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OSCILLATION OF MODES OF SOME SEMI-STABLE

LEVY PROCESSES

TOSHIRO WATANABE

§1. Introduction

In this paper it is shown that there is a unimodal Levy process with oscillat-

ing mode. After the author first constructed an example of such a self-

decomposable process, Sato pointed out that it belongs to the class of semi-stable

processes with β < 0. We prove that all non-symmetric semi-stable self-

decomposable processes with β < 0 have oscillating modes.

A measure μ on R is said to be unimodal with mode a e R if μ{dx) =

c δa(dx) + f(x)dx, where c is non-negative, 5a is the delta measure at a and/Cr)

is non-decreasing on (— oo, a) and non-increasing on {a, oo). If a measure μ is

unimodal, then either its mode is unique or the set of its modes is a closed inter-

val. Let {Xt}, t^ [0, °°), be a Levy process on R (that is, a stochastically con-

tinuous process with stationary independent increments starting at the origin) and

let μt be the distribution of Xt. The Levy process {Xt} is said to be unimodal if μt

is unimodal for each t. When a Levy process {Xt} is unimodal, we denote a mode

of μt by ait). In case the set of modes of μt is a closed interval, there is freedom

of choice of a(f). The Levy process {Xt} is said to be self-decomposable if μt is an

L distribution for each t. A self-decomposable Levy process is simply called a

self-decomposable process. Yamazato proves in the celebrated paper [16] that

every self-decomposable process is unimodal. We say that a Levy process {X) is

semi-stable if there exist real numbers β and γ such that 0 < | β \ < 1, 1 < 7,

γ=\β\~λ (0<λ^2) and

(1.1) μt(z) = μγt(βz)

for every z ^ R and every t ^ 0, where

(1.2) μt(z) = f eizxμt(dz)-
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Semi-stable processes are introduced by Levy [2].

Many results on unimodality of Levy processes are obtained by Medgyessy

[3], Sato [4, 5, 61, Sato-Yamazato [7], Steutel-van Harn [8], Watanabe [9, 10, 11,

12, 13], Wolfe [14, 15] and Yamazato [16, 17, 18, 19, 20]. Among these works,

only Sato [4, 5, 6] investigates behavior of modes of unimodal Levy processes. He

shows in [4] that if a unimodal Levy process {X) has mean m = EX1 (— °° ^

m ^ °°), then

(1.3) lim Γ1 a(f) = m.
t—*oo

Hence ait) —» oo in case 0 < m ^ oo and ait) —• — oo in case — oo ύ m < 0, as

t—> oo . The purpose of this paper is to show that a unimodal Levy process

{Xt} can have mode ait) oscillating as t—» oo if m — 0 or if m does not exist.

Namely we shall prove the following theorem.

THEOREM 1. Let {Xt} be a non-symmetric semi-stable self-decomposable process

with — 1 < β < 0 and 0 < λ < 2. Then ait) is unique for each t ^ 0, continuous

on [0, °°) and oscillating as t—* oo and t 1 0 :

(1.4) lim sup ait) = °°, liminf ait) = - oo.

lim sup sgn ait) = 1, lim inf sgn ait) = — 1.

/1 o /1 o

Moreover, if 0 < λ < 1, then

(1.5) lim sup Γ W ) = °° and liminff^aίf) = — °°.

Acknowledgements. The author should like to express his gratitude to Pro-

fessor K. Sato who carefully read the manuscript and gave helpful advice. He is

also grateful to Professor M. Yamazato for valuable comments.

§2. Restatement of Theorem 1

Let {Xt} be a Levy process on R. Then the characteristic function of Xt is ex-

pressed as

(2.1) Eexp(izXt) = expitψiz)),

(2.2) φiz) = ibz - 2"1 σV + J°° ieizx - 1 - izxil + x2)'1) vidx),
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where ί » £ R , ( J ί̂  0 and v is a measure on R with v({0}) — 0 and

/ χ2(l + x 2 ) " 1 v(dx) < °°, called the Levy measure of {Xt}. We define k(x) by

v(dx) = \x\~ k(x)dx, if y is absolutely continuous. A necessary and sufficient

condition for a Levy process {X) to be self-decomposable is that v is absolutely

continuous and k(x) is non-decreasing on (— °° , 0) and non-increasing on

(0, oo).

Let {Xt} be a semi-stable Levy process with — 1 < β < 0 and 0 < λ < 2.

