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SUMMARY

Salmonellosis is a foodborne disease of humans and animals caused by infection with Salmonella.
The aim of this paper is to improve a deterministic model (DM) and an individual-based model
(IBM) with reference to Salmonella propagation in flocks of laying hens taking into account
variations in hens housed in the same cage and to compare both models. The spatio-temporal
evolution, the basic reproduction number, R0, and the speed of wave propagation were computed
for both models. While in most cases the DM allows summary of all the features of the model in
the formula for computation of R0, slight differences between individuals or groups may be
observed with the IBM that could not be expected from the DM, especially when initial
environmental contamination is very low and some cages may get rid of bacteria. Both models
suggest that the cage size plays a role on the risk and speed of propagation of the bacteria, which
should be considered when designing new breeding systems.

Key words: Age-structured equation, basic reproduction number, deterministic model, individual-
based model.

INTRODUCTION

Salmonella may be responsible for two types of
human diseases: (i) acute salmonellosis, e.g. typhoid
fever, which results from systemic infection and may
lead to very severe symptoms and death; and (ii) food-
borne gastroenteritis, which is less dramatic, except
in the elderly or immune depressed people. The latter
is most often due to Salmonella enterica serovar
Enteritidis and consumption of poultry and poultry
products [1, 2]. Horizontal transmission between
hens may occur either directly from one animal to

another, through aerosols or indirectly through the
environment, mainly through contaminated water
and feed. Vertical transmission may also occur from
infected parents to offspring directly in the ovary
and embryonated eggs [3]. Many prophylactic means
have been developed to reduce the prevalence of the
Salmonella carrier-state [4]. While none allows a
total reduction of the risk, synergy could result in a
marked reduction of it.

Modelling the risk of Salmonella infection would be
very useful to estimate such gains in food safety.
Previously, a deterministic mathematical model for
Salmonella transmission in hen houses was derived
by Prévost et al. [5]. It was used to investigate the
effect of genetic selection and vaccination on disease
propagation. This question was also investigated
through the comparison of propagation within a
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homogenous population or another population div-
ided into two subpopulations, with higher or lower re-
sistance. Significant differences in variation with time
of prevalence and ultimate level of contamination
were observed [6]. Genetic variability was more pre-
cisely modelled using an individual-based model
(IBM) [7]. Immune response was also considered as
it may influence the evolution with time of animal
infection towards either recovery or systemic state.
The animal’s bacterial load was thus assumed to de-
pend on environmental contamination and on its indi-
vidual ability to kill bacteria, as long as it remained
lower than an individual threshold denoted by Dp;
in this case the bacterial load may decrease over
time, animals are then in the so-called ID− state, i.e.
with a transient contamination. By contrast, once
the bacterial load exceeds this threshold, hens are
no longer able to eradicate digestive contamination.
They get ID+, i.e suffer from long-term digestive con-
tamination; bacteria multiply and invade the blood-
stream leading to a systemic state and afterwards
recovery. This stochastic model was used to
describe the spatio-temporal spread of Salmonella
in a laying flock [7]. Simulation results show the inter-
est of this model: it allows the reproduction of exper-
imental observations and suggests that the distance
between cage rows also plays a role in the speed of
propagation. However, the model still assumed that
all birds in a cage were at the same state of infection,
while the literature shows that, even with experimental
infection, some animals remains uninfected (see e.g.
[8–12]). Such variations among animals in one cage
become more probable with current change in the
EU in hens’ housing system. To increase animal
welfare, conventional laying cages were banned in
the EU from 1 January 2012; only enriched cages,
barn, free range or organic systems are now allowed.
While birds were housed at a density of up to
10 birds per cage with a surface of about 398 cm2

per hen, enriched cages are designed to hold up to
50 animals with at least 600 cm2 of usable space
per hen.

Based on very similar assumptions as in [7], a deter-
ministic model (DM) was proposed in [13] to evaluate
the effects of different housing systems with regards
to speed of bacterial propagation in an industrial
hen house. This model was an extension of the one de-
veloped by Prévost et al. [14] in which the spatial dis-
tribution of hens was considered but excretion rates
of infectious hens were independent on time elapsed
since infection.

