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Abstract. An AC-flow is the associated flow of a product type odometer (PTO).
We give examples of AC-flows and compute their L™-point-spectra. We also
introduce an invariant for isomorphism of aperiodic conservative ergodic non-
singular flows which is a closed subset of the unit interval and contains 0 and 1. We
give a necessary condition for the associated flow of an approximately finite ergodic
group to be finite measure preserving.

0. Introduction
In § 1 we define an AC-flow and give examples of AC-flows, one of which has trivial
L”-point spectrum. In § 2 we introduce an invariant, I'({T}}), for isomorphisms of
aperiodic conservative ergodic non-singular flows {7}, which is a closed subset of
[0, 1] and contains O and 1, and show that if {7,} is finite measure preserving then
r{ThH=I[0,1],
and that for any closed subset I' of [0, 1] that contains O and 1 there exists an
AC-flow {T;} with
(T} =T.

Applying this invariant to associated flows of approximately finite ergodic groups
G, it is realized as a set A(G) relating to the recurrence of the Radon—-Nikodym
cocycle (dPg/dP)(w), g € G. We should note that a PTO induces an infinite tensor
product of finite type I von Neumann factor by the group measure space construction.

The following definitions are omitted in the present paper but can be found in
[1], [4]: L™-point spectrum; orbit equivalence, (weak equivalence); the associated
flow; type 1I,; III, (0 <A <1) and IIl,; and approximate finiteness.

1. AC-flow

Let T be an ergodic non-singular transformation of a lebesgue space (€2, P) and
let £(w) be measurable positive function on (Q, P). Define ér(k, w), we(Q,
k=0, £1,...by

kil é(T'w) k=1,2,...
i=0
§T(k,w)= 0 k=0
—}f T ') k=-1,-2,.... (1)

https://doi.org/10.1017/50143385700002170 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002170

602 M. Osikawa

Denote by Q) the subset {(w,u); weQ,ucR, 0= u<{(w)} of QA XR and by P the
restriction of P X du to ﬁ, where du is Lebesgue measure on the real line R. Define
T,(w, u) for (w, u) in Q) and —0 <t <0 by

T.(w, u) = (T 0, u+t— &r(k, )
if ér(k,w)=u+t<ér(k+1,w). Then {T,} is an aperiodic conservative ergodic
measurable flow on (), P) and is called the flow built under the function £(w) with
base transformation T.

If a measurable function £¢(w) is positive-integer-valued one can define a transfor-

mation T in the same way as above taking Z instead of R; that is,

T"(w, i) =(T*w, i+n—ér(k, )
if ér(k,w)=si+n<ér(k+1,w);i,nel. T is called the transformation built under
the function £(w) with base transformation T.

An ergodic countable group of non-singular transformations can be uniquely
associated to an egodic measurable flow [2]. W. Krieger [4] showed that the
correspondence gives a one-to-one mapping from orbit equivalence classes of
approximately finite ergodic groups of non-singular transformations of type 1Il,
onto isomorphism classes of aperiodic conservative ergodic measurable flows.

Let n,, k=1,2,... be a sequence of positive integers (n, =2). For each k we
denote by Q the finite set {0, 1, ..., n,—1}; by G, the permutation group on ;
and let P, be a probability measure on Q, such that P,({j})>0 for j=
0,1,...,m—1. Let (2, P) be the infinite direct product measure space of
(Q, P,),k=1,2,.... Each G, may be considered to act on (1. The transformation
group, which we denote by G, on (Q, P) generated by Gy, k=1, 2, . . . is non-singular
and ergodic. The group G is called a product type odometer group (PTOG). We
denote by Ay, forj=0,1,...,n,-2,k=1,2,..., the set of points w in £ such that

w;,=n—-1 fori=1,2,...,k—-1

W =J,
where w is the kth coordinate of w. Then Ay ;,j=0,1,...,n—2,k=1,2,... are
disjoint. For @ in A,;,j=0,1,...,m—2,k=1,2,... we denote by Tw the point
in € such that

(Tw); =0 fori=1,2,...,k—1,

(Tw)=j+1

(Tw);=w; fori=k+1,k+2,....

Then T is a mapping from Q) —{&} onto 2} —{w}, where @ and @ are the points such

that
(w)k=n,—1 and (),=0 fork=1,2,....

