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Simplicity of heads and socles of tensor products

Seok-Jin Kang, Masaki Kashiwara, Myungho Kim and Se-jin Oh

ABSTRACT

We prove that, for simple modules M and N over a quantum affine algebra, their tensor
product M ® N has a simple head and a simple socle if M ® M is simple. A similar result
is proved for the convolution product of simple modules over quiver Hecke algebras.

Introduction

Let g be a complex simple Lie algebra and U,(g) the associated quantum group. The
multiplicative property of the upper global basis B of the negative half U, (g) was investigated
n [BZ93, Lec03]. Set ¢’B = {¢"b | b € B, n € Z}. In [BZ93], Berenstein and Zelevinsky
conjectured that, for by, bo € B, the product bibo belongs to qZB if and only if b; and bo
g-commute (i.e. boby = ¢"b1by for some n € Z). However, Leclerc found examples of b € B such
that v? € ¢*B [Lec03].

On the other hand, the algebra U, (g) is categorified by quiver Hecke algebras [KL09, KL11,
Rou08] and also by quantum affine algebras [HL10, HL13, KKK13a, KKK13b]. In this context,
the products in U, (g) correspond to the convolution or the tensor products in quiver Hecke
algebras or quantum affine algebras. The upper global basis corresponds to the set of isomorphism
classes of simple modules over the quiver Hecke algebras or the quantum affine algebras [Ari96,
Roul2, VV11] under suitable conditions. Then Leclerc conjectured several properties of products
of upper global bases and also convolutions and tensor products of simple modules. The purpose
of this paper is to give an affirmative answer to some of his conjectures.

In this introduction, we state our results in the case of modules over quantum affine algebras.
Similar results hold also for quiver Hecke algebras (see §3.1).

Let g be an affine Lie algebra and Ué(g) the associated quantum affine algebra. A simple
U,(g)-module M is called real if M ® M is also simple.

CONJECTURE [Lec03, Conjecture 3]. Let M and N be finite-dimensional simple U, (g)-modules.
We assume, further, that M is real. Then M ® N has a simple socle S and a simple head H.
Moreover, if S and H are isomorphic, then M ® N is simple.

In this paper we shall give an affirmative answer to this conjecture (Theorem 3.12 and
Corollary 3.16). In the course of the proof, R-matrices play an important role. Indeed, the
simple socle of M ® N coincides with the image of the renormalized R-matrixry , : N ® M —
M ® N and the simple head of M ® N coincides with the image of the renormalized R-matrix

UYNE T M®N—> N®M.

Received 16 April 2014, accepted in final form 22 August 2014, published online 26 November 2014.
2010 Mathematics Subject Classification 81R50, 16GXX, 17B37 (primary).
Keywords: quantum affine algebra, Khovanov-Lauda—Rouquier algebra, R-matrix.

The first author’s work was supported by NRF grant #2014021261 and NRF grant #2013055408. The
second author’s work was supported by Grant-in-Aid for Scientific Research (B) 22340005, Japan Society for
the Promotion of Science. The third author’s work was supported by BK21 PLUS SNU Mathematical Sciences
Division.

This journal is (© Foundation Compositio Mathematica 2014.

https://doi.org/10.1112/50010437X14007799 Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X14007799

S.-J. KANG ET AL.

Denoting by M ¢ N the head of M ® N, we also prove that N — M ¢ N is an automorphism
of the set of the isomorphism classes of simple U, (g)-modules (Corollary 3.14). The inverse is
given by N — No*M, where *M is the right dual of M. It is an analogue of [Lec03, Conjecture 2]
originally stated for global bases.

1. Quiver Hecke algebras

In this section, we briefly recall the basic facts on quiver Hecke algebras and R-matrices
following [KKK13a]. Since the grading of quiver Hecke algebras is not important in this paper,
we ignore the grading. Throughout the paper, modules mean left modules.

1.1 Convolutions

We recall the definition of quiver Hecke algebras. Let k be a field. Let I be an index set. Let Q
be the free Z-module with a basis {;}icr. Set QT = >, Zzocy. For =37 a;, € QT, we
set ht(8) = n. For n € Zp and 8 € Q" such that ht(3) = n, we set

IB:{V: (Vs ) €1 |y + -+ au,, = B}
Let us take a family of polynomials (Qi;); jer in k[u, v] which satisfy

Qij(u,v) = Qji(v,u) for anyi, j eI,
Qii(u,v) =0 foranyie€ I.

For i,5 € I, we set
Qi v,w) = L= Q) gy
U —w

We denote by &,, = (s1,...,s,—1) the symmetric group on n letters, where s; := (i,i + 1) is
the transposition of ¢ and ¢ + 1. Then &,, acts on I"™ by place permutations.
DEFINITION 1.1. For 3 € Q1 with ht(8) = n, the quiver Hecke algebra R(j3) at 3 associated with a

matrix (Qi;)i jer is the k-algebra generated by the elements {e(v)},crs, {Zk }1<k<n, {7k }i<k<n—1
satisfying the following defining relations:

6(1/)6(1//) =0, e(v), Z e(v) =1,
velb
TpTm = TmTg, Tre(v) = e(v)xg,
Tme(V) = e(sm(V))va ThTm = TmTr  if ’k — m| > 1,

T,fe(u) - QVkJ/kH (xka :(;k+1)e(1/)7

—e(v) ifm=kand vy = vy,
(ThTm — Ty (myTh)e(V) = { e(v)  ifm=Fk+1and v = vpq,
0 otherwise,

ka,ykJrl (xkaxk+17$k+2) if Vg = Vg2,

T — TEThk+1Tk)E(V) =
(Th-+1ThTht1 — ThTht1Tk)€(V) {0 otherwise.

