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Abstract In this work we provide effective bounds and classification results for rational Q-factorial
Fano varieties with a complexity-one torus action and Picard number 1 depending on the two invariants
dimension and Picard index. This complements earlier work by Hausen et al ., where the case of a free
divisor class group of rank 1 was treated.
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1. Statement of the results

The subject of this paper is rational Q-factorial Fano varieties X defined over an alge-
braically closed field K of characteristic 0 (see, for example, [10,14] for classical work).
A more recent focus in this field was toric Fano varieties, where one uses the descrip-
tion in terms of lattice polytopes (see, for example, [2,12,13]). Here, we study the case
where X comes, more generally, with an effective action of a torus T of complexity 1,
i.e. dimX −dim T = 1; by Fano varieties we mean normal projective varieties with ample
anticanonical divisor −KX . We continue the work of [8], where classification results for
the case Cl(X) = Z were given. In this paper we study the more general case of Picard
number 1, i.e. we allow torsion in the divisor class group. A first step is Theorem 3.2,
where we provide effective bounds for the number of deformation types of Fano vari-
eties X, as above, with fixed dimension d and Picard index µ := [Cl(X) : Pic(X)]. As a
consequence, we obtain restricting statements about the number δ(d, µ) of different defor-
mation types of Q-factorial d-dimensional Fano varieties with a complexity-one torus
action, Picard number 1 and Picard index µ. In the toric situation, δ(d, µ) is bounded
above by µd2

. For the non-toric case we get the following asymptotic results.

Theorem 1.1. For fixed d ∈ Z>0, the number δ(d, µ) is asymptotically bounded above
by µ(1+ε)µ2

for ε > 0 arbitrarily small, and, for fixed µ ∈ Z>0, it is asymptotically
bounded above by dAd with a constant A depending only on µ.
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Table 1. [Cl(X) : Pic(X)] = 2.

no. R(X) Cl(X) grading dX ι(X)

1 K[T1, . . . , T4]/〈T1T
3
2 + T 4

3 + T 2
4 〉 Z ⊕ Z/2Z

(
1 1 1 2
0̄ 0̄ 1̄ 1̄

)
1 1

Table 2. [Cl(X) : Pic(X)] = 3.

no. R(X) Cl(X) grading dX ι(X)

2 K[T1, . . . , T4]/〈T1T
2
2 + T 3

3 + T 3
4 〉 Z ⊕ Z/3Z

(
1 1 1 1
1̄ 1̄ 2̄ 0̄

)
1 1

We turn to the classification. Our approach uses the Cox ring R(X), which is defined
by

R(X) =
⊕

D∈Cl(X)

Γ (X, OX(D)).

Given this ring, the variety X can be realized as a quotient of an open subset in
Spec(R(X)) by the action of a diagonalizable group.

According to [7, Theorem 1.3], the Cox ring of a normal complete rational variety with
a complexity-one torus action is finitely generated. Furthermore, every such Fano variety
is uniquely determined by its Cox ring (as a Cl(X)-graded ring). In the case of Picard
number 1, the toric varieties of this type correspond to the fake weighted projective spaces
as defined in [11], and the Cox ring is polynomial. In the subsequent theorems we list
non-toric complexity-one Fano varieties with Picard number 1 in the cases where Cl(X)
has non-trivial torsion; for the non-toric results in the case of Cl(X) = Z we refer the
reader to [8]. The Cox rings are described in terms of generators and relations, and we
specify the Cl(X)-grading by giving the degrees of the generators. Additionally, we list
the degree of the Fano varieties dX := (−KX)d and the Gorenstein index ι(X), i.e. the
smallest positive integer such that ι(X)KX is Cartier.

Theorem 1.2. Let X be a non-toric Fano surface with an effective K∗-action, Picard
number 1, non-trivial torsion in the class group and [Cl(X) : Pic(X)] � 6. Its Cox ring
is then precisely one of those listed in Tables 1–4, where the parameter λ occurring in
the second relation of surface number 7 can be any element of K∗ \ {1}. Furthermore,
the Cox rings listed in Tables 1–4 are pairwise non-isomorphic as graded rings.