The first goal of this publication was thus to intro-
duce, in the IBM, variability between hens of the same
cage and to test the interest of comparing this IBM to
a DM with reference to Salmonella propagation in
flocks of laying hens. This implies an extension of
both models ([7] and [13]) to take into account the
cage structure and then compare them.

MODELS

This section summarizes the main features of both
models more thoroughly described in [7] and [13].
Hen house was assimilated to a cylindrical domain
denoted by Σ=ℝ×Ω, where Ω=(0, Ly) and Ly is the
width of the hen house and denote a point of Σ by
(x, y), with x∈ℝ and y∈Ω. In industrial hen house,
cages in a house are aligned in rows and each group
of rows are separated from each other by a space
allowing the farmer to take care of the animals.
Cages hold the same number of hens and enriched
cages could harbour up to 50 hens (see Fig. 1).

IBM

While in the former IBM [7] all animals in a cage had
the same bacterial load, here, the dynamics of individ-
ual bacterial load for an individual (between t and
t+1), B is described as resulting from the bacterial
growth rate g(B) and the density of bacteria that an
individual acquires by ingestion or inhalation from
all bacterial sources in a cage, Ip.

dB(τ)
dτ

= g(B(τ)) + Ip(t, x, y), τ [ [t, t+ 1], (1)

where

Ip(t, x, y) = k
Nc

∫
ω(x,y)

C(t, x′, y′)dx′dy′, (2)

with initial condition, B(t), Nc is the number of indivi-
duals in a cage. The diffusion of bacteria in the hen
house was modelled through a reaction diffusion
model as in [7], after a slight modification to take
into account the cage size and the number of infected
individuals per cage, i.e. using the discrete excretion
rates βID+ and βIS.

An individual at time t is in one of the five disease
states (see Fig. 2a): S0, susceptible individuals with
null bacterial load; ID−, individuals suffering only
from digestive contamination at a dose lower that
its threshold Dp (i.e. with a transient contamination);
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ID+, individuals suffering from long-term digestive
contamination; IS, individuals systemically infected
after long-term digestive contamination; R, recovered
individuals. The transitionsS0 ⇋ ID− � ID+ are regu-
lated by the individual bacterial load computed from

equation (1), while transitions ID+�IS �R are
stochastic.

As in [7] the set of thresholds in a cage is denoted by
Dp, a random variable taking values from a beta dis-
tribution β(σ1, σ2), σ1, σ2>0.

S0

(Bp1) g+Ip 
g+Ip 

 IS ≠0 ID+ ≠0
C 

R  ISID+ID-

 R =0  ID- =0 

S(t,x,y)=S0
0≤a ≤ τ1

i(a,t,x,y)=I D- 

C(t,x,y) 

σC(t,x,y) 

(a)≠0

τ2≤a ≤ Amax
i(a,t,x,y)=R 

τ1≤a ≤ τ1 +τ2
i(a,t,x,y)=I S+ID+

(a)=0 (a)=0 

(a)

(b)

γ η

β β β β

λ

λ

β β β

Fig. 2. A schematic comparison of the individual-based model (IBM) and deterministic model (DM). Evolution of health
status for an individual and its interaction with the contaminant in the environment at time t and position (x, y) within
the same cage. (a) In the IBM, hens may be in five states: S0 (susceptible); ID− (infected with a low dose of digestive
contamination); ID+ (suffering from a long-term digestive contamination); IS (systemic contamination); and R (recovered).
Contaminations depends on environmental contamination C. The parameters γ,η (Bp1), μ, βID+, βIS and λ are described in
Table 2. (b) In the DM, densities are considered, S(t, x, y) represents the density of susceptible hens at continuous time t
and position (x, y). It should be compared to the number of hens with health status S0. In the DM, i(a, t, x, y) is the
density of infected hens with respect to age a of infection at continuous time t and position (x, y) to be compared to the
number of hens with health status ID−, when a∈ [0; τ1], (ID++ IS) when a∈ [τ1; τ1+ τ2] and R when a∈ [τ2; Amax].
The parameters τ1, τ2 and Amax are described in Table 2.

