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We consider the problem of minimizing the L∞ norm of a function of the hessian
over a class of maps, subject to a mass constraint involving the L∞ norm of a
function of the gradient and the map itself. We assume zeroth and first order
Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases.
By employing the method of Lp approximations, we establish the existence of a
special L∞ minimizer, which solves a divergence PDE system with measure
coefficients as parameters. This is a counterpart of the Aronsson-Euler system
corresponding to this constrained variational problem. Furthermore, we establish
upper and lower bounds for the eigenvalue.
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1. Introduction and main results

Let n, N ∈ N with n � 2, and let Ω � R
n be a bounded open set with Lipschitz

boundary ∂Ω. In this paper we are interested in studying nonlinear second order L∞

eigenvalue problems. Specifically, we investigate the problem of finding a minimizing
map u∞ : Ω −→ R

N , that solves

‖f(D2u∞)‖L∞(Ω) = inf
{
‖f(D2v)‖L∞(Ω) :

v ∈ W 2,∞
B (Ω; RN ), ‖g(v,Dv)‖L∞(Ω) = 1

}
. (1.1)

Additionally, we pursue the necessary conditions that these constrained mini-
mizers must satisfy, in the form of PDEs. In the above, f : R

N×n2

s −→ R and
g : R

N × R
N×n −→ R are given functions, that will be required to satisfy some

natural assumptions, to be discussed later in this section. We note that R
N×n2

s

symbolizes the symmetric subspace of the tensor space R
N ⊗ (Rn ⊗ R

n) wherein
the hessians of twice differentiable maps u : Ω −→ R

N are valued. The functional
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2 E. Clark and N. Katzourakis

Sobolev space W 2,∞
B (Ω; RN ) appearing above will taken to be either of:{

W 2,∞
C (Ω; RN ) : = W 2,∞

0 (Ω; RN ),
W 2,∞

H (Ω; RN ) : = W 2,∞ ∩ W 1,∞
0 (Ω; RN ).

(1.2)

The space W 2,∞
C (Ω; RN ) encompasses the case of so-called clamped boundary con-

ditions, which can be seen as first order Dirichlet or as coupled Dirichlet-Neumann
conditions, requiring |u| = |Du| = 0 on ∂Ω. On the other hand, W 2,∞

H (Ω; RN )
encompasses the so-called hinged boundary conditions, which are zeroth order
Dirichlet conditions, requiring |u| = 0 on ∂Ω. This is standard terminology for such
problems, see e.g. [25].

Problem (1.1) lies within the Calculus of Variations in L∞, a modern area, ini-
tiated by Gunnar Aronsson in the 1960s. Since then this field has undergone a
substantial transformation. There are some general complications one must be wary
of when tackling L∞ variational problems. For example, the L∞ norm is generally
not Gateaux differentiable, therefore the analogue of the Euler–Lagrange equa-
tions cannot be derived directly by considering variations. Any supremal functional
also has issues with locality in terms of minimization on subdomains. Further, the
space itself lacks some fundamental functional analytic properties, such as reflex-
ivity and separability. Higher order problems and problems involving constraints
present additional difficulties and have been studied even more sparsely, see e.g. [3,
4, 9, 10, 20–24, 26]. In fact, this paper is an extension of [23] to the second order
case, and generalizes part of the results corresponding to the existence of mini-
mizers and the satisfaction of PDEs from [25]. In turn, the paper [23] generalized
results on the scalar case of eigenvalue problems for the ∞-Laplacian ([18, 19]).
For various interesting results, see for instance [2, 3, 6, 8, 28–31].

The vectorial and higher order nature of the problem we are considering herein
precludes the use of standard methods, such as viscosity solutions (see e.g. [1] for a
pedagogical introduction). However, we overcome these difficulties by approximat-
ing by corresponding Lp problems for finite p case and let p → ∞. The intuition for
using this technique is based on the rudimentary idea that, for a fixed L∞ function
on a set of finite measure, its Lp norm tends to its L∞ norm as p → ∞. This tech-
nique is rather standard for L∞ problems, and in the vectorial higher order case we
consider herein is essentially the only method known. Even the very recent intrinsic
duality method of [6] is limited to scalar-valued first order problems.

To state our main result, we now introduce the required hypotheses for the
functions f and g:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) f ∈ C1(RN×n2

s ).
(b) f is (Morrey) 2-quasiconvex.

(c) There exist 0 < C1 � C2 such that, for all X ∈ R
N×n2

s \ {0},
0 < C1f(X) � ∂f(X) : X � C2f(X).

(d) There exist C3, ..., C6 > 0, α > 1 and β � 1 : for all X ∈ R
N×n2

s ,

−C3 + C4|X|α � f(X) � C5|X|α + C6,

|∂f(X)| � C5f(X)β + C6.

(1.3)
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Generalized second order vectorial ∞-eigenvalue problems 3⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) g ∈ C1(RN × R
N×n).

(b) g is coercive, in the sense that

limt→∞

(
inf(η,P )∈RN×RN×n,|(η,P )|=1 g(tη, tP )

)
= ∞.

(c) There exist 0 < C7 � C8 : for all (η, P ) ∈ (RN× R
N×n

)\{(0, 0)},
0 < C7 g(η, P ) � ∂ηg(η, P ) · η + ∂P g(η, P ) : P � C8 g(η, P ).

(1.4)

In the above, ∂f(X) denotes the the derivative of f whilst ∂ηg and ∂P g signifies
the respective partial derivatives. Additionally ‘:’ and “·′′ represent the Euclidean
inner products. The terminology of (Morrey) 2-quasiconvex refers to the standard
notion for integral functionals for higher order functionals (see e.g. [7, 11, 12, 33]),
namely

F (X) � −
∫

Ω

F (X + D2φ) dLn, ∀ φ ∈ W 2,∞
0 (Ω; RN ), ∀ X ∈ R

N×n2

s .

We note that herein we will be using the following function space symbolizations:

C2
B(Ω; RN ) := C2(Ω; RN ) ∩ W 2,∞

B (Ω; RN ),

W 2,p
C (Ω; RN ) := W 2,p

0 (Ω; RN ), p ∈ [1,∞),

W 2,p
H (Ω; RN ) := W 2,p ∩ W 1,p

0 (Ω; RN ), p ∈ [1,∞),

Further, we will be using the rescaled Lp norms for p ∈ [1, ∞), given by

‖h‖Lp(Ω) :=
(

1
Ln(Ω)

∫
Ω

|h|p dLn

) 1
p

=
(
−
∫

Ω

|h|p dLn

) 1
p

.