Assume that

PaN = T1 Pellme—1)=0
and
P} = T P(O) =0,
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then T is a non-singular transformation of (2, P) and satisfies
{T"w;n=0,+1,...}={gw; g G} fora.e. win Q. (2)

The transformation T is therefore ergodic and is called a product type odometer
(PTO). For any positive numbers C, ;, j=0,1,...,nm—2, k=1,2,... we define a
positive measurable function £(w) on Q—{®} by

éHw)= Ck,]’

fwisin A, j=0,1,...,m~2,k=1,2,.... We will call the flow built under the
function £(w) with base transformation T, the AC-flow generated by P,, k=1,2,...
and C,.,j=0,1,...,m—2, k=1,2,... ([5]).

If the Cy;’s are positive integers we will call the transformation built under the
function ¢(w) with base transformation T, an AC-transformation.

In [5] we proved the following' theorems:

THEOREM 1. Any AC-flow is the associated flow of a PTO of type 111,

THEOREM 2. Let {T,} be an AC-flow generated by P, k=1,2,... and C; j=
0,1,...,m—2, k=1,2,.... A real number 2wt is in the L™-point-spectrum,
Sp ({T.}), if and only if there exists a real sequence ai, k =1,2,... such that

exp (27rit él (&(w)— ak))

converges a.e. @ as n >, where & ()= b (wy) for w in Q—{o}, k=1,2,..., and
b(§), 7=0,1,...,m~1, k=1,2,... are defined inductively by

j-1 k-1
bi(j) = Z_O Com*] 'gx bi(n;—1).

The crucial properties used to prove theorem 2 were that & (w), k=1, 2, ... should
be a sequence of independent random variables and that we have

(6(g w)= io (& (gw) — & (w)) for w in Q,forali ginthe PTO G, (3)
k=1

where £&5(8, w) = £r(i(g, w), @), and i(g, @) denotes the integers given by (2)
satisfying gw = T'®*“ 0, w € Q.

Examples. In the following examples we put n, =2, k=1,2,..., and

A

P({1})=

T+ n k=1,2,..., forsomeO<A=]1.
The odometer transformation T defined by Py, k=1,2,... is of type II, if A =1,
of type III if 0<A<1. In examples (i)—(iv) below we compute the L™-point-
spectrum, Sp ({T,}), of the AC-flow {T,} generated by particular C; o’s, k=1,2,....
Note that in each case the L™-point-spectrum, Sp ({T;}) is the T-set of the corres-
ponding PTO of type III, given by theorem 1 ([2]).
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(i) Letm, k=1, 2,...beasequence of positive integers in which every positive
integer appears infinitely often. Put

Caks10=2—2"™, Caxs20=2+2"™, Cuxs30=2+2"""" and Cirrspo=2,
k=0,1,...; then
7 Sp ((T:}) ={0}.
(ii) Put
Cukr10=1/a, Cirs20=3/a, Car+30= 4/a and Cyi40=2/a,
k=0,1,... for some positive number a; then
Sp {T:}) = 2maZ.

k-1
co(5r) -

k=1,2,... for some positive number a and positive integer p; then

(iii) Put

Sp ({T.}) = 2ma x{ p-adic rational number}.
(iv) Put

k—1

Cio=Mi— ;1 M,

k=1,2,... where M;=2 and M, =2"M,_;, k=2,3,...; then Sp ({T}}) is the set
of real numbers

27 k%::l (t/ M)

for all sequences of integers #, k=1, 2, ... such that Zf=1 (1./2%)? converges. The
set Sp ({T;}) is a nontrivial uncountable subgroup of R.

Proof. (i) We have
b (0)=0 fork=1,2,...,
Baisr(1) =241 =27 bar+2(1) =22,
baes(1)=2%"2427™ and  bayra(1) =2%",

k=0,1,.... Let 2ot be in Sp ({T}}), then by theorem 2 there is a real sequence
a, k=1,2,... with P(E)=1 where E is the set consisting of all w in  such that

lim exp (2mit(éi(w) —ax)) =1.

Assume first that ¢ is not a 2-adic rational number, then there exists an infinite set
of positive integers, Ny, such that for any infinite subset N§ of N,

. . 2k
kehlll‘;r,rkl%0 exp (2mit X2°%) # 1.

By the Borel-Cantelli lemma there exists a point ' in the set E and an infinite
subset N; of N, such that

(w)2x =1  forkin N,.
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Then we have

. L a2k -
ke}Lllr’rklwoexp(%ﬂt(Z a))=1.

