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Abstract. Let (A,m) be a Cohen–Macaulay local ring of dimension d and let
I ⊆ J be two m-primary ideals with I a reduction of J. For i = 0, . . . , d, let eJ

i (A)
(eI

i (A)) be the ith Hilbert coefficient of J (I), respectively. We call the number ci(I, J) =
eJ

i (A) − eI
i (A) the ith relative Hilbert coefficient of J with respect to I . If GI (A) is

Cohen–Macaulay, then ci(I, J) satisfy various constraints. We also show that vanishing
of some ci(I, J) has strong implications on depth GJn (A) for n � 0.

1991 Mathematics Subject Classification. Primary 13A30, Secondary 13D40,
13D07.

1. Introduction. Let (A,m) be a Cohen–Macaulay local ring of dimension d and
let J be an m-primary ideal. The Hilbert–Samuel function of A with respect to J is
HJ(n) = λ(A/Jn+1), (here, λ(−) denotes the length). It is well known that HJ is of
polynomial type, i.e. there exists PJ (X) ∈ �[X ] such that HJ(n) = PJ(n) for all n � 0.
We write

PJ(X) = eJ
0(A)

(
X + d

d

)
− eJ

1(A)
(

X + d − 1
d − 1

)
+ · · · + (−1)deJ

d (A).

Then, the numbers eJ
i (A) for i = 0, 1, . . . , d are the Hilbert coefficients of A with respect

to J. The number eJ
0(A) is called the multiplicity of A with respect to J.

Now assume for convenience A has infinite residue field. Then, J has a minimal
reduction q generated by a system of parameters of A. Let GrJ(A) = ⊕

n≥0 Jn/Jn+1 be
the associated graded ring of A with respect to J. There has been a lot of research
regarding properties of J and q and the depth properties of GrJ(A). For example, if
J2 = qJ, then we say J has minimal multiplicity and in this case GrJ(A) is Cohen–
Macaulay (see [14]).
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In the context of this paper, we consider minimal reduction to be an absolute
reduction of J. The main new idea of this paper is that it is convenient to consider
reduction I of J not necessarily minimal but having the crucial property that GrI (A) is
Cohen–Macaulay. We note that if q is a minimal reduction of J then it is generated by
system of parameters of A and so necessarily Grq(A) is Cohen–Macaulay.

As I is a reduction of J, then necessarily eI
0(A) = eJ

0(A). Let

ci(I, J) = eJ
i (A) − eI

i (A) for i ≥ 1.

Then, we say that ci(I, J) is the ith relative Hilbert coefficient of J with respect to
I . We note that if q is a minimal reduction of J, then eq

i (A) = 0 for i ≥ 1 and so
ci(q, J) = eJ

i (A) for i ≥ 1.
Let us recall the classical Northcott’s inequality

eJ
1(A) ≥ eJ

0(A) − λ(A/J)

(see [10]). But eJ
0(A) = λ(A/q) where q is a minimal reduction of J. So Northcott’s

inequality can be rewritten as

eJ
1(A) ≥ λ(J/q).

Furthermore, if equality hods, then by Huneke (see [4]) and Ooishi (see [11]), GrJ(A)
is Cohen–Macaulay.

Our first result which easily follows from a deep result of Huckaba and Marley [5,
Theorem 4.7] is the following.

THEOREM 1. Let (A,m) be a Cohen–Macaulay local ring and let I ⊂ J be m-primary
ideals with I a reduction of J. Assume GrI (A) is Cohen–Macaulay. Then,

c1(I, J) ≥ λ(J/I).

If equality holds, then GrJ(A) is also Cohen–Macaulay.

We give a different proof of Theorem 1. Although it’s longer than the proof using
Huckaba and Marley result, it has the advantage that it’s techniques can be generalized
to prove other results.

In [8], Narita proved that eJ
2(A) ≥ 0. Furthermore, if dim = 2, then eJ

2(A) = 0
if and only if the reduction number of Jn is 1 for n � 0. In particular, GrJn (A) is
Cohen–Macaulay for n � 0.

Our generalization of Narita’s result is:

THEOREM 2. Let (A,m) be a Cohen–Macaulay local ring and let I ⊂ J be m-primary
ideals with I a reduction of J. Assume GrI (A) is Cohen–Macaulay. Then,

c2(I, J) ≥ 0.

If dim A = 2 and c2(I, J) = 0, then GrJn (A) is Cohen–Macaulay for n � 0.

