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Horizontal convection at large Rayleigh and Prandtl numbers is studied experimentally
in a regime up to seven orders of magnitude larger in terms of Rayleigh numbers than
previously achieved. To reach Rayleigh numbers up to 1017, the horizontal density gradient
is generated using differential solutal convection by a differential input of salt and fresh
water controlled by diffusion in a novel experiment in which the zero-net mass flux
of water is ensured through permeable membranes. This set-up allows us to accurately
measure the Nusselt number in solutal convection by carefully controlling the amount of
salt water exchanged through the membranes. Combined measurements of density and
velocity across more than five orders of magnitude in Rayleigh numbers show that the
flow transitions from the Beardsley & Festa (J. Phys. Oceanogr., vol. 2, issue 4, 1972,
pp. 444–455), Shishkina & Wagner (Phys. Rev. Lett., vol. 116, issue 2, 2016, 024302)
regime to the Chiu-Webster et al. (J. Fluid Mech., vol. 611, 2008, pp. 395–426) regime and
frames the present results within the scope of Shishkina et al. (Geophys. Res. Lett., vol. 43,
issue 3, 2016, pp. 1219–1225), and the theory of Part 1 (Passaggia & Scotti, vol. 997,
2024, J. Fluid Mech., A5). In particular, we show that, even for large Prandtl numbers,
the circulation eventually clusters underneath the forcing horizontal boundary, leaving a
stratified core without motion. Finally, the previous regime diagrams (Hughes & Griffiths,
Annu. Rev. Fluid Mech., vol. 40, 2008, pp. 185–208; Shishkina et al., Geophys. Res. Lett.,
vol. 43, issue 3, 2016, pp. 1219–1225) are extended by combining the present results at
high Prandtl numbers, the results at low Prandtl numbers of Part 1, together with previous
results from the literature. This work sets a new picture of the transition landscape of

† Email address for correspondence: adscotti@asu.edu

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 997 A6-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

75
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:adscotti@asu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.757&domain=pdf
https://doi.org/10.1017/jfm.2024.757


P.-Y. Passaggia, N.F. Cohen and A. Scotti

horizontal convection over six orders of magnitude in Prandtl number and sixteen orders
of magnitude in Rayleigh number.

Key words: convection

1. Introduction

Experimental work on horizontal convection (HC) has attracted little attention compared
with Rayleigh–Bénard convection. Despite the analysis of Jeffreys (1925), who showed
from fundamental thermodynamics that a differential buoyancy gradient along a constant
geopotential height requires a residual circulation, the conclusion of Sandström (1908),
that only a very shallow surface circulation detached from a stratified interior at rest
exists at high Rayleigh number, dominated the thinking on the subject for a long time
(Sverdrup, Johnson & Fleming 1942; Defant 1961). This position was later challenged
by Rossby (1965) based on laboratory experiments. Rossby showed that HC may indeed
lead to a non-negligible overturning flow with a scaling analysis, which provided the
first insights that, despite the small convective intensity of HC when compared with the
Rayleigh–Bénard problem, HC could still produce a substantial residual circulation and be
relevant for real-world applications.

A key difficulty in designing laboratory experiments in HC using heat as a stratifying
agent is the need to prevent buoyancy gain or losses along surfaces other than the
horizontal surface where forcing is applied. Wang & Huang (2005) used a nearly complete
vacuum in a rectangular container to ensure an insulating boundary, while large Styrofoam
slabs were used in the experiment of Mullarney, Griffiths & Hughes (2004). Both sets
of authors identified a regime transition at Ra ≈ 1010 for differential heating in water.
Each experiment provided similar scaling laws. However, an important difference could
be found between the two experiments: the plume observed in the experiment of Wang &
Huang (2005) did not fully reach the bottom, whereas the other experiment showed the
contrary. Although this may be attributed to the insulating boundary, Gayen, Griffiths &
Hughes (2014) performed direct numerical simulations of the set-up of Mullarney et al.
and recovered a flow very similar to what was observed in the experiment. Therefore,
these experiments raised the question of the role of the aspect ratio of the cavity in
the flow. Working with differential heating is very attractive at first, as the viscosity
of water can be increased (hence the Prandtl number) by using, for instance, glycerol.
However, this method simultaneously decreases the Rayleigh number as in Rossby’s
original experiments, which prevented these experiments from reaching high Rayleigh
numbers.

The large-Prandtl- and large-Rayleigh-number regimes have several important
applications, ranging from mantle convection to industrial applications such as glass
furnaces (Gramberg, Howell & Ockendon 2007; Chiu-Webster, Hinch & Lister 2008).
Such regimes were theorized by Gramberg et al. (2007), who assumed that the return flow
is distributed over the depth of the shallow layer, which makes the thin light layer move
with a uniform velocity to the leading order. However, these findings were later questioned
by Chiu-Webster et al. (2008), who showed that a laminar regime exists where only the
densest fluid in the stratified boundary layer penetrates the entire depth of the box, the
remainder returning at a shallow depth in a horizontal intrusion immediately adjacent to
the boundary layer. In this case, diffusion between the interior and the relatively weak
full-depth plume is crucial for both removing the density anomaly in the plume fluid and
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maintaining a stratification in the box interior. More recently, Ramme & Hansen (2019)
investigated a similar regime but for higher Rayleigh numbers using two-dimensional
numerical simulations. They report a transition to a steeper scaling than previously
reported in Chiu-Webster et al. (2008). They report that the distribution of the forcing
has only a small impact on the dynamics and, similarly, on the effect of shear-free or
no-slip boundary conditions. They also noticed that the onset of instability introduces a
steeper scaling for the Nusselt and Péclet numbers at Rayleigh numbers between 108 and
109, which they conjectured to be associated with the transition observed in Shishkina &
Wagner (2016). However, it should be recalled that the transition observed in Shishkina &
Wagner (2016) was not induced by the onset of instabilities. It should also be noted that
local steeper scaling than Rossby’s 1/5, as, for instance, reported by Gayen et al. (2014),
is associated with stability transitions. In addition, the effect of the aspect ratio remains
to be examined at large Prandtl numbers, since in the Shishkina & Wagner (2016) theory,
the circulation has to span the entire depth of the domain, hence requiring, for instance,
domains with large aspect ratios.

Griffiths & Gayen (2015) considered the problem of HC forced by spatially periodic
forcing. Their results showed that, for high Rayleigh numbers and small aspect ratios,
the core would indeed fill with dense fluid and maintain a stratified interior. Their forcing,
localized on a length scale smaller than the depth of the domain, and with variation in both
horizontal directions, shows turbulence throughout the domain. Associated experiments
were performed by Rosevear, Gayen & Griffiths (2017), where they observed that
the Nusselt number (a non-dimensional measure of the buoyancy flux) had a steeper
scaling with respect to the Rayleigh number than the (laminar) Rossby scaling or the
entrainment regime (Hughes & Griffiths 2008) and the intrusion regime (Chiu-Webster
et al. 2008). Here, we revisit their experiments, replacing porous brass plates with
permeable membranes (Krishnamurti 2003), which allows accurate measurements of the
Nusselt number, as previously suggested in the experiment of Mullarney et al. (2004). We
further improve the method by providing evidence that steady states are reached for each
experiment.

