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Abstract
In this paper, an overall structure with the asymmetric constrained controller is constructed for human–robot interac-
tion in uncertain environments. The control structure consists of two decoupling loops. In the outer loop, a discrete
output feedback adaptive dynamics programing (OPFB ADP) algorithm is proposed to deal with the problems
of unknown environment dynamic and unobservable environment position. Besides, a discount factor is added to
the discrete OPFB ADP algorithm to improve the convergence speed. In the inner loop, a constrained controller is
developed on the basis of asymmetric barrier Lyapunov function, and a neural network method is applied to approx-
imate the dynamic characteristics of the uncertain system model. By utilizing this controller, the robot can track
the prescribed trajectory precisely within a security boundary. Simulation and experimental results demonstrate the
effectiveness of the proposed controller.

1. Introduction
The applications of human–robot interaction (HRI) range from material assembly [1], rehabilitation [2],
and elderly care [3]. With the variability of the environment, the robot needs to adjust the uncertainty
automatically. Improvement of the flexibility of the robot’s interaction with the environment becomes a
challenging problem.

In the fields of HRI control, impedance control [4] and admittance control [5] are two common
methods by adjusting robot impedance parameters. In the 1980s, the concept of impedance control was
proposed by Hogan [6]. In this method, a damping-spring-mass model was used for representing the
dynamic relationship between the environment and the robot position. The input force of the robot is
obtained by measuring the position of the robot with appropriate impedance parameters. Admittance
control realizes the compliant control by controlling the interaction force and generating the desired
trajectory. In the early research, model parameters of the two methods are usually prescribed [7–9].
In ref. [8], a guaranteed-stable interaction controller was derived for arbitrary linear, time-invariant
systems. In ref. [9], a loop-shaping method was developed to design actuator controllers for physi-
cally interactive machines. However, inappropriate model parameters will cause outrageous errors. For
human–environment interaction, both the varying environmental factors and the robot model parameters
need to be considered, which makes it difficult to obtain appropriate parameters.

To solve the above problems, it is necessary to introduce variable impedance method into the field of
robot control. The development of reinforcement learning provides the conditions for adaptive dynamic
programing (ADP) [10–12], which is broadly applied in optimal control problems with uncertain dynam-
ics. An adaptive optimization algorithm was proposed for continuous-time based on part of dynamic
model [10]. An improved algorithm [11] was developed for the system with complete unknown dynamic
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model. A model-based reinforcement learning variable impedance controller is proposed, in which
model predictive control (MPC) was applied to optimize the impedance control parameters online [12].
However, the state constraints and the system stability analysis are not considered. For those systems
under conditions of measurable state, the output feedback algorithm is an effective method to estimate
the state information [13–15]. Rizvi established a state observer to estimate the state of the system [13].
Gao et al. reconstructed the state based on the discrete state space model [14]. The output feedback
(OPFB) ADP algorithm was selected to obtain optimal solution which considers the arbitrary environ-
ment position/trajectory [15]. The OPFB ADP algorithm is an effective method to determine the optimal
impedance parameters of the human–robot system in unknown environment dynamics.

In HRI tasks, humans make direct collaborations with robots. In this situation, safety is vital in HRI
systems. However, the desired trajectory guided by interaction force may exceed regular working space
in admittance control. In the past decades, a lot of research works has been done in the safety control field
[16–20]. An integrated HRI strategy was proposed to ensure safety through a coordinated suite of safety
strategies [16]. A cooperative fuzzy-impedance control with embedded velocity and force rules was
proposed to enhance safety [17]. In order to improve the safety performance, an actuation mechanism
was built up in ref. [18]. A task-space admittance controller was proposed in which the inertia matrix was
conditional online [19]. Human–robot collaboration and control were addressed in ref. [20], including
safety assessment, advanced force control, human-aware motion planning, gesture recognition, and task
scheduling. The conception of barrier Lyapunov function (BLF) was put forwarded to guarantee states
within certain bounds [21]. The BLF method was widely applied in the control field [22–24], which was
employed to prevent the violation of the output constraints in ref. [23], and was used in the design of an
adaptive impedance control [24]. In terms of the ability to fit arbitrary nonlinear curves [24–26], neural
network (NN) was considered to be an effective method in control systems, which require less relative
information about the system dynamics [25]. BLF-based controllers with NN approaches were studied
by many researchers to ensure the safety and stability of robot [26–28].

In order to ensure the high accuracy of the impedance model, while guaranteeing the performance of
the trajectory tracking, a double loops control system was proposed [29, 30]. The control method decou-
ples the robot-specific inner loop controller from the task-specific outer loop control, which considers
the safety of tracking and the factor of the environment model. Inspired by this double loop system, a
new two loops control structure through the feedback of force is proposed in this paper. Different from
ref. [30], the environment and robot impedance model are integrated together with linear quadratic regu-
lation (LQR). Considering the partial unmeasurable states, an output feedback algorithm is presented to
estimate the optimal control policy of LQR problem in the outer loop. By constructing the asymmetric
barrier Lyapunov function (ABLF) controller in the inner loop, the stability of the system is ensured
under the condition of flexible constrains in HRI system. The design of NN in adaptive controller com-
pensates for the dynamic uncertainties. Simulations and experimental results validate the effectiveness
of inner and outer loops. The primary contributions of this paper are summarized as follows:

1) Two-loop control structure is designed to assist the human operators to perform cooperative task
with robot and optimize the tracking performance. The inner and outer loops are decoupled.