(x,y) 

ζx 

ζy 

l   L

   LX 

LY 
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   y

ω

Fig. 1. Graphical representation of a hen house. All points in the hen house are identified by their position (x, y) and
each cage containing this position is represented by ω(x, y). A cage may be identified by the number of its row and its
position within each row.
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DM

This model was the same as described by [13], except
that cage size was considered. The DM reads as
follows:

∂S(t, x, y)
∂t

= −σS(t, x, y)C(t, x, y), (3a)
∂i(t, a, x, y)

∂t
= − ∂i(t, a, x, y)

∂a
, (3b)

i(t, 0, x, y) = σS(t, x, y)C(t, x, y), (3c)
∂C(t, x, y)

∂t
=DΔx,yC(t, x, y) − λC(t, x, y)

+ J(t, x, y),
(3d)

∂C(t, x, y)
∂νΣ

= 0, on (0,1) × R× ∂Ω, (3e)
S(0, x, y) = S0(x, y), (3f )
i(0, a, x, y) = i0(a, x, y), (3g)
C(0, x, y) = C0(x, y). (3h)
State variables and parameters are described in
Tables 1 and 2, respectively. νΣ(x, y) denotes the

outward unit normal vector of Σ at (x, y)∈ℝ×∂Ω.
The term J(t, x, y) denotes the flux of excreted
bacteria at time t by the hens at position (x, y). It is
defined by

J(t, x, y) =
∫
ω(x,y)

p(x− x′, y, y′)
∫1
0
β(a)i(t, a, x′, y′)dadx′dy′.

This term means that the flux at (x, y) is due to in-
fection at (x′, y′) in the same cage weighted by some
probability p. Function β≡β(a) denotes the age
(since infection)-specific excretion rate. The parameter
σ denotes the transmission rate, λ denotes the mor-
tality rate of the bacteria and D is the diffusion coeffi-
cient for their dispersal in the environment.

Relationship between IBM and DM

In the DM, S(t, x, y) represents the density of suscep-
tible hens at continuous time t and position (x, y).

Table 1. State variables of deterministic model (DM) and individual-based model (IBM)

State variables of DM
S(t, x, y) Density of susceptible hens at time t and position (x, y)
i(a, t, x, y) Density of infected hens with respect to infection age a at time t and position (x, y)
β(a) Excretion rate of hens with respect to age of infection a
ω(x, y) The cage associated with point (x, y)

State variables of IBM
B(t) Level of bacterial load in an individual at time t
Dp Bacteria thresholds in the individual

State variables of IBM and DM
C(t, x, y) Density of bacteria in the environment at time t and position (x, y)

Table 2. Baseline values of the model parameters

Description Dimension values Sources

Parameters for IBM
(σ1,σ2) Parameters of beta distribution 1 (σ1, σ2)= (35, 45) [7]
M Carrying capacity of bacteria in an individual c.f.u. 10 log10 [7]
γ Rate of transition from ID+ to IS day−1 1/2 [7]
βID+ Excretion rate of individual at ID+ status day−1 4 log10 [7]
βIS Excretion rate of individual at IS status day−1 4·5 log10 [7]
k Transmission probability of infection 1 0·9 –

θ Net growth rate of bacteria in an individual h−1 0·0007 [7]
Parameters for DM
σ Transmission rate day−1 10− 5 [13]
Θ Normalization parameter for excretion rate β c.f.u. day−2 413·22 [7]
τ1 Length of the latency period day 1 [7, 18]
τ2 Length of the infectious period day 23 [6, 7, 14]
Parameters for DM and IBM
λ Mortality rate of the bacteria day−1 0·1 [6, 7, 14]
D Diffusion coefficient of bacterial dispersion m2 day−1 0·01 [7, 14]

IBM, Individual-based model; DM, deterministic model.
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It corresponds in the IBM to the density of hens with
health status S0. In the DM, i(a, t, x, y) represents the
density of infected hens with respect to infection age a
at continuous time t and position (x, y). When a∈ [0;
τ1], it corresponds in the IBM to the density of hens
with health status ID−; when a∈ [τ1; τ1+ τ2], it corre-
sponds to R status. Therefore

�τ1
0 i(t, s, x, y) ds,�τ1+τ2

τ1
i(t, s, x, y) ds and

�Amax

τ2
i(t, s, x, y) ds represent

the total density of hens with health status ID−, (ID+

+ IS), and R, respectively (see Fig. 2).

Model parameters

The list of parameters in the IBM and DM as well as
their values are summarized in Table 2.

