝑘𝐼𝑘𝑙𝑡) 

40  1 0 0 1 1 1 0  

41  1 0 1 0 0 0 0  

42  1 0 1 0 0 1 0  

43  1 0 1 0 1 0 0  

44  1 0 1 0 1 1 0  

45  1 0 1 1 0 0 0  

46  1 0 1 1 0 1 0  
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  𝑚
= 𝑛 

𝑞
= 𝑛 

𝑞
= 𝑚 

𝑟
= 𝑛 

𝑟
= 𝑚 

𝑟
= 𝑞 

Count Final 

47  1 0 1 1 1 0 0  

48  1 0 1 1 1 1 0  

49  1 1 0 0 0 0 0  

50  1 1 0 0 0 1 0  

51  1 1 0 0 1 0 0  

52  1 1 0 0 1 1 0  

53  1 1 0 1 0 0 0  

54  1 1 0 1 0 1 0  

55  1 1 0 1 1 0 0  

56  1 1 0 1 1 1 0  

57  1 1 1 0 0 0 𝑁(𝑁
− 1) 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡)𝔼(𝑋𝑙𝐼𝑘𝑙𝑡) 

58  1 1 1 0 0 1 0  

59  1 1 1 0 1 0 0  

60  1 1 1 0 1 1 0  

61  1 1 1 1 0 0 0  

62  1 1 1 1 0 1 0  

63  1 1 1 1 1 0 0  

64  1 1 1 1 1 1 𝑁 𝐶𝑜𝑣(𝑋𝑖𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝑋𝑙𝐼𝑘𝑙𝑡) 

 

Let us now summarize the results. For arbitrary variables 𝑉,𝑊, 𝑋, 𝑌 write 

𝛾1(𝑉,𝑊, 𝑋, 𝑌) = 𝐶𝑜𝑣(𝑉𝑊,𝑋𝑌) 

𝛾2(𝑉,𝑊, 𝑋, 𝑌) = 𝐶𝑜𝑣(𝑉𝑊, 𝑌)𝔼(𝑋) + 𝐶𝑜𝑣(𝑉𝑊,𝑋)𝔼(𝑌) 

𝛾3(𝑉,𝑊, 𝑋, 𝑌) = 𝛾2(𝑋, 𝑌, 𝑉,𝑊) = 𝐶𝑜𝑣(𝑋𝑌,𝑊)𝔼(𝑉) + 𝐶𝑜𝑣(𝑋𝑌, 𝑉)𝔼(𝑊) 

𝛾4(𝑉,𝑊, 𝑋, 𝑌) = 𝐶𝑜𝑣(𝑉, 𝑋)𝔼(𝑊)𝔼(𝑌) + 𝐶𝑜𝑣(𝑉, 𝑌)𝔼(𝑊)𝔼(𝑋) + 𝐶𝑜𝑣(𝑊,𝑋)𝔼(𝑉)𝔼(𝑌)

+ 𝐶𝑜𝑣(𝑊, 𝑌)𝔼(𝑉)𝔼(𝑋) 

𝛾5(𝑉,𝑊, 𝑋, 𝑌) = 𝐶𝑜𝑣(𝑉𝑊,𝑋)𝔼(𝑌) + 𝐶𝑜𝑣(𝑉𝑊, 𝑌)𝔼(𝑋) + 𝐶𝑜𝑣(𝑉, 𝑋𝑌)𝔼(𝑊) + 𝐶𝑜𝑣(𝑊,𝑋𝑌)𝔼(𝑉)

= 𝛾2(𝑉,𝑊, 𝑋, 𝑌) + 𝛾3(𝑉,𝑊, 𝑋, 𝑌) 

𝛾6(𝑉,𝑊, 𝑋, 𝑌) = 𝔼(𝑉𝑌)𝔼(𝑊𝑋) − 𝔼(𝑉)𝔼(𝑊)𝔼(𝑋)𝔼(𝑌) + 𝔼(𝑊𝑌)𝔼(𝑉𝑋) − 𝔼(𝑉)𝔼(𝑊)𝔼(𝑋)𝔼(𝑌) 

and 

𝑇1(𝑉,𝑊, 𝑋, 𝑌, 𝑁) = 𝑁𝛾1(𝑉,𝑊, 𝑋, 𝑌) 

𝑇2(𝑉,𝑊, 𝑋, 𝑌, 𝑁) = 𝑁(𝑁 − 1)𝛾2(𝑉,𝑊, 𝑋, 𝑌) + 𝑁𝛾1(𝑉,𝑊, 𝑋, 𝑌) 
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𝑇3(𝑉,𝑊, 𝑋, 𝑌, 𝑁) = 𝑁(𝑁 − 1)𝛾3(𝑉,𝑊, 𝑋, 𝑌) + 𝑁𝛾1(𝑉,𝑊, 𝑋, 𝑌) 

𝑇4(𝑉,𝑊, 𝑋, 𝑌, 𝑁)

= 𝑁(𝑁 − 1)(𝑁 − 2)𝛾4(𝑉,𝑊, 𝑋, 𝑌) + 𝑁(𝑁 − 1)𝛾5(𝑉,𝑊, 𝑋, 𝑌)

+ 𝑁(𝑁 − 1)𝛾6(𝑉,𝑊, 𝑋, 𝑌) + 𝑁𝛾1(𝑉,𝑊, 𝑋, 𝑌) 

Then the result of the previous section can be written as 

 

𝐶𝑜𝑣(𝐶𝑉𝑊
𝑁 , 𝐶𝑋𝑌

𝑁 ) = 𝑁−2𝑇1(𝑉,𝑊, 𝑋, 𝑌, 𝑁) − 𝑁
−3𝑇2(𝑉,𝑊, 𝑋, 𝑌, 𝑁) − 𝑁

−3𝑇3(𝑉,𝑊, 𝑋, 𝑌, 𝑁)

+ 𝑁−4𝑇4(𝑉,𝑊, 𝑋, 𝑌, 𝑁) 

The result of the present section can be obtained 𝑉 = 𝑋𝑖𝐼𝑖𝑗𝑠, 𝑊 = 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋 = 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑌 = 𝑋𝑙𝐼𝑘𝑙𝑡: 

𝐶𝑜𝑣(𝐶𝑖𝑗𝑠, 𝐶𝑘𝑙𝑡) =
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
𝑇1(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁)

−
1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
2 𝑇2(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁)

−
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

𝑇3(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁)

+
1

𝑁𝑖𝑗𝑠
2 𝑁𝑘𝑙𝑡

2 𝑇4(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁) 

Thus 

𝐶𝑜𝑣(𝑁𝑖𝑗𝑠𝐶𝑖𝑗𝑠, 𝑁𝑘𝑙𝑡𝐶𝑘𝑙𝑡)

= 𝑇1(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁) −
1

𝑁𝑘𝑙𝑡
𝑇2(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡 , 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁)

−
1

𝑁𝑖𝑗𝑠
𝑇3(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠, 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁) +

1

𝑁𝑖𝑗𝑠𝑁𝑘𝑙𝑡
𝑇4(𝑋𝑖𝐼𝑖𝑗𝑠, 𝑋𝑗𝐼𝑖𝑗𝑠 , 𝑋𝑘𝐼𝑘𝑙𝑡, 𝑋𝑙𝐼𝑘𝑙𝑡, 𝑁) 
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