If we assume J is integrally closed, then we have the following result:

THEOREM 3. Let (A,m) be a Cohen–Macaulay local ring of dimension 2. Let I ⊂ J
be m-primary ideals with I a reduction of J. Assume J is integrally closed and GrI (A) is
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Cohen–Macaulay. If c1(I, J) = λ(J/I) + 1, then

2λ(J/I) ≤ λ(J̃2/I2) ≤ 2λ(J/I) + 1.

If λ(J̃2/I2) = 2λ(J/I) + 1, then GrJn (A) is Cohen–Macaulay for all n � 0.

In Theorem 3, J̃2 denotes the Ratlif–Rush closure of J2 (see [13]).
Narita gave an example which shows that eJ

3(A) of an m-primary ideal J can be
negative. Recall that an ideal J is said to be normal if Jn is integrally closed for all
n ≥ 1. In [6], Itoh proved that if dim A ≥ 3 and J is a normal ideal, then eJ

3(A) ≥ 0. We
prove:

THEOREM 4. Let (A,m) be a Cohen–Macaulay local ring of dimension d ≥ 3. Let
I ⊂ J be m-primary ideals with I a reduction of J. Assume J is normal and GrI (A) is
Cohen–Macaulay. Then,

c3(I, J) ≥ 0.

If d = 3 and c3(I, J) = 0, then GrJn (A) is Cohen–Macaulay for all n � 0.

In the main body of the paper, we consider a more general situation (A,m) → (B, n)
is a finite map with dim A = dim B, I an m-primary A-ideal, J an n-primary ideal with
IB a reduction of J. We now describe in brief the contents of this paper. In section 2,
we discuss a few prelimary results that we need. In section 3, we prove Theorem 1. In
section 4, we prove Theorems 2, 3. We prove Theorem 4 in section 5. Finally, in section
6, we give a few examples which illustrate our results.

2. Preliminaries. Throughout this paper, we will use the following hypothesis
unless otherwise stated.
HYPOTHESIS. Let (A,m)

ψ−→ (B, n) be a local homomorphism of Cohen–Macaulay
local rings such that

(1) B is finite as an A-module and dim A = dim B.
(2) I ⊂ A and J ⊂ B are ideals such that ψ(I)B is a reduction of J.

REMARK 2.1. ψ(I)B is not necessarily a minimal reduction of J.

REMARK 2.2. Note that B/n is a finite extension of A/m. Set δ = dimA/m B/n.

Then, for any B-module N of finite length, we have λA(N) = δλB(N).

The following result gives a necessary and sufficient condition for ψ(I)B to be a
reduction of J.

LEMMA 2.3. Let ψ : (A,m) −→ (B, n) be a local homomorphism of Cohen–
Macaulay local rings such that B is a finite A-module and dim A = dim B. Let I be
an ideal in A and let J be an ideal in B with ψ(I) ⊂ J. Then, GrJ(B) is finitely generated
as a GrI (A)-module if and only if ψ(I)B is a reduction of J.

Proof. Suppose ψ(I)B is a reduction of J. Let c ≥ 1 be such that ψ(I)Jn = Jn+1 for
all n ≥ c. Then, Jn+1/Jn+2 = ψ(I)(Jn/Jn+1) for all n ≥ c. Therefore, GrJ(B) is a finite
GrI (A)-module.
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Conversely, suppose that GrJ(B) is a finite GrI (A)-module. Then, there exists n0

such that GrI (A)1GrJ(B)n = GrJ(B)n+1 for all n ≥ n0. Thus, for n ≥ n0

Jn+1

Jn+2
= I

I2
.

Jn

Jn+1

= ψ(I)Jn + Jn+2

Jn+2
.

So Jn+1 = ψ(I)Jn + Jn+2. Therefore, by Nakayama’s lemma, Jn+1 = ψ(I)Jn for all
n ≥ n0. �

REMARK 2.4. Let R(I, A) = A[It] = ⊕
n≥0 Intn be the Rees ring of A with respect

to I. If M is a finite A module, then set R(I, M) = ⊕
n≥0 InMtn the Rees module of M

with respect to I. It can also be easily shown ψ(I)B is a reduction of J if and only if
R(J, B) is a finite R(I, A)-module.

REMARK 2.5. Set W = ⊕
n≥0 Jn+1/In+1B. Then, we have

0 −→ R(I, B) −→ R(J, B) −→ W (−1) −→ 0

an exact sequence of R(I, A) modules . If ψ(I)B is a reduction of J, then W (−1) and
hence W are finite R(I, A)-modules.

The following is our main object to study associated graded modules and Hilbert
coefficients.