2) Considering the unknown dynamic and position parameters when interacting with the environ-
ment, optimal impedance adaptation method is used to obtain the optimal control law in the outer
loop. The discrete output feedback algorithm realizes the optimal control of the complete robot–
environment interaction system, and a discount factor is added to the algorithm to improve the
convergence speed.

3) Robot is controlled in the inner loop to track the desired trajectory from the output of admittance
control. ABLF is proposed in the design of inner loop controller to restrict the motion space and
tracking errors. Compared to the symmetrical controllers [28], this method is able to adjust the
upper and lower bounds to adapt to different task requirements. Meanwhile, radial basis function
neural network (RBFNN) is designed to compensate for the unknown dynamics of the robot,
guaranteeing the precision of admittance model.
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The rest of this paper is organized as following arrangements. In Section 2, a system of HRI is
described. In Section 3, an overall system structure is proposed with outer loop and inner loop, which
are described, respectively. In Section 4, simulations of inner and outer loops are given to verify the
proposed methods, respectively. In Section 5, experimental results of a practical task conducted on a
Franka robot are shown. Conclusion is presented in Section 6.

2. System description
The HRI system includes a rigid robot manipulator and human, where the end-effector of the robot
manipulator interacts with human physically. The dynamic of robot manipulator is described by

M(q)q̈ + C(q, q̇) + G(q) = τ + JT(q)F, (1)

where

q = ϕ(x), (2)

q̇ = J−1(q)ẋ, (3)

q̈ = J̇−1
(q)ẋ + J−1(q)ẍ. (4)

Here q, q̇, q̈ ∈R
n are joint angles, velocities, and accelerations, respectively. x, ẋ, ẍ ∈R

m are the
Cartesian positions, velocities, and accelerations of robot end effector. M(q) ∈R

n×n is the inertia matrix,
C(q, q̇) ∈R

n×n is the Coriolis and centripetal coupling matrix, G(q) ∈R
n is the gravity loading, J(q) ∈

R
n×n is the Jacobian matrix. τ is the vector of control input, F ∈R

n denotes the interaction force with
the environment. ϕ(·) represents the inverse kinematics. n denotes the number of joints, and m denotes
the degree of freedom (DOF).

1. The matrix M(q) is symmetric and positive definite.
2. The matrix 2C(q, q̇) − Ṁ(q) is skew-symmetric.

From the perspective of the robot manipulator, the following impedance model is presented for the
safe of HRI.

Mdẍ + Cdẋ + Gd(x − xd) = F, (5)

where Md ∈R
n×n, Cd ∈R

n×n, Gd ∈R
n×n are the desired inertia, damping, and stiffness matrices,

respectively, and xd denotes the desired trajectory of robot manipulator.

Remark 1: Md , Cd , and Gd are defined under different interaction behavior requirements.

To discuss the interaction behavior, it is necessary to take the environment dynamics into considera-
tion. Two forms of environment models are presented.

Meẍ + Ceẋ + Gex = −F, (6)

Ceẋ + Gex = −F, (7)

where Me, Ce, Ge are unknown mass, damping, and stiffness of environment models, respectively.
Eq. (6) represents a mass-damping-stiffness system and (7) represents a damping-stiffness system. The
difference between (6) and (7) depends on the weight of the interactive environment model. For the sake
of generality, we take the mass into consideration in robot–environment model. Thus, from (5) and (6),
we have

(Me + Md)ẍ + (Ce + Cd)ẋ + Gex + Gd(x − xd) = 0. (8)
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Figure 1. System structure of double-loop control.

3. Adaptive optimal control with discrete output feedback
3.1. Overall structure
The system diagram of overall structure in Fig. 1 is first designed and includes outer and inner loops.
The outer loop of the system is to generate the virtual desired trajectory xr according to the interaction
force f and impedance model Z(·). The inner loop with an ABLF controller is designed to track the
virtual desired trajectory precisely. The main purpose of the controller is to make the robot comply with
the human’s objective, while guaranteeing safety and tracking accuracy.

In general, the desired impedance model in the Cartesian space is written as

f = Z(xd , xr), (9)

where xd is the desired trajectory and xr is the reference trajectory in Cartesian space. Then, the virtual
desired reference trajectory qr can be obtained by using inverse kinematics. The outer loop of the system
is to generate the virtual desired trajectory according to the interaction force f and the impedance model
Z(·). The OPFB ADP method is proposed in the outer loop to determine the optimized impedance
parameters of the unknown robot–environment dynamics model.

The main purpose for the inner loop is to guarantee the tracking performance of trajectory qr. For
the security of robot arm, ABLF-based controller is designed to constrain the state and speed of robot.
Then, the RBFNN is employed to fit the unknown robot dynamics in the constrained controller.