Finally, we observe that (1.3)(c), implies that f > 0 on R
N×n2

s \ {0}, f(0) = 0 and
f is radially increasing, meaning that t 	→ f(tX) is increasing on (0, ∞) for any fixed
X ∈ R

N×n2

s \ {0}. Similarly, (1.4)(c) implies that g > 0 on (RN × R
N×n) \ {(0, 0)},

g(0, 0) = 0 and g is radially increasing on R
N × R

N×n, namely t 	→ g(tη, tP ) is
increasing on (0, ∞) for any fixed (η, P ) ∈ (RN × R

N×n) \ {(0, 0)}.
Below is our main result, in which we consider both cases of boundary conditions

simultaneously.

Theorem 1.1. Suppose that the assumptions (1.3) and (1.4) hold true. Then:

(A) The problem (1.1) has a solution u∞ ∈ W 2,∞
B (Ω; RN ).

(B) There exist Radon measures

M∞ ∈ M(
Ω; RN×n2

s

)
, ν∞ ∈ M(Ω),

such that∫
Ω

D2φ : dM∞ = Λ∞
∫

Ω

(
∂ηg(u∞,Du∞) · φ + ∂P g(u∞,Du∞) : Dφ

)
dν∞

(1.5)
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4 E. Clark and N. Katzourakis

for all test maps φ ∈ C2
B(Ω; RN ), where

Λ∞ =
∥∥f(D2(u∞)

∥∥
L∞(Ω)

> 0. (1.6)

Additionally, we have the following a priori lower bound for the eigenvalue

Λ∞ �
(

C4

diam(Ω)α
(
C(∞,Ω)‖∂ηg‖L∞({g�1}) + ‖∂P g‖L∞({g�1})

)α − C3

)+
,

(1.7)

where ( · )+ symbolizes the positive part, and C(∞, Ω) equals either the con-
stant of the Poincaré inequality (in the case of clamped boundary conditions),
or the constant of the Poincaré-Wirtinger inequality (in the case of hinged
boundary conditions), both taken for p = ∞.
If additionally the boundary ∂Ω is C2, we have the a priori upper bound

Λ∞ � C6 + C5
25α

(cω(n))α

(
1 + sup

0�t�1
R(t)

)α(
23n + max

i=1,...,n−1

(‖κi‖C0(∂Ω)

)n)α�

�
{

1 +

(
1 +

C

εn+1
0

)
Hn−1(∂Ω) +

n−1∑
i=1

∥∥∥∥ κi ◦ PΩ

1 − (κi ◦ PΩ)dΩ

∥∥∥∥
L∞({dΩ<ε0}∩Ω)

}α

,

(1.8)

where c, C > 0 are dimensionless universal constants, ω(n) is the volume of
the unit ball in R

n, Hn−1(∂Ω) is the perimeter of Ω, {κ1, ..., κn−1} are the
principal curvatures of ∂Ω, PΩ is the orthogonal projection on ∂Ω, dΩ the
distance function of ∂Ω, ε0 is the largest

ε ∈
(

0,min
{

1, min
i=1,...,n−1

1
‖κi‖C0(∂Ω)

})
,

for which we have that dΩ ∈ C2({dΩ � ε} ∩ Ω) and R(t) is the smallest radius
of the N -dimensional ball, for which the sublevel set {g � t} is contained into
the cylinder B̄

N
R(t)(0) × R

N×n, namely

R(t) := inf
{

R > 0 : {g � t} ⊆ B
N
R (0) × R

N×n
}

.

(C) The quadruple (u∞, Λ∞, M∞, ν∞) satisfies the following approximation
properties: there exists a sequence of exponents (pj)∞1 ⊆ (n/α) where pj → ∞
as j → ∞, and for any p, a quadruple

(up,Λp,Mp, νp) ∈ W 2,αp
B (Ω; RN ) × [0,∞) ×M(

Ω; RN×n2

s

)×M(Ω),
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such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

up −→ u∞, in C1
(
Ω; RN

)
,

D2up −−⇀ D2u∞, in Lq
(
Ω; RN×n2

s

)
, for all q ∈ (1,∞),

Λp −→ Λ∞, in [0,∞),
Mp

∗−−⇀ M∞, in M(
Ω; RN×n2

s

)
,

νp
∗−−⇀ν∞, in M(Ω),

(1.9)

as p → ∞ along (pj)∞1 . Further, up solves the constrained minimization problem

‖f(D2up)‖Lp(Ω) = inf
{
‖f(D2v)‖Lp(Ω) : v ∈ W 2,αp

B (Ω; RN ), ‖g(v,Dv)‖Lp(Ω) = 1
}

,

(1.10)

and (up, Λp) satisfies⎧⎪⎨
⎪⎩

−
∫

Ω

f(D2up)p−1∂f(D2up) : D2φ dLn

= (Λp)p −
∫

Ω

g(up,Dup)p−1
(
∂ηg(up,Dup) · φ + ∂P g(up,Dup) : Dφ

)
dLn

(1.11)
for all test maps φ ∈ W 2,αp

B (Ω; RN ). Finally, the measures Mp, νp are given by⎧⎪⎪⎨
⎪⎪⎩

Mp =
1

Ln(Ω)

(
f(D2up)

Λp

)p−1

∂f(D2up)Ln�Ω,

νp =
1

Ln(Ω)
g(up,Dup)p−1 Ln�Ω.

(1.12)

We note that one could pursue optimality in theorem 1.1(A) by using L∞ versions
of quasiconvexity, as developed by Barron–Jensen–Wang [5] but adapted to this
higher order case, in regards to the existence of L∞ minimizers. However, for parts
(B) and (C) of theorem 1.1 regarding the necessary PDE conditions, we do need
Morrey 2-quasiconvexity, as we rely essentially on the existence of solutions to the
corresponding Euler–Lagrange equations and the theory of Lagrange multipliers in
the finite p case. Further, the measures M∞, ν∞ depend on the minimizer u∞ in a
non-linear fashion, hence one more could perhaps symbolize them more concisely
as M∞(u∞), ν∞(u∞). Consequently, the significance of these equations is currently
understood to be mostly of conceptual value, rather than of computational nature.
However, it is possible to obtain further information about the underlying structure
of these parametric measure coefficients. This requires techniques such as measure
function pairs and mollifications up to the boundary as in [10, 17, 23], but to keep
the presentation as simple as possible, we refrain from pursuing this -considerably
more technical- endeavour, which also requires stronger assumptions.