DEFINITION 2.6. Let M be an A-module. Set LI (M) = ⊕
n≥0 M/In+1M. Then,

the A−module LI (M) can be given an R(I, A)-module structure as follows. The Rees
ring R(I, A) is a subring of A[t] and so A[t] is an R(I, A)-module. Therefore, M[t] =
M ⊗A A[t] is an R(I, A)-module. The exact sequence

0 −→ R(I, M) −→ M[t] −→ LI (M)(−1) −→ 0

defines an R(I, A)-module structure on LI (M)(−1) and so on LI (M). Notice LI (M) is
not necessarily a finitely generated R(I, A)-module.

REMARK 2.7. Let x be M superficial with respect to I and set u = xt ∈ R(I, A)1.
Notice that LI (M)/uLI (M) = LI (M/xM).

By [12, Proposition 5.2], we have the following:

REMARK 2.8. Let x ∈ I\I2. Then, x∗ ∈ GrI (A)1 is GrI (M)-regular if and only if
u = xt ∈ R(I, A)1 is LI (M)-regular.

REMARK 2.9. Let ψ : A −→ B be as before and dim A = d. Assume that I is m-
primary and J is n-primary. Define LI (B) = ⊕

n≥0 B/In+1B and LJ(B) = ⊕
n≥0 B/Jn+1.

As LJ(B) is a R(J, B)-module and so as a R(I, A)-module. For each n ≥ 0, we have

0 −→ Jn+1

In+1B
−→ B

In+1B
−→ B

Jn+1
−→ 0

an exact sequence of A-modules. So we get

0 −→ W −→ LI (B) −→ LJ(B) −→ 0
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an exact sequence of R(I, A)-modules. Therefore,

∑
λA

(
Jn+1

In+1B

)
zn = hI

B(z) − δhJ
B(z)

(1 − z)d+1
.

Note that hI
B(1) − δhJ

B(1) = 0. So we can write

δhJ
B(z) = hI

B(z) + (z − 1)r(z).

Therefore, we have
(1) δeJ

0(B) = eI
0(B);

(2) δeJ
i (B) = eI

i (B) + (r(i−1)(1)/(i − 1)!) for i ≥ 1.

REMARK 2.10. If δeJ
1(B) �= eI

1(B), then dim W = d.

We need the following technical result.

LEMMA 2.11. Let ψ : A −→ B be as before. Assume the residue field of A is infinite.
Then, there exists x ∈ I such that

(1) x is A superficial with respect to I;
(2) ψ(x) is B superficial with respect to J.

Proof. Note that GrJ(B) is a finite GrI (A)-module. Also, ψ induces a natural map
ψ̂ : GrI (A) −→ GrJ(B). Let z ∈ GrI (A)1 be GrI (A) ⊕ GrJ(B) filter regular. Then, note
that ψ̂(z) is GrJ(B) filter regular. Let x ∈ I be such that x∗ = z. Then, clearly x is A
superficial with respect to I . Also, note that ψ(x)∗ = ψ̂(z). So ψ(x) is B superficial with
respect to J. �

The following result easily follows by induction on the dimension of the ring.

COROLLARY 2.12. Let ψ : A −→ B be as before. Assume that the residue field of A
is infinite. Let dim A = d ≥ 1. Then, there exist x = x1, . . . , xd ∈ I such that

(1) x is an A superficial sequence with respect to I;
(2) ψ(x) is a B superficial sequence with respect to J.

Proof. Follows easily by induction on d and using Lemma 2.11. �
If ψ(I)B � J, then W �= 0. Moreover, we have the following result:

LEMMA 2.13. Let ψ : A −→ B be as before. Assume that GrI (B) is Cohen–Macaulay.
Then, the following are equivalent:

(1) δeJ
1(B) = eI

1(B).
(2) GrI (B) = GrJ(B).

Proof. Clearly (2) implies (1). So we assume (1) and prove (2). We first prove that
GrJ(B) is Cohen–Macaulay. By Sally’s machine and Lemma 2.11, we may assume that
dim B = 1. Now consider the exact sequence

0 −→ W −→ LI (B) −→ LJ(B) −→ 0,

where W = ⊕
Jn+1/In+1B. As δeJ

1(B) = eI
1(B), we get λ(W ) < ∞. Let M be the unique

homogeneous maximal ideal of R(I, A) and Hi(−) = Hi
M

(−). As GrI (B) is Cohen–
Macaulay by Remark 2.8, we get H0(LI (B)) = 0. So we get W = 0. Therefore, LI (B) =
LJ(B). So H0(LJ(B)) = 0. Thus, GrJ(B) is Cohen–Macaulay.
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Now assume dim B ≥ 2. We prove LI (B) = LJ(B). This will prove the result. Note
that depth W ≥ 1. Set u := xt where x is A-superficial with respect to I and ψ(x) is B
superficial with respect to J. Then, we have an exact sequence

0 −→ W
uW

−→ LI (B)
uLI (B)

−→ LJ(B)
uLJ(B)

−→ 0.