More recently, Matusik & Llewellyn-Smith (2019) analysed the response of surface
buoyancy flux-driven convection to localized mechanical forcing where salt- and
fresh-water fluxes were directed directly into the tank with pumps, while excess water
was allowed to exit as an overflow. This set-up has the advantage of driving a localized
surface forcing but cannot be considered as a closed system solely driven by buoyancy.
The Whitehead & Wang (2008) and Stewart, Hughes & Griffiths (2012) experiments are
also worth mentioning in this context. They used mechanical stirring in the interior of the
tank to analyse the relationship between mixing in the interior and its effect on circulation.

However, to this date, neither experiments nor numerical simulations have yet been
performed in the large-Rayleigh-number and large-Prandtl-number regime for natural HC.
Thus, it is not clear whether the circulation transitions to an intrusion-type regime or
whether other transitions may be explored as the Rayleigh number increases towards
real-world applications. A flow exhibiting shallow circulation close to the differential
buoyancy forcing is known as the intrusion regime, and we take advantage of the results
of Chiu-Webster et al. (2008) to analyse the present experimental results.

Although it is customary to refer to the ratio of viscosity to diffusivity of a solute as
the Schmidt number, for consistency with most of the HC literature, here, we call such
a ratio the Prandtl number. For the same reason, we will use the word thermal boundary
layer when referring to the concentration boundary layer. To achieve high-Prandtl- and
high-Rayleigh-number flows, we use a combination of long tanks with large aspect ratios
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and a weakly diffusive stratifying agent. Diffusion of salt ions is a simple and effective
alternative to heat to modify the buoyancy of a fluid. Moreover, solid boundaries naturally
act as no-flux boundaries. To impose the boundary condition at the surface, we use large
sheets of semi-permeable membranes stretched over rectangular tanks of different sizes,
which could allow for reaching Rayleigh numbers up to nearly 1017. Using this set-up, our
aim is to complete the map initiated in Part 1 (Passaggia & Scotti 2024) and extend the
HC regime diagram to large values of the Prandtl number.

In this study, we report experimental results on how the Nusselt number (Nu), the
thickness of the boundary layers (λ), the streamfunction (Ψ ) and approximate values of
the Reynolds number in the centre of the domain depend on the Rayleigh number (Ra),
the flux Rayleigh number (Raf ) and the Prandtl number (Pr) in HC at high Pr for values
characteristic of solutal convection in salt where Pr ≈ 610 (Harned 1954). The results
agree with the scaling power laws derived by Shishkina, Grossmann & Lohse (2016) based
on the Grossmann & Lohse (2000) framework (GL), the review by Hughes & Griffiths
(2008), previous experiments (Miller 1968; Mullarney et al. 2004) and previous numerical
simulations (Beardsley & Festa 1972; Rossby 1998; Ilicak & Vallis 2012). Our experiments
cover the laminar regime I+

u (see Shishkina et al. 2017; Ramme & Hansen 2019; Reiter &
Shishkina 2020), and the high-Pr–high-Ra laminar regime Iu (see Chiu-Webster et al.
2008). The results are discussed and mapped within a landscape that includes, to the best
of our knowledge, all simulations and experiments performed to this date. We show that
the (Ra, Pr) landscape first proposed in the review of Hughes & Griffiths (2008) fits within
the theoretical prediction of Shishkina et al. (2016) and blends all known HC regimes.

The remainder of the article is organized as follows: the flow set-up and experimental
apparatus are presented in § 2; the theoretical scaling laws for large-Prandtl-number HC
are then presented in § 3 and tested against the experimental results in § 4; § 5 discusses
the phase diagram, including the results of Part 1 at intermediate and low Prandtl numbers,
while conclusions are drawn in § 6.

2. Problem description

We consider here the problem of convection in the Boussinesq limit, where the density
difference �ρ = ρmax − ρmin across the horizontal surface is assumed to be a small
deviation from the reference density ρmin taken as the fresh-water density at room
temperature. We use a Cartesian coordinate system where the velocity vector is u =
(u, v, w)T, b = −g(ρ − ρmin)/ρmin is the buoyancy and g is the acceleration due to gravity
along the vertical unit vector ez. The control parameters are the Prandtl and Rayleigh
numbers given by

Pr = ν

κ
and Ra = �L3

νκ
, (2.1a,b)

where ν and κ are the viscosity and salt diffusivity respectively, L is the horizontal
length scale of the domain and Δ = −g(ρmax − ρmin)/ρmin. Four geometrically similar
tanks, with lengths L = 0.5, 1.21, 2 and 4.87 m are used in the experiments. Each tank
is a parallelepiped with aspect ratio Γ = L/H = 16.6 with dimensions [L, W, H]/L =
[1, 1/20, 1/16.66], where W is the width of the tank. The buoyancy is imposed on the top
surface z = H, where H is the height of the tank (figure 1).

The magnitude of the large-scale flow Ψmax is characterized by the maximum
of the streamfunction. The latter is defined in terms of the horizontal velocity
profile u(z) as Ψ = ∂u/∂z. At the same location, we define λu, the thickness of the
circulation, and λb, the thickness of the stratification. The former is measured by the
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location of the maximum in the streamfunction, while the latter is defined by solving
(ρ(λb) − ρ(λb)min)/(ρ(λb)max − ρ(λb)min) = 1/2. Velocity and buoyancy profiles are
measured in the middle of the tank. The flux-Rayleigh number Raf is defined in terms
of the volume flow rate Q̇(ρwell − ρtank)/ρtank of salt that is added, at steady state, to the
tank

Raf = Q̇g(ρwell − ρtank)/ρtankL2

νκ2

(
L
W

)
, (2.2)

where g = 9.81 m s−2 is the acceleration due to gravity, Q̇ is the volume flow rate of fluid
input into the system while the subscripts tank and well define where the measurements of
density were acquired (see the following section). The latter can be used to obtain the
Nusselt number by computing the ratio

Nu = Raf /Ra, (2.3)

which is the convective buoyancy flux normalized with the conductive buoyancy flux
imposed at the boundary. Note that a very similar technique was employed in previous
experiments to compute the Nusselt number in the case where a flux is imposed through
the boundary (Mullarney et al. 2004; Griffiths, Hughes & Gayen 2013; Rosevear et al.
2017).