2. Proofs

In this section we establish theorem 1.1. Its proof is not labelled explicitly, but will
be completed by proving a combination of smaller subsidiary results, including a
selection of lemmas and propositions.
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6 E. Clark and N. Katzourakis

Before introducing the approximating problem (the Lp case for finite p), we need
to establish a convergence result, which shows that the admissible classes of the
p-problems are non-empty. It is required because the function g appearing in the
constraint is not assumed to be homogeneous, therefore a standard scaling argument
does not suffice.

Lemma 2.1. For any v ∈ W 2,∞
B (Ω; RN ) \ {0}, there exists (tp)p∈(n/α,∞] with tp →

t∞ as p → ∞, such that

∥∥g(tpv, tpDv
)∥∥

Lp(Ω)
= 1,

for all p ∈ (n/α, ∞]. Further, if ‖g(v, Dv)‖L∞(Ω) = 1, then t∞ = 1.

Proof of lemma 2.1. Fix v ∈ W 2,∞
B (Ω; RN ) \ {0} and define

ρ∞(t) := max
x∈Ω

g
(
tv(x), tDv(x)

)
, t � 0.

It follows that ρ∞(0) = 0 and ρ∞ is continuous on [0, ∞). We will now show that
ρ∞ is strictly increasing. We first show it is non-decreasing. For any s > 0 and
(η, P ) ∈ R

N × R
N×n \ {(0, 0)}, our assumption (1.4)(c) implies

0 <
C7g(sη, sP )

s

� ∂ηg(sη, sP ) · η + ∂P g(sη, sP ) : P

= ∂(η,P )g(sη, sP ) : (η, P )

=
d
ds

(
g(sη, sP )

)
,

thus s 	→ g(sη, sP ) is increasing on (0, ∞). Hence, for any x ∈ Ω and t > s � 0 we
have g(tv(x), tDv(x)) � g(sv(x), sDv(x)), which yields,

ρ∞(s) = max
x∈Ω

g
(
sv(x), sDv(x)

)
� max

x∈Ω
g
(
tv(x), tDv(x)

)
= ρ∞(t).

We proceed to demonstrate that t 	→ ρ∞(t) is actually strictly monotonic over
(0, ∞). Fix t0 > 0. By Danskin’s theorem [13], the derivative from the right ρ′(t+0 )
exists, and is given by the formula

ρ′∞(t+0 ) = max
x∈Ωt0

{
∂(η,P )g(t0v(x), t0Dv(x)) :

(
v(x),Dv(x)

)}
,

where

Ωt0 :=
{

x ∈ Ω : ρ∞(t0) = g
(
t0v(x), t0Dv(x)

)}
.
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Hence, by (1.4)(c) we estimate

ρ′∞(t+0 ) =
1
t0

max
x∈Ωt0

{
∂(η,P )g(t0v(x), t0Dv(x)) :

(
t0v(x), t0Dv(x)

)}

� C7

t0
max
x∈Ωt0

g
(
t0v(x), t0Dv(x)

)

=
C7

t0
ρ∞(t0)

> 0.

This implies that ρ∞ is strictly increasing on (0, ∞). Next, recall that g is coercive
by assumption (1.4)(b), namely g(sη, sP ) → ∞ as s → ∞, for fixed (η, P ) �= (0, 0).
Thus, for any fixed point x ∈ Ω with (v(x), Dv(x)) �= (0, 0), which exists because
by assumption v �≡ 0, we have

lim
t→∞ ρ∞(t) � lim

t→∞ g(tv(x), tDv(x)) = ∞.

Since ρ∞(0) = 0 and ρ∞(t) → ∞ as t → ∞, by continuity and the intermediate
value theorem, there exists a number t∞ > 0 such that ρ∞(t∞) = 1, that is∥∥g(t∞v, t∞Dv

)∥∥
L∞(Ω)

= 1.

If ‖g(v, Dv)‖L∞(Ω) = 1, then t∞ = 1, as a result of the strict monotonicity of ρ∞.
Now let us fix p ∈ (n/α, ∞) and define the continuous function

ρp(t) := −
∫

Ω

g(tv, tDv)p dLn, t � 0.

Since g(0, 0) = 0, it follows that ρp(0) = 0 and that

ρp(t) =
1

Ln(Ω)

∫
{(v,Dv) �=(0,0)}

g(tv, tDv)p dLn.

By Morrey’s theorem and our assumptions, we have that v ∈ C1(Ω; RN ) \
{0}, therefore Ln({(v, Dv) �= (0, 0)}) > 0. Consider the family of functions
{g(tv, tDv)p}t>0, defined on {(v, Dv) �= (0, 0)} ⊆ Ω. By the monotonicity of s 	→
g(sη, sP ) on (0, ∞) for (η, P ) �= (0, 0), for s < t we have

g(sv, sDv)p � g(tv, tDv)p, on {(v, Dv) �= (0, 0)}.
Since g(tv, tDv)p → ∞ pointwise on {(v, Dv) �= (0, 0)} as t → ∞, by the monotone
convergence theorem, we infer that∫

{(v,Dv) �=(0,0)}
g(tv, tDv)p dLn −→ ∞,

as t → ∞. As a consequence, ρp(t) → ∞ as t → ∞. Since ρp(0) = 0, by the
intermediate value theorem there exists tp > 0 such that ρp(tp) = 1, namely∥∥g(tpv, tpDv)

∥∥
Lp(Ω)

= 1.

For the sake of contradiction, suppose that tp �→ t∞, as p → ∞. In this case, there
exists a subsequence (tpj

)∞1 ⊆ (n/α, ∞) and t0 ∈ [0, t∞) ∪ (t∞, ∞] such that tpj
→
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8 E. Clark and N. Katzourakis

t0 as j → ∞. Further, (tpj
)∞1 can assumed to be either monotonically increasing

or decreasing. We first prove that t0 is finite. If t0 = ∞, then the sequence (tpj
)∞1

can be selected to be monotonically increasing. Therefore, by arguing as before,
g(tpj

v, tpj
Dv) ↗ ∞ as j → ∞, pointwise on {(v, Dv) �= (0, 0)}, and the monotone

convergence theorem provides the contradiction

1 = lim
j→∞

−
∫

Ω

g(tpj
v, tpj

Dv)pj dLn = −
∫

Ω

lim
j→∞

g(tpj
v, tpj

Dv)pj dLn = ∞.