By induction and Remark 2.7, we get LI (B)/uLI (B) = LJ(B)/uLJ(B). So W = uW . By
graded Nakayama’s Lemma, W = 0. Hence, LI (B) = LJ(B). �

3. Extension of Northcott’s inequality. The following result easily follows from a
result due to Huckaba and Marley (see [5, Theorem 4.7]). However, our techniques to
prove this extend to prove our other results.

THEOREM 3.1. Let ψ : A −→ B be as before. Assume that I is m-primary and J
is n-primary. If GrI (B) is Cohen–Macaulay, then δeJ

1(B) ≥ eI
1(B) + λ(J/IB). If equality

holds then GrJ(B) is also Cohen–Macaulay.

Proof. By Sally’s machine, we may assume that dim A = 1. Set Wi = Ji+1/Ii+1B
and W = ⊕

i≥0 Wi. Note that λ(Wi) = e0(W ) for i � 0. Let (x) be a minimal reduction
of I. Let u = xt ∈ R(I, A)1. Then, we have

0 −−−−→ Wi −−−−→ LI (B)i −−−−→ LJ(B)i −−−−→ 0⏐⏐�u

⏐⏐�u

⏐⏐�u

0 −−−−→ Wi+1 −−−−→ LI (B)i+1 −−−−→ LJ(B)i+1 −−−−→ 0

a commutative diagram with exact rows. As GrI (B) is Cohen–Macaulay so x∗ is GrI (B)
regular. So by Remark 2.8, u is LI (B) regular. Thus, LI (B)i

u−→ LI (B)i+1 is injective. As
W ⊂ LI (B), we also get Wi

u−→ Wi+1 is injective. Therefore, λ(W0) ≤ λ(W1) ≤ · · · ≤
λ(Wi) = e0(W ) for i � 0. So

δeJ
1(B) = eI

1(B) + e0(W )

≥ eI
1(B) + λ(J/IB).

Now suppose δeJ
1(B) = eI

1(B) + λ(J/IB). Then, e0(W ) = λ(J/IB). Thus, λ(Wn) =
λ(W0) for all n ≥ 0. So we get Wi

u−→ Wi+1 is an isomorphism. By Snake lemma,
we get

LJ(B)i
u−→ LJ(B)i+1

is injective. Therefore, u is LJ (B) regular. By Remark 2.8, x∗ is GrJ(B)-regular. Hence,
GrJ(B) is Cohen–Macaulay. �

Now we give an example where Theorem 3.1 holds.

EXAMPLE 3.2. Let A = �[|X, Y, Z, W |]/(XY − YZ, XZ + Y 3 − Z2). Let
x, y, z, w be the images of X, Y, Z, W in A, respectively. Set m = (x, y, z, w). Then,
(A,m) is a two-dimensional Cohen–Macaulay local ring. Let I = (x, y, w). Note that I
is m-primary and z is integral over I . So I is a reduction of m. It is proved in [7, Example
3.6], GrI (A) is Cohen–Macaulay. Using CoCoA (see [1]), we have computed eI

1(A) = 6,
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em
1 (A) = 7 and λ(A/I) = 2. So em

1 (A) = eI
1(A) + λ(m/I). Hence, by Theorem 3.1, we

get Grm(A) is Cohen–Macaulay.

The following example shows that the condition GrI (B) is Cohen–Macaulay and
is essential.

EXAMPLE 3.3. Let A = �[|X, Y, Z, U, V, W |]/(Z2, ZU, ZV, UV, YZ − U3,

XZ − V3), with X, Y, Z, U, V, W inderterminates. Let x, y, z, u, v, w be the images of
X, Y, Z, U, V, W in A. Set m = (x, y, z, u, v, w). Then, (A,m) is a three-dimensional
Cohen–Macaulay local ring. Let I = (x, y, u, w). Note that v4 = vxz = 0 and z2 = 0
in A. Thus, z, v are integral over I . So I is a reduction of m. Let J = (x, y, w). Then, J
is a minimal reduction of I . Using CoCoA (see [1]), we have checked that

PI (t) = 4 + t2 + t3

(1 − t)3
and Pm(t) = 1 + 3t + 3t3 − t4

(1 − t)3
.