Remark 1.3. Gorenstein surfaces are well known to have ADE-singularities, which
are, in particular, canonical. Consequently, the surfaces numbered 1–5, 7, 9 and 10 are
canonical. Furthermore, in [16] all log terminal del Pezzo K∗-surfaces of Gorenstein index
up to 3 are classified. Comparing the surfaces listed in [16, Theorems 4.9, 4.10] with
Table 4 shows that number 11 is not log terminal. The resolution of this surface can be
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Table 3. [Cl(X) : Pic(X)] = 4.

no. R(X) Cl(X) grading dX ι(X)

3 K[T1, T2, T3, S1]/〈T 2
1 + T 2

2 + T 2
3 〉 Z ⊕ Z/2Z ⊕ Z/2Z

⎛
⎜⎝1 1 1 1

1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄

⎞
⎟⎠ 2 1

4 K[T1, . . . , T4]/〈T1T2 + T 2
3 + T 2

4 〉 Z ⊕ Z/4Z

(
1 1 1 1
1̄ 3̄ 2̄ 0̄

)
2 1

5 K[T1, . . . , T4]/〈T 2
1 T2 + T 2

3 + T 4
4 〉 Z ⊕ Z/2Z

(
1 2 2 1
1̄ 0̄ 1̄ 0̄

)
2 1

6 K[T1, . . . , T4]/〈T1T
2
2 + T 6

3 + T 2
4 〉 Z ⊕ Z/2Z

(
2 2 1 3
0̄ 1̄ 0̄ 1̄

)
1 2

7 K[T1, . . . , T5]
/〈

T1T2 + T 2
3 + T 2

4 ,

λT 2
3 + T 2

4 + T 2
5

〉
Z ⊕ Z/2Z ⊕ Z/2Z

⎛
⎜⎝1 1 1 1 1

1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

⎞
⎟⎠ 1 1

Table 4. [Cl(X) : Pic(X)] = 6.

no. R(X) Cl(X) grading dX ι(X)

8 K[T1, T2, T3, S1]/〈T 3
1 + T 3

2 + T 2
3 〉 Z ⊕ Z/3Z

(
2 2 3 1
1̄ 2̄ 0̄ 0̄

)
2
3 3

9 K[T1, . . . , T4]/〈T1T2 + T 3
3 + T 3

4 〉 Z ⊕ Z/3Z

(
1 2 1 1
1̄ 2̄ 2̄ 0̄

)
2 1

10 K[T1, . . . , T4]/〈T1T2 + T 2
3 + T 4

4 〉 Z ⊕ Z/2Z

(
3 1 2 1
1̄ 1̄ 1̄ 0̄

)
3 1

11 K[T1, . . . , T4]/〈T1T
5
2 + T 2

3 + T 8
4 〉 Z ⊕ Z/2Z

(
3 1 4 1
1̄ 1̄ 1̄ 0̄

)
1
3 3

explicitly computed by using the method of toric ambient modification, as demonstrated
in [5, Examples 3.20, 3.21].

Theorem 1.4. Let X be a three-dimensional non-toric Fano variety with an effec-
tive two-torus action, Picard number 1, non-trivial torsion in the class group and
[Cl(X) : Pic(X)] = 2. Its Cox ring is then precisely one of those in Table 5, where the
parameter λ occurring in the second relation of 3-fold number 38 can be any element of
K∗ \ {1}. Furthermore, the Cox rings listed in Table 5 are pairwise non-isomorphic as
graded rings.
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Table 5. [Cl(X) : Pic(X)] = 2.

no. R(X) Cl(X) grading dX ι(X)