The tanks were kept at a constant temperature and covered to prevent convection induced
by the building’s ventilation. On top of the free surface, Spectrum LabsTMSpectra/Por 5
Reinforced 12–14 kD, 0.280 m wide and up to 15 m long permeable membranes were
stretched and kept from sagging into the tank, forming two separate shallow wells, one
filled with fresh water, the other with salty water. Each well was continuously stirred using
a gear pump to keep the densities uniform in the wells. Each well was supplied with fresh
and salt water, respectively, at a constant flow rate of Q̇ = [10, 40, 80, 160] ml min−1

using a 600 rpm Cole-ParmerTM7523-80 Digital Peristaltic Pump. Note that new tubing
was used for each experiment. The wells were fed from two 200 litre tanks, whose capacity
was selected so that they could supply even the longest-running experiments (which
lasted two months) without interruption. Density measurements were recorded using an
Anton PaarTMDM35 densitometer whose calibration was verified to the fourth digit. Each
experiment was illuminated using a laser from left to right for the two smaller tanks.
In the case of the larger tanks, a laser light sheet was introduced between the two wells
and illuminated the tank midsection. At the same location, conductivity measurements
were performed using a Conduino (Carminati & Luzzatto-Fegiz 2017) probe to obtain
high-resolution profiles of conductivity and, therefore, density. The Conduino probe was
calibrated using the Anton® Paar DM35 densitometer. The temperature variation was also
checked to be less than 0.3 ◦C between the top and bottom of the tanks, resulting in a
relative buoyancy difference no higher than 6 % of the buoyancy difference due to salinity.
Density measurements were performed before and after seeding the flow with the particles
used for particle image velocimetry, with a resolution below the millimetre scale for all
experiments except for the larger tank which were acquired every centimetre.

Planar two-dimensional particle image velocimetry (PIV) data were recorded using
a Nikon D4®. We used a continuous green laser pointer at 532 nm whose beam was
expanded through a double concave lens. The camera was equipped with a Nikon® AF-S
VR Micro-Nikkor 105 mm f/2.8G IF-ED lenses and the analysis of the experimental data
was performed using the Matlab®-based PIV software DPIVSoft (Meunier & Leweke
2003; Passaggia, Leweke & Ehrenstein 2012) to process the images. The resolution of the
PIV was 0.0001 cm px−1 in the worst case, allowing full resolution of the PIV particles.
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The time between two consecutive pictures varied between 1 and 3 s. The top layer
was seeded using Cospheric® neutrally buoyant for ρ = [1.000, 1.02, 1, 13] g cc−1

monodisperse polyethylene PIV particles with diameters in the range [40, 50] µm that
were wetted beforehand with the top layer fluid, mixed in a separate tank, slowly reinjected
into the free surface between the wells and left to slowly settle across the layers for a couple
of hours until they reached their neutral buoyancy position. The PIV measurements lasted
for 45 min, to gather nearly 1000 fields, which corresponds to one turnover time τF (see
table 1). Subsequent analysis shows that this time scale is sufficient to return to a steady
state after disturbing the flow.

For visualization purposes, figure 2 shows the development of the circulation in a
tank with the same set-up used in the experiments described here, but with a smaller
aspect ratio (Γ = 4). Dye was released on the right part of the tank, near the stable
layer, and propagated within the turbulent plume, eventually filling the tank with heavier
fluid. Although this series of images is reminiscent of the dynamics shown in previous
experiments using heat (Mullarney et al. 2004), the steady state reached in the case of
salt is rather different, and the remainder of the manuscript links theoretical arguments
to direct observations and measurements of density and velocity profiles to determine the
nature of steady-state HC flow at large Rayleigh and large Prandtl numbers.

3. Scaling and regimes of HC at large Prandtl numbers

We begin by reviewing the existing scaling laws derived in the limit of large Prandtl
numbers and report the exponents for heat and momentum exchanges in HC. It is
interesting to note that, for large Prandtl numbers, the regime diagram in the (Ra, Pr)
plane, as theorized by Hughes & Griffiths (2008), does not agree with the regime diagram
suggested by Shishkina et al. (2016). In the next subsection, we review these regimes and
point out the subtle differences that characterize each of them. Central to the discussion is
the Paparella & Young (2002) inequality, which relates the mean mechanical dissipation
of the system with the buoyancy sink through the horizontal boundary to discuss the role
of the aspect ratio of the domain at large Prandtl numbers.

3.1. Rossby’s (1965) laminar regime Il revisited (Shishkina & Wagner 2016)
Rossby’s laminar regime follows from the steady buoyancy boundary-layer equation,
which is obtained from the Navier–Stokes equations in the Boussinesq limit and allows
for writing an advection–diffusion balance in the boundary layer (see Part 1 for a thorough
derivation)

ubx + wbz = κbzz. (3.1)

The dominant terms in this expression reduce to UΔ/L = κΔ/λ2
b where λb is the

thickness of the thermal BL, which scales as λb/L ∼ Nu−1. This leads to the well-known
thermal–laminar boundary layer (BL) scaling

Nu = Re1/2Pr1/2, (3.2)

and provides a relation tying Nu, Re and Pr. Noting that the thickness of the laminar
boundary layer scales as λu/L ∼ Re−1/2, the scaling of the mean dissipation in the
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Recirculating
gear pump
salt side

Recirculating
gear pump
fresh side

L = 2 m

H = 0.5 m

W = 0.25

50 gal salt

water tank
50 gal fresh

water tank

300 L/80 gal tank

Dump Dump

Peristaltic pump

Peristaltic pump Peristaltic pump

Figure 1. Schematics of the present set-up showing the tank with the fresh-water well on the right (green) and
salt-water well on the left (red) set over the free surface and constantly stirred to maintain a uniform salinity in
the well.

(e) ( f )

(g)(a)

(b)

(c)

(d )

Figure 2. Side view of the tank, illuminated from the left and showing the evolution of fresh fluorescein
dye water released from the right. The temporal evolution of the circulation is described by the transport of
the fluorescein (green/yellow) dye, driven by a solutal horizontal density gradient, creating a turbulent plume
sinking on the left of the tank (a–f ). The deep circulation is shown in (g), where the flow has developed and
drives a deep but weakly turbulent circulation that eventually upwells to the right of the tank. Reproduced from
Passaggia et al. (2017).

particular case of laminar BL (Landau & Lifschitz 1987) is

εu,BL ∼ ν
U2

λ2
u

λu

H
= ν3H−4Re5/2. (3.3)
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Horizontal convection in the high-Pr regime

Combining (3.2), (3.3) and (3.5), one recovers the laminar scaling (Rossby 1965, 1998;
Gayen et al. 2014; Shishkina et al. 2016)

Re ∼ Ra2/5Pr−4/5, (3.4a)

Nu ∼ Ra1/5Pr1/10. (3.4b)

By analogy to the notation in the GL theory for Rayleigh–Bénard convection (RBC)
(Grossmann & Lohse 2000; Shishkina et al. 2016), this scaling regime is denoted as Il,
where the subscript l stands for low-Pr fluids.

3.2. The Paparella & Young (2002) inequality
Both HC and RBC are closed systems driven by the buoyancy flux imposed through
their boundaries. Paparella & Young (2002) (PY here and hereafter) first performed a
spatio-temporal average of the kinetic energy equation, leading to the equality

εu = wb, (3.5)

where εu is the mean kinetic energy dissipation rate εu ≡ ν
∑

i,j(∂uj/∂xi)
2. Averaging the

buoyancy equation in time and along horizontal planes requires

〈wb〉 = κ∂〈b〉/∂z, (3.6)

where 〈·〉 denotes the time and horizontal average and the integration constant is zero
because, at steady state, the horizontally averaged fluxes at the boundaries must add up to
zero. Finally, vertical integration of the last equation leads to

wb = κ(〈b〉z=H − 〈b〉z=0)/H = B(Γ/2)κΔ/L, (3.7)

where 0 < B < 1 is an arbitrary constant because, in the fluid, buoyancy differences
cannot exceed the difference imposed at the boundary. The PY inequality thus writes

εu = B(Γ/2)ν3L−4RaPr−2, (3.8)

which, combined with the original idea of Rossby, opens possibilities for relating the
dissipation in the boundary layer or the core with the heat transfer coefficient near the
horizontal boundary.