We also checked λ(I/J) = 2, λ(I2/I2 ∩ J) = 1 and λ(I3/I3 ∩ J) = 0. Therefore, by [5,
Theorem 4.7], we get depth GrI (A) < 3. Hence, GrI (A) is not Cohen–Macaulay. Also,
note that the h-polynomial of Grm(A) has negative coefficient. So Grm(A) is also not
Cohen–Macaulay. It is easy to see that em

1 (A) = eI
1(A) + λ(m/I).

4. The case of dimension two. Let a be an ideal in a Notherian ring S and M a
finite S module. Then, for n ≥ 1, ãnM := ∪k≥1(an+kM :M ak) is called the Ratliff–Rush
closure of anM.

In general, if a ⊂ b are two ideals in a ring S, then it does not imply that ã ⊂ b̃.
However, for reduction of ideals, we have the following:

PROPOSITION 4.1. Let S be a Notherian ring and let a ⊂ b be a reduction of b. Then,
ãn ⊂ b̃n for all n ≥ 1.

Proof. Let x ∈ ãn. So xak ⊂ an+k for some k. Thus, xakbr ⊂ an+kbr for all r ≥ 0.

As a ⊂ b is a reduction so abs = bs+1 for s � 0. Choose r ≥ s. Then, akbr = bk+r.

Therefore, xbk+r ⊂ bn+k+r. Thus, x ∈ b̃n. �

4.2. Let M be an A-module. Define L̃I (M) = ⊕
n≥0 M/Ĩ n+1M. Then, L̃I (M) is an

R(̃I, A)-module so R(I, A)-module. Set

L̃J(B) =
⊕
n≥0

B/J̃n+1 and W̃ =
⊕
n≥0

J̃n+1/In+1B.

Then, we have

0 −→ W̃ −→ LI (B) −→ L̃J(B) −→ 0

an exact sequence of R(I, A) modules. Note that hI
B(1) = δhJ

B(1) = δ̃hJ
B(1). Therefore,

we can write

δ̃hJ
B(z) = hI

B(z) + (z − 1)̃r(z) and HW̃ (z) = r̃(z)
(1 − z)d

.
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Therefore,
(1) δ̃eJ

0(B) = eI
0(B).

(2) δ̃eJ
i (B) = eI

i (B) + r̃(i−1)(1)/(i − 1)!.
Now we extend a famous result of Narita concerning second Hilbert coefficient

(see [8]).

PROPOSITION 4.3. Let ψ : A −→ B be as before and dim A ≥ 2. Let I be m-primary
and J be n-primary. Assume that GrI (B) is Cohen–Macaulay. Then,

δeJ
2(B) ≥ eI

2(B).

Proof. We may assume that dim A = 2. Let M be the unique homogeneous
maximal ideal of R(I, A). Let Hi(−) := HM(−) be the ith local cohomology module.
As GrI (B) is Cohen–Macaulay, so Hi(GrI (B)) = 0 for i = 0, 1. Also note that
H0(G̃rJ(B)) = 0. By Remark 2.8, H0(L̃J(B)) = 0 and Hi(LI (B)) = 0 for i = 0, 1. As
we have

0 −→ W̃ −→ LI (B) −→ L̃J(B) −→ 0

an exact sequence of R(I, A) modules. By considering long exact sequence in local
cohomology, we get Hi(W̃ ) = 0 for i = 0, 1. Hence, W̃ is Cohen–Macaulay. So r̃(1)(1) ≥
0. Also note that eI

2(B) ≥ 0.
Now,

δ̃eJ
2(B) = eI

2(B) + r̃(1)(1).

≥ eI
2(B).

�
REMARK 4.4. From the proof of Proposition 4.3, one can see that W̃ is Cohen–

Macaulay if dim A = 2.

By analysing the case of equality in the above Theorem, we prove:

THEOREM 4.5. Let ψ : A −→ B be as before and dim A = 2. Let I be m-primary
and J be n−primary. Assume that GrI (B) is Cohen–Macaulay. Suppose δeJ

2(B) = eI
2(B).

Then, G̃rJ(B) is Cohen–Macaulay. Consequently, GrJn (B) is Cohen–Macaulay for
n � 0.

Proof. We have δeJ
2(B) = eI

2(B) + r̃(1)(1). By Remark 4.4, we get W̃ is Cohen–
Macaulay. So r̃(1)(1) ≥ 0. By hypothesis, δeJ

2(B) = eI
2(B). So r̃(1)(1) = 0. Therefore,

r̃(z) = c(constant) and hence

HW̃ (z) = c
(1 − z)2

.

