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On Operator Sum and Product Adjoints
and Closures

Karl Gustafson

Abstract. We comment on domain conditions that regulate when the adjoint of the sum or product

of two unbounded operators is the sum or product of their adjoints, and related closure issues. The

quantum mechanical problem PHP essentially selfadjoint for unbounded Hamiltonians is addressed,

with new results.

1 Introduction

A preprint of a paper by M. Mortad [9], dealing with when (A + B)∗ = A∗ + B∗,

caused me to go back to some old notes of mine [3] in which the same question was

investigated but with a more specific goal: when is A + B essentially selfadjoint. In

[3] A + B is a quantum mechanical Hamiltonian, e.g., A = −∆ on a core domain

D(A), and B is a quantum mechanical potential. The notes [3] contained a number

of sufficient conditions, but they were not what I wanted, so were never published.

Here I would like to touch on some main points from [3] to augment [9]. Recall that

A + B essentially selfadjoint means that, for A selfadjoint and B a regular symmetric

perturbation, i.e., D(B) ⊃ D(A), one has A + B ⊂ A + B = (A + B)∗. Here T denotes

the closure of a closeable operator T.

Also, in [6] I treated the product adjoint problem (AB)∗ = B∗A∗ using only do-

main/range conditions. As pointed out in [9], Mortad’s intent was to follow the

philosophy of [6] for the (A + B)∗ = A∗ + B∗ problem. However, there are intimate

connections between sum and product adjoints and sum and product closures, as

shown in [3] and related later papers [4,7,8] and in an earlier paper [2]. These could

be of interest to the various authors cited in [9] who are now following a similar path,

hence this paper.

However, there was an error in [6, Lemma 1], which carried forward into [6, Lem-

mas 2, 3, and 4]. Therefore in Section 2 we identify and discuss this oversight, in its

way a subtle one, and then present a correct version of [6, Lemma 1]. The point of [6]

was to simplify and generalize an interesting lemma of Albevario, Hoegh, and Streit

[1]. In looking more closely now at the proof given in [1], I find discrepancies and

an error there too. In sum: since [9] followed [6] which followed [1], we first need to

identify and correct the errors in [1] and [6]. Then we may proceed to other things.

Section 2 corrects an error in an earlier draft of this paper. Section 3 discusses re-

lated issues from [3, 4, 7, 8]. In particular, we look into an important issue treated in
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[7, 8] to improve our understanding of the PHP measurement problem from quan-

tum mechanics and obtain some new results.

2 Correction of [6] and [1]

The paper [6] was motivated by the following interesting lemma [1, Lemma 2].

Lemma 2.1 Let A and B be selfadjoint operators in a Hilbert space H and suppose

that D(AB) is dense, that AB is closable, that D(B) contains the range of A, that B−1

exists, and that one has D(B−1(AB)∗) ⊃ D((AB∗). Then (AB)∗ = B∗A∗.

My proposed simplification and generalization was the following [6, Lemma 1].

Lemma 2.2 Let A and B be selfadjoint operators in a Hilbert space H and suppose

that D(AB) is dense, that R(B) ⊃ D(A), and D(B) ⊃ R(A). Then (AB)∗ = B∗A∗.

My proof was the following. Since, when all adjoints are defined, we always have

(AB)∗ ⊃ B∗A∗, one needs only to go the other way. We write A = (AB)B−1, then

A ≡ A∗ ⊃ B−1(AB)∗, and applying B from the left, BA ⊃ (AB)∗.

Here is a counterexample (see Acknowledgments). Take A to be an unbounded

selfadjoint operator with domain D(A) and range R(A) not equal H and trivial kernel

N(A) = 0. Let B = A−1. Then AB is the Identity operator restricted to the properly

dense R(A), (AB)∗ is the Identity operator on the whole space H, and that operator

strictly contains B∗A∗, which is the Identity operator restricted to D(A).

Somehow in my haste in writing [6], an invited paper in honor of Sergio Albeve-

rio, I had overlooked the fact that the left side of the sought (AB)∗ = B∗A∗ is always

a closed operator. So a necessary condition on the right side is that it also be a closed

operator. The above counterexample to the lemma is easily accommodated by just as-

serting a conclusion that (AB)∗ = B∗A∗, noting that the domination (AB)∗ ⊃ B∗A∗

guarantees that the right side is always closeable. In other words, we have the little

result that whenever the right side B∗A∗ is a densely defined bounded operator, as it

is in the counterexample, then (AB)∗ = B∗A∗, because the closure of an operator is

always the smallest closed extension, and when B∗A∗ is bounded the domain of its

closure is the whole space H.