An interesting consequence is that, as Ra increases while keeping Pr and Γ constant,
the flow becomes progressively confined under the conducting boundary. This effect is
also known as the anti-turbulence theorem and implies that, beyond a certain point, the
overturning depth scale becomes

h < H, (3.9)

and a stratified fluid zone that is nearly quiescent will form on the insulating boundary
adjacent to the conducting horizontal boundary. Note that Shishkina et al. (2016) refer to
h as the large-scale overturning flow in their analysis.

This is also what Sandström (1916) inferred from his experiments, that is, at large Ra, or
high Pr, the flow becomes confined to a progressively thinner surface layer and the core
becomes a stagnant pool of stratified water (Defant 1961). Although such regimes were
only observed in direct numerical simulations of laminar HC (Ilicak & Vallis 2012) at
high Pr and theoretically by Chiu-Webster et al. (2008) for the same regimes, experiments
by Wang & Huang (2005) show the onset of this behaviour at intermediate Pr and
intermediate Ra.
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λu/L ∼ Ra−1/5

ρsalt well ρfresh well

h/L ∼ Ra−1/7

L

H

Re ∼ Ra2/5

Intrusion

Stratified interior at rest

Figure 3. Schematics showing the intrusion regime of Chiu-Webster et al. (2008) and the scaling exponents
reported in the present study. Note that the Hughes et al. regime would correspond to h = H and the intrusion
flow scale to λb/L ∼ Ra−1/5 while the Rossby regime would correspond to λu ≈ H.

As Ra and/or Pr increase, the Rossby regime can no longer hold, since the thickness
of the return flow decreases as λu ∼ Ra−1/5 for increasing Ra and λb ∼ Pr−1/10. In
other words, the circulation clusters underneath the forcing boundary, which leads to two
different regimes, as explained in the next subsections.

3.3. The Chiu-Webster intrusion regime at high Prandtl numbers
Chiu-Webster et al. (2008), building on the work of Rossby (1965, 1998), posited that
HC is not sensitive to the type of boundary condition (free slip or no slip) applied to
the velocity field. In addition, they hypothesized that the plume dynamics should depend
on the Prandtl number. While the scaling for the heat and momentum transfer remains
essentially the same as Rossby’s work, these authors showed that the flow has a more
complex structure, characterized by three distinct regions:

(i) A narrow intrusion, clustered underneath the forcing boundary of thickness λb/L ∼
Ra−1/5.

(ii) A strongly stratified interior where the fluid is at rest and whose thickness scales as
h/L ∼ Ra−1/7.

(iii) The plume connecting the intrusion layer and the stably stratified interior.

The structure of the flow is depicted in figure 3.

3.4. Hughes et al.’s (2007) laminar boundary-layer/turbulent plume regime I+
u

Increasing Ra and for intermediate Pr, the momentum boundary layer becomes
progressively thinner compared with the thermal boundary layer. In this case, it is the
thermal boundary layer that drives the dynamics and leads to a turbulent plume and a
circulation that spans the entire depth of the domain. This particular case was theorized
by Hughes et al. (2007) with a plume model inside a filling box. Here, we recast their
model according to the Shiskina–Grossmann–Lohse (SGL) theory (i.e. see the plume
model definition (2.15)–(2.20) in Hughes et al. 2007) and the dissipation in the boundary
layer is balanced by the ratio between the thermal and momentum boundary layers λb/λu
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according to

εuHGMP ∼ ν
U2

λ2
u

λu

H
λb

λu
= ν3H−4Re5/2Pr−1/2, (3.10)

where the dissipation now scales with the thickness of the thermal layer and is given by
εu ∼ νU2/(λbL). Combining (3.2), (3.8) and (3.10) we obtain

Re ∼ Ra2/5Pr−3/5, (3.11a)

Nu ∼ Ra1/5Pr1/5. (3.11b)

Such a regime is denoted as I+
u and was first observed in the experiments of Mullarney

et al. (2004) and Wang & Huang (2005), and later confirmed in the direct numerical
simulations of Gayen et al. (2014).

3.5. The Shishkina & Wagner (2016) laminar regime I∗
l

At low Ra and for large Pr and/or large aspect ratio Γ , the thickness of the momentum
boundary layer λu extends over the depth of the domain, giving λu = H. The relation (3.5)
becomes

εuSW ∼ ν
U2

H2 = ν3H−4Re2. (3.12)

This expression is equivalent to the dissipation of a pressure-driven laminar channel-type
flow. Because this regime requires that the boundary layers span the entire domain, this
flow may only be observed for high aspect ratio domains or small Rayleigh numbers, which
enforce confinement and is the case in the present study. Combining (3.2), (3.8) and (3.12),
we obtain the laminar scaling derived in Shishkina & Wagner (2016)

Re ∼ Ra1/2Pr−1, (3.13a)

Nu ∼ Ra1/4Pr0, (3.13b)

denoted as I∗
l , where Beardsley & Festa (1972) first attempted numerical simulations. It

is interesting to note that this scaling is similar to the analysis of Gramberg et al. (2007)
in which the return flow takes place along the bottom layer and may be applicable when
the boundary layer spans the entire height of the domain. Note that Rossby (1998) also
observed a steeper scaling than Nu ∼ Ra1/5 in his numerical simulations for low Ra (see
p. 248 in Rossby 1998) and similarly in the work of Siggers, Kerswell & Balmforth (2004).

Note that the Shishkina & Wagner (2016) regime I∗
l is expected to occupy the full depth

of the domain in figure 3 and we anticipate that the intrusion regime will occur for a larger
Ra than the I∗

l regime.

3.6. The role of the aspect ratio and finite width
The effect of the domain aspect ratio was also analysed by Chiu-Webster et al. and was
reanalysed by Sheard & King (2011), who reached similar conclusions: for small aspect
ratios Γ < 1 and large enough Rayleigh numbers, the flow follows the Il regime. For
Γ � 2 and Pr 	 1, the Nusselt-number dependence exhibits a slightly steeper scaling
and agrees with the conclusions of Shishkina & Wagner. Note that these theories did not
consider the effect of sidewalls and thus the importance of finite or closed domains. This
particular point remains an open question and will not be addressed in this work.
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3.7. Turbulent regimes at high Prandtl numbers
Most of the existing work in HC at high Pr considers flows driven by laminar-type scaling
laws, dominated by the behaviour of the boundary layer, except for an analogue of HC by
Griffiths & Gayen (2015) and Rosevear et al. (2017). In a recent study, they considered a
spatially periodic forcing at the conducting boundary with a short wavelength compared
with the depth of the domain. Part 1 identifies a similar transition, but the present study
could not achieve the necessary Rayleigh numbers (up to Ra22) to allow us to observe the
transition to a such regime.