Let x, y be an I superficial sequence. Set u = xt, v = yt. Then, u, v ∈ R(I, A)1. Now,
set W̃ = W̃/uW̃ , LI (B) = LI (B)/uLI (B) and L̃J (B) = L̃J(B)/uL̃J (B). As u is W̃ ⊕
LI (B) ⊕ L̃J(B)-regular, we get

0 −→ W̃ −→ LI (B) −→ L̃J(B) −→ 0

an exact sequence. So we get a commutative diagram
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0 −−−−→ W̃i −−−−→ LI (B)i −−−−→ L̃J (B)i −−−−→ 0⏐⏐�v

⏐⏐�v

⏐⏐�v

0 −−−−→ W̃i+1 −−−−→ LI (B)i+1 −−−−→ L̃J(B)i+1 −−−−→ 0

with exact rows. As GrI (B) and W̃ are Cohen–Macaulay, we get that v is LI (B) ⊕ W̃ -
regular. So LI (B)i

v−→ LI (B)i+1 and W̃i
v−→ W̃i+1 are injective. As λ(W̃i) = λ(W̃i+1)

for all i. We get W̃i
v−→ W̃i+1 is an isomorphism. By Snake Lemma, it follows

that L̃J(B)i
v−→ L̃J(B)i+1 is injective. So depth L̃J(B) ≥ 2. Hence, by Remark 2.8,

depth G̃rJ(B) ≥ 2. So G̃rJ(B) is Cohen–Macaulay. In particular, GrJn (B) is Cohen–
Macaulay for n � 0 (see [12]). �

Now we give an example where Theorem 4.5 holds.

EXAMPLE 4.6. Let A = �[|X, Y, Z, U, V |]/(Z2, ZU, ZV, UV, Y 2Z − U3, X2Z −
V3), with X, Y, Z, U, V inderterminates. Let x, y, z, u, v be the images of X, Y, Z, U, V
in A. Set m = (x, y, z, u, v). Then, (A,m) is a two-dimensional Cohen–Macaulay local
ring. Let I = (x, y, z, u) and J = (x, y, z, u, v2). Note that v4 − vx2z = 0 in A. Thus, v

is integral over I . So I is a reduction of J. Let q = (x, y). Then, q is a minimal reduction
of I . Using CoCoA (see [1]), we have computed eI

1(A) = 4 and eI
2(A) = eJ

2(A) = 1. We
also checked that λ(I/q) = 3, λ(I2/I2 ∩ q) = 1. By [5, Theorem 4.7], we get GrI (A) is
Cohen–Macaulay. Hence, by Theorem 4.5, we get G̃rJ(A) Cohen–Macaulay. Hence,
GrJn (A) is Cohen–Macaulay for n � 0.

For integrally closed ideals we prove:

THEOREM 4.7. Let ψ : A −→ B be as before and dim A = 2. Let I be m-primary
and J be n-primary. Assume that GrI (B) is Cohen–Macaulay. Suppose J is integrally
closed and

δeJ
1(B) = eI

1(B) + λ(J/IB) + 1.

Then,
(a) 2λ(J/IB) ≤ λ(J̃2/I2B) ≤ 2λ(J/IB) + 1;
(b) if λ(J̃2/I2B) = 2λ(J/IB) + 1. Then, G̃rJ(B) is Cohen–Macaulay. Consequently,

GrJn (B) is Cohen–Macaulay for n � 0.

Proof. By Remark 4.4, W̃ is Cohen–Macaulay. Let

HW̃ (z) =
∑
n≥0

λA(W̃n)zn = r̃(z)
(1 − z)2

be the Hilbert series of W̃ . Note that all the co-efficients of r̃(z) are positive. Write

r̃(z) = r0 + r1z + · · · + rszs.

Then, we have r0 = λ(̃J/IB) = λ(J/IB) and λ(J̃2/I2B) = 2r0 + r1. We have

δeJ
1(B) = eI

1(B) + r̃(1).

= eI
1(B) + λ(J/IB) + 1.
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Therefore, r̃(1) = λ(J/IB) + 1. Hence, r1 + · · · + rs = 1. So (a) follows.
Suppose (b) holds. i.e.

λ(J̃2/I2B) = 2λ(J/IB) + 1.

