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OSCILLATION OF MODES OF SOME SEMI-STABLE
LEVY PROCESSES
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§1. Introduction

In this paper it is shown that there is a unimodal Lévy process with oscillat-
ing mode. After the author first constructed an example of such a self-
decomposable process, Sato pointed out that it belongs to the class of semi-stable
processes with 8 < 0. We prove that all non-symmetric semi-stable self-
decomposable processes with 8 < 0 have oscillating modes.

A measure ¢ on R is said to be umimodal with mode a € R if u(dx) =
¢ 6,(dx) + f(x)dx, where ¢ is non-negative, §, is the delta measure at ¢ and f ()
is non-decreasing on (— oo, @) and non-increasing on (@, o). If a measure g is
unimodal, then either its mode is unique or the set of its modes is a closed inter-
val. Let {X,}, t € [0, ), be a Lévy process on R (that is, a stochastically con-
tinuous process with stationary independent increments starting at the origin) and
let ¢, be the distribution of X,. The Lévy process {X,} is said to be unimodal if g,
is unimodal for each t£. When a Lévy process {X,} is unimodal, we denote a mode
of ¢, by a(#). In case the set of modes of g, is a closed interval, there is freedom
of choice of a(f). The Lévy process {X,} is said to be self-decomposable if p, is an
L distribution for each t. A self-decomposable Lévy process is simply called a
self-decomposable process. Yamazato proves in the celebrated paper [16] that
every self-decomposable process is unimodal. We say that a Lévy process {X,} is
semi-stable if there exist real numbers 8 and 7 such that 0 <|B8|<1,1<7,
r=1817(0<21=2) and

(1.1) 4,2 = 4, (B2)

for every z € R and every ¢ 2 0, where

(1.2) 4,2 = j;we‘z’”pe,(dx).
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Semi-stable processes are introduced by Lévy [2].

Many results on unimodality of Lévy processes are obtained by Medgyessy
[3], Sato [4, 5, 6], Sato-Yamazato [7], Steutel-van Harn [8], Watanabe [9, 10, 11,
12, 13], Wolfe [14, 15] and Yamazato [16, 17, 18, 19, 20]. Among these works,
only Sato [4, 5, 6] investigates behavior of modes of unimodal Lévy processes. He
shows in [4] that if a unimodal Lévy process {X,} has mean m = EX, (— o <
m < ) then
(1.3) limt™" a(®) = m.

fnco

Hence a(#) — oo in case 0 < m < oo and a() — — oo in case — o0 = m <0, as
t— oo . The purpose of this paper is to show that a unimodal Lévy process
{X,} can have mode a(#) oscillating as ¢— oo if m = 0 or if m does not exist.
Namely we shall prove the following theorem.

THEOREM 1. Let {X,} be a non-symmetric semi-stable self-decomposable process
with — 1 < B<0 and 0 < A< 2. Then alb) is unique for each t = 0, continuous
on [0, ) and oscillating as t— oo and t | 0:

(1.4) lim sup a(d) = oo, liminfa(f) = — o,
f—o0 t—o0
limsupsgna(®) =1, liminfsgna() = — 1.
tlo tlo

Moreover, if 0 < A <1, then

(1.5) limsup t 'a() = o and liminft 'a(f) = — oo,

t—oo t—oo
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§2. Restatement of Theorem 1

Let {X,} be a Lévy process on R. Then the characteristic function of X, is ex-
pressed as

(2.1) Eexp@izX,) = exp(tg(2)),

(2.2) ¢(2) = ibz — 27 %" + fw €™ —1—izz(Q + )7 v(dD),
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where bER,06°=0 and v is a measure on R with v({0}) =0 and
f 2°(1 + 2% 7 v(dx) < o, called the Lévy measure of {X,}. We define k(x) by

v(dz) = | z|'k(x)dx, if v is absolutely continuous. A necessary and sufficient
condition for a Lévy process {X,} to be self-decomposable is that v is absolutely
continuous and k(zx) is non-decreasing on (— o , 0) and non-increasing on
(0, ©0).