For an element w of the symmetric group &,, let us choose a reduced expression w =

iy -~ Si,, and set
Tw = Tiy " Tiy-
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In general, this depends on the choice of reduced expressions w. Then we have the PBW
decomposition

RB)= P kK, zale()mu. (1.1)
veIB weS,

We denote by R(f)-mod the category of R(/3)-modules M such that M is finite-dimensional over
k and the action of xj on M is nilpotent for any k.
For an R(f)-module M, the dual space

M* :=Hom (M, k)
is endowed with the R(f)-module structure given by
(r- f)(u):=f((r)u) for f e M*,r € R(B),u € M,

where 1 denotes the k-algebra anti-involution on R(/) which fixes the generators {e(v)},czs,

{zr}t1<k<n, {Thicken—1.
For 3,7 € Q1 with ht(3) = m and ht(y) = n, set

e(B,y) = > e(v) € R(B+7).

Ve[m+n7
(V17"'7Vm)6157
(V'm+l7~~~7V7n+'n)61’Y

Then e(8,) is an idempotent. Let

R(B) @ R(v) — e(B,7)R(B+7)e(B,7)
be the k-algebra homomorphism given by

() ® e(v) > e(uxv) (ue P wel,
zp ® 1> ape(B,7) (1 <k<m),
1® 2k Zmake(B7) (1< k<)
T ® 1= 1e(B,v) (1 <k <m),
1@ 1 = Take(B,y) (1< k<n).

Here p * v is the concatenation of p and v, i.e.
pxV = (:ula"'nuﬂ’hyl""al/n)‘
For an R(f)-module M and an R(7y)-module N, we define their convolution product M oN by

MoN=RE+(By) o (MoN) (1.2)

Set m = ht() and n = ht(y). Set
S = {w € Gpmyn | W1 ) and W|jy41, 4] are increasing}.

Here [a,b] :=={k € Z | a < k < b}. Then we have

MoN= P m(M&N). (1.3)
wESH, n
We also have (see [LV11, Theorem 2.2(2)])
(MoN)"~N*"oM*. (1.4)
379
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1.2 R-matrices for quiver Hecke algebras
1.2.1 Intertwiners. For ht(8) =n and 1 < a < n, we define ¢, € R(5) by

(Ta$a - -'EaTa)e(V)
= (xa+17—a - Taxa-l-l)e(’/)
V) (1.5)
V) if v, = veq1,
Tee(V) otherwise.

They are called the intertwiners.

LEMMA 1.2.

(i) @(216(1/) = (Quavar1 (Tas Tat1) + Ouyvyrr JE(V).
(i1) {@k}1<k<n satisfies the braid relation.

(i) Forw € &y, let w = $q, - - - Sq, be a reduced expression for w and set @, = @q, - - - Pa,. Then
v does not depend on the choice of reduced expressions for w.

(iv) Forw € &, and 1 <k < n, we have QT = Ty () Puw-
(v) Forw e &, and 1 <k <n, if w(k+1) =w(k) + 1, then o7k = Ty(k)Puw-

For m,n € Z>y, let us denote by w[m,n| the element of &,,,, defined by

k+n ifl1<k<m,

1.6
k—m iIm<k<m+n. (1.6)

wlm, n](k) = {

Let 8,7 € Q' with ht(8) = m, ht(y) = n, and let M be an R(S)-module and N an R(y)-
module. Then the map M ® N — N oM given by u®v > @y m)(v @ u) is R(B) ® R(y)-linear
by the above lemma, and it extends to an R(8 + 7)-module homomorphism

Ryn:MoN — NoM. (1.7)

Then we obtain the following commutative diagrams:

R R
LoMoN LY MoLoN LoMoN My LoNoM
R and \ iR e
m \L b Rrom,N b
MoNolL NoLoM

1.2.2 Spectral parameters.

DEFINITION 1.3. For 8 € Q%, the quiver Hecke algebra R(3) is called symmetric if Q; ;(u,v)
is a polynomial in w — v for all 4,j € supp(3). Here, we set supp(5) = {ix | 1 < k < n} for

p= ZZ:l Qi «
Assume that the quiver Hecke algebra R(3) is symmetric. Let z be an indeterminate, and
let 1, be the algebra homomorphism

¥, : R(B) — k[z] ® R(B)

given by
¢z($k) =Tk + 2, ¢z(7_k) = Tk, ¢Z(€(V)) = e(y),
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For an R(f)-module M, we denote by M, the (k[z] ® R(3))-module k[z] ® M with the action
of R(S) twisted by 1,. Namely,

e(v)(a®u) =a®e(v)u,
rr(a®@u) = (za) ®u+a ® (zru), (1.9)
(e ®u) = a® (Tpu)

forvelf ac k[z] and w € M. For u € M, we sometimes denote by u, the corresponding

element 1 ® u of the R(5)-module M,.
For a non-zero M € R(/3)-mod and a non-zero N € R(7y)-mod,

let s be the order of zero of Ry, y : M, o N — N o M, i.e. the
largest non-negative integer such that the image of Ry, n is contained (1.10)
in 2°(N o M,).

Note that such an s exists because Ry, v does not vanish [KKK13a, Proposition 1.4.4(iii)].