Then, r1 = 1 and rj = 0 for j ≥ 2. Let x, y be an I superficial sequence. Set u = xt.
Then, u ∈ R(I, A)1. Also, set U = W̃/uW̃ . Then, we have

0 −→ U −→ LI (B)
uLI (B)

−→ L̃J(B)

uL̃J(B)
−→ 0

an exact sequence. Note that λ(Un) = λ(U2) for n ≥ 2. Also note that v = yt in R(I, A)
is LI (B)/uLI (B) regular. So v is U regular. So we have

0 −→ U(−1) −→ U −→ U
vU

−→ 0

an exact sequence. By Hilbert series (U/vU)j = 0 for j ≥ 2. Now by setting

K = ker
(

(L̃J(B)/uL̃J(B))(−1)
v−→ L̃J(B)/uL̃J (B)

)
, we get by Snake Lemma Kj = 0

for j ≥ 2. Also note that K0 = 0.

CLAIM (K1 = 0). To prove the claim set F = {J̃n}. Then, F is a filtration on B.

Then, F = {J̃n + (x)/(x)} is the quotient filtration on B/xB. Put q = J/(x) = F̄1. We
may assume that q is integrally closed. As J̃n = Jn for n � 0. So we get F̄n = qn for
n � 0.

We prove that F2 : y = F̄1 = q. Let a ∈ F2 : y. So ya ∈ F2. So yn+1a ∈ ynF2 ⊂
F2+n = qn+2 for n � 0. This implies a ∈ q̃ = q̄ = q. It follows that K1 = 0. Thus, K is
zero. So L̃J(B) has depth ≥ 2. This implies G̃rJ(B) is Cohen–Macaulay. So GrJn (B) is
Cohen–Macaulay for n � 0. �

Here, we give an example where our Theorem 4.7 holds:

EXAMPLE 4.8. Let A = �[|X, Y, Z, W |]/(X2 − Y 2Z, XY 4 − Z2). Let x, y, z, w
denotes the images of X, Y, Z, W in A, respectively. Let I = (x, y, w) and m =
(x, y, z, w). Then, (A,m) is a two-dimensional Cohen–Macaulay local ring. Using
CoCoA (see [1]), we have computed

PI (t) = 2 + 2t
(1 − t)2

and Pm(t) = 1 + 2t + t2

(1 − t)2
.

We have em
1 (A) = eI

1(A) + λ(m/I) + 1. We have also checked that λ(m̃2/I2) = 3 =
2λ(m/I) + 1. Since I has minimal multiplicity, GrI (A) is Cohen–Macaulay. Hence,
by Theorem 4.7 (b), we get G̃rm(A) is Cohen–Macaulay.

5. The case of third Hilbert coefficient. In this section, we deal with the third
Hilbert coefficients and generalize a remarkable result of Itoh for normal ideals
(see [6]).

THEOREM 5.1. Let A = B and ψ = idA. Let dim A ≥ 3. Let I, J be m-primary ideals
and I is a reduction of J. Suppose GrI (A) is Cohen–Macaulay and J is asymptotically
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normal. Then,

eJ
3(A) ≥ eI

3(A).

Proof. By standard argument, it suffices to consider dim A = 3. As J is
asymptotically normal by [3, Theorem 3.1], there exists n0 such that depth GrJn (A) ≥ 2
for all n ≥ n0.

Now set n ≥ n0, T = In , K = Jn, and W = ⊕
i≥0 Ki+1/Ti+1. Then, we get an exact

sequence:

0 −→ W −→ LT (A) −→ LK (A) −→ 0

of R(T, A)-modules. Note that depth LK (A) ≥ 2. So we get W is Cohen–Macaulay of
dimension 3. Thus, ei(W ) ≥ 0 for 0 ≤ i ≤ 3. Hence,

eK
3 (A) = eT

3 (A) + e2(W ).

≥ eT
3 (A).

By [9, Remark 2], we have eJ
3(A) = eJn

3 (A) and eI
3(A) = eIn

3 (A) for all n ≥ 1. Therefore,
eJ

3(A) ≥ eI
3(A). �

By analysing the case of equality, we prove the following:

THEOREM 5.2. Let A = B and ψ = idA. Assume dim A = 3. Let I, J be two m-
primary ideals and I is a reduction of J. Suppose GrI (A) is Cohen–Macaulay and J is
asymptotically normal. If eJ

3(A) = eI
3(A), then GrJn (A) is Cohen–Macaulay for all n � 0.

Proof. As J is asymptotically normal by [3, Theorem 3.1], there exists n0 such
that for all n ≥ n0, depth GrJn (A) ≥ 2. Now set n ≥ n0, T = In , K = Jn, and W =⊕

i≥0 Ki+1/Ti+1. From the proof of Theorem 5.1, we see that W is Cohen–Macaulay
of dimension 3 and eJ

3(A) = eI
3(A) + e2(W ).