Let {X,} be a semi-stable Lévy process with —1 < B<0 and 0 <A <2,
Then v is given by

(2.3) fu— v(dr) = | ul™ &Qog|ul) for u <0,

—o0

fw v(dz) = u* E(log u — log| B|) for u > 0,

u+

where &(x) is a positive right-continuous periodic function on R with period
— 2log | B |. Further ¢(2) defined in (2.1) is represented as follows:

(2.4) P2 = f_w (€™ — 1) v(do)
for 0 <A <1,
2.5) 0@ = [ (=1 - iz)v(da)

for 1 < 2 <2, and

(2.6) 0(2) = ibz + f T =1 — iz + 297 v(dD)
with

o 2y 3
(2.7) 2 + f_ A=B)r =0

= (14 25Q + pH

for A = 1. Conversely these are sufficient conditions for a Lévy process {X,} to
be semi-stable with —1 < 8 <0 and 0 < A < 2. This is easily proved by using
the discussion of Kagan-Linnik-Rao [1]. Note that E| X,| = © for 0 < A £ 1 and
EX, =0 for 1 <A<2 Thus a Lévy process {X,} is self-decomposable and
semi-stable with —1 <8< 0 and 0 < A < 2 if and only if the following condi-
tions are satisfied:

(S.1) vis represented as
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(2.8) v(dp =z 'nloglz|)drx for £ < 0,

—-i-1

=z "nlogx — log|Bdx for x>0,

where 7n(x) is a positive right-continuous periodic function on R with
period — 2log| B.

(S.2) exp(— Ax)n(x) is non-increasing on R.

(S.3) The equation (2.4), (2.5), or (2.6) with (2.7) holds according as 0 < A <1,
1<A<2,0orA=1.

In general there are two possible cases for a unimodal Lévy process {X,}:
Case 1. For each f zero is a mode of 4,.
Case 2. For some {, zero is not a mode of g, .

Let {X,} be a semi-stable self-decomposable process with —1 < 8 < 0 and
0 < A < 2. Since {X,} is self-decomposable, g, is absolutely continuous and unim-
odal for each t > 0. Let y,(dx) = f,(x)dx for t > 0. We find from the representa-
tion (2.8) of v that a(®) is unique for each =20 by Theorem 1.3 of
Sato-Yamazato [7] and hence a(#) is continuous on [0, ) by Lemma 2.1 of Sato
[5]. We see from semi-stability that

(2.9) fu@ =Bl £ @),
which implies that

(2.10) a(yt) = B a®.
Repeating this procedure, we find that

(2.11) a(y") = B"a(®)

for every integer #. Hence if {X,} is in Case 2, then a(y"t,) is oscillating as
n— oo and sgn a(T"tO) is oscillating as #— — oo and satisfies (1.4). That is,
a(t) is continuous on [0, ©) and oscillating as t— co and sgn a(#) is oscillating
as t | 0. Moreover, if 0 < A < 1, then

a(y"t,) __alt)
Tnto t0(7' .B)n

with |B7|=181"" <1 and hence ¢ 'a(t) is oscillating as t— oo and satisfies
(1.5). Thus if we show the following theorem, then Theorem 1 is true.

(2.12)
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THEOREM 1'.  Let {X,} be a semi-stable self-decomposable process with — 1 < 8
<0and 0 <A <2 If{X,} is non-symmetric, then it is in Case 2.

Let us denote by Re w and Im w the real part and the imaginary part of a
complex number w, respectively.

We see from (1.1) and (2.1) that every non-symmetric semi-stable process
with — 1 < 8 < 0 satisfies the following balancing condition:

(B) There exist positive numbers 6, and 6, such that 6, > 6,, Im ¢(6,) # 0

and Im ¢(6,) = 0.

In fact, there exists 6, > 0 such that Im ¢(6#,) # 0, since the process is
non-symmetric. Note that Im ¢(2) is a continuous odd function. Hence, from
semi-stability with —1<p8<0, Im¢(B8]™6,) = — 7Im ¢(6,), which yields
the existence of 6, such that | 7" 6, > 6, > 6, and Im ¢(6,) = 0.

In Section 3 we shall prove the following theorem, which is a generalization
of Theorem 1.

TueEOREM 2. Let {X,} be a self-decomposable process satisfying (B). Then {X,} is
i Case 2.

83. Proof of Theorem 2

In order to prove Theorem 2, we need several lemmas. A Lévy process is said
to be non-deterministic, if it is not a deterministic motion.