4. Experimental results

4.1. Time-scale analysis
We begin by considering the time scale over which a high-Pr HC system will reach a
steady state. Clearly, such experiments are possible if the actual time scale is considerably
shorter than the purely diffusive time τd ∼ κ−1H2, which is close to a year for the largest
tank used in our experiments. As we shall see, convection considerably shortens the
transient by stirring the top layer or by entrainment and detrainment in the plume, as seen
in figures 2 and 3. The amount of buoyancy transported along the horizontal direction over
the distance L is controlled by the streamfunction Ψ and the thickness of the pycnocline.
Using the scaling laws derived in the previous section,

Ψmax/κ ∼ Ra1/6
f and λb/L ∼ Ra−1/6

f , (4.1a,b)

and substituting relation (2.3) together with the definitions of the Nusselt and the Reynolds
number, the scaling laws become

Re ∼ Ψmax/κ ≈ c1Ra1/5 and Nu ∼ (λb/L)−1 = c2Ra1/5. (4.2a,b)

The prefactors c1 and c2 are obtained fitting the theory from experimental data. In this
HC set-up, Griffiths et al. (2013) showed that the stable layer acts as a buffer to adjustments
or imbalances imposed at the boundaries. In the stably stratified region, the conductive
flux is the only mediator to mass, and thus buoyancy transfers. In the case of an imposed
buoyancy flux, the initial state has an interior buoyancy b1 and a total buoyancy flux input
Q1 = F1WL/2 through the membrane with the denser fluid located above the tank. In the
initial steady state, the flux withdrawn is equal to the input Q1. Consider the case of a
flux boundary condition (Neumann). At t = 0 let the negative buoyancy input increase
from Q1 to Q2 = Q1 + δQ. Previous experiments and numerical solutions show that the
boundary buoyancy input in the equilibrium state is carried to the bottom of the tank
by the endwall plume (shown in figure 2, see also Mullarney et al. 2004; Stewart et al.
2012; Gayen et al. 2013; Passaggia et al. 2017). Therefore, we can assume that, in the
transient flow, the ‘unbalanced’ buoyancy input (in excess of that in the equilibrium state)
will also be carried to the bottom of the domain by the plume, where it spreads laterally
across the bottom of the tank before being displaced upward by the continuing plume
transport. Thus, the interior buoyancy b(t) decreases, leading to an increase in buoyancy
difference b − bf across the boundary layer and an increasing rate of conductive negative
buoyancy withdrawal, which we write as Q = Q1 + Q0(t). The rate of change in buoyancy
b̃ averaged over the interior assuming that λb 
 H obeys

LWH
db̃
dt

= δQ − Q′(t), (4.3)
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Horizontal convection in the high-Pr regime

where b̃(t) is the spatial average of the buoyancy over the domain. The imbalance vanishes
at large times, when Q′(t) → δQ. For quasi-steady conduction in the boundary layer over
the buoyant half-part of the top, the rate of buoyancy withdrawal is

Q1 + Q′(t) ≈ βκ
(

b̃ − bf

)
LW/2λb, (4.4)

over the half of the domain L/2 and we write the gradient at the boundary as 〈db/dz〉z=H ≈
β(b̃ − bf )/λb (the factor 2 stems from the fact that freshening occurs only over half of the
domain). In their analysis, Griffiths et al. (2013) did not separate the momentum BL (λu)
from the buoyancy (thermal in their case) BL (λb) and defined β so that 95 % of the overall
buoyancy difference lies in the BL. The constant was evaluated from direct numerical
simulation (DNS) for β ≈ 1.4 at Pr ≈ 5. Since the flow is essentially laminar in the stably
stratified layer and transitional in the statically unstable zone, the constant β can be seen
as the ratio between the momentum BL and the buoyancy BL such that

β ≈ λu〈db/dz〉z=H

(b̃ − bf )
≈ c4λuNu ≈ c4Re−1/2Nu ≈ c4Prα, (4.5)

where α = 1/2 in the Rossby and Shishkina & Wagner regimes while α = 4/10 for the
Hughes’ et al. regime. Applying the above to the results of Griffith et al., we obtain c4 ≈
0.74, while c2 ≈ 0.71 was obtained from figure 4. At large time, the system approaches
the final equilibrium state, in which b̃ = b2 and

Q1 + δQ ≈ βκ
(
b2 − bf

)
LW/2λb. (4.6)

Taking λb as constant for small changes in boundary conditions and combining (4.3)–(4.4)
gives the interior buoyancy

b̃ ≈ b1 + δb (1 − exp(−βκt/2λbH)) , (4.7)

which exponentially approaches a final equilibrium temperature b2, the magnitude of the
resulting change being

δb = b2 − b1 = 2λbδQ/ (βκLW) = λbδF/ (βκ) . (4.8)

In normalized form, the deviation from the final equilibrium is

B =
(

b̃ − b2

)
/ (b1 − b2) ≈ exp(−βκt/2λbH). (4.9)

The imposed flux condition causes the box to equilibrate to the new conditions on the
exponential time scale τF ≈ βλbH/κ . The Rayleigh-number scaling (4.2a,b) justifies our
assumption of constant λb for modest changes in boundary conditions. It also implies a
more rapid adjustment for larger Raf such that

κτF/H2 ≈ (2/β)(λb/H) ≈ Γ (2c2/c4) Ra−1/5Pr−1/2. (4.10)

The evolution of Raf (or equivalently Nu) in each well is shown in figure 5, where both
the source and the sink of buoyancy reach the same value, which implies that the flow
has reached a steady state and that no significant evaporation is taking place. Note that
the time scale was not non-dimensionalized to reflect the duration of the experiments
in different tanks. For example, in the small tank, the diffusion time scale for salt τd ∼
κ−1H2 ≈ 5 days, while in the largest tank, it would be nearly one year. Although four
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Raf
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Figure 4. Flux-Rayleigh number Raf as a function of Ra plotted against the laminar scaling Raf ≈ c2Ra6/5

where c2 = 0.71.
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(b)(a)

Figure 5. Temporal evolution of the flux-Rayleigh value in the small tank L = 0.5 m (a) and the medium tank
L = 2 m (b) over time. Here, time is rescaled with respect to the diffusion time scale τd . Blue curves represent
the evolution of fresh-water wells, and red curves represent the evolution of salt-water wells.

days are necessary to obtain a steady state in the small tank, which already suggests that
a viscous scaling will be at play, it only took a month to reach a steady state in the larger
tank, confirming that vigorous convection at the surface is present. Under the conditions
of the experiments reported in this paper, we find κτF/H2 ≈ [9.7, 201] × 10−3 (or τF ≈
[1.2 × 103, 5.1 × 103]s). Sample results are shown for the L = 0.5 m tank in figure 5(a)
and for the L = 2 m tank in figure 5(b) where all cases were run for at least 100 times the
flux time scale τf highlighted in the analysis. Note that τf was also used to estimate the
time it would take between the time the particles were inserted and the collection of PIV
data.