3.2. OPFB ADP method in outer loop
To optimize the robot–environment interaction, an impedance adaptation method considering the envi-
ronment dynamics is developed. In this paper, the robot and environmental system are taken into
consideration to achieve the desired interaction performance by minimizing the following cost function:

� =
∫ ∞

t

[
ẋTQ1ẋ + (x − xd)TQ2(x − xd) + f TRf

]
dτ , (10)

where Q1, Q2 are positive definite, describing the weight of velocity and tracking errors, respectively. R
is the weight of the interaction force torque. The state variable is defined as

ξ = [
ẋT , xT , s1

T , s2
T
]T

, (11)

where s1 and s2 are two states constructed in the model, which can be written as{
ṡ1 = F1s1

xd = G1s1
,

{
ṡ2 = F2s2

xe = G2s2
, (12)

where F1 and G1 are two known matrices, F2 and G2 are unknown matrices. Two linear systems in (12)
are utilized to determine the desired trajectory xd and the varying position of the contact trajectory xe.
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According to (12), the cost function (10) can be rewriten as

� =
∫ ∞

t

[
ẋTQ1ẋ + [

xT xd
T
] [

Q2 −Q2

−Q2 Q2

] [
xT

xd
T

]
+ f TRf

]
dτ

=
∫ ∞

t

[
yTQy + f TRf

]
dτ ,

(13)

where Q =
[

Q1 0
0 Q′

2

]
with Q′

2 =
[

Q2 −Q2G1

−G1
T G1

TQ2G1

]
.

For the convenience of calculation, a discrete output feedback method is introduced to solve adaptive
dynamic programing problems. First, the continuous-time state-space function can be written as

ξ̇ = Aξ + Bu, y = Cξ (14)

where ξ ∈R
n×n is the state, and y ∈R

p is the measured output, and u ∈R
m is the control input. In

real application, u represents the interaction force f . Assume that (A, B) is controllable and (A, C) is
observable. The matrices A ∈R

n×n and B ∈R
n×m include the unknown environment dynamics due to

the unmeasurable state s2, where

A =

⎡
⎢⎢⎢⎢⎣

−M−1(Cd + Ce) −M−1Ge 0 M−1GeG2

1 0 0 0

0 0 F1 0

0 0 0 F2

⎤
⎥⎥⎥⎥⎦ ,

B = [−M−1 0 0 0
]T

, M=Md + Me.

The output matrix C is defined as

C =
⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ .

Then, a discrete model of (14) using the zero-order hold method is obtained by taking periodic
sampling

ξ k+1 = Adξ k + Bduk, yk = Cξ k, (15)

where Ad = e Ah, Bd = (
∫ h

0
e Ahdτ )B, and h > 0 is a small sampling period. The stabilizing control policy

is given as uk = μ(ξ k), which can minimize the performance index function:

Vμ(ξ k) =
∞∑
i=k

(yT
i Qdyi + uT

i Rdui) (16)

with weighting matrices Qd ≥ 0, Rd > 0, and (Ad ,
√

QdC) is observable and (Ad , Bd) is controllable.
Since the solution of (16) is similar to the LQR problem, we can find a positive definite matrix

Pd ∈R
n×n to rewrite (16) into the following form.

Vμ(ξ k) = ξ
T
k Pdξ k. (17)

Then, the LQR Bellman equation is obtained as follows:

ξ
T
k Pdξ k = yT

k Qdyk + uT
k Rduk + ξ

T
k+1Pdξ k+1. (18)

To find the optimal control, combining (15) and (18) yields

ξ
T
k Pdξ k = yT

k Qdyk + uT
k Rduk + (Adξ k + Bduk)

TPd(Adξ k + Bduk). (19)

To determine the minimizing control, setting the derivative with respect to uk to zero can obtain

uk = −(Rd + Bd
TPdBd)−1Bd

TPdAdξ k = −Kd
∗ξ k. (20)
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According to ref. [31], the Riccati equation can be derived as
Ad

TPdAd − Pd + CTQdC − Ad
TPdBd(Rd + Bd

TPdBd)−1Bd
TPdAd = 0. (21)

For the unmeasurable states, an output feedback method is introduced to parameterize the internal
state in terms of the filtered inputs and outputs of the system.

Based on the discretized system model (15), the state ξ k is reconstructed with the previous N inputs
and outputs.

ξ k = Euuk−1,k−N + Eyyk−1,k−N = [
Eu Ey

] [
uk−1,k−N

yk−1,k−N

]
= �zk−1,k−N , (22)

uk−1,k−N =

⎡
⎢⎢⎢⎢⎢⎣

uk−1

uk−2

...

uk−N

⎤
⎥⎥⎥⎥⎥⎦ ∈R

mN , yk−1,k−N =

⎡
⎢⎢⎢⎢⎢⎣

yk−1

yk−2

...

yk−N

⎤
⎥⎥⎥⎥⎥⎦ ∈R

pN , (23)

where uk−1,k−N and yk−1,k−N are the measured input and output sequences over the time interval [k −
N, k − 1], respectively, and zk−1,k−N = [uT

k−1,k−N , yT
k−1,k−N] ∈R

l, l = N(m + p), � = [Eu, Ey], and Eu, Ey are
parameter matrices of two sequences, respectively, which is derived in ref. [31].