LemMa 3.1, Let {X,} be a non-deterministic self-decomposable process. Then we
have
(1) Re ¢(2) is a continuous even function on R and — Re ¢(2) is positive and
increasing on (0, ) satisfying Re ¢(0) = 0 and lim,_,, — Re ¢(2) = 0.
(i1) Im ¢(2) is a continuous odd function on R.

Proof. We shall only prove that — Re ¢(2) is increasing on (0, o), since
the other assertions are trivial. We obtain from (2.2) that

(3.1) —Re ¢z =27 62 + fw(l — cos z)z " h(x)dzx,
0

where h(x) = k(x) + k(— x) is non-increasing on (0, ) by self-decomposability.
Let 0 < z; < 2, We have
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(3.2) —Re ¢(z,) + Re ¢(z)
=270 = + [ (= coswu(n(3) = h(}))auz 0.

43 2
In (3.2) the equality “= 0” holds if and only if

(3.3) o =0 and h<z£

x
) = h(—) for every x > 0,
2 2
since we can assume that A(x) is right-continuous on (0, ©). The condition (3.3)
shows that, for every x > 0,

2,\"
(3.4) h(x) = h((z—> x) -0
1

as #— oo, which yields v = 0. Therefore, the equality “= 0" in (3.2) does not
hold, since {X,} is non-deterministic. Thus we have proved Lemma 3.1.

Lemma 3.2, Let {X,} be a non-deterministic self-decomposable process. Then, for
every z; € R, there exist positive numbers ¢(z,) and 6(z,) such that
(3.5) |Re ¢(2) —Re ¢(z) | 2 ¢c(z) |z — 2,

for all z satisfying |z — z,| = 6(z).

Proof. Suppose that 6° > 0. Then we find from (3.2) that
(3.6) |Re ¢(2) — Re ¢(z) | 2 27" 0" | 2" — 2 |

for every z and z Setting c(0) =27'¢% 5(0) =1 and, for z # 0, c(z) =
47 6% 2, and 6(z) = @7 z, 1) A1, we get (3.5). Hence, from now on, we
assume that 6 = 0. We divide the remaining proof into two cases.

(i) Suppose that z, = 0. Then we obtain from (3.1) that

(3.7) —Re ¢z = I,(2) + I,(2),

where

I,(2) = fs (1 — cos zn)z " h(x)dx

0

and

L(z) = fw (1 — cos zn)x " h(zx)dx
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for 0 < ¢ < oo, Noting that [,(z) = 0, we see that

(3.8) lim —— = 2% Rez‘/’@ > Jim 2 (2)

2—=0 V4 2—0

f 27 zh(z)dz > 0,

which implies (3.5) for sufficiently small positive numbers ¢(0) and §(0).

(ii) Suppose that z; # 0. Without loss of generality, we can assume z; > 0.
Define h,(x) = h(x) — h(x) A and h,(x) = h(x) A¢ for sufficiently small ¢ > 0
so that &, (x) does not identically vanish. Then (3.1) is expressed as

(3.9) —Re ¢(2) = [,(2) + J,(2),
where
I = fm(l — cos zr)x "' h;(x)dx

for 7 =1,2. We find from Lemma 3.1 that J,(2) and [,(z) are increasing on
(0, ). Hence

(3.10) |Re ¢(2) — Re ¢(z) | = | J,(2 — J,(z) |

Differentiating [, (2), we have

(3.11) %]l(z) = fm (sin zz) h,(x)dx

:? f<2n+1>7r (sin u) <h1<g) - h1<u t 7T)]du =0

for z > 0, because k,(z) is non-increasing on (0, ). If (d/d2)J,(z;) > 0, then
(3.5) follows from (3.10) for sufficiently small positive numbers ¢(z,) and 0(z,).
Suppose that (d/dz)J,(z,) = 0. We find from (3.11) that (d/dz)],(z) = 0 if and
only if

(3.12) h1<2:m +> _ h1(2(n + rn _>

1 2

for every non-negative integer #, that is, &, (x) is written as
N
(3.13) h(x) = 2 &l,,(2),
Jj=1
for x > 0, where N is a positive integer and, for each j, ¢, is a positive number, b;