Consequently, we have that t0 ∈ [0, t∞) ∪ (t∞, ∞). Since (tpj
v, tpj

Dv) →
(t0v, t0Dv) uniformly on Ω as j → ∞, we calculate

1 =
∥∥g(tpj

v, tpj
Dv)

∥∥
Lpj (Ω)

=
∥∥g(t0v, t0Dv)

∥∥
Lpj (Ω)

+ o(1)j→∞

=
∥∥g(t0v, t0Dv)

∥∥
L∞(Ω)

+ o(1)j→∞

= ρ∞(t0) + o(1)j→∞.

By passing to the limit as j → ∞, we obtain a contradiction if t∞ �= t0, because
ρ∞ is a strictly increasing function and ρ∞(t∞) = 1. In conclusion, tp → t∞ as
p → ∞. �

Utilizing the above result we can now show existence for the approximating
minimization problem for p < ∞.

Lemma 2.2. For any p > n/α, the minimization problem (1.10) has a solution up ∈
W 2,αp

B (Ω; RN ).

Proof of lemma 2.2. Let us fix p ∈ (n/α, ∞) and v0 ∈ W 2,∞
B (Ω; RN ) where v0 �≡ 0.

By application of lemma 2.1, there exists tp > 0 such that ‖g(tpv0, tpDv0)‖Lp(Ω) = 1
implying that tpv0 is indeed an element of the admissible class of (1.10). Hence, we
deduce that the admissible class is non empty. Further, by assumption (1.3)(b), f
is (Morrey) 2-quasiconvex. We now confirm that fp is also (Morrey) 2-quasiconvex
function, as a consequence of Jensen’s inequality: for any fixed X ∈ R

N×n2

s and any
φ ∈ W 2,∞

0 (Ω; RN ), we have

fp(X) �
(
−
∫

Ω

f(X + D2φ) dLn

)p

� −
∫

Ω

f(X + D2φ)p dLn.

By assumption by assumption (1.3)(d), we have for some new C5(p), C6(p) > 0 that

f(X)p � C5(p)|X|αp + C6(p),

for any X ∈ R
N×n2

s . Moreover, by [33, Theorem 3.6] we have that the functional
v 	→ ‖f(D2v)‖Lp(Ω) is weakly lower semi-continuous on W 2,αp(Ω; RN ) and therefore
the same is true over the closed subspace W 2,αp

B (Ω; RN ). Let (ui)∞1 be a minimizing
sequence for (1.10). As f � 0, it is clear that infi∈N ‖f(D2ui)‖Lp(Ω) � 0. Since the
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admissible class is non-empty, the infimum is finite. Additionally, by (1.3)(d), we
have the bound

inf
i∈N

‖f(D2ui)‖Lp(Ω) �
∥∥f(D2(tpv0)

)∥∥
Lp(Ω)

�
∥∥C5

∣∣tpD2v0

∣∣α + C6

∥∥
L∞(Ω)

� C5(tp)α‖D2v0‖α
L∞(Ω) + C6

< ∞.

Now we show that the functional is coercive in W 2,αp
B (Ω; RN ), arguing separately

for either case of boundary conditions. By assumption (1.3)(d) and the Poincaré
inequality, for any u ∈ W 2,αp

C (Ω; RN ) (satisfying |u| = |Du| = 0 on ∂Ω), we have

(
−
∫

Ω

∣∣f(D2u) + C3

∣∣p dLn

)1
p

� C4

(
−
∫

Ω

|D2u|αp dLn

)1
p

� C ′
4‖u‖α

W 1,αp(Ω),

for a new constant C ′
4 = C4(p) > 0. Hence, for any u ∈ W 2,αp

C (Ω; RN ),

‖f(D2u)‖Lp(Ω) � C ′
4

(‖u‖W 2,αp(Ω)

)α − C3. (2.1)

The above estimate is also true when u ∈ W 2,αp
H (Ω; RN ), but since in this case we

have only |u| = 0 on ∂Ω, it requires an additional justification. By the Poincaré-
Wirtinger inequality involving averages, for any u ∈ W 2,αp

H (Ω; RN ) we have∥∥∥∥Du −−
∫

Ω

Du dLn

∥∥∥∥
Lαp(Ω)

� C‖D2u‖Lαp(Ω),

where C = C(α, p, Ω) > 0 is a constant. Since |u| = 0 on ∂Ω, by the Gauss-Green
theorem we have ∫

Ω

Du dLn =
∫

∂Ω

u ⊗ n̂ dHn−1 = 0,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. In conclusion,∥∥Du‖Lαp(Ω) � C‖D2u‖Lαp(Ω),

for any u ∈ W 2,αp
H (Ω; RN ). The above estimate together with the standard Poincaré

inequality applied to u itself allow to infer that (2.1) holds for any u ∈ W 2,αp
B (Ω; RN )

in both cases of boundary conditions. Returning to our minimizing sequence, by
standard compactness results, exists up ∈ W 2,αp

H (Ω; RN ) such that ui −−⇀ up in
W 2,αp

B (Ω; RN ), as i → ∞ along a subsequence of indices. Additionally, by the Mor-
rey estimate we have that ui −→ up in C1(Ω; RN ) as i → ∞, along perhaps a further
subsequence. Since u 	→ ‖g(u, Du)‖Lp(Ω) is weakly continuous on W 2,αp

B (Ω; RN ), the
admissible class is weakly closed in W 2,αp(Ω; RN ) and hence we may pass to the
limit in the constraint. By weak lower semicontinuity of the functional, it follows
that a minimizer up which satisfies (1.10) does indeed exist. �
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10 E. Clark and N. Katzourakis

Now we describe the necessary conditions (Euler–Lagrange equations) that
approximating minimizer up must satisfy. These equations will involve a Lagrange
multiplier, emerging from the constraint ‖g(·, D(·))‖Lp(Ω) = 1.

Lemma 2.3. For any p > n/α, let up be the minimizer of (1.10) procured by lemma
2.2. Then, there exists λp ∈ R such that the pair (up, λp) satisfies the following
PDE system

−
∫

Ω

f(D2up)p−1∂f(D2up) : D2φ dLn

= λp −
∫

Ω

g(up,Dup)p−1
(
∂ηg(up,Dup) · φ + ∂P g(up,Dup) : Dφ

)
dLn,

for all test maps φ ∈ W 2,αp
B (Ω; RN ).