As suggested by Rocha et al. (2020), this time scale may prove to be short compared
with the actual time necessary to establish a complete steady state, since the bulk and
the boundary layers may be characterized by different time constants. In their numerical
simulations, they found that a complete steady state was achieved for a time scale τ ≈
0.15τd. Note that these experiments were in a transitional regime at Pr = 1 and that our
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Figure 6. Snapshots of the mean streamfunction for (a) Ra = 1.19 × 1013 and (b) Ra = 4.48 × 1013

corresponding to trials 2 and 5 in table 1 showing the progressive clustering of the circulation beneath
the forcing boundary. These figures were obtained from PIV, integrating the mean velocity to obtain the
streamfunction Ψ , which is then non-dimensionalized using (4.2a,b).

experiments were carried out until the measured fluxes were balanced (at least 0.15τd),
confirming that steady states were reached for each experiment.

4.2. Steady states and local measurements
The PIV of the full domain could only be performed for the smaller tanks, and we
resorted to another alternative to estimate the Reynolds and Péclet numbers for the larger
tanks. Since we work in tanks with a large aspect ratio (i.e. Γ = 16), we propose an
estimate for the Reynolds number, which can be obtained from measurements of the
local streamfunction in the middle of the domain. At first order, the Reynolds number
is approximated as

Re ≈ L2

Hλuν
max(Ψ (z))|x=L/2,y=W/2, (4.11)

where the lateral effects were neglected. The Péclet number can then be defined as Pe =
PrRe. This is consistent with our experimental observation of the streamfunction measured
with PIV (figure 6a).

Rescaled density profiles, measured in the centre of the domain x = L/2 are shown in
figure 7(a) for most of the range of Rayleigh numbers reported in the present study. As
Ra increases, the flow exhibits the same behaviour as seen in the experiment of Mularney
et al. but with a thinning of the pycnocline and an increase in the dense, well-mixed fluid,
filling the bottom and the centre of the domain.

The profiles of the streamfunction normalized with the Rossby scaling and collected at
the same location are shown in figure 7(b) for the same values of Ra as in figure 7(a).
The two regimes identified with the analysis of the Nusselt-number scaling can also be
observed with the evolution of the streamfunction as a function of Ra. The maximum of
the streamfunction becomes progressively closer to the forced boundary at z = H. It should
be noted that the location of the streamfunction approaches the buoyancy–forced boundary
when Ra � 1015 while the flow is essentially at rest in the core of the domain. This
observation follows the results of the experiments of Wang & Huang (2005) performed
at Pr ≈ 8. Note that Wang & Huang also reported a regime transition, but did not see a
change in exponents across each regime. We emphasize that, in the case of Wang & Huang,
the aspect ratio was small Γ = 1.3 and of width W/L ≈ 1/8, while in our experiments
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Figure 7. (a) Normalized density profiles (ρ(z) − ρmin)/(ρmax − ρmin) and (b) streamfunction Ψ (z)
non-dimensionalized using (4.2a,b) and calculated from averaged PIV data and rescaled with Rossby scaling
as suggested by Chiu-Webster et al., measured in the middle of the tank (x = L/2).

Γ ≈ 16 and W/L ≈ 1/16. We therefore witness the transition from a confined flow to the
flow with an interior at rest, as recently described in Shishkina & Wagner (2016). Note that
a small recirculation region is observed in figure 7(b) at the bottom of the tank (shown by
a small bump in the streamfunction), which was present in almost all experiments except
for the smaller tank. We hypothesize that this feature, not present in the Wang & Huang
experiments, is possibly due to undesirable heating from the bottom of the tank.

Chiu-Webster et al. (2008) derived asymptotic solutions to the problem of very viscous
convection, and in particular, the solution for the evolution of the temperature in the core of
the domain. In particular, they showed that the temperature (i.e. equivalent to the buoyancy
up to a negative multiplicative constant) scaled as

b(z) = c5

Ra(z + h)7 , (4.12)

where h is the height of the bulk as defined in figure 3 and c5 is a constant, both obtained
from fitting the results in figure 7(a) to (4.12). As shown in Chiu-Webster et al., the height
h derives naturally at first order for the temperature equation in the limit where Pr → ∞,
which becomes Laplace equation in this particular limit. Using the results obtained in
figure 7(a), figure 8(a) shows that self-similarity can be recovered in the interior and that
b(x = L/2, z) ≈ c5(z + h)1/7 where c5 = 1.9.

Figure 8(b) shows the values of the streamfunction obtained in 7(b) rescaled with Ra1/5

for the vertical direction z as in (4.2a,b), and for a large range of Rayleigh numbers. It is
worth noting that the streamfunction becomes self-similar in the range (1 − zΓ )Ra1/5 =
[0, 1] and Ra > 1015, which corresponds to circulating flow. Note that the solution is
no longer self-similar where (1 − zΓ )Ra1/5 > 1, which justifies the use of (4.12) in the
interior, providing further support for the analysis of the regime transitions.

4.3. Scaling analysis
The dependence of Nu and Ψmax (and equivalently Re) on the Rayleigh number Ra is
summarized in figure 9(a–f ). Similarly to the analysis in terms of the flux–Rayleigh
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Figure 8. (a) Rescaled normalized buoyancy profiles as defined in (4.12). (b) Rescaled streamfunction
profiles showing the self-similar nature of the flow near the upper boundary.

number, we observe two different scaling exponents (figure 9a): for Ra � 1015, the flow
exhibits a scaling exponent Nu ∼ Ra1/4, while for Ra � 1015 the salt uptake rate decreases
to exhibit a Nu ∼ Ra1/5-type scaling. The same compensated plot is shown in figure 9(b),
where the difference between the two scalings is only a factor 2.5 at Ra = 7.11 × 1016

over the full dynamic range of our experiments and underlines the importance of the large
Rayleigh-number ranges to differentiate between the two scaling laws.

Based on figure 7(a,b), we extrapolate the thickness of both the kinetic boundary layer
λu and the pycnocline thickness λb. The former is given by the location of the maximum of
the streamfunction max (Ψ (z)), the latter was extrapolated using the height of the fiftieth
percentile of the rescaled density profile. The evolution of the buoyancy boundary layer
is reported in figure 9(c) and shows again two different behaviours. For Ra < 1015, the
buoyancy boundary-layer thickness decreases and follows a Ra−1/4 scaling. At Ra ≈ 1015,
we observe a regime change where the thickness now decreases so that Ra−1/4. A similar
behaviour is observed in figure 9(d), where the thickness of the kinetic boundary layer λu

is reported. For Ra � 1015, the kinetic boundary layer saturates at λ ≈ 0.4, which is in
agreement with the study of Shishkina & Wagner (2016). Past Ra � 1015, we recover the
Rossby scaling for λu ∼ Ra−1/5 and, together with the bulk reduction, this suggests that
we are observing the intrusion-type flow studied by Chiu-Webster et al. (2008).

We confirm this claim in figure 9(e), where the thickness of the core hΓ is shown as
a function of the Rayleigh number. This thickness was measured fitting (4.12) from the
data reported in figure 7(a), as shown in 8(a). Using their plume theory, Chiu-Webster
et al. (2008) showed that the thickness of the bulk decreases as Ra−1/7. This scaling is
compared with the data points that suggested such behaviour for Ra � 1015. Although
based only on a few data points, we may be witnessing the intrusion regime described by
Chiu-Webster et al. (2008).