1 K[T1, . . . , T4, S1]/〈T1T2 + T 2
3 + T 2

4 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄

)
27 1

2 K[T1, . . . , T4, S1]/〈T1T
3
2 + T 2

3 + T 4
4 〉 Z ⊕ Z/2Z

(
1 1 2 1 1
0̄ 0̄ 1̄ 0̄ 1̄

)
8 2

3 K[T1, . . . , T4, S1]/〈T1T
3
2 + T 2

3 + T 4
4 〉 Z ⊕ Z/2Z

(
1 1 2 1 1
0̄ 0̄ 1̄ 1̄ 0̄

)
8 1

4 K[T1, . . . , T4, S1]/〈T1T
3
2 + T 2

3 + T 4
4 〉 Z ⊕ Z/2Z

(
1 1 2 1 1
0̄ 0̄ 1̄ 1̄ 1̄

)
8 2

5 K[T1, . . . , T4, S1]/〈T1T
5
2 + T 2

3 + T 6
4 〉 Z ⊕ Z/2Z

(
1 1 3 1 1
0̄ 0̄ 0̄ 1̄ 1̄

)
1 1

6 K[T1, . . . , T4, S1]/〈T1T
5
2 + T 2

3 + T 6
4 〉 Z ⊕ Z/2Z

(
1 1 3 1 1
0̄ 0̄ 1̄ 0̄ 1̄

)
1 1

7 K[T1, . . . , T4, S1]/〈T 2
1 T 4

2 + T 2
3 + T 3

4 〉 Z ⊕ Z/2Z

(
1 1 3 2 1
0̄ 0̄ 1̄ 0̄ 1̄

)
4 1

8 K[T1, . . . , T4, S1]/〈T 2
1 T 4

2 + T 2
3 + T 3

4 〉 Z ⊕ Z/2Z

(
1 1 3 2 1
0̄ 1̄ 1̄ 0̄ 0̄

)
4 1

9 K[T1, . . . , T4, S1]/〈T1T
5
2 + T 3

3 + T 2
4 〉 Z ⊕ Z/2Z

(
1 1 2 3 1
1̄ 1̄ 0̄ 0̄ 0̄

)
4 2

10 K[T1, . . . , T5]/〈T1T
3
2 + T 2

3 T 2
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 1̄

)
8 2

11 K[T1, . . . , T5]/〈T1T
3
2 + T 2

3 T 2
4 + T 4

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
1̄ 1̄ 0̄ 1̄ 0̄

)
2 1

12 K[T1, . . . , T5]/〈T1T
5
2 + T 2

3 T 4
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 0̄

)
1 1

13 K[T1, . . . , T5]/〈T1T
5
2 + T 2

3 T 4
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 0̄ 1̄ 1̄

)
1 1

14 K[T1, . . . , T5]/〈T 2
1 T 4

2 + T 3
3 T 3

4 + T 2
5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 1̄

)
1 2

15 K[T1, . . . , T5]/〈T 2
1 T 4

2 + T 3
3 T 3

4 + T 2
5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 1̄ 0̄ 0̄ 1̄

)
1 2

16 K[T1, . . . , T5]/〈T 2
1 T 4

2 + T 5
3 T4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 1̄

)
1 2
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Table 5. (cont.) [Cl(X) : Pic(X)] = 2.

no. R(X) Cl(X) grading dX ι(X)

17 K[T1, . . . , T5]/〈T 2
1 T 4

2 + T 5
3 T4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 1̄ 0̄ 0̄ 1̄

)
1 2

18 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 1̄

)
27 2

19 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄

)
27 1

20 K[T1, . . . , T5]/〈T1T
2
2 + T3T

2
4 + T 3

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
0̄ 1̄ 0̄ 1̄ 0̄

)
12 1

21 K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T 4

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄

)
2 2

22 K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T 4

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄

)
2 1

23 K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄

)
8 2

24 K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 1̄

)
8 2

25 K[T1, . . . , T5]/〈T1T
5
2 + T3T

5
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 0̄

)
1 1

26 K[T1, . . . , T5]/〈T1T
5
2 + T3T

5
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 1̄

)
1 2

27 K[T1, . . . , T5]/〈T1T
5
2 + T 3

3 T 3
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 0̄

)
1 1

28 K[T1, . . . , T5]/〈T1T
5
2 + T 3

3 T 3
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 1 3
0̄ 0̄ 1̄ 1̄ 1̄

)
1 2

29 K[T1, . . . , T5]/〈T1T2T
2
3 + T 2

4 + T 4
5 〉 Z ⊕ Z/2Z

(
1 1 1 2 1
0̄ 0̄ 1̄ 1̄ 0̄

)
8 2

30 K[T1, . . . , T5]/〈T1T2T
2
3 + T 2

4 + T 4
5 〉 Z ⊕ Z/2Z

(
1 1 1 2 1
0̄ 0̄ 0̄ 1̄ 1̄

)
8 1

31 K[T1, . . . , T5]/〈T1T2T
2
3 + T 2

4 + T 4
5 〉 Z ⊕ Z/2Z

(
1 1 1 2 1
0̄ 0̄ 1̄ 1̄ 1̄

)
8 1

32 K[T1, . . . , T5]/〈T1T2T
4
3 + T 2

4 + T 6
5 〉 Z ⊕ Z/2Z

(
1 1 1 3 1
0̄ 0̄ 1̄ 1̄ 0̄

)
1 1
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Table 5. (cont.) [Cl(X) : Pic(X)] = 2.

no. R(X) Cl(X) grading dX ι(X)