In particular, it follows that in both cases up is a weak solution in W 2,αp(Ω; RN )
to ⎧⎪⎨
⎪⎩

D2 :
(
f(D2up)p−1∂f(D2up)

)
= λp

[
g(up,Dup)p−1∂ηg(up,Dup) − div

(
g(up,Dup)p−1∂P g(up,Dup)

)]
,

(2.2)

where we have used the notation D2 : F =
∑n

i,j=1 D2
ijFij , when F ∈ C2(Ω; Rn×n),

which is equivalent to the double divergence (applied once column-wise and once
row-wise). Note that in the case of hinged boundary data, we have an additional
natural boundary condition arising (since Du is free on ∂Ω), we we will not make
an particular use of this extra information in the sequel, therefore we refrain from
discussing it explicitly.

Proof of lemma 2.3. The result follows by standard results on Lagrange multipliers
in Banach spaces (see e.g. [32, p. 278]), by utilizing assumption (1.3)(d), which
guarantees that the functional is Gateaux differentiable. �

Now we establish some further results regarding the family of eigenvalues.

Lemma 2.4. Consider the family of pairs of eigenvectors-eigenvalues
{(up, λp)}p>n/α, given by lemma 2.3. Then, for any p > n/α, there exists Λp > 0
such that

λp =
(
Λp

)p
> 0.

Further, by setting

Lp :=
∥∥f(D2up)

∥∥
Lp(Ω)

,

we have the bounds

0 <

(
C1

C8

) 1
p

Lp � Λp �
(

C2

C7

) 1
p

Lp.
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Proof of lemma 2.4. We begin by showing that Lp > 0, namely the infimum over
the admissible class of the p-approximating minimization problem is strictly posi-
tive, owing to the constraint and our assumptions (1.3)-(1.4). Indeed, there is only
one map u ∈ W 2,αp

B (Ω; RN ) for which ‖f(D2u)‖Lp(Ω) = 0, namely u0 ≡ 0, but this
is not an element of the admissible class since ‖g(u0, Du0)‖Lp(Ω) = 0. Now consider
the Euler–Lagrange equations in lemma 2.3 and select φ := up, to obtain

−
∫

Ω

f(D2up)p−1∂f(D2up) : D2up dLn

= λp −
∫

Ω

g(up,Dup)p−1
(
∂ηg(up,Dup) · up + ∂P g(up,Dup) : Dup

)
dLn.

As f, g � 0 we can manipulate the respective assumptions (1.3)(c) and (1.4)(c) to
produce the following bounds:

C1−
∫

Ω

f(D2up)p dLn � −
∫

Ω

f(D2up)p−1∂f(D2up) : D2up dLn

� C2−
∫

Ω

f(D2up)p dLn,

C7 −
∫

Ω

g(up,Dup)p dLn � −
∫

Ω

g(up,Dup)p−1
(
∂ηg(up,Dup) · up+

+ ∂P g(up,Dup) : Dup

)
dLn

� C8 −
∫

Ω

g(up,Dup)p dLn.

The above two estimates, combined with the Euler–Lagrange equations, imply that
λp > 0. Hence, we may therefore define Λp := (λp)

1
p > 0. We will now obtain the

upper and lower bounds. We determine the lower bound as follows:

C1(Lp)p = C1 −
∫

Ω

f(D2up)p dLn

� −
∫

Ω

fp−1(D2up)∂f(D2up) : D2up dLn

= λp −
∫

Ω

g(up,Dup)p−1
(
∂ηg(up,Dup) · φ + ∂P g(up,Dup) : Dup

)
dLn

� λpC8.

Hence, (
C1

C8

) 1
p

Lp � (λp)
1
p = Λp.

The upper bound is determined analogously, by reversing the direction of the
inequalities. Combining both bounds, we obtain the desired estimate. �
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Proposition 2.5. There exists (u∞, Λ∞) ∈ W 2,∞
B (Ω; RN ) × (0, ∞) such that,

along a sequence (pj)∞1 of exponents, we have

⎧⎨
⎩

up −→ u∞, in C1
(
Ω; RN

)
,

D2up −−⇀ D2u∞, in Lq(Ω; RN×n2

s ), for all q ∈ (1,∞),
Λp −→ Λ∞, in [0,∞),

as pj → ∞. Additionally, u∞ solves the minimization problem (1.1) and Λ∞ is
given by (1.6). Finally Λ∞ satisfies the uniform bounds (1.7).

Proof of proposition 2.5. Fix p > n/α, q � p and a map v0 ∈ W 2,∞
B (Ω; RN ) \ {0}.

Then, by lemma 2.1 there exists (tp)p∈(n/α,∞] ⊆ (0, ∞) such that tp → t∞ as
p → ∞ and satisfying ‖g(tpv0, tpDv0)‖Lp(Ω) = 1 for all p ∈ (n/α, ∞]. By Hölder’s
inequality and minimality, we have the following estimate∥∥f(D2up)

∥∥
Lq(Ω)

�
∥∥f(D2up)

∥∥
Lp(Ω)

�
∥∥f(tpD2v0)

∥∥
Lp(Ω)

�
∥∥f(tpD2v0)

∥∥
L∞(Ω)

� K +
∥∥f(t∞D2v0)

∥∥
L∞(Ω)

< ∞,

for some K > 0. By (1.3)(d), we have the bound fq(X) � C4(q)|X|αq − C3(q) for
some constants C3(q), C4(q) > 0 and all X ∈ R

N×n2

s . By the previous bound, we
conclude that

sup
q�p

‖D2up‖Lαq(Ω) � C(q) < ∞,

for some q-dependent constant. By arguing as in the proof of lemma 2.2 through the
use of Poincaré inequalities, we can conclude in both cases of boundary conditions
with the bound

sup
q�p

‖up‖W 2,αq(Ω) � C(q) < ∞,

for a new q-dependent constant C ′(q) > 0. Standard compactness in Sobolev spaces
and a diagonal sequence argument imply the existence of a mapping

u∞ ∈
⋂

n/α<p<∞
W 2,αp

B (Ω; RN )

and a subsequence (pj)∞1 such that the desired modes of convergence hold true as
pj → ∞ along this subsequence of indices. Fix a map v ∈ W 2,∞