Again by the Borel-Cantelli lemma there exists a point w” in E and an infinite
subset N, of N, such that

(0% =0 for k in N,.
Then we have

ke}blzr,gwo exp (2mit(—ay)) =1.

This contradicts our assumption that

lim exp (2mitx2%*) #1.

ke N, k>0

Assume next that ¢ is a 2-adic rational non-zero number; then from the property
of the sequence m;, k=1,2,... and by the Borel-Cantelli lemma there exists a
point > in E and an infinite set N of positive integers such that

((03)4k+3 =1 for k in N3

and such that exp (2rit X 2™ ™) is a constant and not 1 for k in N;. The Borel-Cantelli
lemma implies that there exists a point »* in E and an infinite subset N, of N
such that

(w4)4k+3=0 forkin N4.
From (@) 4xs3=1 and (0*)4x+3 =0 for k in N, and from the fact that »> and »*
are in the set E we have the contradiction

lim exp (2mit X2™ ™) =1.

ke Ny,k—co

Hence we have Sp ({T,}) ={0}.
(i1) We have

b (0)=0, k=1,2,...,
b4k+1(1)=(24k+1_1)/a’ b4k+2(1)=24k+2/a,
bar3(1)= (24k+3+ 1)/a and by (1)= 24k+4/a,

k=0,1,.... One can prove (ii) using the same method as for (i).
(iii) We have

b(0)=0 and b (1)=p*/a,

k=1,2,.... We proved (iii) for the case p=2 in [2]. A similar proof can be
constructed for the general case.
(iv) We have

bk(0)=0 and bk(1)=Mk’
k=1,2,.... This case was proved in [5]. O

Remark. Take a =1 in example (ii) and consider the AC-transformation instead of
the AC-flow, then its L™-point spectrum is trivial.
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2. An invariant of ergodic flows

Let T be an ergodic non-singular transformation on a Lebesgue space ({}, P) and
£(w) be a measurable positive function on Q. For a set A with P(A) > 0 we denote
by ka(i, w) the ith return time to A starting from o in A, and by T, the induced
transformation of T on A, that is,

Thow =Tk g forwinA, i=1,2,....

Put
k,(l,w)—1

fa(w)= Y HTw) forwinA

j=1

and
i-1 )
§T,A(i;w)= z gA(T{Aw)=§T(kA(t7 w)’ w) forwin A’ '=1, 2a--«-
j=0

We denote by I'(T, £) the set of numbers a in the unit interval [0, 1] such that for
any set A with P(A)> 0 the following condition (*) holds:

(*) for any &, r>0 there exists a positive number s> r and positive integers
i, j with

PlweAjla—(1/5)érali, w)|<e, |1-(1/5)éra(j, @) <e})>0.

LeMMA 1. (1) I'(T, £) is a closed subset of [0, 1] that contains 0 and 1.

(2) I(T, &) =T(Ta4, £4), for any set A with P(A)>0.

(3) If flows built under functions ¢(w) and ¢'(w') with base transformations T
and T’ respectively are isomorphic,

(T, §)=I(T", §).

Proof. (1) is obvious.

(2) T(T, £) =T (T4, £4) is obvious. To prove the converse let B be a set with
P(B) > 0. From the ergodicity of T there exists a subset C of A with P(C)>0 and
a non-negative integer k such that C, 7C,. . ., T*C are disjoint and such that T*C
is a subset of B. We have
1 k (i,w)+k—1

k= C .
«_fr,rkc(i,T"w)=§r,c(i,w)—.§ {Tw)+ ¥ HTw)

0 j=keliw)

for w in C and i=1,2,.... We may assume Z,'.:Ol &(T’w) is bounded for @ in C.
Then if (*) holds for the set C it holds for T*C, and so for B. This means that

(T4, éa) < I(T, §).
Thus we have proved (2).

(3) From the assumption there exist subsets A and A’ with P(A)>0,
P'(A’)>0, and a non-singular mapping ¢ from A onto A’ such that

Thow=¢Tsw forwin A
and such that
éalw)—&u(d0) =n(Taw)—n(w) forwinA,
for some measurable function n(w). Considering subsets of A on which n(w) is
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bounded we have
T(Ta, £a) =T(Ta, €4 (@) =T(T, €4).
By (2) we have I'(T, &) =T(T', ¢). O

Denote by I'({T}}) the set I'(T, ¢) where {T,} is the flow built under the function
£(w) with base transformation T, and note that every measurable aperiodic conserva-
tive ergodic flow is isomorphic to a flow built under a function with a base transforma-
tion {(Ambrose-Kakutani-Kubo-Krengel). Then lemma 1 (3) says that I'({T;}) is an
invariant for isomorphism of aperiodic conservative ergodic flows.