Then v is given by

(2.3) f v(dx) = \u\~λ ξ(log \u I) for u < 0,
J—oo

v(dx) = w-/ί ξ(log « - log I j81) for u > 0,I

where ξ(x) is a positive right-continuous periodic function on R with period

— 2 log I β |. Further 0Cz) defined in (2.1) is represented as follows:

for 0 < λ < 1,

(2.5) φ(z)=f (eizx - 1 - izx)v(dx)

ίorl<λ<2, and

(2.6) 0(2) = ife + J (*'** - 1 - izzrU + .z2)"1) y(dz)

with

(2.7) 2 ύ + / ( 1 7 ^ )X 2 2 »(<**> = °

for >ί = 1. Conversely these are sufficient conditions for a Levy process {Xt} to

be semi-stable with ~ 1 < β < 0 and 0 < λ < 2. This is easily proved by using

the discussion of Kagan-Linnik-Rao [1]. Note that 2? | Xx | — °° for 0 < Λ =s 1 and

E Xλ — 0 for 1 < λ < 2. Thus a Levy process {Xt} is self-decomposable and

semi-stable with — 1 < β < 0 and 0 < λ < 2 if and only if the following condi-

tions are satisfied:

(S.I) v is represented as
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(2.8) vUx) = \x\~λ~ιη(\og\x\)dx for x < 0,

= x~λ~ιη(logx — \og\ β\)dx for x > 0,

where ry(x) is a positive right-continuous periodic function on R with

period — 2 log | β\.

(5.2) exp(— λ x)η(x) is non-increasing on R.

(5.3) The equation (2.4), (2.5), or (2.6) with (2.7) holds according as 0 < λ < 1,

1 < λ < 2, or λ = 1.

In general there are two possible cases for a unimodal Levy process {Xt):

Case 1. For each t zero is a mode of μf.

Case 2. For some ί0 zero is not a mode of μtQ.

Let Uf,} be a semi-stable self-decomposable process with — 1 < β < 0 and

0 < >ί < 2. Since {X,} is self-decomposable, μt is absolutely continuous and unim-

odal for each t > 0. Let μt(dx) = ft{x)dx for £ > 0. We find from the representa-

tion (2.8) of v that ait) is unique for each £ ^ 0 by Theorem 1.3 of

Sato-Yamazato [7] and hence a(t) is continuous on [0, °°) by Lemma 2.1 of Sato

[5]. We see from semi-stability that

(2.9) frt(x) = \β\ft(βx),

which implies that

(2.10) a(γt) =β~ιa(t).

Repeating this procedure, we find that

(2.11) a(γnf) =β'na(t)

for every integer n. Hence if {X) is in Case 2, then a(γnt0) is oscillating as

n—• oo and sgn a(y t0) is oscillating as w—• — oo and satisfies (1.4). That is,

a(f) is continuous on [0, °°) and oscillating as t—• oo and sgn a(t) is oscillating

as t I 0. Moreover, if 0 < λ < 1, then

,oi ox

rX φβ)n

with I β γ I = I β \ι~ < 1 and hence t~ιa(t) is oscillating as f—• oo and satisfies

(1.5). Thus if we show the following theorem, then Theorem 1 is true.
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THEOREM 1'. Let {Xt} be a semi-stable self- decomposable process with — 1 < β

< 0 and 0 < λ < 2. // {Xt} is non-symmetric, then it is in Case 2.

Let us denote by Re w and Im w the real part and the imaginary part of a

complex number w, respectively.

We see from (1.1) and (2.1) that every non-symmetric semi-stable process

with — 1 < β < 0 satisfies the following balancing condition:

(B) There exist positive numbers θλ and θ2 such that θ2 > θv Imψiθ^ Φ 0

and lmφ(θ2) = 0. -

In fact, there exists θγ > 0 such that Im ψ(θ^) Φ 0, since the process is

non-symmetric. Note that Im φ(z) is a continuous odd function. Hence, from

semi-stability with - 1 < β < 0, Im φ(\ β I"1 ΘJ = - γ Im ψiθj, which yields

the existence of θ2 such that | β I"1 θι > θ2 > θλ and Im φ{θ2) = 0.

In Section 3 we shall prove the following theorem, which is a generalization

of Theorem I'.

THEOREM 2. Let {Xt} be a self-decomposable process satisfying (B). Then {Xt} is

in Case 2.

§3. Proof of Theorem 2

In order to prove Theorem 2, we need several lemmas. A Levy process is said

to be non-deterministic, if it is not a deterministic motion.