DEFINITION 1.4. Assume that R(f) is symmetric. For a non-zero M € R(f)-mod and a non-zero
N € R()-mod, let s be an integer as in (1.10). We define

ry,y:MoN—>NoM
by
ryn = (27 Ras,N)|z=0,
and call it the renormalized R-matrix.
By the definition, the renormalized R-matrix r,, y hever vanishes.
We define also
ryy i NoM— MoN
by
I'N,]\/[ = ((_Z)itRN,Mz”Z:O’
where t is the multiplicity of zero of Ry ar, -
Note that if R(5) and R(y) are symmetric, then s coincides with the multiplicity of zero of
Ry n,, and (27°Ry, N )|z=0 = ((—2) "°Rum,N. )| 2=0. Indeed, we have
RszNzQ (u)z ® (v)2,) = ‘pw[n,m]((v)zz ® (u)z)
€ > Kz — 2fr((v)s @ (W).) (1.11)
w,u’ v’
for u € M and v € N. Here w ranges over
Spm = {w € Gmin | W1 n) and W|j41 p44m) are strictly increasing}

and v' € N and v’ € M. Hence, r,, ; is well defined whenever at least one of R(3) and R(y) is

symmetric.
The proof of (1.11) will be given later in §4.

2. Quantum affine algebras

In this section, we briefly review the representation theory of quantum affine algebras
following [AK97, Kas02]. When concerned with quantum affine algebras, we take the algebraic
closure of C(q) in |U,,~o C((g"/™)) as a base field k.
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2.1 Integrable modules
Let I be an index set and A = (a;j); jer be a generalized Cartan matrix of affine type.
We choose 0 € T as the leftmost vertices in the tables in [Kac90, pp. 54, 55] except in the

Aéi) case where we take the longest simple root as «g. Set Iy = I'\{0}.
The weight lattice P is given by

P = (@ ZAZ) ® Z9,
i€l

and the simple roots are given by

o = Z ajZ-Aj + 5(1 = 0)5

jel
The weight ¢ is called the imaginary root. There exist d; € Z~g such that
el

Note that d; = 1 for ¢ = 0. The simple coroots h; € PV := Hom (P, Z) are given by

<hi, Aj> = 5@']‘7 <hi, 5> =0.

Hence we have (h;, oj) = aij.
Let ¢ =) ,c; cih; be a unique element such that ¢; € Z~¢ and

Zec= {he P zn

icl

(h,a;) =0 for any i € I}.

Let us take a Q-valued symmetric bilinear form (s, ) on P such that

2(041', )\)

(i, A) = (i, o)

and  (0,\) = (¢, \) for any A\ € P.

Let ¢ be an indeterminate. For each i € I, set ¢; = ¢(®®)/2,
DEFINITION 2.1. The quantum group U,(g) associated with (A, P) is the k-algebra generated by
ei, fi (i € I) and ¢* (X € P) satisfying the following relations:

0—=1, q)‘q)‘/ = q)‘J“)‘l for \,\' € P,
Peig = ¢ P figr =M f for e Priel,
1

K, — K-
eifj — fjei = (5”71 — _21 where KZ = qai,
? %
1—a;; 1
> (-1 [ _r“ij] e; el =0 ifij,
r=0 (
1—a;; 1
a 1—a;;— ep . .
> [ r }f WTRI =0 i
7
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Here, we set [n]; = ¢ —q; "/q; — q; ', [n];! = [1}—,[k]; and [T}ZL = [m);!/[m — n];![n];! for
each n € Z>p, 7 € [ and m > n.

We denote by Ug(g) the subalgebra of U,(g) generated by e;, fi, Klﬂ(z € I), and call it a
quantum affine algebra. The algebra Ué(g) has a Hopf algebra structure with the coproduct:

Ale) = e @ K ' +1®e, (2.1)
Alfi) =fi®ol+ K;® fi.

Set
Py = P76

and call it the classical weight lattice. Let cl : P — P be the projection. Then Py = €
Set P ={\€ Py | {c,\) =0} C Pa.
A Ug(g)-module M is called an integrable module if:

iel ZCl(Az)

(a) M has a weight space decomposition

M= P My,

)\EPCI

)

where My ={ue M | Kju=q u for all i € I'};
(b) the actions of e; and f; on M are locally nilpotent for any i € I.

Let us denote by Ué(g)—mod the abelian tensor category of finite-dimensional integrable
U,(g)-modules.

If M is a simple module in Uj(g)-mod, then there exists a non-zero vector u € M of weight
A € PY such that A is dominant (i.e. (h;,A) > 0 for any i € Iy) and all the weights of M lie
in A — Eielo Z=poy. We say that A is the dominant extremal weight of M and w is a dominant
extremal vector of M. Note that a dominant extremal vector of M is unique up to a constant
multiple.

Let z be an indeterminate. For a U,(g)-module M, let us denote by M, the module

k[z, 27 '] ® M with the action of U}(g) given by
ez(uz) = Z6i’0(eiu)zv fz(uz) = Zﬁéi’o(fiu)m Kz(uz) = (Kzu)z
Here, for u € M, we denote by u. the element 1 ® u € k[z,27'] ® M.
2.2 R-matrices
We recall the notion of R-matrices [Kas02, §8]. Let us choose the following universal R-matriz.