33 K[T1, . . . , T5]/〈T1T2T
4
3 + T 2

4 + T 6
5 〉 Z ⊕ Z/2Z

(
1 1 1 3 1
0̄ 0̄ 1̄ 0̄ 1̄

)
1 1

34 K[T1, . . . , T5]/〈T1T
2
2 T 3

3 + T 2
4 + T 6

5 〉 Z ⊕ Z/2Z

(
1 1 1 3 1
0̄ 1̄ 0̄ 1̄ 0̄

)
1 1

35 K[T1, . . . , T5]/〈T1T
2
2 T 3

3 + T 2
4 + T 6

5 〉 Z ⊕ Z/2Z

(
1 1 1 3 1
0̄ 1̄ 0̄ 0̄ 1̄

)
1 1

36 K[T1, . . . , T5]/〈T1T
2
2 T 3

3 + T 3
4 + T 2

5 〉 Z ⊕ Z/2Z

(
1 1 1 2 3
1̄ 0̄ 1̄ 0̄ 0̄

)
4 1

37 K[T1, . . . , T5]/〈T1T2T
4
3 + T 3

4 + T 2
5 〉 Z ⊕ Z/2Z

(
1 1 1 2 3
0̄ 0̄ 1̄ 0̄ 1̄

)
4 2

38 K[T1, . . . , T6]
/〈

T1T2 + T3T4 + T 2
5 ,

λT3T4 + T 2
5 + T 2

6

〉
Z ⊕ Z/2Z

(
1 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 1̄ 0̄

)
16 2

Let X be a normal complete rational variety coming with a complexity-one torus
action of T . Consider the T -invariant open subset X0 consisting of all points x ∈ X

having finite isotropy group. According to [15, Corollary 3] there exists a geometric
quotient q : X0 → X0/T such that X0/T is irreducible and normal but possibly not
separated. The property of the orbit space X0/T being separated is reflected in the
Cox ring relations by the condition that each monomial depends on only one variable,
e.g. surface number 3 in Theorem 1.2 (see [7, Theorem 1.2]). Geometrically, this means
that every orbit is contained in the closure of either exactly one maximal orbit or of
infinitely many maximal orbits. For such varieties we have the following general finiteness
statement.

Theorem 1.5. The number of d-dimensional normal complete rational varieties of
Picard number 1 with a complexity-one torus action of T and Picard index µ, such that
X0/T is separated, is finite.

2. Description of the Cox ring

We briefly recall from [6] a construction of Q-factorial normal rational projective varieties
with a complexity-one torus action. Here, we specialize to the case of Picard number 1;
the details are given in [6, Proposition 2.4].

Construction 2.1. For r � 1, consider a sequence A = (a0, . . . , ar) of pairwise
linearly independent vectors in K2, a sequence n = (n0, . . . , nr) of positive integers, a
non-negative integer m and a family L = (lij) of positive integers, where 0 � i � r and
1 � j � ni. Set

R(A, n, L, m) := K[Tij , Sk]/〈g0, . . . , gr−2〉,

https://doi.org/10.1017/S0013091513000710 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000710


Fano varieties with torus action of complexity 1 743

where the Tij are indexed by 0 � i � r, 1 � j � ni, the Sk by 1 � k � m and the
relations gi are defined as follows. Set T li

i := T li1
i1 · · ·T lini

ini
and

gi := det

(
ai ai+1 ai+2

T li
i T

li+1
i+1 T

li+2
i+2

)
.

Define n := n0 + · · ·+nr and let K := Z ⊕Kt be an abelian group with torsion part Kt.
Suppose that R(A, n, L, m) is positively K-graded via

degTij = wij ∈ K, degSk = uk ∈ K,

i.e. wij , uk ∈ Z�0 ⊗ Kt, and that any n + m − 1 of these degrees generate K as a group.
The K-grading defines a diagonal action of H := Spec K[K] on Kn+m. By construction,

X̄ := V (gi; 0 � i � r − 2) = Spec R(A, n, L, m)

is invariant under this H-action. The open set Kn+m \{0} allows for a geometric quotient
of this H-action, which is denoted by p : Kn+m \ {0} → Z, where the toric variety Z is a
fake weighted projective space. Furthermore, we get a geometric quotient p : X̂ → X of
the embedded open subset X̂ := X̄ \ {0}:

X̂

p

��

� � �� Kn+m \ {0}
p

��
X

� � �� Z

The quotient space X := X̂//H is a Q-factorial normal projective variety of dimension

dim(X) = n + m − r.