= zl_1 2n;7 for some positive integer #; and I, (x) is the indicator function of
the interval (0, ;). We obtain from (3.13) that
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3.14) 2 1@ =S ez (1 — cos zb,)
(3. dz (% ,~=1Ejz cos zb;).
Differentiating (3.14) and then letting z = 2,

d’ N 2 i,
(3.15) ;z;]l(zl) = 1§1 e{— 2 (1 —coszb) + 2z bsinzbd}=0
and

3 N
(3.16) %]1(21) = E e{22,°(1 — cos z,b) — 22, b; sin z,b;

+ z;' b’ cos 2,b)

M=

I
—

ez, b2 > 0.
J
These show that (3.5) is true for z; > 0 with sufficiently small positive numbers
¢(z;) and 6(z,) when (d/dz)],(z;) = 0. The proof of Lemma 3.2 is complete.
Let us denote the complex plane by C.

Lemma 3.3. Let {X,} be a non-deterministic self-decomposable process. Suppose
that {X,} is in Case 1. Let ¢, =2/h(0+) if =0 and 0 < h(0 +) < oo . Let
¢, =0ifh(0 +) = % orifa° > 0. Let
(3.17) D={UL}U{wEC:Rew<0}

220
withL,={we C:w=—Re ¢ +yi, |yl >|Im¢QK) |}, that is, D is the con-
nected component containing — 1 of the set C N {— ¢(2) : z € R}Y". Then

(3.18) f‘” zaexplcia + ¢(2)}] dz =0

- a+ ¢
for every ¢ > ¢, and o € D.
Proof From Lemma 2.4 of Sato-Yamazato [7], we find that |zexp(t¢(2) |
is integrable on R with respect to z for ¢ > ¢,. Hence the density function f,(x) of
1,(dx) is continuously differentiable in x for t > ¢,. Since {X,} is in Case 1,

(3.19) %]’,(0) =%jj:zexp(t¢)(z))dz=0

for t > ¢,. We have
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| z]l explefRe a + Re ¢(2)}]
Re a + Re ¢(2) ’

(3.20) _/cm | zexplta + ¢(2)}] | dt =

which is integrable on R with respect to z for ¢ > ¢, and Re o < 0. By using
Fubini’s theorem, we obtain from (3.19) that

(3.21) 0= fm dtj:wzexp[t{a + ¢(2)}]) dz

_ f‘” zexplcla + ¢(2)}1]
- e a+ ¢

dz

for ¢ > ¢, and Re o < 0. Define

(3.22) Fla) = ./_W zexplela + ¢(2)}] 4z

B a+ ¢
and
N
(3.23) F(a) = IN zexpc[ycgfv(;(sz)(z)}] iz

for ¢ > ¢;,, « € D and N > 0. We note from Lemma 3.1 that D is a domain in C
containing the left half plane. Because Fy (@) is analytic in D with respect to «
and convergent to F(a) uniformly on every compact set in D as N— oo, F(a) is
analytic in D. We see from (3.21) that F(a) = 0 for Re @ < 0 and hence F(a@) =
0 in D by the uniqueness principle. Multiplying « to the equation F(a) = 0, we
get (3.18). Thus we have proved Lemma 3.3.

Proof of Theorem 2. We find from (B) that {X,} is non-symmetric and
non-deterministic. Suppose that {X,} is in Case 1. We shall show that this leads
to a contradiction. Without loss of generality, we can assume from (B) that there
exist real numbers 2z, and 2, such that 0 = z, < 2z,, Im ¢(2)) = Im ¢(2,) = 0 and
Im ¢(z) <0 on (z, z,). Define

zaexplci{a + ¢(2)}]
a+ ¢Q2)

(3.24) gla, ¢, 2) =

Let € and 0 be sufficiently small positive numbers. Let
EW0,1)={(z€R:z,—0=|z| <2 + 0},
E@G,2)={z€R:2,— 06 =|z| £z + 7},

E@0,3) ={z€R:z,+6<|z| £2,— 6} and

EGW,4) ={z€R:|z| <z —dor|z| = 2z+ 0. Then we have
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o0 4
(3.25) f gla, ¢, 2dz= 2 I(a, ¢, 0),
—00 j=1

where [(a, ¢, 0) = f gla, ¢, 2)dz for 1 <j = 4. For complex numbers w,
E@.5)

and w, let us denote by L(w,, w,) the directed line-segment from w, to w, in C.
Let K = sup, .., (— 2Im ¢(2)),