Substituting (22) into (17) yields

Vμ(ξ k) = zT
k−1,k−N

[
Eu

T

Ey
T

]
Pd

[
Eu Ey

]
zk−1,k−N ≡ zT

k−1,k−NPdzk−1,k−N , (24)

where Pd = �TPd� ∈R
(m+p)N×(m+p)N . Then, the LQR Bellman equation is written in the form of

measured data:
zT

k−1,k−NPdzk−1,k−N = yT
k Qdyk + uT

k Rduk + zT
k,k−N+1Pdzk,k−N+1. (25)

The optimal control can be determined online timely using temporal difference (TD) RL method to
minimize the following Bellman TD error online [31]. Then, the Bellman TD error is defined based on
Eq. (14), which can be rewritten as

ek = −zT
k−1,k−NPdzk−1,k−N + yT

k Qdyk + uT
k Rduk + zT

k,k−N+1Pdzk,k−N+1. (26)
The optimal policy is obtained by minimizing value function in terms of the measured data.

μ(ξ k) = arg min
μk

( yT
k Qdyk + uT

k Rduk + zT
k,k−N+1Pdzk,k−N+1). (27)

Decomposing zT
k,k−N+1Pdzk,k−N+1, we have

zT
k,k−N+1Pdzk,k−N+1 =

⎡
⎢⎣

uk

uk−1,k−N+1

yk−1,k−N

⎤
⎥⎦

T ⎡
⎢⎣

p0 pu py

pT
u P22 P23

pT
y P32 P33

⎤
⎥⎦

⎡
⎢⎣

uk

uk−1,k−N+1

yk−1,k−N

⎤
⎥⎦ , (28)

where p0 ∈R
m×m, pu ∈R

m×m(N−1), py ∈R
m×pn. Then, differentiating with respect to uk to perform mini-

mization in (27) yields
uk = −(Rd + p0)

−1( puuk−1,k−N+1 + py yk,k−N+1). (29)

Theorem 1. [15]: Let δj, ( j = 1, 2, . . . ) be the maximum difference between Vj(ξ k) and V∗(ξ k). When
adding a discount factor γ (0 ≤ γ ≤ 1) to the VI algorithm, the convergence rate of the algorithm to the
optimal value P∗ is

δj+1 ≤ γδj. (30)
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Considering the convergence speed in the iteration process of control law, a discount factor is added
to the controller. Then LQR Bellman equation with discount factor is expressed as

zT
k−1,k−NPdzk−1,k−N = yT

k Qdyk + uT
k Rduk + γ zT

k,k−N+1Pdzk,k−N+1. (31)
The optimal control law with discount factor is written as follows:

u∗
k = −(Rd/γ + p0)−1( puuk−1,k−N+1 + py yk,k−N+1). (32)

Thus, the optimal interaction force is obtained as f = u∗
k .

3.3. ABLF-based NN inner loop controller
Referring to (1), and taking x1 = q, x2 = q̇, the robot dynamic system can be rewritten as

ẋ1 = x2,

ẋ2 = M−1(x1)[τ + JT(x1)f − C(x1, x2)x2 − G(x1)],

y = x1, (33)
where x1 = [x11, x12, · · · , x1n]T, and the desired trajectory is xd(t) = [qd1(t), qd2(t), · · · , qdn(t)]T. We need
to ensure all states and outputs are within the limits when tracking the desired trajectory, i.e., |x1i| <
kc1i, |x2i| < kc2i, ∀t ≥ 0 with kc1i, kc2i being positive constants, where kc1 = [kc11, kc12, · · · , kc1n]T, kc2 =
[kc21, kc22, · · · , kc2n]T are positive constant vectors.

Lemma 1: There exists any positive constant vector kb ∈R, for ∀x ∈R in the interval |x| < |kb|, then
the following inequality holds

ln
kb

2p

kb
2p − x2p

≤ x2p

k2p
b − x2p

, (34)

where p is a positive integer.
For the convenience of expression, the controller proposed in the inner loop is expressed in a contin-

uous way. In the real experiment, the torque calculated from the asymmetric constrained controller is
exerted to the robot in a discrete way. So it is corresponding to the discrete outer loop.

In order to achieve the requirements of tracking constraint, an ABLF-based controller is
employed in the system. The tracking errors are designed as z1 = [z11, z12, · · · , z1n]T = x1 − xd , z2 =
[z21, z22, · · · , z2n]T = x2 − α, and we have ż1 = x2 − ẋd . The virtual control α is defined as

α = ẋd − T, (35)
where

T =

⎡
⎢⎢⎢⎢⎢⎣

(ka1 + z11)(kb1 − z11)k1z11

(ka2 + z12)(kb2 − z12)k2z12

...