Let us take a basis {P,}, of U} (g) and a basis {Q,}, of U, (g) dual to each other with respect
to a suitable coupling between U, (g) and U, (g). Then for U, (g)-modules M and N define

R (u@v) = ¢ S Py Qu, (2.2)

so that Ry gives a U,(g)-linear homomorphism from M ® N to N ® M provided that the
infinite sum has a meaning.

Let M and N be Uj(g)-modules in U;(g)-mod, and let 21 and zz be indeterminates.
Then R‘Z{?ZNZQ converges in the (z2/z1)-adic topology. Hence we obtain a morphism of
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https://doi.org/10.1112/50010437X14007799 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007799

S.-J. KANG ET AL.
k([22/2]] ®k[z2/zﬂ k[Zf[l, Zgﬂ] ® Ué(g)—modules

R v Kza/a)] ©  (Ma ®N.) > Klo/a)] ® (N, ©M.,),

e k[z2/21] k[z2/21]
If there exist a € k((22/21)) and a k[zi!, 25 @ U,(g)-linear homomorphism
R: M., ®N,, — N., ® M,

such that Rﬁi‘l’ N, = aR, then we say that RR}‘Z‘Z N, is rationally renormalizable.
Now assume further that M and N are non-zero. Then we can choose R so that, for any
c1, ¢ € k*, the specialization of R at z1 = ¢1, 22 = ¢2,

Rlz=cy,zp=cy : Mey ® Ney = Ney @ M,

does not vanish. Such an R is unique up to a multiple of k[(z1/22)]* = | |,c; kK*272,". We

write

TN T Rly—zy=1 M @N - N® M,
and call it the renormalized R-matriz. The renormalized R-matrix TN is well defined up to
a constant multiple when Rﬁ‘:;’ N, is rationally renormalizable. By the definition, I,y hever
vanishes.

Now assume that M; and My are simple U, (g)-modules in U, (g)-mod. Then the universal R-

matrix R‘(lj?/}f) (Ma) is rationally renormalizable. More precisely, letting u; and us be dominant
z1> z9

extremal weight vectors of M; and Ma, respectively, there exists a(za/21) € k[[22/21]]* such that
(0., )., (1) ® (u2)z) = alz2/21)((u2)z, ® (w1)z,).
Then Ry, = a(zz/zl)—1}2?11\1/}1V)217(]\/[2)Z2 is a unique k(21, 22) ® U, (g)-module homomorphism

RN k(z1,22) @ (M), @ (Ma)s,) —> k(21,22) @ ((Ma)s, ® (My),) (2.3)

K[z 25 ] K[z 257

satisfying
Mg (1) ® (u2)z) = (U2)z ® (u1)z - (2.4)
Note that k(z1, 22) e[ 21 ((My)z, ® (M2).,) is a simple k(z1, 22) ® Uy (g)-module [Kas02,
Proposition 9.5]. We call Ry, the normalized R-matrix.
Let dar, v, (u) € klu] be a monic polynomial of the smallest degree such that the image
of dur,m, (22/21) Ryg Ty, is contained in (Ma)z, ® (Mh)z,. We call dagy m,(u) the denominator
of Ryq"hy,- Then we have

dM1,M2 (ZQ/Zl) I]tgff?\b : (M1)21 ® (M2)Zz - (M2)22 X (M1)21> (2'5)

and the renormalized R-matrix

rM1,M2 M7 ®@ My — My ® My
is equal to the specialization of das, a,(22/21) A, at 21 = 22 = 1 up to a constant

multiple.
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Note that R"™ satisfies the following properties. For M, My, My, N, N1, Ny in U,(g)-mod,
the diagrams

univ
R]Ml QMo ,N

N®M1®M27

univ univ
Mi®RYY, RV @Mp

M®N1®N2 - N1®M®N2 - N1®N2®M
Ry, N2 N1®RWY,
commute. Hence, if Rk‘]‘{l};’)q N, and RE‘X};’)ZI N, are rationally renormalizable, then Rk‘j}};’@ M2)ay Nay

is also rationally renormalizable. Moreover, we have
(er,N ® Msy)o (M ® ng,N) = CTy oML for some c € k. (2.6)

Note that ¢ may vanish. In particular, if My, My and N are simple modules in Ué(g)—mod, then
univ

(Mi®Ms)s, N, 1 rationally renormalizable.

3. Simple heads and socles of tensor products

In this section we give a proof of the conjecture in the Introduction for the quiver Hecke algebra
case and the quantum affine algebra case.

3.1 Quiver Hecke algebra case
We first discuss the quiver Hecke algebra case.

LEMMA 3.1. Let B € Q1 and My, € R(Bx)-mod (k = 1,2,3). Let X be an R(B1 + 32)-submodule
of MyoMs andY an R(f32+ f33)-submodule of Myo Ms such that X o M3 C M;0Y as submodules
of My o My o Ms. Then there exists an R(f2)-submodule N of My such that X C My o N and
NoMsCY.

Proof. Set ng = ht(By). Set N = {u € My | u® M3 C Y}. Then N is the largest R((2)-submodule
of My such that N o M3 C Y. Let us show that X C M; o N. Let us take a basis {vg }qea of M.
By (1.3), we have

My oM = @ Tw (M1 @ My).