Conclusions from the maximum of the streamfunction shown in figure 9( f ) are more
difficult to draw. From Shishkina & Wagner (2016), we would expect a Reynolds-number
scaling as Re ∼ Ra1/2 and λu ∼ Ra1/2, which results in Ψmax ∼ Ra1/4. For larger
values of Ra, we would expect Ψmax ∼ Ra1/5, similar to the Rossby scaling. A linear
regression across the entire data set provides max Ψ ∼ Ra0.225, which lies between
the 1/4 exponent expected from the Shishkina & Wagner (2016) analysis and the 1/5
predicted in Chiu-Webster et al. (2008). Note that all data points for the maximum of
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Figure 9. The (a) Ra and (b) rescaled-Ra dependencies of the Nusselt number. (c) Buoyancy boundary-layer
thickness λb and (d) momentum boundary thickness λu, compared with the theory of Chiu-Webster et al.
(2008) (red) and Shishkina & Wagner (2016) (black). (e) Bulk thickness h/H compared with the theory of
Chiu-Webster et al. ( f ) Maximum of the streamfunction Ψmax as a function of Ra and the linear regression over
the full range.

the streamfunction were not reported since PIV proved difficult near the boundary for the
largest buoyancy inputs in the wells, in particular in the smaller tank.

The present experimental results, based on a regime similar to Shishkina & Wagner
(2016), suggest a transition from the I∗

l regime to the Iu intrusion regime of Chiu-Webster
et al. (2008) for Prandtl numbers one order of magnitude larger than the direct numerical
simulations of Shishkina & Wagner (2016) and Rossby (1965), and Rayleigh numbers
up to seven orders of magnitude larger than previous experiments and direct numerical
simulations for similar Prandtl numbers. In the next subsection, we discuss the present
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results with the results at intermediate and low Prandtl numbers presented in Part 1 We
propose an updated regime transition diagram of horizontal convection.

5. Completing the regime diagram of natural horizontal convection

In this section, we summarize the different HC regimes that were observed in the (Ra, Pr)
space in the present work and Part 1 (Passaggia & Scotti 2024), together with all the
results that we could gather from the literature on HC (figure 10(a)–(b)). This section aims
at extending the regime diagram in Hughes et al. (2007) and the limiting regimes provided
in Shishkina et al. (2017).

We first provide a nomenclature for the different regimes:

(i) 0 nearly conducting (i.e. Nu ∼ const.);

(ii) I laminar;

(iii) II transitional (only turbulent in the plume);

(iv) III enhanced transitional (only turbulent in the BL but never observed);

(v) IV both boundary layers and plume are turbulent.

Additional subscripts and superscripts are identified as:

(i) u for large Prandtl numbers;
(ii) l for low Prandtl numbers;

(iii) ∗ when essentially controlled by the aspect ratio;

(iv) + when essentially controlled by the plume dynamics.

We begin with the conducting regime 0 , which was analysed in Siggers et al. (2004),
Chiu-Webster et al. (2008) and, more recently, by Sheard & King (2011), where Nu ∼
Ra0Pr0. The onset is independent of the Prandtl number, the transition is smooth and
weakly affected by the aspect ratio Γ and occurs when Ra ≈ 103. The conducting regime

neighbours the I∗
l regime which follows the scaling in (3.12a) or the Il regime in (3.4a)

depending on the aspect ratio. The transition was found to not depend on Ra, consistent
with the results reported in the literature (Siggers et al. 2004; Sheard & King 2011).

The connection between the laminar regimes I∗
l and Il is determined by matching

the Reynolds numbers in these neighbouring regimes. From (3.12b) and (3.4b), we obtain
the slope of the transition region between the regimes I∗

l and Il, which is Pr ∼ Ra1/2.
This transition is smooth (Shishkina et al. 2017), but is strongly affected by both the
aspect ratio of the domain and the type of boundary conditions. Note that the free-slip
boundary conditions make it easier to observe this regime. Results from Rossby (1998),
Shishkina & Wagner (2016) and the present work confirm that high aspect ratio domains
are necessary to observe the I∗

l regime. With increasing aspect ratios, the boundary layer
becomes increasingly thick with respect to depth H and eventually covers the entire depth
of the domain for a small enough Rayleigh number. To reflect this dependence in the
regime diagram, this transition is marked by a dashed line because of its strong aspect ratio
dependence. The present dashed line was approximated as a fit from the present results and
Shishkina et al. for aspect ratios Γ ∼ O(10) but the reader should keep in mind that the
present landscape should include a third dimension, Γ , to be complete.
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As both Ra and Pr increase, the Rossby regime progressively evolves towards the
intrusion regime studied by Chiu-Webster et al. (2008) and observed for large Rayleigh
numbers in this study. This regime has the same dependence on the Prandtl and Reynolds
numbers as the laminar Rossby regime, but the flow has a significantly different structure.
We therefore propose to name this flow Iu to remain consistent with the Shishkina et al.
(2016) nomenclature.

As Ra increases and for Pr ≈ O(1), we observe the I+
u regime of Hughes et al. (2007).

As shown in Gayen et al. (2014), the transition for increasing Ra is not smooth, and this
flow exists only over a small region of the regime diagram. The flow transitions to Iu

when Pr increases and appears at constant Pr. This can be shown by equating (3.4b) and

(3.10b) and this transition from I+
u to Iu was highlighted by Gayen et al. (2014) (see

p. 712).
For low Pr, a sharp transition from Il to II∗

l was reported in Passaggia & Scotti

(2024). This transition occurs at Pr ∼ Ra1/2 across a bifurcation of the flow. Note that,
similarly to the high-Pr regimes, the circulation shrinks as Pr decreases. Also, note that

the transition from II∗
l to I+

u has a complex shape and is strongly dependent on the aspect

ratio Γ .
The last transition appears as the Rayleigh number increases and was first observed

at Ra ≈ 1011 and Pr ≈ 0.1. The II∗
l regime transitions to the limiting regime IVu .

This transition was smooth and marks the appearance of a first limiting regime for
asymptotic Ra, consistent with the zeroth law of turbulence where the Reynolds and

Nusselt numbers are driven by turbulent-scaling arguments. The transition from II∗
l to

IVu appears as Ra ∼ Cst as reported in Passaggia & Scotti (2024). The separation between
the regime’s argument is more difficult to draw since we have not been able to identify
the transitions between the regimes directly from previous works. In addition, regime
IVu displays logarithmic Reynolds-number corrections for the Reynolds and the Nusselt

number, which lead to the scaling Pr ∼ Ra1.66L(Re16), which is strongly dependent on the
Reynolds number. This is not too surprising since transition to turbulence is expected to be
Reynolds-number dependent (Lohse & Shishkina 2023). Furthermore, the Prandtl-number
dependence on the log correction could not be verified in the work of Passaggia & Scotti
(2024), which leaves questions open regarding the complete understanding of this flow
regime and its transitions. Another alternative would be to use the values reported in

table 2 and match the Nusselt number between I+
u and IVu . Still, the scaling law depends

again on the actual values of the Reynolds number and would provide, for this particular
case, Pr ∼ Ra−0.115. Note that the same conclusion applies to the transition between Iu

and IVu . For these reasons, the transitions region is shown by a red dashed line and remains
a matter for further investigation. All the regimes summarized in the section are provided
in table 2.