LEMMA 3.1. Let {Xt} be a non-deterministic self-decomposable process. Then we

have

( i ) Re φ(z) is a continuous even function on R and — Re φ(z) is positive and

increasing on (0, °°) satisfying Re 0(0) = 0 and l i π v ^ — Re φ(z) = °°.

(ii) Im φ(z) is a continuous odd function on R.

Proof We shall only prove that — Re φ(z) is increasing on (0, °°), since

the other assertions are trivial. We obtain from (2.2) that

(3.1) - Re φ(z) = 2"1 σV + Γ (1 - cos zx)x~ι h(x)dx,

where h(x) — k(x) + k{—x) is non-increasing on (0, °°) by self-decomposability.

Let 0 < zγ < z2. We have
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(3.2) - Re φ(z2) + Re φ{z,)

= 2~ισ\zl - z\) + jΓ(l - cos ulu-'^y) - h(γ))du ^ 0.

In (3.2) the equality " = 0" holds if and only if

(3.3) σ = 0 and h(-) = h(—) for every x > 0,

since we can assume that h{x) is right-continuous on (0, °°). The condition (3.3)

shows that, for every x > 0,

(3.4) A Or) = h((y)χ

as w—• oo, which yields v — 0. Therefore, the equality " = 0" in (3.2) does not

hold, since {Xt} is non-deterministic. Thus we have proved Lemma 3.1.

LEMMA 3.2. Let {Xt} be a non-deterministic self-decomposable process. Then, for

every zγ ^ R, there exist positive numbers ciz^ and δiz^ such that

(3.5) I Re φ(z) - Re φ(zλ) \ ^ c(zj \ z - z,\3

for all z satisfying \ z — zx \ ^ δizj.

Proof Suppose that σ > 0. Then we find from (3.2) that

(3.6) I Re φ(z) - Re φizj I ^ 2" 1 σ2 \ z2 - z\ \

for every zι and z. Setting c(0) = 2" σ , <5(0) = 1 and, for zί Φ 0, ciz^) =

4 σ I zγ I and δiz^) — (2 | zx |) Λ 1, we get (3.5). Hence, from now on, we

assume that ( 7 = 0 . We divide the remaining proof into two cases,

(i) Suppose that z1 = 0. Then we obtain from (3.1) that

(3.7) -Reφ(z) = Ix(z) +/ 2 (*),

where

Iχ(z) = I (1 — cos zx)x~ι h(x)dx

and

I2(z) — / (1 "~ cos zx)x~ι h(x)dx
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for 0 < ε < oo. Noting that I2(z) ^ 0, we see that

(3.8) lim y* ^ lim -L^- = Γ 2"1 xh(x)dx > 0,

which implies (3.5) for sufficiently small positive numbers c(0) and 5(0).

(ii) Suppose that zx Φ 0. Without loss of generality, we can assume zγ > 0.

Define hγ{x) = /zCr) — h(x)Λε and Λ2Cr) = h(x)Λε for sufficiently small ε > 0

so that hλ(x) does not identically vanish. Then (3.1) is expressed as

(3.9) - Re φ(z) = Jγ(z) + J2(z),

where

/;(>ε) = I (1 — cos zx)x~ι hj(x)dx

for y = 1,2. We find from Lemma 3.1 that Jι(z) and J2(z) are increasing on

(0, oo). Hence

(3.10) I Re φ(z) - Re φ(zγ) \ ̂  \ Jγ(z) - J^z,)

Differentiating J^z), we have

(3.H) 4-Λω =

> 0
oo /•(2n + l)7Γ / / , , y \ / ,,y _ |_ -T-

= z-1 Σ f (sin u)(hi-) - hί^A
n=0J2nπ \ \Z/ \ Z

for z > 0, because hx{x) is non-increasing on (0, °°). If (d/dzϊjγiz ) > 0, then

(3.5) follows from (3.10) for sufficiently small positive numbers c(z^) and δiz^.