Most parameters are obtained from previous mod-
els except the probability of transmission, k, for DM
which was set at 0·9. This parameter value was chosen
in order that both models are very close when the in-
itial doses of contamination are close to the mean
value [i.e. σ1/(σ1+σ2)×10 log10] of the set of individual
thresholds.

The excretion rate of hens with respect to age a is
chosen as in [13] in the form

β(a) = Θ× (τ1 − a) (a− (τ1 + τ2)) × 1[τ1;τ1+τ2](a), (4)
where τ1 (resp. τ2) is the mean duration of the latency
(resp. infectious) period, and Θ is a normalization
parameter.

As in the IBM we assume that probability p, that an
infection starts in position (x, y) is due to an infection
at position (x′, y′) is uniform in cages.

p(x− x′, y, y′) =
1

|ω(x, y)| if (x, x
′), (y, y′) [ ω(x, y),

0 otherwise,




(5)
where |ω(x, y)| represents the surface of the cage con-
taining the point (x, y). Since all cages have the same
size, |ω(x, y)|=ℓ×L, where ℓ and L is the width and
length of a cage, respectively.

SIMULATION EXPERIMENTS

Materials and methods

Comparison of IBM and DM

The comparison of the IBM and DM was investigated
in two tests [(i) and (ii)]. For all tests, the dimensions
of rows and building are described in Table 3 and
the parameter values in Table 2. The cage length is
set at 2 m, 20 cages of 24 hens are considered.

Different values of the initial dose of environmental
contamination are considered.

Test (i): comparison of the evolution of the
percentage of infectious hens in cages and hen house

In cages in rows 2 and 3 at position 1, initial density of
bacteria, i.e. C0 was set at 103, 5×104 and 106 c.f.u.
and assumed to be distributed uniformly, i.e. C0 :=�
ω(x,y) C0(x′, y′) dx′dy′ (see Fig. 3). Initial density of
infectivity, i.e. I0 at day 0 was set at 0 for the DM
and IBM.

The evolution with time after inoculation was com-
puted. In both models and with the two cage sizes,
percentages of infectious hens per cage were con-
sidered, i.e.

�τ1+τ2
τ1

i(t, s, x, y)ds× 100/S0(x, y) for the
DM and (ID++ IS)×100/Nc for the IBM (as described
in earlier). They were represented as a function of
time, cage per cage, or by cage row.

Test (ii): comparison of the basic reproduction
number, R0

The basic reproduction ratio, denoted by R0, describes
the number of infected hens produced by a single
infected hen during its entire infectious period in the
infection-free environment and a completely suscep-
tible population. The pioneer definition of R0 in het-
erogeneous populations is given in [15].

Computations with the IBM. From the definition
of the so-called basic reproduction number, we
estimated its average value in the IBM model
without an explicit formula by directly counting the
average number of infected individuals produced by

Table 3. Dimensions of hen house parameters

Description Values

nr Number of rows 4
ncpr Number of cages per row Variable
Nc Number of individuals in cage Variable
N Number of individuals in hen house 1920
Lx Length of hen house 50 m
Ly Width of hen house 13 m
ℓ Width of a row 2m
L Length of a cage Variable
lyy Between-row distance 1 m
ζy Space before the first cage and after the last

cage in y-axis direction
1 m

ζx Space before the first cage and after the last
cage in x-axis direction

1 m
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a single infected individual in a completely susceptible
population of hens. A total of 300 simulations were
achieved. Results shown are the mean, 5th and 95th
percentiles of results.

Computations with the DM. Equation (2) was
linearized near the disease-free equilibrium (S*, i*,
C*)=(S0(x, y), 0, 0) and studied to obtain an
expression for R0 [see equation (10)]. This method
is similar to that used in [16]. The numerical
computation of R0 was achieved thanks to the
power iteration algorithm in function of length L of
cages (see algorithm in the Appendix). In the case of
spatial homogeneity, S0(x, y)≡S0>0 and without
cage structure, R0 is easily computed:

R0 = σS0

λ

∫τ1+τ2

τ1

β(a)da. (6)

Sensitivity analysis of R0 for the DM

Sensitivity analyses were also performed for the DM
to determine the relative importance of model par-
ameters on Salmonella transmission. From [17],

the normalized sensitivity index, Λp
X, of a variable X

that depends smoothly on parameter p, is defined as,

ΛX
p = ∂X

∂p
× p

X
. (7)

Sensitivity indices of the basic reproduction ratio,
R0, allow us to measure the relative change in R0

when a parameter, p ∈ {τ1, τ2, L, λ, Θ, D, σ} changes.

