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Abstract. Ejection activities in S255IR-SMA1 and AFGL 5142 were investigated by multi-
epoch VLBI observations of 22 GHz water masers, tracing bowshocks leading collimated jets.
The history of ejections, revealed by the 3D maser motions and supplemented by the literature,
suggests that these massive stars formed by episodic accretion, inferred via the accretion-ejection
connection. This contribution centers on the role of episodic accretion in overcoming the radia-
tion pressure problem of massive star formation - with maser VLBI and single-dish observations
providing essential observational tools.
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1. Background
The formation of massive stars persists as one of the many exciting branches of modern

astronomy. One frustration of the massive star formation community is overcoming the
‘radiation pressure problem’ in which harsh radiation from the embedded star counteracts
accretion - a problem which would limit spherical accretion models to producing stars
of maximum 8 M�. While non-spherical disk accretion circumvents this issue to some
extent, accreting material re-encounters the radiation pressure problem at smaller radii -
where gas (ionized by stellar radiation) accretes onto the star (review given in Zinnecker &
Yorke 2007). Such regions cannot be resolved by today’s instruments. These proceedings
draw on various sources for the literature to advocate episodic accretion (EA) as a means
of overcoming radiation to form massive stars, and discuss observational tests of EA using
VLBI observations of masers. The recipe begins with a brief introduction to its three main
ingredients: the accretion-ejection relation, EA in low-mass stars, and EA in high-mass
stars.

[1] The accretion-ejection relation in young stellar objects (YSOs) is continuous over
several orders of magnitude in mass and luminosity; bright accretion tracers correlate
with bright ejection tracers (Caratti o Garatti et al. 2015). Its unbroken extension into
the regime of massive star formation suggesting some degree of continuity in the phys-
ical processes governing low- and high-mass star formation, while also advocating the
correlation between accretion activity and ejection activity. Via the hypothesis that each
accretion event induces an ejection event, the accretion history of a young star can be
inferred from its history of ejections - traced as symmetric, bipolar jet-shocks extending
from the accreting object at ever increasing distances.

[2] EA in low-mass YSOs is exemplified observationally by the FUori and EXori classes
of protostars (see review by Audard et al. 2014). One mechanism by which low-mass
stars might accrete episodically has been explored by Stamatellos et al. (2011), invoking

263

https://doi.org/10.1017/S1743921317010584 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317010584


264 R. A. Burns

Figure 1. Vector map of water masers in AFGL5142 MM1 from Burns et al. (2017). North
West, South East inner and South East outer bowshocks (labelled in abbreviation) extend from
an MYSO located near the maser feature labelled ‘A’. Bowshocks indicate a junction in physical
conditions generated by the most recent ejection events.

a magnetic barrier which is episodically disrupted in a ‘magneto-rotational instability’
(MRI) - leading to an accretion burst; long periods of apparent quiescence perforated
by short accretion bursts, a behaviour that lends a solution to the ‘luminosity problem’
of protostars. While single-event bursts are commonly reported in low- and high-mass
stars (Contreras Peña et al. 2017; Forbrich et al. 2017), establishing the episodicity of
such bursts would require monitoring for long timescales; up to thousands of years. An
alternative approach is therefore desirable.

[3] EA in massive stars may provide a means of suppressing the intense radiation pres-
sure thought to curtail accretion on to the central object. The mechanism, applicable to
current-day stars but discussed in the context of primordial massive stars, is described
in detail in Hosokawa et al. (2016). It is summarised as follows: Accretion of material on
to the protostar causes it to ‘bloat’. The subsequent increase in radius leads to a drop in
effective temperature. Consequently, the peak of spectral radiation (blackbody) migrates
to lower frequencies, thus reducing emissivity at UV wavelengths - thereby permitting fur-
ther accretion. In the absence of accretion the bloated star contracts (Kelvin-Helmholtz)
toward its compact, high-temperature state, taking ∼ 104 yrs. However, contraction can
be stopped by further accretion events, repeatedly bloating the star and permitting fur-
ther mass accumulation. This requires that accretion events occur at least every ∼ 104

yrs. Accretion events become less frequent as the reservoir of material in the envelope
and disk deplete, allowing contraction to set in. UV emissivity eventually increases until
accretion is finally halted and the star reaches ZAMS.

Combining the topics discussed above - EA enables disk mediated accretion to form
very massive stars by periodically suppressing stellar radiation (see [3]). Some (if not all)
low-mass stars undergo a phase of episodic accretion (see [2]). If high-mass star formation
resembles a scaled up version of low-mass star formation, as suggested by the accretion-
ejection relation (see [1]), then a class of periodically accreting massive stars should be
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recognised - and their accretion histories can be investigated by their jet shocks. Water
masers trace such shocks, and multi-epoch observations provide their 3D motion. By
combination with a parallax measurement, masers can therefore be used to accurately
reveal the dynamic timescales of ejection events - and by association, accretion events -
occurring in deeply embedded massive young stellar objects (MYSOs).