I'e, 1) = L(— ¢(z) — e, — ¢(z) — Ki),
(e, 2) = L(— ¢(z) — Ki, — ¢(z,) — K1),
e, 3) = L(— ¢(z) — Ki, — ¢(z,) — €9,
I'(e, 4) = L(— ¢(z) + e, — ¢(z,) + Ki),
I, 5) = L(— ¢(z,) + Ki, — ¢(z) + Ko),
I'(e, 6) = L(— ¢(z) + Ki, — ¢(z) + e,

and let I'(e) be the union of the directed line-segments I'(g, j),7=1,...,6. In
the following, integrals along I'(¢, j) or I'(¢) with respect to & are line integrals.
Note that I'(¢) is contained in D by Lemma 3.1. Hence we obtain from (3.18) in
Lemma 3.3 that

(3.26) j;m doz[ gla,c,2)dz=0

for 0 <& < K and for ¢ > ¢,. Let A(e) be the union of the directed line-segments
I't,7),7=2,...,5 and let B(e) be the union of I'(e,1) and I'(e, 6). Let
A(e) and B(e) denote the sets of points on A(e) and B(e), respectively. By Lem-
ma 3.1, we can choose sufficiently small positive numbers §; and d,, which do not
depend on ¢, such that

(3.27) la+ ¢ |24,

for z € E(d,, 1) and a € A(e). Hence we can find M, > 0, which does not de-
pend on €, such that

(3.28) lgla, ¢, 2) | = M,

for z € E(8,, 1) and @ € A(e). It follows that

(3.29) lim lim I (a, ¢, 0)da

d—0 -0 YA()

= lim lim dz f( gla, ¢, 22da = 0.
Ale)

-0 £—0 YE(4,1)

On the other hand, we can choose d, > 0 and M, > 0, which do not depend on ¢,
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such that
(3.30) lg(a, ¢, )@+ ¢@)]| = M,

for z € E(d,, 1) and a € B(e). Hence we have, for 0 < § < §,,

(3.31) [, 1, vda| = 1, fdfw'f%

Define N = Sup,cpe,y | Im ¢(@) |, L = sup,cg,,p | Re ¢(2) —Re ¢(z) | and
a=|Re ¢(2) — Re ¢(z) | (K + N). For z € E(5,, 1), z # z,, we get that

| d|
832 [ Tate@l
K
= f [{(Re ¢(2) —Re ¢(z))° + (Im ¢(2) — O}
+ {(Re ¢(Z) — Re ¢(21))2 + (Im ¢(z) 4 6)2}—1/z]d0

Sf A+ " du
0

<8log (K+ N+ L) — 8log|Re ¢(z) — Re ¢(z,) |,

where we use (1 +#5)7"? <201 + )" for # = 0. Recalling Lemma 3.2, we
obtain from (3.31) and (3.32) that

(3.33) lim limf L(a, c, 0) da

d—0 &—0 “B(e)

= lim lim dzf gla, ¢, 2 da = 0.
B(e)

3-0 e=0 YE(5,1

Hence we find from (3.29) that

(3.34) limlim [ I, ¢, 6) da =
§—0 e—0 v I'(e)

Similarly we get that

(3.35) lim limf L(a, ¢, 0) da = 0.
6—0 e—0 Y I'(e)

Making use of Cauchy’s integral formula, we have

(3.36) lim llmf L(a, c, 0) da

0—0 &—0
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=lim2ri [ 20— ¢() dz

0—0 E(4,3)

- 27zi<fzzzg/)(z) dz + f_21 z ¢ (2) dz)

2y -2

4m fzzz Im ¢ (2) dz.

1

Since, for ¢ > ¢,, I,(«, ¢, d) is analytic with respect to @ in the rectangle {w :
— ¢(z) <Rew < — ¢(z,), | Imw| < K}, we see by Cauchy’s integral theorem
that

(3.37) limf IL(a, ¢, 0) da=0

e—0 Y TI'(e)

for ¢ > ¢,. Hence we obtain from (3.26), (3.34), (3.35), (3.36) and (3.37) that

(3.38) 0 = lim daf gla, ¢, 2) dz

e—0 vYI'(e)

=47rfzzlm</)(z)dz<0

1

for ¢ > ¢,. This is a contradiction. Thus the proof of Theorem 2 is complete.
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