Effect of cage length L

To investigate the effect of cage length on Salmonella
prevalence, speed of propagation and basic repro-
duction number, two tests were considered [tests (iii)
and (iv)]. In cages in rows 2 and 3, position 1, initial
density of bacteria, i.e. C0 was set at 5×104 and
assumed to be distributed uniformly. Initial density
of infectious hens, i.e. I0 at day 0 was set at 0 for
the DM and IBM.

Test (iii): percentage of infectious hens and speed of
propagation as a function of L

Two cage sizes were considered: 20 cages of 24 hens or
40 cages of 12 hens so that animals occupy the same
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Fig. 3. Initial condition: (a, b) for the deterministic model (DM) and individual-based model (IBM), initial density of
bacteria, i.e. C0 is set at 5×104 c.f.u. and distributed uniformly in the environment of two cages, i.e.
C0 :=

�
ω(x,y) C0(x′, y′)dx′dy′. (c, d) Initial distribution of susceptible hens, at day 0 for the DM and IBM.
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surface area. As in the ‘Comparison of IBM and DM’

section, percentages of infectious hens per cage were
considered.

Test (iv): basic reproduction number, R0, as a
function of L

Several cage sizes were considered: the largest 4 m
long (i.e. 40 hens per cage) and the smallest 0·5 m
long (i.e. five hens per cage). The method used to com-
pute R0 is the same as in the earlier section comparing
the IBM and DM.

RESULTS

Comparison of IBM and DM

Test (i): comparison of the evolution of the
percentage of infectious hens in cages and hen house

Figures 4 and 5(a–c), or Figure 6(a–c) in two di-
mensions, show the percentage of infectious hens
as a function of initial contamination dose in the

environment, i.e. 103 c.f.u. and 106 c.f.u., for the for-
mer and 5×104 c.f.u. for the latter. Results on the
IBM were the mean of 300 simulations. This test
clearly shows the difference between the IBM and
DM. Indeed, the DM is much less sensitive to the in-
itial contamination than the IBM.

Test (ii): comparison of the basic reproduction
number, R0

For the IBM the basic reproduction number depends
on the initial contamination doses. When one individ-
ual is contaminated with an initial dose of 102, 5×104

and 106 c.f.u., respectively, computations give mean
R0 values of 0, 23 and 34, respectively.

By contrast, with DM R0 is not dependent on the
initial inoculum size: it is equal to 20 whatever the
value of C0.

Sensitivity analysis of R0 for the DM

Normalized indices of sensitivity of R0 to parameters
are shown in Table 4. Parameters are ranked
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Fig. 4. Evolution at days 4 and 100 of the percentage of infectious hens in the hen house when the environment of two
cages are contaminated at 103 c.f.u. (a) and (c) [or 106 c.f.u. (b) and (d)] (see Fig. 3). (a, c) With the individual-based
model (IBM); (b, d) with the deterministic model (DM). Results for a dose equal to 5×104 c.f.u. is shown in Figure 5(a–c)
for the whole hen house or in Figure 6(a–c) in a single row of cages.
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according to sensitivity. The most sensitive parameters
are parameters linked to disease transmission: first,
length of the infectious period during which bacteria
are excreted, then transmission rate (i.e. animal sus-
ceptibility) and third, rate of excretion. Indices of sen-
sitivity of the three parameters range from 3 to
1. Sensitivity to cage length is smaller (0·197) but
three times higher than sensitivity to diffusion rate.

Effect of cage length, L

Test (iii): percentage of infectious hens and speed of
propagation as a function of L

The spatio-temporal evolution of infectious hens in
the hen house is shown Figure 6. Results on the
IBM were the mean of 300 simulations. Comparing
results obtained with two cage lengths clearly shows
that the speed of propagation is higher with longer
cages. With the DM, the speed of propagation is

equal to 35·82 cm/day when cages are 0·5 m long
and nearly double, i.e. 63·68 cm/day when they are
4 m long. Comparing the two models, it can be seen
that results are rather similar but the propagation
appears to be smoother for the DM.