B (Ω; RN ) satisfying
the required constraint, namely ‖g(v, Dv)‖L∞(Ω) = 1. In view of lemma 2.1, there
exists (tp)p∈(n/α,∞) ⊆ (0, ∞) satisfying that tp → 1 as p → ∞, and additionally
‖g(tpv, tpDv)‖Lp(Ω) = 1 for all p > n/α. By Hölder’s inequality, the definition of
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Lp and minimality, we have

∥∥f(D2up)
∥∥

Lq(Ω)
�
∥∥f(D2up)

∥∥
Lp(Ω)

= Lp �
∥∥f(tpD2v)

∥∥
Lp(Ω)

,

for any such v. By the weak lower semi-continuity of the functional on
W 2,αq

B (Ω; RN ), we may let pj → ∞ to obtain

∥∥f(D2u∞)
∥∥

Lq(Ω)
� lim inf

pj→∞ Lp

� lim sup
pj→∞

Lp

� lim sup
pj→∞

‖f(tpj
D2v)‖Lp(Ω)

= ‖f(D2v)‖L∞(Ω).

Now we may let q → ∞ in the above bound, hence producing

∥∥f(D2u∞)
∥∥

L∞(Ω)
� lim inf

pj→∞ Lp � lim sup
pj→∞

Lp � ‖f(D2v)‖L∞(Ω).

for all mappings v ∈ W 2,∞
B (Ω; RN ) satisfying the constraint ‖g(v, Dv)‖L∞(Ω) = 1.

If we additionally show that in fact u∞ satisfies the constraint in (1.1), then the
above estimate shows both that it is the desired minimizers (by choosing v := u∞),
and also that the sequence (Lpj

)∞1 converges to the infimum. Now we show that
this is indeed the case. In view of assumption (1.3)(d), the previous estimate implies
also that D2u∞ ∈ L∞(Ω; RN×n2

s ), which together with Poincaré inequalities (as in
the proof of lemma 2.2) shows that in fact u∞ ∈ W 2,∞

B (Ω; RN ). By the continuity
of the function g and the fact that up −→ u∞ in C1(Ω; RN ), we have

1 = ‖g(up,Dup)‖Lp(Ω)

= ‖g(u∞,Du∞)‖Lp(Ω) + ‖g(up,Dup)‖Lp(Ω) − ‖g(u∞,Du∞)‖Lp(Ω)

= ‖g(u∞,Du∞)‖Lp(Ω) + O
(
‖g(up,Dup) − g(u∞,Du∞)‖L∞(Ω)

)
−→ ‖g(u∞,Du∞)‖L∞(Ω),

as pj → ∞. Consequently, u∞ satisfies the constraint, and therefore lies in the
admissible class of (1.1). Since v was arbitrary in the energy bound, we conclude
that u∞ in fact solves (1.1). let us now define

Λ∞ :=
∥∥f(D2u∞)

∥∥
L∞(Ω)

.

We now show that Λ∞ > 0. Indeed, by our assumptions (1.3)–(1.4), there is only one
map in W 2,∞(Ω; RN ) satisfying ‖f(D2u0)‖L∞(Ω) = 0 and |u0| ≡ 0 on ∂Ω, namely
the trivial map u0 ≡ 0, but u0 is not contained in the admissible class of (1.1)
because ‖g(u0, Du0)‖L∞(Ω) = 0. We now show that Λp −→ Λ∞ as pj → ∞. By our
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earlier energy estimate, we have Lp −→ Λ∞ as pj → ∞. By lemma 2.4, we have

0 < lim
pj→∞

(
C1

C8

) 1
p

Lp � lim
pj→∞Λp � lim

pj→∞

(
C2

C7

) 1
p

Lp,

and therefore Λp −→ Λ∞ as pj → ∞. To complete the proof we must deduce
the claimed bounds for Λ∞. We first establish the lower bound. By utilizing the
Poincaré and Poincaré-Wirtinger inequalities (recall the proof of lemma 2.2) and
that g(0, 0) = 0, we estimate

1 =
∥∥g(u∞,Du∞)

∥∥
L∞(Ω)

� diam(Ω)
∥∥D(g(u∞,Du∞))

∥∥
L∞(Ω)

� diam(Ω)
(∥∥∂ηg(u∞,Du∞)Du∞

∥∥
L∞(Ω)

+
∥∥∂P g(u∞,Du∞)D2u∞

∥∥
L∞(Ω)

)
� diam(Ω)

(∥∥∂ηg
∥∥

L∞((u∞,Du∞)(Ω))
‖Du∞‖L∞(Ω)

+ ‖∂P g‖L∞((u∞,Du∞)(Ω))‖D2u∞‖L∞(Ω)

)
� ‖D2u∞‖L∞(Ω)diam(Ω)

(
C(∞,Ω)‖∂ηg‖L∞((u∞,Du∞)(Ω))

+ ‖∂P g‖L∞((u∞,Du∞)(Ω)

)
,

where C(∞, Ω) > 0 is the maximum of the Poincaré and the Poincaré-Wirtinger
inequality constants on Ω for p = ∞ (with the former being equal to diam(Ω)). As
g � 0 and ‖g(u∞, Du∞)‖L∞(Ω) = 1, we conclude that 0 � g(u∞, Du∞) � 1 on Ω.
Hence (u∞, Du∞)(Ω) ⊆ {0 � g � 1} = {g � 1}. Thus

1 � ‖D2u∞‖L∞(Ω)diam(Ω)
(
C(∞,Ω)‖∂ηg‖L∞({g�1}) + ‖∂P g‖L∞({g�1})

)

Rearranging assumption (1.3)(d), we may write |X| � C
− 1

α
4 (f(X) + C3)

1
α , for any

X ∈ R
N×n2

s . Combining this inequality with the previous bound, we deduce

C
1
α
4 �

(∥∥f(D2u∞)
∥∥

L∞(Ω)
+ C3

)1
α

diam(Ω)
(
C(∞,Ω)‖∂ηg‖L∞({g�1})

+ ‖∂P g‖L∞({g�1})
)
,

which leads directly to the claimed lower bound for the eigenvalue.
Now we establish the upper bound for Λ∞. Since Ω is by assumption a bounded

domain with C2 boundary, by standard results (see e.g. [16, Sec. 14.6]), the distance
function

dΩ ≡ dist(·, ∂Ω) : R
n −→ R,

which is in W 1,∞
loc (Rn), is also C2 on an inner tubular neighbourhood of ∂Ω, namely

there exists ε0 ∈ (0, 1) such that

dΩ ∈ C2(Ωε0), Ωε := {dΩ < ε} ∩ Ω.
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Let us also for convenience symbolize Ωε := {dΩ > ε} ∩ Ω. Let us also fix k ∈ {1, 2},
a unit vector e ∈ R

N and ζ ∈ C2(Rn) with ζ ≡ 0 on Ωε0 . Then, for any t0 > 0, the
map ξ0 := t0(dΩ)kζe satisfies

ξ0 ∈ C2(Ω; RN ).