Could just taking B∗A∗ fix the situation in the unbounded case? One quickly finds

that the issue is more subtle than that. Thus, to get some feeling for what is needed,

let us look more carefully at the proof from [6] given above.

We may write A = (AB)B−1 if and only if D(B−1) ≡ R(B) ⊃ D(A). But unless

R(B) is exactly D(A), we must write more carefully A = (AB)B−1
A , where B−1

A de-

notes B−1 restricted to D(A). Then by adjoints we have A = A∗
= ((AB)B−1

A )∗ ⊇
(B−1

A )∗(AB)∗. We may write this because D(A) is dense and B−1
A is symmetric on

it, so (B−1
A )∗ exists, although it could be bigger than (B−1)∗ ≡ B−1 on R(B). Thus

(B−1
A )∗(AB)∗ ⊃ B−1

R(B)(AB)∗, where we perhaps redundantly put the subscript on B−1

to remind ourselves of its domain. So we have A ⊃ B−1
R(B)(AB)∗. We would like to

“apply B from the left” to get BA ⊃ (AB)∗ and be done.

A sufficient condition for that is the assumption in [1] that D(B−1(AB)∗) ⊃
D((AB)∗). We will look a little more closely at this condition below. But notice at
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this point that the proof of the lemma in [1] also contained an error. In their first

step (see [1], or [6] where I reproduce their proof verbatim), they say “By the as-

sumption that B−1 exists on a domain containing D(A) we have (AB)∗∗B−1 ⊃ A.”

As the reasoning behind this step is not elaborated in [1], consider the following. If

R(B) ⊃ D(A), then one can write (AB)∗∗ = AB ⊃ AB. Since R(B) covers D(A), we

know that the D(AB) is generally some proper subset of D(B), equal to D(B) if and

only if R(B) = D(A) exactly. Recall that D(AB) was assumed to be at least dense, so

that (AB)∗ exists. Let x be in this subset D(AB) of D(B) and let x = B−1 y. Then

we may write (AB)∗∗x = (AB)∗∗B−1 y = (AB)B−1 y = Ay and thus justify the first

assertion in [1] that (AB)∗∗B−1 ⊃ A. But that should be more precisely written as

(AB)∗∗B−1
R ⊃ A, where B−1

R denotes B−1 restricted to the range of B on D(AB). Next,

the proof in [1] takes adjoints, whereby (B−1
R )∗(AB)∗∗∗ ≡ (B−1

R )∗(AB)∗ ⊂ A∗
= A.

Hence for all x in D(B−1
R )∗(AB)∗ one may write (B−1

R )∗(AB)∗x = Ax. The authors of

[1] did not deal with (B−1
R )∗ and simply wrote B−1(AB)∗x = Ax. Nonetheless, at this

point one would like to conclude their proof by now “applying” B to both sides to

get (AB)∗x = BAx, and then by the assumption D(B−1(AB)∗) ⊃ D((AB)∗), arrive at

the desired BA ⊃ (AB)∗. It is in this last step that the assumption that D(B) ⊃ R(A)

is used. There seems no essential problem caused by our better precision (B−1
R )∗,

because (B−1
R )∗ contains (B−1)∗ = B−1 provided that B−1

R is densely defined.

But their first step required, as I have explained above, that R(B) ⊃ D(A), which

was not in their lemma’s hypothesis.

So there were errors in both [1] and [6].

From my analysis above we have proved the following corrected version of the

sought lemma.

Lemma 2.3 Let A and B be selfadjoint operators in a Hilbert Space H and suppose

that D(AB) is dense, that R(B) ⊃ D(A), and that D(B−1(AB)∗) ⊃ D((AB)∗). Then

(AB)∗ = B∗A∗.

We do not need to explicitly assume that B is 1–1, because that is automatically

the case when B is selfadjoint with dense range; see, for example, [5], dealing with

operator state diagrams. We do not need, nor want, the condition D(B) ⊃ R(A).

However, we may now turn that hypothesis to advantage to explain the meaning

of the D(B−1(AB)∗) ⊃ D((AB)∗) condition that we had to accept from [1] in our

corrected Lemma 2.3. Recall that one always has D(BA) ⊂ D(A).

Lemma 2.4 We have D(B) ⊃ R(A) if and only if D(BA) = D(A) if and only if

D(BA) ⊃ D(A). Therefore, in particular, the following are all equivalent:

• D(B−1(AB)∗) ⊃ D((AB)∗)
• D(B−1(AB)∗) = D((AB)∗)
• D(B−1) ⊃ R((AB)∗)
• R(B) ⊃ R((AB)∗), which ⊃ R(BA).