’wGGnl,nQ

Hence, any u € X can be uniquely written as

u = Z Tw (Ua X ua,w)

w€6n1 ,no ,aGA

with g, € Ms. Then, for any s € M3, we have

UR S = Z Tw(va®ua7w®s)eXoM3CM10Y.
wEGnl,n27a6A
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Since
M]_OY: @ ’Tw(Ml@Y)

’w€6n1,n2+n3

and S, n, C Gy notng, We have
Ugw ®s €Y foranyac Aand w e &, p,.
Therefore we have 4., € N. O

THEOREM 3.2. Let 3,7 € Q" and M € R(f)-mod and N € R(~)-mod. We assume, further, the
following condition:
(a) R(B) is symmetric and r,, - € kidpon;
(b) M is non-zero; (3.1)
(c) N is a simple R(vy)-module.
Then:

(i) M o N has a simple socle and a simple head. Similarly, N o M has a simple socle and a
simple head;

(ii) moreover, Im(rNﬁM) is equal to the socle of M o N and also equal to the head of N o M.
Similarly, Im(rM7N) is equal to the socle of N o M and to the head of M o N.

In particular, M is a simple module.

Proof. Let us show that Im(r, , ) is a unique simple submodule of M o N. Let S C M o N

be an arbitrary non-zero R(S + v)-submodule. Let m and m’ be the multiplicity of zero of
Ry ), s No(M), — (M),oN and Ry ), : Mo(M), — (M),0oM at z = 0, respectively. Then
by the definition, ry, , = (27" Ry (m),)|z=0 : NoM — MoN andr,, , = (z_m/RM7(M)Z)|Z:0 :
MoM — Mo M. Now we have a commutative diagram

’
Zm—m RS,(]\J)Z

So (M), (M), 08
I MO 7mR 77’VLIR y ON
MoNo(M), — % Mo (M),oN—L" (M), o MoN

Therefore z*m*m/Rsy(M)z :So (M), - (M), oS is well defined, and we obtain the following
commutative diagram by specializing the above diagram at z = 0:

SoM MoS

| |

MoNoM NM Mo Mo N —9MeMN_ ar o N

Here, we have used the assumption that r, s equal to idapon up to a constant multiple.
Hence we obtain (M or,, , )(So M) C M oS, or equivalently

SoM C Mo(r,, ) ().

By the preceding lemma, there exists an R(7)-submodule K of N such that S C M o K and
KoM C (rNM)_l(S). By the first inclusion, we have K # 0. Since N is simple, we have K = N
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and we obtain NoM C (r,,)~*(S5), or equivalently, Im(r,, , ) C S. Noting that S is an arbitrary

non-zero submodule of M ON we conclude that Im(r is a unique simple submodule of Mo N.

Ty )
The proof of the other statements in (i) and (ii) is similar.

The simplicity of M follows from (i) and (ii) by taking the one-dimensional R(0)-module k

as N. Note that )k and LY coincide with the identity morphism id;. O

A simple R(B)-module M is called real if M o M is simple. Then the following corollary is
an immediate consequence of Theorem 3.2.

COROLLARY 3.3. Assume that R(() is symmetric and M is a non-zero R(f)-module in
R(B)-mod. Then the following conditions are equivalent:

(a) M is a real simple R()-module;
( ) E kldMO M;
(c) EndR(w (Mo M) ~kidyon-

We have also the following corollary.

COROLLARY 3.4. If R(B) is symmetric and M is a real simple R(f)-module, then M°™ :=

—_—~—
Mo---0oM is asimple R(nf)-module for any n > 1.

Proof. The quiver Hecke algebra version of (2.6) implies that Ty om ppon

to a constant multiple. O

is equal to id, o(m+n) up

Thus we have established the first statement of the conjecture in the Introduction in the
quiver Hecke algebra case.

LEMMA 3.5. Let 3,7 € QT, and let M € R(8)-mod and L € R( +~)-mod. Then there exist X,
Y € R(vy)-mod satisfying the following universal properties:

Hom g5, (M 0 Z, L) ~ Hom .\ (Z, X), (3.2)
Hom p 5., (L, Z 0 M) ~ Hom (Y, Z)
functorially in Z € R(vy)-mod.

Proof. Set X = Hom p M o R(v),L). Then

g
Hom g5, (M o Z, L) ~ Hom g )5 p() (M @ Z, L)
Similarly, set Y = (Hom pg, ., (M 0 R(7), L*))". Then, by using (1.4), we have
Hom g5, y(L, Z 0 M) ~Hom 5, (M" 0 Z*, L")

~ Hom p(.(Z",Y™) = Hom p (Y, Z). O
PROPOSITION 3.6. Let 3,7 € QT. Assume that R(S) is symmetric, and let M be a real simple

module in R(f)-mod, and L a simple module in R(/3 + )-mod. Then the R(vy)-module X :=
Hom g3,y (M o R(v), L) is either zero or has a simple socle.
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Proof. The R(7y)-module X satisfies the functorial property (3.2). Assume that X # 0. Let
p: Mo X — L be the canonical morphism. Since L is simple, it is an epimorphism. Let Y
be as in Lemma 3.5, and let ¢ : L — Y o M be the canonical morphism. For an arbitrary
simple R(7)-submodule S of X, since Hom g5, (M 05, L) ~ Hom . (S, X), the composition

MoS — MoX % L does not vanish. Hence, by Theorem 3.2, L is the simple head of M o S
and is the simple socle of S o M. Moreover, L = Im(rM S). Since the monomorphism L — So M

factors through 7 by (3.3), the morphism i : L — Y o M is a monomorphism.
As in the proof of Theorem 3.2, we have a commutative diagram