(kan + z1n)(kbn − z1n)knz1n

⎤
⎥⎥⎥⎥⎥⎦ . (36)

Positive constants ka and kb denote the lower and upper bounds of tracking error where −ka < z1,2 <

kb, and ki (i = 1, 2, . . . , n) denotes a positive constant. Taking the derivation of z1 and z2 with respect to
time, we have

ż1 = z2 + α − ẋd = z2 − T, (37)

ż2 = M−1(x1)[τ + JT(x1)f − C(x1, x2)x2 − G(x1)] − α̇. (38)
The ABLF is defined as follows:

V1 = h1(z1)

2p

n∑
i=1

log
k2p

bi

k2p
bi − z2p

1i

+ 1 − h1(z1)

2p

n∑
i=1

log
k2p

ai

k2p
ai − z2p

1i

, (39)
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where kai = xdi − kci, kbi = kci − xdi, kai ≤ kai ≤ kai, kbi ≤ kbi ≤ kbi, and h1(z1) is given as

h1(z1) =
{

1 zi > 0

0 zi ≤ 0
. (40)

The time derivative of (39) is

V̇1 = h1(z1)
n∑

i=1

z2p−1
1i ż1i

k2p
bi − z2p

1i

+ (1 − h1(z1))
n∑

i=1

z2p−1
1i ż1i

k2p
ai − z2p

1i

= −h1(z1)
n∑

i=1

k1z
2p
1i + h1(z1)

n∑
i=1

z2p−1
1i z2i

k2p
bi − z2p

1i

− (1 − h1(z1))
n∑

i=1

kiz
2p
1i + (1 − h1(z1))

n∑
i=1

z2p−1
1i z2i

k2p
ai − z2p

1i

= −
n∑

i−1

kiz
2p
1i + h1(z1)

n∑
i=1

z2p−1
1i z2i

k2p
bi − z2p

1i

+ (1 − h1(z1))
n∑

i=1

z2p−1
1i z2i

k2p
ai − z2p

1i

. (41)

Then, a second Lyapunov function is designed as

V2 = V1 + 1

2
z2

TM(x1)z2. (42)

Take the time derivation of V2 to obtain

V̇2 = V̇1 + z2
T[τ + JT(x1)f − C(x1, x2)α + G(x1) − M(x1)α̇]. (43)

When z2 = [0, 0, . . . , 0]T, V̇2 = − ∑n
i=1 kiz

2p
1i < 0. According to Lyapunov stability theory, the system

is asymptotically stable. On the contrary, according to the property of the Moore-Penrose pseudoinverse,
if z2 �= [0, 0, . . . , 0]T, z2

T(z2
T)+ = 1. K2 is a designed positive gain matrix with K2 = K2

T > 0. Then the
model-based controller is designed as

τ 0 = −JT(x1)f + C(x1, x2)α + G(x1) + M(x1)α̇ − K2z2

− h1(z1)(z2
T)+

n∑
i=1

z2p−1
1i z2i

k2p
bi − z2p

1i

− (1 − h1(z1))(z2
T)+

n∑
i=1

z2p−1
1i z2i

k2p
ai − z1i2p

. (44)

Substituting (44) into (43) yields

V̇2 = −
n∑

i=1

kiz
2p
1i − z2

TK2z2 = −(z1
T)pK1z1

p − z2
TK2z2 < 0. (45)

where K2 = K2
T = diag([k1, k2, . . . , kn]) > 0 is a diagonal matrix.

Eq.(44) is model-based, in real applications, the dynamic parameters C(x1, x2), G(x1), M(x1), and f
are difficult to be obtained. To address uncertainties in the dynamic model, an adaptive NN method is
employed to fit the uncertain terms. The adaptive NN control is proposed as

τ 1 = −h1(z1)(z2
T)

+
n∑

i=1

kiz
2p
1i

k2p
bi − z2p

1i

− (1 − h1(z1))(z2
T)

+
n∑

i=1

kiz
2p
1i

k2p
ai − z2p

1i

− h1(z1)(z2
T)

+
n∑

i=1

z2p−1
1i

z2i

k2p
bi − z2p

1i

− (1 − h1(z1))(z2
T)

+
n∑

i=1

z2p−1
1i z2i

k2p
ai − z2p

1i

− K2z2 − Ŵ
T
S(Z) − JT(x1)f . (46)

where S(·) is the basis function, Ŵ ∈ Rl×n is the estimation weight in which l is the node number of NN,
and Z = [

x1
T , x2

T , αT , α̇T
]T is the input of the NN basis function. With the property of approximating

any nonlinearity, Ŵ
T
S(Z) is the estimation of W∗TS(Z), while the W∗TS(Z) represents the real value of

unknown term in model-based control (45) with

W∗TS(Z) + ε = −C(x1, x2)α − G(x1) − M(x1)α̇. (47)
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The adaptive law is designed as
˙̂W i = �i

[
Si(Z)z2i − ei |z2i| ˙̂W i

]
. (48)

Then, the BLF V3 is designed as

V3 = V3 + 1

2

n∑
i=1

W̃
T

i �
−1
i W̃ i, (49)

where W̃ i = Ŵ i − W∗
i and W̃ i, Ŵ i, W∗

i are the NN weight error, approximation, and ideal value,
respectively. Differentiating (49), we have

V̇3 = −
n∑

i=1

kiz
2p
1i + h1(z1)

n∑
i=1

z2p−1
1i z2i

k2p
bi − z2p

1i

+ (1 − h1(z1))
n∑

i=1

z2p−1
1i z2i

k2p
ai − z2p

1i

+
n∑

i=1

W̃
T

i �
−1
i

˙̂W i + zT
2 [τ 1 + JT(x1)f − C(x1, x2)α − G(x1) − M(x1)α̇. (50)