Suppose eI
3(A) = eJ

3(A). Then, e2(W ) = 0. So the Hilbert series of W is given by

HW (s) = r0 + r1s
(1 − s)3

.

Let x, y, z be a K ⊕ T superficial sequence. Set u = xt, v = yt, and w = zt. Note
that u, v, w ∈ R(T, A)1. Also, set U = W/(u, v)W, LK (A) = LK (A)/(u, v)LK (A) and
LT (A) = LT (A)/(u, v)LT (A). Then, we get an exact sequence

0 −→ U −→ LT (A) −→ LK (A) −→ 0.

Now consider the commutative diagram

0 −−−−→ U(−1) −−−−→ LT (A)(−1) −−−−→ LK (A)(−1) −−−−→ 0⏐⏐�w

⏐⏐�w

⏐⏐�w

0 −−−−→ U −−−−→ LT (A) −−−−→ LK (A) −−−−→ 0

Also note that Hilbert series of U/wU is given by

HU/wU (s) = r0 + r1s.
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Therefore, (U/wU)j = 0 for j ≥ 2. Now, set E = ker(LK (A)(−1)
w−→ LK (A)). Note

that Ej = 0 for all j ≥ 2 by Snake Lemma. Also, E0 = 0.

CLAIM (E1 = 0). To prove this set, F = {Km}. Then, F is a filtration on A. Also,
F = {Km + (x, y)/(x, y)} is the quotient filtration on A/(x, y)A. Put q = K/(x, y) = F̄1.

We may assume that q is integrally closed. Note F̄m = qm for m ≥ 1.

We prove that F2 : z = F̄1 = q. Let a ∈ F2 : z. So za ∈ F2 = q2. This implies
a ∈ q̃ ⊂ q̄ = q. It follows that E1 = 0. Thus, E is zero. So depth LK (A) ≥ 1.
Thus, depth LK (A) ≥ 3. Therefore, depth GrK (A) ≥ 3. Hence, GrK (A) is Cohen–
Macaulay. �

6. Examples. In this section, we show that there are plenty of examples where
Theorem 3.1 holds.

EXAMPLE 6.1. Let (R,m) be a regular local ring. Let (B, n) = (R/a,m/a) be a
Cohen–Macaulay local ring. Suppose dim R = t and dim B = d. Then, ht(a) = t − d.

Set g = t − d. Then, there exists a regular sequence u = u1, . . . , ug of length g. Set
A = R/(u). Then, we get a surjective ring homomorphism

A
ψ
� B.

Let q be a minimal reduction of mA. Set I = (q :A mA). Clearly, q ⊂ I ⊂ mA. By [2,
Theorem 2.1], we get

I2 = qI.

So ψ(I2) = ψ(q)ψ(I). Thus, GrI (B) has minimal multiplicity. As ψ(q)B is a minimal
reduction ψ(mA) = n, so we get ψ(I)B is a reduction of ψ(mA) = n. Hence by
Theorem 3.1, we get

en
1 (B) ≥ eI

1(B) + λ(n/I).

EXAMPLE 6.2. Suppose (A,m) is a Gorenstein local ring which not regular. Let J
be any m-primary ideal. Set I := (q :A m) where q is a minimal reduction of J. Then,

eJ
1(A) ≥ eI

1(A) + λ(J/I).

Proof. It is enough to prove that I has minimal multiplicity. By [2, Theorem 2.1],
we have q ⊂ I ⊂ J and I2 = qI. Thus, I has minimal multiplicity. �

EXAMPLE 6.3. Let (A,m)
ψ→ (B, n) be a local homomorphism of Cohen–Macaulay

local rings with dim A = dim B. Let I be an m-primary ideal in A. If A is regular and
GrI (A) is Cohen–Macaulay, then GrI (B) is Cohen–Macaulay. If ψ(I)B is a reduction
of J in B, then

eJ
1(B) ≥ eI

1(B) + λ(J/I).
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Proof. By Auslander–Buchsbaum formula, we get B is free as an A-module. As
GrI (A) is Cohen–Macaulay, so GrI (B) is Cohen–Macaulay. Hence, by Theorem 3.1,
we get the inequality. �

EXAMPLE 6.4. Let (A,m) be Cohen–Macaulay local ring and I be an m-primary
ideal. Let I ⊂ J ⊂ Ī (integral closure of I). If GrI (A) is Cohen–Macalay, then by
Theorem 3.1, we get

eJ
1(A) ≥ eI

1(A) + λ(J/I).

If equality holds above, then GrJ(A) is Cohen–Macaulay.
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