Since dΩ = 0 on ∂Ω and also D(d2
Ω) = 0 on ∂Ω, it follows that ξ0 ∈ W 2,∞

H (Ω; RN )
if k = 1, whilst ξ0 ∈ W 2,∞

C (Ω; RN ) if k = 2. We will consider both cases simultane-
ously and declare this as

ξ0 ∈ W 2,∞
B (Ω; RN ).

By lemma 2.1, we can adjust the constant t0 > 0 to arrange

∥∥g(ξ0,Dξ0)
∥∥

L∞(Ω)
= 1.

Hence, ξ0 is in the admissible class of the minimization problem (1.1). By minimality
and assumption (1.3), we have the estimate

Λ∞ � C5(t0)α
(∥∥D2(dk

Ωζ)
∥∥

L∞(Ωε0 )

)α

+ C6. (2.3)

By a direct computation, we have

{
D2(dk

Ωζ) = k
[
(k − 1)DdΩ ⊗ DdΩ + dk−1

Ω D2dΩ

]
ζ + dk

ΩD2ζ

+ kdk−1
Ω

(
DdΩ ⊗ Dζ + Dζ ⊗ DdΩ

)
,

(2.4)

on Ω. For any x ∈ Ωε0 , let us set PΩ(x) := Proj∂Ω(x). Then, by [16, Sec. 14.6, L.
14.17], it follows that |x − PΩ(x)| = dΩ(x), and we also have the next estimates

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖dΩ‖L∞(Ωε0 ) � ε0,

‖DdΩ‖L∞(Ωε0 ) � 1,∥∥D2dΩ

∥∥
L∞(Ωε0 )

�
∑n−1

i=1

∥∥∥∥ κi ◦ PΩ

1 − (κi ◦ PΩ)dΩ

∥∥∥∥
L∞(Ωε0 )

,

(2.5)

where {κ1, ..., κn−1} are the principal curvatures of ∂Ω. By (2.3)-(2.5) we have the
estimate

Λ∞ � C5(2t0)α

(
‖D2ζ‖L∞(Ω) + ‖Dζ‖L∞(Ω)

+ ‖ζ‖L∞(Ω)

(
1 +

n−1∑
i=1

∥∥∥∥ κi ◦ PΩ

1 − (κi ◦ PΩ)dΩ

∥∥∥∥
L∞(Ωε0 )

))α

+ C6. (2.6)

It remains to select an appropriate function ζ in order to estimate its derivatives
in terms of the geometry of Ω, and to obtain an estimate for t0. For the former, we
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argue as follows. Let (ηδ)δ>0 be the family of standard mollifying kernels, as e.g. in
[27]. We select

ζ := ηε0 ∗ (χRn\Ω),

which is the regularization of the characteristic of the complement of Ω. It follows
that this function satisfies the initial requirements, and additionally

⎧⎨
⎩

Dζ = ηε0 ∗ (DχRn\Ω) = ηε0 ∗ (Hn−1�∂ΩDdΩ

)
,

D2ζ = Dηε0 ∗ (DχRn\Ω) =
1
ε0

(Dη)ε0 ∗ (Hn−1�∂ΩDdΩ

)
,

by standard properties of convolutions and the differentiation of BV functions (see
e.g. [15] and [14, Ch. 5, p. 198]). Then, by Young’s inequality for convolutions, we
have the estimates ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
‖D2ζ‖L∞(Rn) � C

εn+1
0

Hn−1(∂Ω),

‖Dζ‖L∞(Rn) � Hn−1(∂Ω),
‖ζ‖L∞(Rn) � 1,

(2.7)

for some universal constant C > 0. Now we work towards an estimate for t0
appearing in (2.3). By assumption (1.4), we have that the sublevel sets {g � t}
are compact in R

N × R
N×n for any t � 0. Let us define R(t) as the smallest

radius of the N -dimensional ball, for which {g � t} is contained into the cylinder
B̄

N
R(t)(0) × R

N×n:

R(t) := inf
{

R > 0 : {g � t} ⊆ B
N
R (0) × R

N×n
}

. (2.8)

Then, we define a strictly increasing function ρ : [0, ∞) −→ [0, ∞) by setting

ρ(t) := t + sup
0�s�t

R(s). (2.9)

Then, ρ satisfies ρ(0) = 0, and also that

{g � t} ⊆ B̄
N
ρ(t)(0) × R

N×n,

for any t � 0. Further, by construction,

{
(η, P ) ∈ R

N × R
N×n : ρ−1(|η|) � t

}
= B̄

N
ρ(t)(0) × R

N×n.

The above imply

ρ−1(|η|) � g(η, P ), (η, P ) ∈ R
N × R

N×n.
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Next, since dk
Ωζ vanishes on ∂Ω ∪ Ωε0 and g(0, 0) = 0, we have

1 = ‖g(ξ0,Dξ0)‖L∞(Ω)

= sup
Ωε0

g(ξ0,Dξ0)

� sup
Ωε0

ρ−1(|ξ0|)

� sup
Ωε0

ρ−1
(
t0|dk

Ωζ|).
Since dΩ ≡ ε0/4 on ∂Ωε0/4, and ρ−1 is strictly increasing, the above implies

1 � max
∂Ωε0/4

ρ−1
(
t0|dk

Ωζ|)
= max

∂Ωε0/4
ρ−1

(
t0

(ε0

4

)k

ζ
)

= ρ−1
(
t0

(ε0

4

)k

max
∂Ωε0/4

ζ
)
. (2.10)

Now we estimate max∂Ωε0/4 ζ from below. Fix x ∈ ∂Ωε0/4. Then, since the standard
mollifying kernel η is a radial function (see e.g. [27]), there exists a universal c > 0
such that η � c on B1/2(0). Therefore,

ζ(x) =
1
εn
0

∫
Bε0 (x)

χRn\Ωη
( |y − x|

ε0

)
dy

� 1
εn
0

∫
Bε0/2(x)\Ω

η
( |y − x|

ε0

)
dy

� c

εn
0

Ln
(
Bε0/2(x) \ Ω

)
,

for any x ∈ ∂Ωε0/4. Finally, since ∂Ω satisfies the exterior sphere condition, the set
Bε0/2(x) \ Ω contains a ball Br(x̄) centred at some point x̄, where the maximum
possible radius r̄ is given by

r̄ = min
{

ε0

8
, min

i=1,...,n−1

1
‖κi‖C0(∂Ω)

}
.