If z2 �= [0, 0, . . . , 0]T , according to (46)–(48), we have

V̇3 ≤ −
n∑

i=1

kiz
2p
1i − zT

2 K2z2 − h1(z1)
n∑

i=1

kiz
2p
1i

k2p
bi − z2p

1i

− (1 − h1(z1))
n∑

i=1

kiz
2p
1i

k2p
ai − z2p

1i

+
n∑

i=1

[
W̃

T

i Si(Z)z2i − ei|z2i|W̃T

i Ŵ i

]
+ z2

Tε(Z) + z2
T[−Ŵ

T
S(Z) + W∗TS(Z)

≤ −z2
T

(
K2 − 3

4
I
)

z2 − h1(z1)
n∑

i=1

ki ln
k2p

bi

k2p
bi − z2p

1i

− (1 − h1(z1))
n∑

i=1

ki ln
k2p

ai

k2p
ai − z2p

1i

+ 1

2
‖ε(Z)‖2 +

n∑
i=1

e2
i

4
(‖W∗

i ‖4 + ‖W̃ i‖4 − 2‖W∗
i ‖2‖W̃ i‖2

) ≤ −ρV3 + C,

(51)

where

ρ = min

(
min(2ki), min(2(1 − h1(z1))ki),

2λmin(K2 − 3
4
I)

λmax(M)
, min

(
z2

i

∥∥W∗
i

∥∥2

λmax(�
−1
i )

))
, (52)

C = 1

2
‖ε(Z)‖2 +

n∑
i=1

(
z2

i

4

∥∥W∗
i

∥∥4 + z2
i

4
N4

)
. (53)

Here λmin(•) and λmax(•) denote the minimum and maximum eigenvalues of the matrix, respectively,
and

min(2ki) > 0, λmin

(
K2 − 3

4
I
)

> 0, N =
(

λmax(�i)

λmin(�i)

) 1
2 ‖si‖

zi

+ ∥∥W∗
i

∥∥ (54)

with ‖Si(Z)‖ ≤ ‖si‖ and si > 0.

Theorem 2 Consider the dynamic system described in (1). If the initial conditions sat-
isfy |x1i(0)| < kc1i, |x2i(0)| < kc2i, the control law (46) ensures that all error signals are semi-
globally uniformly bounded. Then the position and velocity constraints are not violated, that is,
∀t > 0, |x1i(t)| ≤ kc1i, |x2i(t)| ≤ kc2i. The closed-loop error signals z1, z2 and W̃ remain in compact sets
�z1 , �z2 , �w, respectively.

�z1 : =
{

z1 ∈ Rn| − 2p

√
k2p

ai (1 − e−D) ≤ z1i ≤ 2p

√
k2p

bi (1 − e−D), i = 1, . . . , n

}

�z2 : =
{

z2 ∈ Rn| ‖z2‖ ≤
√

D
λmin(M)

}
, �w: =

{
W̃ ∈ Rl×n|

∥∥∥W̃
∥∥∥ ≤

√
D

λmin(�
−1)

}
, (55)
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Table I. Parameters of the 2-DOF robot manipulator.

Parameter Description Value
m1 Mass of link 1 2.0kg
l1 Length of link 1 0.35m
I1 Inertia of link 1 6.125 × 10−2kg · m2

m2 Mass of link 2 0.85kg
l2 Length of link 2 0.31m
I2 Inertia of link 2 2.402 × 10−2kg · m2

Figure 2. Diagram of the 2-DOF robot system.

where D = 2 (V3(0) + C/ρ).

Proof: Multiplying eρt on both sides of (51), we have

eρtV̇3 ≤ −ρV3e
ρt + Ceρt, (56)

and

d(eρtV3)/dt ≤ Ceρt (57)

Then, we have

V3 ≤
(

V3(0) − C
ρ

)
e−ρt + C

ρ
≤ V3(0) + C

ρ
. (58)

According to (58) and the property of inequality in ref. [32], we have

−1

2

n∑
i=1

ln
k2p

ai

k2p
ai − z2p

1i

≤V3(0) + C/ρ ≤ 1

2

n∑
i=1

ln
k2p

bi

k2p
bi − z2p

1i

1

2
‖z2‖2 ≤ V3(0) + C/ρ

λmin(M)

1

2
‖W̃‖2 ≤ V3(0) + C/ρ

λmin(�
−1)

(59)

4. Simulations
In the simulations, a two-link robotic manipulator simulation platform is constructed as shown in Fig. 2
and the parameters of the robot are defined in Table I. The simulations of inner loop and outer loop are
exerted separately to validate their own effectiveness.
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Figure 3. Tracking performance of different controllers of Joints 1 and 2.
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(b) Tracking error of Joint 2

Figure 4. Tracking error of different controllers of Joints 1 and 2.

4.1. Inner loop
In order to validate the effectiveness and feasibility of the designed asymmetric constrained controller.
Simulations using the proposed controller, PD controller, and controller in ref. [33] are carried in
MATLAB.