Regarding the ultimate regime IVl predicted in Siggers et al. (2004) and Shishkina

et al. (2017), where Nu ∼ Ra1/3Pr−2/3 and Re ∼ Ra1/3Pr1/3, the bound on the Richardson
number in the stratified boundary layer, derived in Passaggia & Scotti (2024), shows that
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Regime type 0 I∗
l Il I+

u Iu II∗
l IVu

Nu ∼ ReαPrβ

α 0 1/4 1/5 1/5 1/5 1/6 0.225∗
β 0 0 1/10 1/5 1/10 7/24 0.417∗

Re ∼ Raγ Prδ

γ 0 1/2 2/5 1/3 2/5 2/5 1/3
δ 0 −2/3 −1 −4/5 −1 −3/5 −1

Table 2. List of scaling laws obtained for the Nusselt- and Reyolds-number dependencies across different
regimes. The prefactors and the scalings with an asterisk are estimated from the numerical simulations. All
other exponents are derived from theoretical considerations.

this regime seems unattainable as long as the boundary is considered as perfectly flat
(Lohse & Shishkina 2023), (i.e. for instance without roughness elements). This particular
point deserves more investigation and whether such a regime can be attained is of
utmost importance for geophysical applications. Nevertheless, in the present academic
configuration assuming perfectly flat boundaries, the regime IVu seems to be the limiting
regime attainable at very large Rayleigh numbers.

This updated regime diagram covers, to the best of our knowledge, all previous DNS
and experimental studies performed on HC. The last regime observed at high Rayleigh
numbers is a turbulent-dominated regime in the bulk, which satisfies the zeroth law of
turbulence Shishkina et al. (2016). The resulting flow characteristics at high Rayleigh
numbers and all Prandtl numbers are an intensified turbulent near-surface circulation
which follows Sandström’s original inference, Jeffrey’s argument and the PY bound on
dissipation. They argued that the flow generated by HC would result in an essentially
stagnant pool of water with little to no flow in the core and an intensified turbulent
circulation localized near the differentially heated boundary. Our results show that limiting
regimes at all Prandtl numbers for large Rayleigh numbers inevitably lead to such a
scenario.

6. Conclusions

This work considers laboratory experiments of HC at high Prandtl and high Rayleigh
numbers. This work aims to explore a part of the regime diagram that has not yet been
explored in previous studies. Related experimental work at high Prandtl numbers dates
back to the original work Rossby (1965) and Miller (1968) more than half a century
ago. Instead of differential heating, where increasing the Prandtl number is achieved by
increasing the viscosity of the working fluid, we consider solutal convection and use
a permeable dialysis membrane to allow for a mass/salinity flux through the forcing
boundary while ensuring a no-flow/no-slip boundary condition in a high aspect ratio and
narrow domain.

Experiments that span four orders of magnitude in the Rayleigh number while keeping
the Prandtl number constant are performed. This allows for measuring two known regimes,
already identified in the literature in natural HC at higher Prandtl numbers but for much
larger values of the Rayleigh number (up to seven orders of magnitude larger) than
previously reported. We provide experimental evidence of the laminar regime identified
by Shishkina & Wagner (2016) where the recirculating flow, and thus the boundary
layer, has the same domain size. This regime leads to a regime Nu ∼ Ra1/4 that is
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Figure 10. (a) Summary combining of all calculations found in the literature from experiments and DNS
on HC together with the present experiments (�, magenta) and DNS from Part 1 (Passaggia & Scotti 2024)
(�, blue). The plotted results also include: (- -) (blue dashed line) Rossby (1965), (- -) (orange dashed line)
Miller (1968), Beardsley & Festa (1972) (—) (black dashed line), Paparella & Young (2002) (red transparent
square), Siggers et al. (2004) (transparent yellow square), Mullarney et al. (2004) (black dashed line), Wang
& Huang (2005) (brown line), Sheard & King (2011) (magenta horizontal line), Gayen et al. (2014) (green
lines), Shishkina et al. (2017) (transparent purple square with borders) and Reiter & Shishkina (2020) (- -)
(red horizontal dashed lines). (b) Phase diagrams in the (Ra, Pr) plane that combine the present results with
Part 1 (Passaggia & Scotti 2024) at low Prandtl numbers, showing the different regimes of HC for the present
flow geometry. Note that all of the above results considered no-slip boundary conditions, except for the results
reported in Passaggia & Scotti (2024). In addition, dashed lines and rectangles with borders denote experiments
or simulations with sidewalls.

consistent with direct numerical simulations at high Pr and lower Ra, where the effects
of confinement enhance the amount of laminar dissipation and provide a mechanism
for a heat transfer larger than previously theorized by Rossby (1965) for small aspect
ratio domains. Increasing further the Rayleigh number beyond Ra � 1015 and for Prandtl
numbers Pr ≈ 610, the flow exhibits a transition back to the Rossby regime as the
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boundary becomes progressively thinner. Experimental evidence of this regime is made
possible following the work of Chiu-Webster et al. (2008), who analysed HC in the
limit of asymptotically large Prandtl numbers, also known as very viscous horizontal
convection. This regime is also known as the intrusion regime (Hughes & Griffiths 2008).
It follows the same scaling laws as the original Rossby regime, but the structure of the
flow is substantially different, with a narrow recirculating/intrusion regime while the
core of the flow remains essentially at rest. Using PIV and conductivity measurements
at the centre of the domain, we show that for high Rayleigh numbers, the flow follows
scaling laws similar to those derived in Chiu-Webster et al.’s asymptotic analysis for the
behaviour of the boundary layer and the thickness of the fluid at rest contained in the bulk.
Definite conclusions about the magnitude of the streamfunction are harder to draw due to
measurement uncertainties but hint at the same arguments.

We report a new regime transition in HC at large Rayleigh and Prandtl numbers.
Combining all available evidence, we propose an updated regime diagram that extends the
regime diagrams proposed by Hughes & Griffiths (2008) and more recently by Shishkina
et al. (2016). Seven distinct regimes are mapped for which observations using either DNS
or experiments have been confirmed, and the Nusselt-number dependencies are used to
draw a complete regime diagram from seven orders of magnitude for the Prandtl number
and seventeen orders of magnitude for the Rayleigh number. We also report the six limiting
regimes known to this date and, in particular, the transition to the turbulent limiting regime
IVu for asymptotically large Rayleigh numbers and put an emphasis on the role of the
aspect ratio of the domain for large Prandtl numbers. Although it was also shown that the
ultimate regime IVl cannot be achieved (Siggers et al. 2004; Passaggia, Scotti & White
2016; Passaggia & Scotti 2024), the present regime diagram is consistent with previous
studies and reviews and provides a complete parametrization of horizontal convection that
can be used for engineering and geophysical applications.
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