Suppose that (d/dz)Jγ(z^ = 0. We find from (3.11) that (d/dz)]^ = 0 if and

only if

(3.12) AiK-

for every non-negative integer n, that is, hλ{x) is written as

(3.13) * 1 d ) = Σ t / I M , ( i ) )

for x > 0, where iV is a positive integer and, for each y, ε; is a positive number, bj

— zγ 2w; π for some positive integer Πj and / ( 0 6 )(x) is the indicator function of

the interval (0, bj). We obtain from (3.13) that
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(3.14) ΊΰJM = Σ εf\\ ~ cos zb).az j=1

Differentiating (3.14) and then letting z = zυ

(3.15) —^Λ(^i) — Σ ε; {— z[ (1 — cos ztbj) + z~x bj sin z^j] = 0

and

(3.16) — ΐJ i( z i ) = Σ εj{2z^3(l — cos zγb) — 2z~[ bj sin zxbj

~r Zϊ Oj COS ZγΌj)

-£.Λ-.;>o.

These show that (3.5) is true for zγ > 0 with sufficiently small positive numbers

ciZ)) and δiz^ when {d/dz)Jλ(z^) — 0. The proof of Lemma 3.2 is complete.

Let us denote the complex plane by C.

LEMMA 3.3. Let {Xt} be a non- deterministic self - decomposable process. Suppose

that {Xt} is in Case 1. Let q = 2/A(0 + ) if σ = 0 and 0 < A(0 + ) < °° . L ί̂

q = 0 if h(0 + ) = °° or if σ2 > 0. L<?ί

(3.17) D= {U Lz) U {w e C : Re w < 0}

with Lz = {w ^ C : w = — Re φ{z) + yiy \ y \ > \ Im φ(z) |}, ί/ιαί ts, i) t5 ί/ιβ con-

nected component containing — 1 of the set C Π {— φ{z) : z ^ R} c.

Π 1 Q , rOBzaexp[g{a + 0(z)}] _
(3 18) L — ^ T W ) — ά z -
/or f̂ ̂ ry c > cγ and a ^ D.

Proof From Lemma 2.4 of Sato-Yamazato [7], we find that \zexp(tφ(z))

is integrable on R with respect to z for t > cv Hence the density function ft(x) of

μt{dx) is continuously differentiable in x for t > cv Since {Xt} is in Case 1,

(3.19)

for t > cv We have
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z I exp[c{Re α + Re

Reφ(z)

which is integrable on R with respect to z for c > cλ and Re a < 0. By using

Fubini's theorem, we obtain from (3.19) that

(3.21) 0= f dtf zexp[t{a + φ(z)}]dz
*/Q %S oo

zexp[c{a + φ(z)}] ,
- dz

a + φ(z)

for c > q and Re a < 0. Define

and

_ ΓN zexp[c{a
(3.23) FN(a) = f

a + φ(z)

for c > clf a ^ D and N > 0. We note from Lemma 3.1 that D is a domain in C

containing the left half plane. Because FN(a) is analytic in D with respect to a

and convergent to F(a) uniformly on every compact set in D as Λf—• oo, F(α) is

analytic in Zλ We see from (3.21) that F(a) = 0 for Re a < 0 and hence F(α) =

0 in ΰ by the uniqueness principle. Multiplying a to the equation F(a) = 0, we

get (3.18). Thus we have proved Lemma 3.3.

Proof of Theorem 2. We find from (B) that {Xt} is non-symmetric and

non-deterministic. Suppose that {Xt} is in Case 1. We shall show that this leads

to a contradiction. Without loss of generality, we can assume from (B) that there

exist real numbers z1 and z2 such that 0 ^ zx < z2, Im φiz^ = Im φ{z2) — 0 and

Im φ{z) < 0 on (zlf z2). Define

zaexp[c{a
(3.24) g(a9 c, z) = - ^

Let ε and δ be sufficiently small positive numbers. Let

E(δ, 1) = {z €= R : zx - δ ^ \ z \ ^ zγ + 5},

E(δ, 2) = {z e R : z2 - δ ύ \ z \ ύ z2 + (5),

E(δ, 3) = {z G R : ̂  + 5 ύ \z \ ύ z2 - δ} and

, 4) = {z e R : | z | ^ ^ - δ or | 2 | ^ z 2 + δ}. Then we have
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(3.25) f g(a, c, z)dz = Σ If(a, c, δ),

where Iλa, c, δ) = I g(a, c, z)dz for 1 ^ j ^ 4. For complex numbers wι
JE(δ,j)

and w2 let us denote by L(wx, w2) the directed line-segment from wγ to w2 in C.