The initial positions of the robot are given as q1(0) = [0.4, −0.1](rad), q2(0) = [0, 0](rad/s). The
interaction force with end-effector is f (t) = [sin(t) + 1, cos(t) + 0.5](N), where t ∈ [0, tf ] and tf = 20s.
The desired trajectory is set as qr = [0.1 sin(t) + 0.5 cos(t), 0.1 cos(t) + 0.5 sin(t)](rad). The limits of
tracking errors are ka = [−1.0, −1.0](rad), kb = [1.2, 1.2](rad), and the physical limit of robot joints is
kc = [1.8, 1.8](rad).

For PD control, the controller is designed as τ = −G1(q1 − qr) − G2(q2 − q̇r) where G1 =
diag(50, 30) and G2 = diag(30, 3).

For the proposed controller, Eq. (46) is the control law applied in the inner loop. S(·) is defined as
a Gaussian function. As for the gain of the NN, σ is chosen as 0.2, the number of the NN nodes is 28,
and the centers are selected in the area of [−1, 1] × 5. The variance of centers is chosen as 0.5, and the
initial value of the NN weight matrix is defined as 0. The control parameters are set as K2 = diag(3, 3),
k1 = k2 = 50, �1 = �2 = 100I256×256 after regulating.

The tracking results are shown in Figs. 3 and 4. From Fig. 4, the tracking errors of PD controller
remain relatively large, and the tracking errors of the controller in ref. [33] are smaller. It is seen that
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Figure 5. Control input of three control methods.
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Figure 6. Convergence of the parameters p0 and pu.

the tracking errors are almost close to zero using our proposed method, which is better than the other
methods. The comparison results show that our proposed method improves the tracking performance
compared with PD controller and the controller in ref. [33]. The control input of the three methods is
shown in Fig. 5. The torque of the proposed controller is relatively stable.

4.2. Outer loop
In the outer loop, a robot manipulator with two revolute joints physically interacting with the
human/environment is considered. The simulation is implemented in MATLAB.

In the simulation, the sample interval is set to 1 ms. The adaptation procedure includes three steps.
Firstly, the exploration noise is added to the initial control input to guarantee the PE conditions [10],
which is chosen as ek = ∑10

ω=1 (0.06/ω) sin(kω). Then, optimal impedance learning is conducted until the
criterion is satisfied, which is |P̄ j+1

d − P̄ j

d | < 0.001. Finally, the optimized impedance model is acquired
through iterations.

The parameters in (10) are defined as Q1 = 1, Q2 = 0.3, R = 0.1. In the simulation, the environment
model is selected as ẍ + 10ẋ + 100(x − xe) = −F. The environment position and robot desired trajectory
in the Cartesian space are given by (12), with F1 = −1, G1 = 0.3, F2 = −1, G2 = 1. All the elements of
the initial matrix Pd are selected as 0.01, and γ is set as 0.3. Figures 6 and 7 show the convergence of
Pd . p0, py, pu reach convergence after 17 steps.
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Figure 7. Convergence of the parameters py0, py1, py2 and py3.

The optimal values of Pd are shown as follows:

p∗
0 = 15.9258, p∗

u1 = −32.8697, p∗
u2 = 42.5815, p∗

u3 = −29.1587

py0
∗ = [− 4.2895, −2.2678, 0], py1

∗ = [8.8085, −2.0308, 0]

py2
∗ = [1.0536, −1.5435, 0], py3

∗ = [5.7937, −1.1972, 0].

Then, the optimal matrix Pd is obtained from Pd according to (24) as follows:

Pd =

⎡
⎢⎢⎢⎢⎣

−7.5863 −18.5025 9.2325 1.9694

−18.5025 −4.2168 −18.8880 11.1250

9.2325 −18.8880 19.6568 −3.7325

1.9694 11.1250 −3.7325 −1.7415

⎤
⎥⎥⎥⎥⎦ . (60)

For comparison, the ideal optimal matrix Pd
∗ is calculated by using the model information

as follows:

Pd
∗ =

⎡
⎢⎢⎢⎢⎣

−7.26 −18.3032 9.2331 1.8680

−18.3032 −3.9880 −18.9033 11.0891

9.2331 −18.9033 19.64 −3.875

1.8680 11.0891 −3.875 −1.731

⎤
⎥⎥⎥⎥⎦ . (61)

As we know, the matrix Pd
∗ is the optimal solution to minimize the cost function. From the two

matrices, it is obvious that the optimal matrix from our method is close to the real solution, which
validates the correctness of the proposed algorithm.

Remark 2: Since this method is model-free and data-based, the parameters have few influences on the
results. There is almost no need to tune them. In order to further improve the system performance in
practical applications, the control parameters can be fine-tuned by adjusting the parameters in the inner
and outer loops separately.
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(a) Direct interaction (b) Indirect interaction

Figure 8. Human–robot collaboration task.

5. Experiment
The experiments are carried out for the robot (Franka Emika Panda, Franka Emika GmbH, Germany)
shown in Fig. 8. The robot has 7 degrees of freedom (DOFs) with seven flexible joints equipped with
angle and torque sensors. The communication frequency is 1000 Hz. The robot has three control modes
including velocity mode, position mode, and torque mode. The operation system is Ubuntu 16.04 with
the platform ROS Kinetic. When human moves the robot, it will generate a desired trajectory. Then the
virtual trajectory is calculated through the impedance model in real time. There are two independent con-
trol nodes in ROS which are employed for calculating and controlling the robot, and the communication
frequency between the two nodes is 200 Hz. The first node is used to calculate the adaptive constraint
controller and publish the control result to the second node. Then, the second node subscribes to the
information from the robot and publishes the control signals to control the robot.