2. Observational evidence
Episodic jets operating on timescales of 103−4 yrs were inferred from proper motion and

parallax observations of 22 GHz water masers in S255IR-SMA1 and AFGL5142. In both
works VLBI water maser observations trace the youngest collimated ejections, while shock
tracers at larger scales, tracing older ejections, were sourced from the literature - details
given in Burns et al. (2016) and Burns et al. (2017), respectively, with references therein.
Both cases are examples of jets where the maser distributions trace clear bowshocks
propagating symmetrically from the central MYSO (see Fig 1); the junction in physical
conditions characteristic of the onset of a new ejection.

Reports of episodic ejection in S255IR-SMA1 (Burns et al. 2016) were shortly followed
by an accretion burst in the same source, leading to a several magnitude increase in
infrared continuum emission (Caratti o Garatti et al. 2017), followed by a maser burst
in the radiatively pumped 6.7 GHz methanol maser line (Moscadelli et al. 2017). These
works demonstrate the commutation of low-mass star formation principles into the high-
mass regime, namely accretion bursts (as opposed to steady accretion) and episodic jets.
Furthermore, these results promote the aforementioned objects as prime candidates of
MYSOs undergoing episodic accretion. Follow-up observations of masers S255IR and
AFGL5142, and other eruptive MYSOs, are underway by several groups.

3. Conclusions
While EA has long been discussed in the framework of low-mass stars it has only

recently been pursued in the context of massive star formation. This contribution high-
lights two examples of EA in MYSOs, where the inferred accretion episodes operate on
periods shorter than the 104 yrs required to outpace contraction, thus consistent with
the mechanism described in Hosokawa et al. (2016). EA can be explored by the history
of ejections from YSOs and MYSOs, providing an alternative to long-term monitoring
for accretion events. Recent simulations exploring EA in massive stars were conducted
by Meyer et al. (2017) who also find accretion events to occur on timescales shorter than
104 yr - their paper serves as a useful source of information on the topic of EA in low-
and high-mass star formation.

Previously, EA has primarily been evinced by enhancements in continuum emission.
The detection of such events typically requires interferometric observations. Maser super
burst events may provide an alternative approach to detecting accretion bursts and such
events can be readily identified as part of maser monitoring observations conducted by
single-dish radio observatories, covering large samples of sources (for example Szymczak
et al. 2018). Two such maser super burst events were detected and announced during
this Symposium in G25.65+1.05 and W49N (Volvach et al. 2017, and private communi-
cation) and data from rapid follow-up VLBI observations are now being analysed. Maser
observations - VLBI for investigating episodic jets, and single-dish for detecting burst
events - will therefore be crucial to the integration of EA into the framework of massive
star formation.
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Audard, M., Ábrahám, P., Dunham, M. M., et al. 2014, Protostars and Planets VI, Univ. Arizona

Press, Tucson, AZ, 387
Burns, R. A., Handa, T., Nagayama, T., Sunada, K., & Omodaka, T. 2016, MNRAS, 460, 283
Burns, R. A., Handa, T., Imai, H., et al. 2017, MNRAS, 467, 2367
Caratti o Garatti, A., Stecklum, B., Linz, H., Garcia Lopez, R., & Sanna, A. 2015, A&A, 573,

A82
Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R., et al. 2017, Nature Physics, 13, 276
Contreras Peña, C., Lucas, P. W., Kurtev, R., et al. 2017, MNRAS, 465, 3039
Forbrich, J., Reid, M. J., Menten, K. M., et al. 2017, ApJ, 844, 109
Hosokawa, T., Hirano, S., Kuiper, R., et al. 2016, ApJ, 824, 119
Meyer, D. M.-A., Vorobyov, E. I., Kuiper, R., & Kley, W. 2017, MNRAS, 464, L90
Moscadelli, L., Sanna, A., Goddi, C., et al. 2017, A&A, 600, L8
Stamatellos, D., Whitworth, A. P., & Hubber, D. A. 2011, ApJ, 730, 32
Szymczak, M., Olech, M., Sarniak, R., Wolak, P., & Bartkiewicz, A. 2018, MNRAS, 474, 219
Volvach, A. E., Volvach, L. N., MacLeod, G., et al. 2017, The Astronomer’s Telegram, 728
Zinnecker, H. & Yorke, H. W. 2007, ARAA, 45, 481

https://doi.org/10.1017/S1743921317010584 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317010584