The assumption D(B) ⊃ R(A) of [1] is strong enough to cause D(B∗A∗) ≡ D(BA)

to already be equal to D(A) on the right side of the sought (AB)∗ = BA. It is also

relevant to remember that for bounded selfadjoint A and B, one has AB selfadjoint if

and only if A and B commute. Thus the innocent looking assumption D(B) ⊃ R(A)
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already says, in the unbounded case we are considering, that (AB)∗, whatever it is,

will have the domain D(BA) that it would have should the two operators commute.

That to me is always a special easier case and I did not want it built into Lemma 2.3.

About the other condition D(B−1(AB)∗) ⊃ D((AB)∗) that I did accept here to

correct the proof I gave in [6], I have identified in Lemma 2.4 above the equivalent

meanings it gives to ranges. I am not satisfied with having to accept this assumption,

but the lemma is now corrected. One can write down the corrected versions of [6,

Lemmas 2, 3, and 4] making similar assumptions. The operator state diagrams of [5]

can guide this process, but to do that carefully, especially trying at the same time to

get rid of the onerous assumption discussed above, is better left to another paper.

Having corrected [6, Lemma 1] for the adjoint operator (AB)∗, let us now turn to

(A + B)∗ sum adjoint results in [9].

These are typified by the following result.

Proposition 2.5 Let A and B be densely defined operators in a Hilbert space H and

suppose D(A) ⊂ D(B) and D((A + B)∗) ⊂ D(B∗). Then (A + B)∗ = A∗ + B∗.

Proof See [9, Theorem 2.1].

Corollary 2.6 Let A be an unbounded densely defined closed operator satisfying

D(A) ⊂ D(A∗) and D[(A + A∗)∗] ⊂ D(A). Then (A + A∗)∗ = A + A∗, i.e., A + A∗ is

selfadjoint.

Proof 1. See [9, Proposition 2.1].

Proof 2. I would like to give a different proof here, in hopes of revealing some further

content of the domain assumptions. By the assumption D(A) ⊂ D(A∗) we may

form the real part of A, also sometimes called the symmetric part of A, namely T =

(A+A∗)/2. Thus A+A∗ is a symmetric operator on D(A) and thus A+A∗ ⊂ (A+A∗)∗.

But the second domain assumption makes that operator relation an equality, i.e.,

A + A∗ is selfadjoint.

Corollary 2.7 Let A and B be selfadjoint operators such that D(B) contains both D(A)

and D[(A + B)∗]. Then A + B is selfadjoint.

Proof (See [9, Corollary 2.4]). I will give another, “positivity” version in the next

section.

3 Some Issues and Results from [3,4,7,8]

[3] was motivated by quantum mechanical scattering theory in which a major use-

ful theorem is the Kato-Rellich Theorem, which historically established the essential

selfadjointness of the quantum mechanics Schrödinger Hamiltonians.

Theorem 3.1 Let A be essentially selfadjoint and B symmetric with D(B) ⊃ D(A)

and such that B is relatively bounded with b < 1,

‖Bx‖
<
= a‖x‖ + b‖Ax‖, x ∈ D(A).

Then A + B is essentially selfadjoint.
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Proof See [4], where it is also proved in real Hilbert space.

What I was after in [3] was a “positivity” alternative, which would be useful in a

number of situations in quantum mechanics and elsewhere. Most Schrödinger PDE

operators are bounded below. My conjecture was: Let A be essentially selfadjoint

and B a regular symmetric perturbation, D(B) ⊃ D(A), and both A and B bounded

below, then A + B is essentially selfadjoint. With no loss of generality one can posit

that A and B are both strongly positive. But the conjecture is not true. I gave a

counterexample in [4], where I also gave the following true version, working from

my notes in [3].

Theorem 3.2 Let A and B be strongly positive selfadjoint operators with D(B) ⊃
D(A). Let C = I + A−1/2B1/2 · B1/2A−1/2. Then A + B is selfadjoint if and only if C

maps D(A1/2) onto itself if and only if D((A + B)∗) ∩ D(A1/2) ⊂ D(B). A is essentially

selfadjoint if and only if A1/2C = A1/2C if and only if (A + B)2 is densely defined.

Proof See [4, p. 208].

Notice that this result implies a “positivity” version of Corollary 2.7 [9, Corollary

2.4], under weaker assumptions on [D(A + B)∗]. That is, we only need D[(A + B)∗]∩
D(A1/2) to be contained in D(B = B∗).

