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Following previous application of mathematical models to the study of gene decay, as suggested 
by Gedda-Brenci's model of the ergon-chronon system, further results are reported, with special 
respect to a mathematical model of back mutations. 

Every error produced by random agents in a DNA molecule may put in action a mecha­
nism which is able to produce a back mutation of the molecule, i.e., to make the molecule 
efficient again (Watson 1965). 

The study of gene decay with regard to back mutations is complicate: but the most difficult 
thing is to find the numerical data, for we don't know the probability that a mechanism be 
put in action. (The data we got about the velocity of the mutation process are comprehensive of 
the velocity of the back-mutation process.) Therefore, we can now only give qualitative con­
sideration and get a formula which gives the probability p(t) that a molecule be efficient at 
time t, with regard to both processes: either mutation and back mutation. Let us start with 
some considerations. 

a) When a back-mutation mechanism is put in action by a random error (call y the ve­
locity of this process) it eliminates the entire nonefficient molecule and substitutes it with an 
efficient one, so that it cancels every error in the molecule. The mechanism acts instanta­
neously: we can disregard the time necessary for the substitution. 

b) The mechanism can't correct the errors present in the molecule at the initial time t = 0. 
Let us now calculate the probability p(t) that a molecule be efficient at time t. Once we 

define the event At = a molecule is efficient at time t, we can write: 

At = (Bt U Ct)r) D fl] 

where: 

Bt = no errors in the molecule during time (0, t); 
Ct = an error in the molecule during time (0, T), a back mutation at T , no errors in (T , t) * * 

(0 < T <t); 

* This work has been carried out within the GNAFA program of the Italian National Research Council 
(CNR). 

** We can neglect the possibility of more than one back mutation in a finite time t. 
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D = a molecule is efficient at time t = 0. 
We have a stochastic independence between the events D and (2?t (J CO, and 2?« and Q 

are incompatible events; then we can write: 

P(At) = P(D) [P(Bt) + P(Ct)] = p(t) [2] 

p(t) = /> [e-v* + y J (1 — tr**) e-^-v d-v] * [2'] 
o 

p(t) =p^L+Pe-»t[l-V(pfc + t)} [3] 

We can now get the probability distribution of M(t), i.e., the number of efficient molecules 
at time t. 

The errors in different molecules are incorrelated, then we can write: 

20 \ 
P(M(t) = h)=Ph(t)=[ , [p(0]*[l -MY*-* W - ( : ) • 

We can also get the probability density function of the time of gene decay (see also Rossi 
1972): 

f(t) = y. ±±L I™) [p(t)f + 1 [1 - X 0 r ° - ( L + 1) [5] 

and the expectation of time of gene decay: 

L + l / 20 \ / " 
£(0 = ̂  -±i±_L / r[p(0]l+1 [1 -/>(0r-( L + 1 ) * 

2 0 \ L + 1 / 6 
[6] 

and the variance: 

7- + 1 / 20 \ ; ° ° 
o»(o = ti-^i-!- r )//«[KO]i+l[i-Jp(or-(i+1)*-^(o m 

20 \ L + 1 / ^ 

If we consider: 

Y 
lim /?(f) = p - i -

* |i = [x/20 is the velocity of the mutation process in a molecule. 
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we can get the asymptotic probability distribution of M(t): 

P(M(co) = h) = Ph (oo) = [ \lp X J 11 - p X 

Such a distribution has its mode practically at /; = 0 because of condition c). 
Genetically speaking, we can neglect the asymptotic probability distribution of M(t). 

In fact, gene decay is a stochastic process with an absorbent barrier at L; and it tends against 
such a barrier, so that it terminates, with probability 1, in a finite time. 
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