It has divisor class group Cl(X) = K, Cox ring R(X) = R(A, n, L, m) and a complexity-
one torus action. This torus is given by the stabilizer of X under the action of the maximal
torus TZ of Z.

Note that, if there is an index 0 � i � r such that li1 = 1 and ni = 1, there is at
least one relation containing a linear term. In this case the ring is isomorphic to the
polynomial ring that we get if we omit the relations of this type. Consequently, we may
always assume that li1ni �= 1.

Remark 2.2. Varieties with complexity-one action, as formulated in Construction 2.1,
can be considered as a generalized version of well-formed complete intersections in
weighted projective spaces, in the sense of [9].

According to [6, Theorem 1.5], every Q-factorial normal complete rational variety X

with a complexity-one torus action and Picard number 1 has a Cox ring R(X) that is
isomorphic as a graded ring to some K-graded algebra R(A, n, L, m) with K ∼= Cl(X).

We collect some geometric properties of the varieties X just constructed. Every element
w ∈ K = Z⊕Kt can be written as w = w0+wt, where w0 ∈ Z and wt ∈ Kt. Furthermore,

https://doi.org/10.1017/S0013091513000710 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000710


744 E. Herppich

every x̄ = (x̄ij , x̄k) ∈ X̂ ⊆ Kn+m defines a point x ∈ X by x := p(x̄); the points x̄ ∈ X̂

are called Cox coordinates of x. We define the set of all weights corresponding to a
non-zero coordinate of x̄ by

Wx̄ := {wij ; x̄ij �= 0} ∪ {uk; x̄k �= 0}.

Moreover, let Cl(X, x) denote the local divisor class group in x, i.e. the group of all
divisor classes that are principal near x.

Proposition 2.3. Let X be a Q-factorial complete normal variety with complexity-
one torus action and Picard number 1, as formulated in Construction 2.1, and set
γi := deg(gi), 0 � i � r. The following statements then hold.

(i) For any x̄ ∈ X̂, the local divisor class group Cl(X, x) of x := p(x̄) is finite and
gcd(w0; w ∈ Wx̄) always divides the order of the group.

(ii) The Picard group Pic(X) is free and the Picard index is given by

[Cl(X) : Pic(X)] = lcmx∈X(gcd(w0; w ∈ Wx̄))|Cl(X)t|.

In particular, |Cl(X)t| is a divisor of [Cl(X) : Pic(X)] and we have that |Cl(X)t| �
[Cl(X) : Pic(X)].

(iii) For the anticanonical class −KX ∈ Cl(X) and its self-intersection number dX :=
(−KX)d, one has

−KX =
r∑

i=0

ni∑
j=1

wij +
m∑

k=1

uk −
r−2∑
i=0

γi,

dX =
( r∑

i=0

ni∑
j=1

w0
ij +

m∑
k=1

u0
k −

r−2∑
i=0

γ0
i

)d γ0
0 · · · γ0

r−2∏r
i=0

∏ni

j=1 w0
ij

∏m
k=1 u0

k|Cl(X)t| .

(iv) The variety X is Fano if and only if the following inequality holds:

(r − 1)deg(g0)0 =
r−2∑
i=0

deg(gi)0 <

r∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
k.

Proof. Let x̄(i, j) (respectively, x̄(k)) be a point in X̂ having the ijth (respectively,
(n+k)th) entry 1 and all other entries 0. With Ẑ := Kn+m\{0}, we obtain a commutative
diagram:

X̂
� � ��

//H

��

Ẑ

//H

��
X

� � �� Z

where the induced map embeds X into a toric variety Z such that Cl(X) ∼= Cl(Z) and
Pic(X) ∼= Pic(Z) holds (see [1, Corollary III.3.1.7]). By choice, x̄(i, j) (respectively, x̄(k))
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is a toric fixed point. Consequently, the Picard group Pic(Z), and also Pic(X), is free [3,
Theorem VII 2.16]. According to [4, Corollary 4.9], we obtain that

Pic(X) =
⋂

x̄∈X̂

〈w; w ∈ Wx̄〉 ∼=
⋂

x̄∈X̂

〈w0; w ∈ Wx̄〉,

where the last equality follows from the fact that Pic(X) is free. This proves assertions (i)
and (ii). The remaining statements are special cases of [4, Proposition 4.15 and Corol-
lary 4.16]. The self-intersection number can be easily computed by using toric intersection
theory in the ambient toric variety (cf. [1, Construction III 3.3.4]). �

Corollary 2.4. Let X be a Q-factorial complete normal variety with complexity-one
torus action and Picard number 1. If X is locally factorial, then the divisor class group
Cl(X) is free.