Πε, 1) = L ( - 0(^) -εi,- φ(zλ) - Ki),
Γ(ε, 2) = L ( - 0 ^ ) - Ki, - ψ(z2) - Ki),
Γ(ε, 3) = U- φ(z2) - Ki, - φ(z2) - εi),
Πε, 4) = U- φ(z2) + ε i, - φ(z2) + Ki),
Πε, 5) = L ( - φ(z2) + Ki, - φ{zλ) + Ki),
Γ(ε, 6) - L(- φ(zλ) + Ki, - φ(z,) + ε i),

and let /Xε) be the union of the directed line-segments Γ(ε, j), j = 1,...,6. In

the following, integrals along Γ(ε, j) or Γ(ε) with respect to a are line integrals.

Note that Γ(ε) is contained in D by Lemma 3.1. Hence we obtain from (3.18) in

Lemma 3.3 that

(3.26) Γ da f g(a, c, z) dz = 0
JΓ(ε) ^-oo

for 0 < ε < K and for c > cv Let A(ε) be the union of the directed line-segments

Πε, j),j = 2 , . . . ,5 , and let B(ε) be the union of Γ(ε,l) and Π ε , 6). Let

A(ε) and B(ε) denote the sets of points on A(ε) and B(ε), respectively. By Lem-

ma 3.1, we can choose sufficiently small positive numbers δ1 and dh which do not

depend on ε, such that

(3.27) I a + φ(z) I ̂  dγ

for z Ξ E(δv 1) and a ^ A(ε). Hence we can find Mx > 0, which does not de-

pend on ε, such that

(3.28) \g(a, c, z)\ύMι

for z e E(δlf 1) and a e A(ε). It follows that

(3.29) limlim Γ Ix{a, c, δ)da

= limlim / J^ / g(a, c, z)da = 0.
5-0 ε-0 JE(δ,l) JA(ε)

On the other hand, we can choose δ2 > 0 and M2 > 0, which do not depend on ε,
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such that

(3.30) I g(a, c, z) (a + φ(z)) \ < M2

for z ^ E(δ2, 1) and a <Ξ B(ε). Hence we have, for 0 < δ < δ2,

(3.31) 1/ IM,c,δ)da ύM2j dz f l
I JB(ε) JE(δ,l) JB(ε) \ CX

Define N = supZGE(δ2>1) | Im φ(z) |, L = supZGEiδ2fl) \ Re φ(z) ~ Re ̂ ί ^

a = I Re 0(z) - Re 0 ( ^ ) \~ι(K + N). For z e £ ( δ 2 , 1), >ε ̂  ^ , we get t

and

a= I Re

(3.32)

, we get that

"rfαl

- Γ [{(Re
Jε

\2Ί -1/2
-Reφ(z1))2 + (lmφ(z) - ΘΫ)

+ {(Re φ(z) - Re φ{zγ)Ϋ + (Im φ(z) + θ)2}~ι/2]dθ

<

^ 8 log (K + TV + L) - 8 log I Re φ(z) - Re φ(zj |,

where we use (1 + u ) ^ 2(1 + w) for w ̂  0. Recalling Lemma 3.2, we

obtain from (3.31) and (3.32) that

(3.33) limlim Γ / x(α, c, δ) da
5-0 ε-0 ^B(ε)

= limlim / rfz / g(a, c, z) da — 0.
δ^0 ε-0 ^ ( δ . D ^β(ε)

Hence we find from (3.29) that

(3.34) limlim Γ I^a, c, δ) da = 0.
5-0 ε-0 ΛΓ(ε)

Similarly we get that

(3.35) limlim Γ / 2(α, c, δ) dα = 0.
5-0 ε-0 JΓ(ε)

Making use of Cauchy's integral formula, we have

(3.36) limlim Γ 73(α, c, δ) da
5-0 ε-0 JΓ(ε)
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= Um2πi f z(- φ(z)) dz
5-0 JE(δ,3)

= - 2πi( f 2 z φ(z) dz+ f * z φ(z) dz)

= 4π I z Imψ(z) dz.

Since, for c > clf / 4 (α, c, δ) is analytic with respect to a in the rectangle {w :

— ψ(z^) < Re w < — ψ(z2), \1ΪΩW\ < /£}, we see by Cauchy's integral theorem

that

(3.37) lim Γ / 4 (α, c, δ) da = 0

for c > q. Hence we obtain from (3.26), (3.34), (3.35), (3.36) and (3.37) that

(3.38) 0 = lim Γ da f g(a, c, z) dz

= 4π f 2 z lmφ(z) dz < 0

for c > Cp This is a contradiction. Thus the proof of Theorem 2 is complete.
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