Therefore, if ω(n) is the volume of the unit ball in R
n,

ζ(x) � c

εn
0

Ln
(
Bε0/2(x) \ Ω

)
� c

εn
0

Ln(Br̄(x̄))

=
c

εn
0

ω(n)r̄n
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=
cω(n)

εn
0

min
{(ε0

8

)n

, min
i=1,...,n−1

1(‖κi‖C0(∂Ω)

)n
}

= cω(n)min
{

1
23n

, min
i=1,...,n−1

1(
ε0‖κi‖C0(∂Ω)

)n
}

,

for any x ∈ ∂Ωε0/4. Hence, we have established the lower bound

max
∂Ωε0/4

ζ � cω(n)min
{

1
23n

, min
i=1,...,n−1

1(
ε0‖κi‖C0(∂Ω)

)n
}

. (2.11)

By (2.10) and (2.11), we infer (since ε0 < 1 and k ∈ {1, 2}) that

t0 � 4kρ(1)εn−k
0

cω(n)
1

min
{

1
23n

, min
i=1,...,n−1

1(
ε0‖κi‖C0(∂Ω)

)n
}

� 32ρ(1)
cω(n)

(
23n + max

i=1,...,n−1

(‖κi‖C0(∂Ω)

)n)
. (2.12)

By (2.6), (2.7), and (2.12), we conclude with the following upper bound for the
eigenvalue:

Λ∞ � C6 + C5

[
16ρ(1)
cω(n)

(
23n + max

i=1,...,n−1

(‖κi‖C0(∂Ω)

)n)]α

�

�
{

1 +
(

1 +
C

εn+1
0

)
Hn−1(∂Ω) +

n−1∑
i=1

∥∥∥∥ κi ◦ PΩ

1 − (κi ◦ PΩ)dΩ

∥∥∥∥
L∞(Ωε0 )

}α

. (2.13)

The claimed estimate (1.8) follows from (2.13) above, by recalling that in view of
(2.8)–(2.9), we have

ρ(1) = 1 + sup
0�t�1

R(t),

and also that the last term of (2.13) is finite at least when

ε0 <
1

max
i=1,...,n−1

‖κi‖C0(∂Ω)
.

The result ensues. �

Lemma 2.6. For any p > (n/α) + 2, there exist measures ν∞ ∈ M(Ω) and M∞ ∈
M(Ω; RN×n2

s ) such that, along perhaps a further sequence (pj)∞1 of exponents, we
have {

νp
∗−−⇀ν∞, in M(Ω),

Mp
∗−−⇀ M∞, in M(Ω; RN×n2

s ),

as j → ∞, where the approximating measures νp, Mp are given by (1.12).
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Proof of lemma 2.6. We begin by noting that since g � 0 and ‖g(up, Dup)‖Lp(Ω) = 1,
in view of (1.12) we have the bound

‖νp‖(Ω) = νp(Ω) = −
∫

Ω

g(up,Dup)p−1 dLn �
(
−
∫

Ω

g(up,Dup)p dLn

) p−1
p

= 1.

By the sequential weak∗ compactness of the space of Radon measures we can con-
clude that νp

∗−−⇀ν∞, in M(Ω) up to the passage to a further subsequence. Now we
establish appropriate total variation bounds for the measure Mp. Since f � 0, by
the bounds of lemma 2.4 and assumption (1.3), we estimate (for sufficiently large p)

‖Mp‖(Ω) = −
∫

Ω

(
f(D2up)

Λp

)p−1

|∂f(D2up)|dLn

� 1
Λp−1

p

−
∫

Ω

f(D2up)p−1
(
C5f(D2up)β + C6

)
dLn

=
C5

Λp−1
p

−
∫

Ω

f(D2up)p−1+β dLn +
C6

Λp−1
p

−
∫

Ω

f(D2up)p−1 dLn.

Hence,

‖Mp‖(Ω) � C5

Λp−1
p

(
−
∫

Ω

f(D2up)p dLn

) p−1+β
p

+
C6

Λp−1
p

(
−
∫

Ω

f(D2up)p dLn

) p−1
p

= C5
(Lp)p−1+β

Λp−1
p

+ C6
(Lp)p−1

Λp−1
p

=
(

Lp

Λp

)p−1(
C5L

β
p + C6

)

�
(

C8

C1

)1− 1
p(

C5(Λ∞ + 1)β + C6

)
.

The above bound allows to conclude that Mp
∗−−⇀ M∞in M(Ω; RN×n2

s ), along
perhaps a further subsequence of indices (pj)∞1 as j → ∞. �

To conclude the proof of theorem 1.1 we must ensure the PDE system (1.5) is
indeed satisfied by the quadruple (u∞, Λ∞, M∞, ν∞).

Lemma 2.7. If M∞ ∈ M(Ω; RN×n2

s ) and ν∞ ∈ M(Ω) are the measures obtained in
lemma 2.6, then the pair (u∞, Λ∞) satisfies (1.5) for all φ ∈ C2

B(Ω; RN ).

Proof of lemma 2.7. Fix a test function φ ∈ C2
B(Ω; RN ) and p > n/α + 2 by (1.12)

we may rewrite the PDE system in (1.11) as follows∫
Ω

D2φ : dMp = Λp

∫
Ω

(
∂ηg(up,Dup) · φ + ∂P g(up,Dup) : Dφ

)
dνp,

Recall that, by proposition 2.5, we have Λp −→ Λ∞ and also (up, Dup) −→
(u∞, Du∞) uniformly on Ω, as pj → ∞. By assumption (1.4)(a), we have that
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∂ηg(up, Dup) −→ ∂ηg(u∞, Du∞) and also ∂P g(up, Dup) −→ ∂P g(u∞, Du∞), both
uniformly on Ω, as pj → ∞. The result ensues by invoking lemma 2.6, in conjunction
with weak∗-strong continuity of the duality pairing M(Ω) × C(Ω) −→ R. �
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