Considering dynamics at the cage level (see Fig. 5),
the propagation appears to be very regular along the
cages in both cases and with both models. A higher
number of cages is contaminated at a given time
when cages are smaller (16 vs. 12 when the IBM is
considered, 15 vs. 12 when the DM is studied).

When comparing results given by both models,
even if means of simulations achieved with the IBM
are similar to estimations provided by the DM,
some differences may be observed. With the DM,
the maximal percentage of infectious hens is a little
higher (64% vs. 69% hens when cage length is 2 m
vs. 4m). By contrast, it slightly decreases over time
for the IBM.
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Fig. 5. Evolution over time of the percentage of infectious hens in a cage in two dimensions when the environment of two
cages are contaminated with an initial dose equal to 5×104 c.f.u. (see Fig. 3). (a, b) Results from individual-based model
simulation; (c, d) results from deterministic model simulation. Only the dynamics of infected individuals in cages in row 2
is shown. (a, c) The number of individuals in each cage, Nc=20; the number of cages per rows, ncpr=24. (b, d), The
number of individuals in each cage, Nc=40; the number of cages per rows, ncpr=12.
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Test (iv): basic reproduction number, R0, as a
function of L

Figure 7 shows that the epidemic threshold increases
with respect to the length L of the cage in both mod-
els. When the DM is considered, the evolution is
totally linear while with the IBM two different slopes
are observed, depending on whether cage length is
lower or higher than 2m. The slope is slightly steeper
at lower values. Moreover, variabilities of estimated
R0 also depend on cage length: it is higher for very
low values of R0 then decreases and thereafter mark-
edly increases after the threshold of 2 m.

DISCUSSION

As for any IBM and DM, several features can be
recalled. The IBM allows us to reproduce an experi-
ence at both the individual and the population level.
By contrast, the DM only allows an experience at
the group level. In this paper, comparison of both

models was carried out at the group (cage or popu-
lation) level.

In the DM, the formula for R0 derived in the pres-
ent paper extends the result of Prévost et al. [4] where
R0 depended also on S0, σ, λ and a constant excretion
rate during the systemic and digestive period. But here
the density of excreted bacteria is computed from the
integral over the period of excretion from τ1 to τ1+ τ2.
It also extends the formula derived in [13] because
of the structure of the hen house in cages. Here,
R0 depends on the average duration of the systemic
period, whose maximal value was set at 23 days
with a maximal value at about 12 days.

In the IBM, the duration of excretion period may
vary. It depends on the individual bacterial load at
the very beginning of the systemic state, when the bac-
terial threshold is overcome. Since the bacterial load
varies from hen to hen and, between hens from day
to day, duration of excretion may vary to a large ex-
tent, between 0·6 and 47 days. While its mode takes
the same values as with the DM, i.e. day 12 variations
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Fig. 6. Evolution at days 4 and 100 of the percentage of infectious hens in the hen house when the environment of two
cages are contaminated as in Figure 3. (a, b) Results from individual-based model simulation; (c, d) results from
deterministic model simulation.
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between estimated R0 in both models result from
those differences, they are coherent with the differ-
ences in propagation speeds observed between
both models. Next, values of R0 for both models de-
pend on cage length: the longer the cage, the higher
the number of hens contaminated by a single infec-
tious hen and thus the larger the percentage of
infected animals (Fig. 7). Larger epidemiological
units are thus more favourable for quick diffusion of
bacteria.

Moreover, when the cage length is very low (about
0·5 m), the cages only harbour five hens and the DM is
equivalent to the case studied in [13] when all animals
in a cage have the same status. In that case, we find a
value of R0 close to 5·22, the value computed with for-
mula (2·2) in [13].

By contrast, when cage lengths are higher than 2 m,
the IBM model suggests that the increase in R0 is a lit-
tle slower, probably because the increase in bacterial
load is proportionally lower than the increase in
cage surface, which results in a slightly lower prob-
ability for a hen to be contaminated. This variation
in R0 with cage length is in accord with what is
observed at the cage or building level. In both cases,
it can be seen that higher values of R0 are associated
with higher speeds of propagation along the building.
Even in a cage, the maximum percentage of contami-
nation is slightly higher with larger cages.