In order to verify the effectiveness of the proposed controller, a trajectory tracking task is conducted.
For the convenience of the experiment, a desired trajectory is defined by human in the outer loop. As
shown in the Fig. 1, the virtual desired trajectory xr which calculated from impedance model is the input
of the inner loop. It is adapted online on the basis of the human interaction with the robot. The parameters
of the controller are chosen as followers: S(·) is the Gaussian function, l = 28 is the node numbers of
NN, and the centers of each node are selected in the area of [−1, 1], the center variance is set as 1.5.
The initial weight Ŵ of NN is 0, the controller parameters K2 = diag(10, 10, 10, 10, 10, 10, 10) and
the constraint error of tracking are set as kb1 = 2, kb2 = 2, kb3 = 2, kb4 = 3, kb5 = 2, kb6 = 2.6, kb7 = 1.5,
ka1 = −1.2, ka2 = −1.2, ka3 = −1.5, ka4 = −2, ka5 = −2, ka6 = −2, ka7 = −1.8, σi = 0.02, �i = 200I16×16,
(i = 1, 2, . . . 7).

Figure 9 shows the tracking trajectories of the three methods, it is obvious that the tracking per-
formance of the proposed controller is better than others. Figure 10 shows the tracking errors in each
direction, where green line is the zero baseline. Compared with the other two methods, the trajectory
error of our proposed controller is smaller. The main verification metric for the accuracy of the con-
troller is the tracking error. The average error of three controllers is provided in Fig. 11. Table II shows
the average error and error variance of the three methods. It is obvious that the average error and error
variance of the proposed controller are smaller than the other two methods. Moreover, we present the
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(c) The proposed controller

(a) PD controller

(b) Controller in [22]

Figure 9. Tracking trajectory of the Franka robot.

index of smoothness index (as described in ref. [17]) of three controllers in Fig. 12, which demonstrates
that the proposed controller is smoother than the other two methods. The calculation input torque result
of the adaptive constraint controller is shown in Fig. 13.
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Table II. Error comparison of three controllers.

Controllers Average error Error variance
PD controller 0.0084 1.0567
Controller in ref. [33] 0.0092 1.0564
The proposed controller 0.0034 0.1758

Figure 10. The tracking errors of different methods.
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Figure 11. Average error of three controllers.
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PD controller Controller in [22] The proposed controller
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Figure 12. Smoothness of three controllers.
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Figure 13. Input torques of Joints 1–7.

The calculated control torque is exerted in the robot when a HRI task is conducted on the Franka
robot. The outer loop aims at optimizing the parameters of impedance model. For the cost function
(10), the parameters Q1, Q2 and R are set to 1. The stopping criterion is

∣∣∣P̄ j+1

d − P̄ j

d

∣∣∣ < 0.01, and the
discount factor γ is selected as 0.3. The initial value of p0 is set as 2, and the initial values of py0 is set as[−2 10 10

]
. The initial values of pu are set as 1, and then all the other elements of the initial matrix

Pd are 0. The sampling interval is set as 10 ms.
Figures 14 and 15 show that the parameters py, p0 and pu reach convergence after 1000 iteration. The

optimal values of Pd are shown as follows:
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(a) Convergence of py01, py02, py03 (b) Convergence of py11, py12, py13
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Figure 14. Convergence of the the parameters py in matrix Pd.
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Figure 15. Convergence of the parameters p0, pu in matrix Pd.
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Figure 16. Interaction force of three processes.

p∗
0 = 4746.2, p∗

u1 = 360.8, p∗
u2 = −7727.4, p∗

u3 = 4130.3

py0
∗ = [5.54, −2.7, −3.63] × 104, py1

∗ = [−3.84, 6.89, −1, 99] × 104

py2
∗ = [−1.59, 3.89, 1.29] × 104, py3

∗ = [−0.173, −8.19, 4.46] × 104.

Figure 16 shows the interaction force, where the interval 0–10s is the data collection stage, and the
interval 10–20s is the calculation stage. After 20s, the optimal control is exerted in the end-effector of
the robot which is more stable to complete the given task.

6. Conclusion
In this paper, to realize safe HRI, a novel impedance adaptation method is proposed in unknown envi-
ronment. A double-loop system is constructed in which the inner loop improves the tracking accuracy
with the safety of interaction and the outer loop fits the uncertainty of model. An adaptive dynamic
programing with discrete output feedback is proposed in the outer loop to solve the problem of uncer-
tain environment position. A discount factor is added for faster convergence speed. In the interaction
process, the robot is limited in safe space through an ABLF-based inner loop controller. Meanwhile,
the RBFNN compensates for the unknown dynamics in the design of the controller. Simulation and
experimental results verify the effectiveness of the proposed controller in HRI system. In future works,
a reduced-order observer will be added to reduce the dimensionality of states so as to increase the speed
of calculation.
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