Mol LoM
IMoi Iio]\/[
r oM
MoY oM MY YoMoM

Then we obtain M o (L) C (rM,Y)*l(i(L)) o M. Hence, by Lemma 3.1, there exists an R(7)-
submodule Z of Y such that rM,Y(M oZ) Ci(L)and i(L) C Zo M. The last inclusion induces a
morphism L — Z o M and a morphism Y — Z by (3.3). Since the composition Y — Z — Y is
the identity again by (3.3), we have Z =Y. Hence Im(rMy) C i(L), which gives the commutative
diagram

MY

)

T

MoY L - YoM

7

By the argument dual to the above one (see also the proof of Proposition 3.8), we have a
commutative diagram

M, X
MoX L XoM
p 3

Hence ¢ : L — X o M is a monomorphism, and Im( is isomorphic to L. By (3.3), there

rM,X)
exists a unique morphism ¢ : Y — X such that £ factors as

3

L - YoM

i po

XoM

Let us show that Im(y) is a unique simple submodule of X. In order to see this, let S be an
arbitrary simple R(f)-submodule of X. We have seen that L is isomorphic to the head of M o S

™M, X
and isomorphic to Im( . Since the composition M oS — M o X —— X o M does not

Iys)
vanish, we have a commutative diagram by [KKK13a, Lemma 1.4.8]:

r
Mos—25% _som
I I']\47)( I
MoX XoM
388
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Since Im(r,, ;) ~ Im(r,, ) =~ L, the morphism { : L — X o M factors as L — So M — X oM.
Hence (3.3) implies that ¢ : Y — X factors through Y — S — X. Thus we obtain Im(y) C S.
Since S is an arbitrary simple submodule of X, we conclude that Im(y) is a unique simple

submodule of X. O

Let 8,7 € QT. For a simple R(f3)-module M and a simple R(y)-module N, let us denote by
M ¢ N the head of M o N.

COROLLARY 3.7. Let 3,7 € QT. Assume that R(B) is symmetric, and let M be a real simple
module in R(f)-mod. Then the map N — M ¢ N is injective from the set of the isomorphism
classes of simple objects of R(vy)-mod to the set of the isomorphism classes of simple objects of
R(B + ~)-mod.

Proof. Indeed, for a simple R(y)-module N, M ¢ N is a simple R(8+v)-module by Theorem 3.2,

and N C X :=Hom R(ﬁ+7)(M o R(y), M ¢ N) is the socle of X by the preceding proposition. O

If L(i) is the one-dimensional simple R(c;)-module, then L(7) is real and M ¢ L(7) corresponds

to the crystal operator f; M and L(i) © M to the dual crystal operator fivM in [LV11]. Hence,
© is a generalization of the crystal operator as suggested in [Lec03].

PROPOSITION 3.8. Let 3,7 € QT. Assume that R() is symmetric, and let M be a real simple
module in R(f3)-mod, and N a simple module in R(v)-mod. Then Endgs)(MoN) ~kidpon-

Proof. Set L = M o N. Let X,Y € R(y)-mod be as in Lemma 3.5. Let p: M o X — L and
t: L - Y oM be the canonical morphisms. Then the isomorphism M o N — L induces a

morphism j : N — X such that the composition M o N ﬂ MoX 2 Lis that isomorphism.
Hence p: M o X — L is an epimorphism. Since N is simple and j does not vanish, the morphism
j: N — X is a monomorphism.

We have a commutative diagram

rM,MOX Mor

MoMoX MoMoX Y  MoXoM

WOP ¢poM
MolL LoM
Since M is idpsops up to a constant multiple, we obtain the commutative diagram
Mo (MoX) M MoXoM
i Mop ¢poM
MolL LoM
Therefore

Mo (rM7X(Kerp)) C (Kerp) o M.

Hence Lemma 3.1 implies that there exists Z C X such that r,, , (Kerp) C ZoM and Mo Z C
Ker p. The last inclusion shows that M oZ — Mo X — L vanishes. Hence by (3.2), the morphism
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Z — X vanishes, or equivalently, Z = 0. Hence we haver, X(Ker p) = 0. Therefore r  factors

M
through p:
™M, X
MoX - L 7 XoM

Since r,,  # 0, the morphism ¢ does not vanish. By (3.3), there exists ¢ : ¥ — X such that

; M
¢ : L - X oM coincides with the composition L S YoM 22" X oM. Then we have a
commutative diagram with the solid arrows:

"M,N

M o N‘_ NoM

Moj p; L. £ joM

MoX - ~ XoM
M, X

Indeed, the commutativity follows from [KKKI13a, Lemma 1.4.8] and the fact that the

. Moj "M, X . o :
composition M o N —— M o X —— X o M does not vanish because it coincides with

MoN-=5L5 Xol.
Thus € : L — X o M coincides with the composition

r .
L~MoN —2% Nom M x oM.
Hence (3.3) implies that ¢ : Y — X decomposes as

Since N is simple, % is an epimorphism, and we conclude that N is the image of p: Y — X.
Now let us prove that any f € Endggy,) (L) satisfies f € kidy. By the universal

properties (3.2) and (3.3), the endomorphism f induces endomorphisms fx € Endp,)(X) and
Jy € Endp(,) (Y') such that the following diagrams with the solid arrows commute:
"'rM,X .....
MoX P L ¢ >XoM L ? YoM
iMOfX lf leOM and if lfYoM (34)
MoX—" ol % ~XoM L—' ~yoM
....... rM,X ’

Sincer,, , commutes with f, the left diagram with dotted arrows commutes. Hence, the following
diagram with the solid arrows commutes:

[
/\
Y N - X
P J
lfY fn ifx (3.5)
" v j
Y N X
\_/
©
390
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Then we can add the dotted arrow fy so that the whole diagram (3.5) commutes. Since N is
simple, we have fy = cidy for some ¢ € k. By replacing f with f — ¢ idy, we may assume from
the beginning that fy = 0. Then fx oj = 0. Now f = 0 follows from the commutativity of the

diagram
o I oy T,
0_\ J{Mofx if
Mox—2 o[

O

COROLLARY 3.9. Let 3,7 € Q", and assume that R(3) is symmetric. Let M be a real simple
module in R(f)-mod, and N a simple module in R(~y)-mod.