THEOREM 3. If {T}} is finite measure preserving then T'({T,}) =[0, 1].

Proof. By the pointwise ergodic theorem, for any set A and any € > 0 there exists
an integer N such that

P(lwe A; |(ér.a(n, w)/n)~ L|<(e/2)L forn=N})>0,
where L=, £4(w) dP(w)/P(A)>0. For 0=a =1 there exists i, j= N with

<g/2.

i
a—-
J
Then for w in A such that
[(éra(n, w)/n)—L{<(e/2)L forn>N
we have
|(1/s)érali, w)—a|<e and [(1/8)éralj 0)—1|<g,
where s = jL. This means that a is in I'({7,}) and we have
r{T.h=[o0,1]. O
THEOREM 4. For any closed subset T’ of [0, 1] that contains O and 1 there exists an
AC-flow {T.} with T{T,})=T.
Proof. We first prove the case of I' #{0, 1}. Let I'; be a countable dense subset of
I’ that contains neither 0 nor 1. Let C(k), k=1,2,... be a sequence of numbers
in [y such that every element of I’y appears infinitely often, and let S(k), k=1,2,...

be a sequence of positive numbers such that
k—

min {C(k)S(k), (1~ C(k))S(k)}>k _;1 S(i)

fork=1,2,....Let P, k=1,2,...bemeasures on the 3-point set {0, 1, 2} such that

N S . S I N
P.({0}) = 1+A+7 P.({1}) 1+A+7 P.({2}) 1+A+7
k=1,2,..., for some positive numbers A and 7, and let

Ceo=COS(R)~ T, S(i)
and

Cur=(1=CHNSK- T S0,
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k=1,2,.... Consider the AC-flow generated by P,, k=1,2,... and G,
j=0,1, k=1,2,...; then we have

b (0)=0, b (1)=C(k)S(k) and b (2)=S(k),

k=1,2,.... Let a be a number in I'; and let A be a subset with P(A)>0. One
can choose a positive integer I and an element u in Hf {0, 1, 2} such that

P(AnZ,)> (1 —;ﬁ-) P(Z,),

where Z, is the cylinder set determined by u, and

A
8=min{ S y 1 }
1+A+n" 1+A+n 1+A+7

For any € >0 and r> 0 a positive integer J can be chosen so that
1
C(J)=a, J>I, S(J)>r and 7< £

For each j=0, 1, 2 one can choose an element v; in l‘[f+l {0, 1, 2} such that (v;), =j

and
P(ANZ,nZ,)>(1-)P(Z)P(Z,).

Let f and g be elements of the PTO G such that
fzZ,nz)=2,n2,, gZ,nZ,)=2Z,n2Z,
and
(fw)r=(gw), = wy
for k=J+1 and w in Z, n Z,. Since the Radon-Nikodym densities of f and g are
constant on Z, N Z, we have

P(ANZ,nZ,)nfANZ,n2Z,)ng  (AnZ,nZ,))>0.
From (3) we have
J—1
£6(f, @) =b;(1)=b;(2)+ .Eﬂ (bi((v1))) = bi((vo):))

and

£6(8 @) =b;(2)~b,(0)+ ¥ 1 (b:((02):) — bil(vo)i))

i=I+
for w in Z,n Z,,, and hence,

la=(/SUEo(f @l = 3, SU/SU)<1/T<e
and :1
1=(1/8()éc(g w)|= ¥ S(U)/SU)<1/J<e
for w in o
(AnZ,nZ)nf Y ANZ,nZ,)ng (ANZ,NZ,).
This means that

PwecA;foec A, gweA,la—(1/S)és(f w)<e,
1-(1/S(J))é(g, w)|<e})>0.
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Hence a is in T'({T,}) and we have proved
Fer{T}.