It should be noted that variability in results from
the IBM was larger with a lower initial dose in en-
vironment. These results are a direct consequence of
the strong Allee effect considered in the IBM that
assumes that individuals may overcome the bacterial
infection as long as the bacterial load remains lower
than the threshold; when the individual bacterial

dose is higher that its threshold, individuals undergo
a longer term infection. The threshold, which is the
maximal bacterial load that the individual may clear
without persistent and systemic infection, varies
from one individual to another with a minimal value
of about 103 c.f.u. Therefore when one individual is
infected and when the environment is contaminated
with a dose lower than 103 c.f.u., respectively, R0

tends to be zero [see results in test (ii)] and epizooty
tends to die out (see Fig. 4a), respectively.

That special case emphasizes the differences be-
tween both models. While results from the DM are
similar to what is observed when the initial dose is
close to the mean value of the individual threshold
generated by the beta distribution (with parameters
σ1 and σ2), with the IBM, a few cages remain uncon-
taminated (about 300 simulations were achieved).
This is due to low individual contamination allowing
fowls to recover and the environment to be cleared
from Salmonella through natural bacterial mortality.
This result demonstrates the main difference between
the IBM and DM. Although the IBM allows the iden-
tification of unusual situations, it may also result in in-
appropriate conclusions if too few simulations are
achieved.

The formula for R0 in equation (10) available with
the DM allows quick and reliable investigations of the
effects of various parameters, of a sensitivity analysis
(parameter sensitivity) or an uncertainty analysis (par-
ameter importance) to determine which input par-
ameters exert the most influence. Identifying the most
sensitive parameters might help to develop efficient in-
tervention strategies. This study shows that the most
sensitive parameters are duration and intensity of ex-
cretion as well as animal susceptibility. Those par-
ameters are mostly dependent on animal genetics
highligting the interest of genetic selection (as already
proved by Prévost et al. [6]). However, large interac-
tions may be observed between host genotype and
bacteria reducing the impact of such prophylactic
measures. Therefore, although the length, L, of a
cage is not the most sensitive parameter, it may be eas-
ily controlled and should be considered in further
studies.

This result most likely holds for other pathogenic
agents than Salmonella enteritidis. It suggests that
when designing new cages, care should be taken re-
garding the effect of cage length on risk of contami-
nation. Combining this element with repartition of
susceptible animals is a way to further increase food
safety.

Table 4. Normalized sensitivity indices [defined by
equation (7)] of the basic reproduction ratio, R0,
estimated as in equation (10), evaluated using the
parameter values described in Tables 2 and 3

Order of
sensitivity

Parameter
p

Sensitivity
index Λp

R0

1 τ2 +3·0
2 σ +1·0
2 Θ +1·0
3 λ −0·925
4 L +0·197
5 D −0·084
6 τ1 0
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CONCLUSION

In this paper, two models were improved to take into
account the size of cages, i.e. an individual-based
model and a deterministic model. Comparison of
both models shows that slight differences between
individuals or groups may be observed with an IBM
that could not be expected from a DM; for example,
variations of R0 with cage length suggest the existence

of thresholds for cage length and number of hens
per cage. The IBM also shows that the propagation
along the building may slow (to a small extent).
The main difference between IBM and DM arises
when initial environmental contamination is very
low (<103 c.f.u.). Such variations could be amplified
if other prophylactic means are used. They should
be considered in further models.
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Fig. 7. Evolution of the basic reproduction number with respect to cage length. DM, Deterministic model; IBM,
individual-based model.

APPENDIX. Some details about the derivation of formulas in the DM

We assume that the cage structure is L-periodic with respect to the x direction. We set ω(x, y)= [LE (x/L);
LE(x/L)+L]×ω(y), where E(z) denotes the integer part of the real number z. Then the contamination rate
reads as follows:

∂t −DΔ+ λ( )C(t, x, y) =
∫1
0
β(a)

∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p (x− x′, y, y′) i (t, a, x′, y′) dx′dy′da,

Derivation of the basic reproduction number, R0

We linearized the above equation close to S≡S0(x, y) (L-periodic in x) that leads to the study of the following
linear problem:

∂i(t, a, x, y)
∂t

+ ∂i(t, a, x, y)
∂a

= 0

i(t, 0, x, y) = σS0(x, y)C (t, x, y)

∂t −DΔ+ λ( )C(t, x, y) =
∫1
0
β(a)

∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p (x− x′, y, y′) i (t, a, x′, y′) dx′dy′da.