(i) If the head of M o N and the socle of M o N are isomorphic, then M o N is simple and
MoN ~ NolM.

(i) If Mo N ~ NoM, then M o N is simple. Conversely, if M o N is simple, then M o N ~
NoM.

Proof. (i) Let S be the head of M o N and the socle of M o N. Then S is simple. Now we have
the morphisms

MoN —»S» MoN.

By the previous proposition, the composition is equal to idysony up to a constant multiple. Hence
M o N and N o M are isomorphic to S.

(ii) Assume first that M o N ~ N o M. Then the simplicity of M o N immediately follows
from (i) because the socle of M o N is isomorphic to the head of N o M by Theorem 3.2.

If M o N is simple, then r, N IS injective. Since dim(M o N) = dim(N o M), ryy i MoN —
N o M is an isomorphism. O

Note that, when R(/) and R(7) are symmetric, for a real simple R(f)-module M and a real
simple R(7y)-module N, their convolution M o N is real simple if M o N ~ N o M.

3.2 Quantum affine algebra case
Similar results to Theorem 3.2 and Corollaries 3.7 and 3.9 hold also for quantum affine algebras.
Let Uj(g) be the quantum affine algebra as in §2. Recall that U, (g)-mod denotes the category
of finite-dimensional integrable U, (g)-modules.

First note that the following lemma, an analogue of Lemma 3.1 in the quantum affine algebra
case, is almost trivial. Indeed, a similar result holds for any rigid monoidal category which is
abelian and the tensor functor is additive.

LEMMA 3.10. Let My be a module in Uy(g)-mod (k = 1,2,3). Let X be a U,(g)-submodule of
M ® My and Y a Ué(g)—submodule of My ® Ms such that X ® M3 C My ® Y as submodules
of M1 ® My ® Ms. Then there exists a Ué(g)—submodu]e N of My such that X C M7 ® N and
N®MsgCY.

COROLLARY 3.11. (i) Let M}, be a module in U,(g)-mod (k = 1,2,3), and let ¢y : L — M;® Mo
and 9 : My ® M3 — L' be non-zero morphisms. Assume, further, that My is a simple module.
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Then the composition

P1QM3 M ®p2
R ——

L ® Ms M1®M2®M3————>M1®L/ (36)

does not vanish.

(ii) Let M, Ny and Ny be simple modules in U,(g)-mod. Then the following diagram
commutes up to a constant multiple:

//rj\/l’ M ®N2\

M ® N1 ® Ny NOMRNy—— N Q@ Nao @ M
®N3 N1®I'M’N2

M,Np

Proof. (i) Assume that the composition (3.6) vanishes. Then we have Im p; ® M3 C M; @ Ker pa.
Hence, by the preceding lemma, there exists N C My such that Im¢; C M7 ® N and N ® M3 C
Ker 5. The first inclusion implies N # 0 and the last inclusion implies NV # M. This contradicts
the simplicity of M.

(i) By (i), (N1 ® rM,Ng) o (rM,Nl ® N3) does not vanish. Hence it is equal to L0 Ny oNs

a constant multiple by (2.6). O

up to

Since the proof of the following theorem is similar to the quiver Hecke algebra case, we just
state the result, omitting its proof.

THEOREM 3.12. Let M and N be simple modules in Ué(g)—rnod. We assume, further, that

v EkidM®M. (37)

Then we have:

(i) M ® N has a simple socle and a simple head;

(ii) moreover, Im(r is equal to the head of M ® N and is also equal to the socle of N ® M.

MN)

Recall that a simple U,(g)-module M is called real if M ® M is simple. Hence M in
Theorem 3.12 is real.

For a module M in Ué(g)—mod, let us denote by *M and M* the right dual and the left dual
of M, respectively. Hence we have isomorphisms
HomUé(g)(M(X)X, Y) ~ HomU,( )
HomUé(g)(X ®*M,Y) ~ HomU,(g)
HomUé(g)(M* ®X,Y) ~ HomU,(g)
HomUé(g)(X@)M, Y) '(a)

X, *M®Y),
X,Y @ M),
X, M®Y),
X,Y @ M*)

g

/-\/\/\/\

~ Hom Ul (g

functorial in X, Y € U (g)-mod.

COROLLARY 3.13. Under the assumption of the theorem above, the head of Imr ryn ® ® *M is

isomorphic to N.

Proof. Set S = Imr, . Since Hom, (S, N ® M) ~ Hom (S ® "M, N), there exists a
) q q
non-trivial morphism S ® *M — N. Since N is simple, we have an epimorphism

S®*M —» N.
Since *M ® *M ~*(M ® M) is a simple module, the tensor product S ® *M has a simple head
by the preceding theorem. Hence, we obtain the desired result. O
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For simple U,(g)-modules M and N, let us denote by M ¢ N the head of M ® N.