Next let a be a number of I'({T;}), then there exists a sequence (Sp, fas &n @n),
n=1,2,...of positive numbers s,, elements f,, g, in G and points w, in ! such that

1 1
lim s, =0, lims—gc(f,,,w,,)=a and limg-gG(gn,w,,):l.

n-—»oo

We may assume that

§G(fm wn) = fG(gm wn)7
n=1,2,.... For each integer n let m(n) be the maximum coordinate of w, that
is changed by g,; then at least one of the following cases holds for infinitely many

n:
@) (@) mimy =0, (fu®r)mm) =2, (8n@n)mny =2
(0) (@) mm =0, (fa@r)mimy =1, (8:@n)m(ny =2
©) (W)mimy=0, (fa®)mim =0, (8:0n)min)=2
(d) (@n)memy =0, (fnwn)m(n) =1, (gnwn)m(n) =1
€) (@)mm=1, (fi@n)miny =2, (8@n)m(my=1
(f) (@) memy =1, (fnwn)m(n)=21 (gnwn)m(n)=2
() (@)mm=1, (fau0)mm =1, (8n@n)meny=2.

In case (b) we have

m(n)—1
|§G(gm wn)_s(m(n))|< '§1 S(l)

and
m(n)—
éo(fwn) = Clmm)S(m(m)I <" 3 " 503

for infinitely many n. We have
lim gG(gm wn)=1 lim S(m(n))
new S(m(n)) 7 oaew S,

Hence, a is a limit point of I'y. In the same way as above we have a =1 in cases
(a), (d) and (f), and a =0 in cases (c), (e) and (g). We have proved I'{T;})< T and
therefore

=1 and 1irgC(m(n))=a.

r{rh=r.

We next prove the case of I' = {0, 1}. Let S(k), k=1, 2, ... be a sequence of positive
numbers such that

k—1
S(k)>k ¥ S@i)
i=1
fork=1,2,...andlet P,, k=1, 2, ... be measures on the 2-point set {0, 1} such that
1 A
P.({0}) =—— =
()=t P =1
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k=1,2,...for some positive number A, and

k—1
Ck,o= S(k)— .gl S(i),

k=1,2,.... Consider the AC-flow generated by P, k=1,2,... and Gy,
k=1,2,...,then we have b.(0)=0, b (1)=S(k), k=1,2,...and we can show in
the same way as above that I'({T;}) ={0, 1}. O

For an ergodic non-singular transformation T let us denote by I'(T) the set I'(T, 1),
then a number a €[0, 1] is in I'(T) if and only if for any set A with P(A)> 0 and
g, r> 0 there exists a positive number s> r and positive integers i, j with

ofoen <)o

where k,(i, w) is the ith return time of T on A. The set I'(T) is an invariant for
isomorphism of ergodic non-singular transformations. Similar results to theorems
3 and 4 can be obtained in this setting.

Let G be an ergodic countable group of non-singular type III transformations on
a Lebesgue space (£, P). We denote by A(G) the set of numbers a €[0, 1] such
that for any subset A with P(A) > 0 and &, r > 0 there exists a positive number s> r
and elements f, g in G with

a—%log%(w) l—%l g%(a)) <s})>0.

A(G) is a closed subset of [0, 1] that contains 0 and 1, does not depend on the
measure P, and hence is an invariant for orbit equivalence of ergodic countable
groups of non-singular transformations of type III.

1 1
a~;kA(i, w)|<e |1 '—;kA(j’ w)

<eg,

P({weA;fweA,gweA,

THEOREM 5. Let G be an approximately finite group of type 111, and let {T,} be its
associated flow, then A(G) =T({T}}).

Proof. Let S be an ergodic m-measure preserving transformation of an infinite
o-finite Lebesgue space (W, m), and denote by N[S] the set of non-singular transfor-
mations R such that

R Orbg (w) = Orbs (Rw) fora.e. w.

By a result of W. Krieger [4] there exists an ergodic non-singular transformation
U of a Lebesgue space (Y, ») and for each y in Y an element R(y) in N[S] such
that the mapping (y, w)—> (Y, R(y) w) is measurable and such that G is orbit
equivalent to the group generated by Ux and S, where
Ur(y, w)=(Uy, R(y)w) and S$(y, w)=(y, Sw)
for (y, w) in Y X W. Put
davU dmR(y)
=log——(y) +log ————
¢(y) =log—-=(y) +log —

(which does not depend on w), then the associated flow { T,} of the group is isomorphic
to the flow built under the function £(y) with base transformation U. One can easily
see that

(w),

A(G)=T(U, &)=T{T}. u
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By theorem 3 and theorem S we have:

CoROLLARY. If the associated flow of an approximately finite group G of type 111, is
finite measure preserving, then A(G)=[0, 1].
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