The point to emphasize here is that the D[(A + B)∗] ⊂ D(B∗) sufficiency assump-

tion used in [9] is a very strong one, close to a necessary condition in many cases.

Although perhaps less obvious, the same can be said of the D(A + B)∗ condition in

Theorem 3.2. A second point, also evident in Theorem 3.2, is the close and mixed

relationships between sum and product adjoint issues and product and sum closure

questions, even when some of the operators at issue are bounded and densely de-

fined. For example, writing C above as C = I + TT∗, we know that if T = A−1/2B1/2

is closed, then C is a bounded everywhere defined strongly positive selfadjoint oper-

ator. So product closure becomes important to sum adjoints.

I would now like to investigate another important instance of these issues, for

which the reader can find more background in [7], see also [8]. In the measure-

ment theory of quantum mechanics, one is led to consider projected operators PAP.

Briefly, P is an orthogonal projector representing the measurement; A is a selfadjoint

observable. There are issues about how well (von Neumann Postulate) you can rep-

resent a measurement with P, but let us accept that postulate here. Then, in a great

many treatments in textbooks and papers in the quantum mechanics literature, the

approach is to go to the so-called Heisenberg, or density operator, formulation, in

which A is a bounded operator, or even of trace class or Hilbert-Schmidt class. This

avoids all domain considerations. Also immediately (PAP)∗ = PAP is selfadjoint.

I prefer the more physical Schödinger formulation, in which one needs to consider

unbounded selfadjoint Hamiltonians A. Long ago ([2]) I gave the following general

sufficient condition for BAB to be selfadjoint.

Corollary 3.3 If A and B are selfadjoint and B is bounded with closed range R(B) and

finite dimensional null space N(B), then BAB is selfadjoint.
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Proof See [2, Corollary]. This result was established by what I call the conventional,

e.g., Fredholm theory, viewpoint. However, in my later experience in physical quan-

tum mechanical measurement theory, see [7, 8] and the citations therein, when con-

sidering projected Hamiltonians PHP, where H is a physical unbounded Hamilto-

nian and P is an orthogonal measurement projector, unless one is just projecting

onto finite dimensional bound states, there is no justification for making any Fred-

holm assumptions on P. I also do not accept the often-made assumption (called

compatibility) that H commutes with P, although I will discuss that situation below.

Therefore I established the following result in [3], see [7, 8].

Theorem 3.4 Let H be an unbounded selfadjoint Hamiltonian that does not commute

with the orthogonal projection P. Consider the operator PHP. Then PHP is a symmetric

operator if and only if D(HP) is dense. Then PHP is selfadjoint if PH is closed.

Proof See [7] or [8]. I would like to go further in this paper and consider some

important issues related to Theorem 3.4. Let me start by proving Theorem 3.4. Re-

member that (AB)∗ = B∗A∗ whenever A ∈ B(H). Recall that D(PHP) = D(HP) is

dense if and only if PH is closeable, and that we may not even speak of (PHP)∗ if that

condition is not met. Then (PHP)∗ = (HP)∗P ⊇ PHP and PHP is symmetric. Next

we note that

(HP)∗ k PH = (PH)∗∗ = ((PH)∗)∗ = (HP)∗

and thus: PH = (HP)∗. Here we used the facts that PH is to be the smallest closed

extension of PH, and that (HP)∗ is closed. It is an easy exercise to check that HP itself

is closed, a fact we will use below. To complete the proof of the theorem, assume PH

is closed. Then (PHP)∗ = (HP)∗P = PHP is selfadjoint.

Thus, what emerges from this is that if you still want PHP to be a generator of a

unitary evolution, i.e., to be selfadjoint, then in view of Theorem 3.4, the principal is-

sues are (a) is D(HP) dense? and (b) is PH closed? For this “finer” quantum mechan-

ical measurement theory, I interpret condition (a) as requiring at least a modicum of

consistency between H and P in order to be able to quantum mechanically measure.

As I will show below, the usual (much stronger) assumption that H commutes with P

certainly guarantees that, but essentially forces the measurement process to be already

within the spectral calculus of the observable H. As for condition (b), one might of-

fer an interpretation that it reflects a “completion” or closure of the measurement

operation.

First let us generalize Theorem 3.4. Then we will return to look more closely at the

principal issues (a) and (b) just mentioned in the (unbounded) commutative case.

Theorem 3.5 Let A be a generally unbounded selfadjoint operator and B a bounded

selfadjoint operator which does not commute with A. Then BAB is a symmetric operator

if and only if D(AB) is dense. Then BAB is selfadjoint if BA is closed. The polar factors

satisfy |BA|2 = ABBA ⊃ AB2A and |AB|2 = BAAB ⊃ BA2B.