COROLLARY 3.14. Let M be a real simple module in Uj(g)-mod. Then the map N — M ¢ N
is bijective on the set of the isomorphism classes of simple U,(g)-modules in Uy(g)-mod, and its
inverse is given by N — N ¢ *M.

LEMMA 3.15. Let M be a real simple module in Uy (g)-mod and N a simple module in U,(g)-mod.
Then we have End y; (M ® N) ~ kidyen.

Proof. By Corollary 3.11, we have a commutative diagram up to a constant multiple

//rM*7M®N\

M*® M e N M M*® N M®N®M*

M®@r

rM*,]\/I M* N

By Theorem 3.12, Im(
composition

is the simple socle of M ® M?*, and hence r is equal to the

rM*,M) M* M

M*oM 51— Mo M*

up to a constant multiple. Here 1 denotes the trivial representation of U (g). Hence we have a
commutative diagram up to a constant multiple

/rM*}M@N\

M*®M® N N M®N®M*
eEQN

Let f € EndUé(g)(M ® N). Let us show that f € kidygn. Since r
the following diagram with the solid arrows is commutative:

M* MoN commutes with f,

M*®M® N N M & N @ M*
iM*@f fn lf@M* (3.9)
\
MeoMoN —N N M& N @ M*

Hence we can add the dotted arrow fy so that the whole diagram (3.9) commutes. Since N is
simple, we have fy = cidy for some ¢ € k. Then, by replacing f with f — cidyen, we may
assume from the beginning that fny = 0. Hence the composition

M eoMaoaN L% wremenN 2N N

vanishes. Therefore (3.8) implies that M @ N L, M ® N vanishes. O

COROLLARY 3.16. Let M be a real simple module in Uj(g)-mod, and N a simple module in
U,(g)-mod.

(i) If the head of M @ N and the socle of M ® N are isomorphic, then M ® N is simple and
M@N~N®®M.

(i) f M ® N ~ N ® M, then M ® N is simple.

This corollary follows from the preceding lemma by an argument similar to that in the proof
of Corollary 3.9.
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4. Proof of (1.11)
We shall show (1.11). We retain the notation in § 1. We set

Tap = Z (ro —xzp)e(v) and 7. = Z Tee(v)
velf+, velft,
va,Vp€supp(B)Nsupp(y) ve€supp(7), Vet1€supp(B)
for 1 <a,b<m+nand 1< c<m+n. They are elements of R(5 + 7).

We denote by A the commutative subalgebra of R(S + 7) generated by Z,; and e(v) where
1<a<b<m+nand v e IP7. Let us denote by R, 3 the subalgebra of R(S + 7) generated
by A and 7. where 1 < ¢ < m + n. N

Then @[, mje(7y, ) belongs to R, g.

These generators satisfy the following commutation relations:

( ~ ~ ~ ~
TabTe — TeLse(a),sc(b)

= > (bla=c+1)—da=c)—db=c+1)+5(b=rc)e(v),
Ve=Ve+1€supp(B)Nsupp(y)
?3 = Z Qva,Va+1 (xav xa+1)e(u),
Va,Va+1€supp(B)Nsupp(y) (4.1)

?a?b _%b?a =0 if ]a — b‘ > 1,
77a+15:a;a+1 - ?a;a+17~—a

= Z @ya,ua+1 (Tas Tat1, Tay2)e(V).

Va,Va+1€supp(B)Nsupp(y), Ya=Va+2

Indeed, the last equality follows from

7A:a+1?a?a+1 = ZTa+lTaTa+1 6(11),
14
;a?a—&—l;a - ZTaTa+lTa 6(1/).
v
Here the sums in both formulas range over v € I°+7 satisfying the conditions v, € supp(y),

Va+1 € supp(3) Nsupp(y), and vq42 € supp(p).
Note that the error terms (i.e. the right-hand sides of the equalities in (4.1)) belong to the

algebra A because we assume that R(f) and R(y) are symmetric. Hence we have
i1(1,1)%{0 - ?ci'sc(a),sc(b) €A
~2
T, €A,

TaTh = TpTq  if \a — b| > 1, (4'2)

Ta+1TaTa+1 — TaTa+1Ta € A.

Now for each element w € &, 4, let us choose a reduced expression w = sq, - - - 54,. We then
set
Tw = Tay " Tay-
Then, similarly to a proof of the PBW decomposition (1.1) (see, for example, [KL09, Rou08)),
the commutation relations (4.2) imply

R,p= Z FuA.

wEGern
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In particular, we obtain

E%B C @ 7-11)(7-1111 @ Tw2)A'

wEGn,m7
w1 66n7w266m

Thus immediately implies (1.11), because we have, for 1 < a <b<m+n, v € IV, u € IP,
vee(v)N and u € e(pu) M,

ia,b((v) ® (u)z)
((xg — Tp)V) 2, @ (U)2, if 1 <a<b<nand vy, € supp(f),
(22 = 21)((v)2, ® (u)z)
B F(2g0) 2 @ ()2 — (V)29 ® (Tp_ntt),, f1l<a<n<b<m+nand
Va € supp(ﬁ), th—n € supp(7),
(V)2 ® (Ta—n — Tp—n)U) 2 ifn<a<b<m+nand pg_p, tp—n € supp(y),
0 otherwise,

and (Tu; @ Tuwy ) (V)2 @ (W)zy) = (Tw, V) 2y @ (Tuwy )z, -
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