(8)
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Looking for L-periodic in x solutions of the form

i(t, a, x, y) = eνtφ(a, x, y),
C(t, x, y) = eνtC(x, y),

leads to the following system of equations

φ(a, x, y) = e−νaσS0(x, y)C(x, y),

ν−DΔ+ λ( )C(x, y) =
∫1
0
β(a)

∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p(x− x′, y, y′)e−νaσS0(x′, y′)C(x′, y′)dx′dy′da.

Introducing

β̂(s) :=
∫1
0
β(a)e−asda,

the Laplace transform of β, by setting the Banach space

X = C [ C0 R× Ω̄
( )

: C(x+ L, y) ; C(x, y){ }
,

to consider the positive linear operator

Lν = β̂(ν) ν+ λ−DΔ( )−1
W Ψ,

Ψ(ϕ)(x, y) =
∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p(x− x′, y, y′)σS0(x′, y)ϕ(x′, y)dx′dy′.
(9)

Note that the map R:v∈ (−λ, ∞)�R(v)∈ℝ defined by the spectral radius of Lv is decreasing. Next we set

R0 = R(0), (10)
so that if R0>1 then equation (3) has a non-negative eigenvalue and the disease-free equilibrium is linearly
unstable.

Wave speed of propagation

In order to formally determine the wave speed of invasion, we perform a linear analysis of the leading
edge of the front. Indeed equation (3) without periodic structure has been demonstrated to satisfy the well
known linear determinacy of the wave speed (see [13]). Returning to equation (8) we look for solutions of
the form

i(t, a, x, y) =e−ν(x−ct)φ(a, x, y),
C(t, x, y) =e−ν(x−ct)C(x, y),

where c denotes the wave speed of propagation while ν>0 denotes the exponential decay rate of the front.
Plugging these expression into (8) we get:

φ(a, x, y) = e−νcaσS0(x, y)C(x, y),
and

(λ+ νc−Dν2 + 2Dν∂x −DΔ)C(x, y) = β̂(νc) ΨνC[ ](x, y).
Here we have set Ψν∈L(X) defined by

Ψνϕ
[ ](x, y) =

∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p(x− x′, y, y′)eν(x−x′)σS0(x′, y′)ϕ(x′, y′)dx′dy′, ∀ϕ [ X .
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Note that Ψν is a positive linear operator acting from X intoL1
� (R× ω). Indeed one has for each ϕ∈X:

Ψνϕ
[ ](x+ L, y) =

∫LE(x/L)+2L

LE(x/L)+L

∫
ω(y)

p(x+ L− x′, y, y′)eν(x+L−x′)σS0(x′, y′)ϕ(x′, y′)dx′dy′.

Setting l=x′− L, and recalling that S0 is L-periodic with respect to x while φ ∈ X, leads to

Ψνϕ
[ ](x+ L, y) =

∫LE(x/L)+L

LE(x/L)

∫
ω(y)

p(x− l, y, y′)eν(x−l)σS0(L+ l, y′)ϕ(L+ l, y′)dldy′ = Ψνϕ
[ ](x, y).

As a consequence of this linear study we obtain

c∗ = inf c . 0 : ∃ν . 0 R(ν, c) . 1{ }, (11)
where R (ν, c) denotes the spectral radius of the linear operator Aν,c [ L(X ) defined by

Aν,cϕ = β̂(νc)(λ+ νc−Dν2 + 2Dν∂x −DΔ)−1Ψνϕ, ∀ϕ [ X .

Algorithm to compute R0

The computation of the principal eigenvalue of linear operator

L0 : ϕ � β̂(0) (λ−DΔx,y)−1
W Ψ(ϕ),

i.e. R0 is achieved thanks to the power iteration algorithm for a finite dimensional approximation of L0, Ψ is
defined in equation (9). More precisely, let L0

h be the discretized operator on ℝN corresponding to L0 and let
(·,·) be the usual scalar product, we compute the sequence defined for k 50 by some non-trivial u0 and

uk+1 = Lh
0(uk)

(Lh
0(uk),Lh

0(uk))1/2

until the Rayleigh quotient

λk = (uk+1, uk)
(uk, uk)

converges towards the principal eigenvalue of L0
h.
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