Proof We used no projector properties of P and no special Hamiltonian properties

of H in establishing Theorem 3.4. I add the polar factor characterizations in Theorem

3.5 because they can be useful, they highlight the importance of the properties (a) and
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(b) discussed above, and because I was a bit careless in how I stated them in [7, 8]

for P and H where the physics papers I was referring to there sometimes assumed H

strongly positive, sometimes assumed H commuting with P, etc. The correct versions

and proofs with all details are contained in the following:

(HP2H)∗ ⊃ |PH|2 = (PH)∗PH = HPPH ⊃ HP2H

and

(PH2P)∗ ⊃ |HP|2 = (HP)∗HP = PHHP ⊃ PH2P.

I assumed D(HP2H) = D(HPH) = D((PH)2) and D(PH2P) = D(H2P) dense when

writing those operator’s adjoints to the left in the relations above. Note that on those

domains both HP2H and PH2P are then symmetric operators with real nonnegative

sesquilinear forms 〈HP2Hx, x〉 = 〈P(Hx), (Hx)〉 and 〈PH2Px, x〉 = ‖HPx‖2. Thus

they both have selfadjoint Friedrichs extensions. One could go further into such form

operators and their square roots but we won’t do so here. The A and B versions follow

in exactly the same way.

One could generalize these considerations to Banach space versions should that

be warranted, even beyond. To conclude this section, I return to the PHP situation

when H commutes with P. Recall that situation H ⌣ P means the following:

PH ⊂ HP and HP = PHP = PH on D(H).

Also H maps the range R(P) into R(P) and the null space N(P) into N(P), and P

maps D(H) into D(H). Thus already we know that D(HP) is dense and condition (a)

is met. Generally D(HP) = D(PHP) will be larger than D(PH) = D(H).

Corollary 3.6 Let H be an unbounded selfadjoint operator which does commute with

an orthogonal projection P. Then PHP, PH, and PH are symmetric, and PH is essen-

tially selfadjoint if and only if HP is selfadjoint if and only if HP is symmetric. In that

case, PHP is essentially selfadjoint, and PHP is selfadjoint if and only if PHP is closed.

Proof We know by Theorem 3.4 that PHP is symmetric since D(HP) is dense. From

PH ⊂ HP and the above proved PH = (HP)∗ we have PH ⊂ PH = (HP)∗ ⊂
HP = (PH)∗ = (PH)∗, using the minimality of operator closure. Symmetric PH

is essentially selfadjoint if and only if equality holds in the last inclusion, and that

occurs if and only if HP is selfadjoint if and only if HP is symmetric. In that case, we

have (PHP)∗ = (HP)∗P = HPP = HP selfadjoint, so (PHP)∗∗ = (PHP)∗, and PHP

is essentially selfadjoint.

I would like to make three final comments. First, in the frequently (and very con-

venient) assumed case of H commuting with P when both are bounded, one simply

has HP = PHP = PH bounded selfadjoint. Trivial as that may seem, you can see

that the PH and HP symmetry properties established in Corollary 3.6 are natural.

Second, one could generalize Corollary 3.6 to A and B as was done in Theorem 3.5 if

you assume A decomposes the Hilbert space in the same way P did. Also you could

allow P to be an oblique projection, but then you would need to allow P∗ to come
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into the expressions. Third, I am not sure that my results here are the tightest possi-

ble, since I have not looked in full detail at condition (b), namely, at the issue of PH

or PHP closed. One can of course write down either Fredholm or domain/range suf-

ficient conditions for condition (b), or go to the operator theory for known general

conditions, e.g., B−1 continuous, or H−1 respectively A−1 continuous. But for the

general, noncommutative, unbounded, quantum mechanical measurement theory I

am espousing here, P will generally have infinite dimensional null space and range,

and H will be noninvertible, e.g., not necessarily positive, so as to enable treatment of

general momentum operators, be they of first or second order partial derivatives, be

they of discrete or continuous spectrum, be that semibounded or not.

4 Conclusion

We have corrected, augmented, and extended the discussions of [1–4, 6–9] for un-

bounded operator sum and product adjoints. A quantum mechanical measurement

issue involving operators PHP has been addressed. To my knowledge, Theorem 3.5

and Corollary 3.6 are new.

Acknowledgment I thank H. Mortad for passing on to me the counterexample to

[6, Lemma], which is due to a referee on a related paper, whom I must therefore also

thank.
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