The following example shows that one can use Proposition 2.3 (iv) to create series of
Fano varieties by altering the torsion part of the divisor class group Cl(X).

Example 2.5. Set l01 = 7, l02 = 1, l11 = 5 and l21 = 2, as well as w0
01 = 1, w0

02 = 3,
w0

11 = 2 and w0
21 = 5. According to Construction 2.1, these data define one single Cox

ring relation of the form g0 = T 7
01T02 + T 5

11 + T 2
21. Since we have that

w0
01 + w0

02 + w0
11 + w0

21 = 11 > 10 = deg(g0)0,

one can use these data to create Cox rings of Fano varieties. We provide some possible
Cl(X)-gradings, given by the matrices Qi, defining del Pezzo K∗-surfaces with fixed
grading in the free part of the divisor class group and varying torsion part of the class
group Cl(X)t:

Q1 =
(
1 3 2 5

)
, Cl(X1) = Z;

Q2 =

(
1 3 2 5
0̄ 2̄ 1̄ 1̄

)
, Cl(X2) = Z ⊕ Z/3Z;

Q3 =

(
1 3 2 5
2̄ 1̄ 3̄ 3̄

)
, Cl(X3) = Z ⊕ Z/9Z;

Q4 =

(
1 3 2 5
0̄ 1̄ 9̄ 6̄

)
, Cl(X4) = Z ⊕ Z/11Z;

Q5 =

(
1 3 2 5
0̄ 3̄ 1̄1 8̄

)
, Cl(X5) = Z ⊕ Z/13Z;

Q6 =

(
1 3 2 5
0̄ 7̄ 1̄5 1̄2

)
, Cl(X6) = Z ⊕ Z/17Z.

Note that in this situation not every group of the form Z ⊕ Z/kZ, k ∈ N>0, can be
realized as a divisor class group.

https://doi.org/10.1017/S0013091513000710 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000710


746 E. Herppich

In Example 2.5 the numbers �i := gcd(li1, . . . , lini
) are pairwise coprime, namely,

�0 = 1, �1 = 2 and �2 = 5. This allows for the case Cl(X1) = Z (see [8, Theorem 1.9]). If
the numbers �i are not pairwise coprime, then there is always non-trivial torsion in the
divisor class group, as the following lemma shows.

Lemma 2.6. Set �i := gcd(li1, . . . , lini
). All numbers gcd(�i, �j), 0 � i �= j � r, then

divide |Cl(X)t| and the Picard index µ. In particular, this holds for lcmj �=i(gcd(�i, �j)).

Proof. According to [6, Theorem 1.5], the divisor class group Cl(X) is isomorphic to
Zn+m/im(P ∗) where P ∗ is dual to P : Zn+m → Zn+m−1 given by a matrix of the form

P =

⎛
⎜⎜⎜⎜⎝

−l0 l1 · · · 0 0
...

...
. . .

...
...

−l0 0 · · · lr 0
d0 d1 · · · dr d′

⎞
⎟⎟⎟⎟⎠ ,

with li = (li0, . . . , lini
) and some integral block matrices di and d′. Consequently, |Cl(X)t|

is the product of all elementary divisors of P , which implies that gcd(�0, �j) divides
|Cl(X)t|. By an elementary row transformation, we obtain the analogous result for
gcd(�i, �j) where 0 � i, j � r, i �= j. Since |Cl(X)t| divides the Picard index µ, the
assertion follows. �

Remark 2.7. One can even prove that lcm0�j�r(
∏

i �=j gcd(�i, �j)) divides |Cl(X)t|
(see, for example, surface number 3 in Table 3).

3. Effective bounds

First we consider the case n0 = · · · = nr = 1, which means that each relation gi of the Cox
ring R(X) depends only on three variables. We then have n = r + 1 and, consequently,
m = d−1. Furthermore, we may write Ti instead of Ti1 and wi instead of wi1, etc. In this
setting, we obtain the following bounds for the numbers of possible varieties X (Fano or
not).

Proposition 3.1. For any pair (d, µ) ∈ Z2
>0 there are, up to deformation equivalence,

only a finite number of complete d-dimensional varieties with Picard number 1, Picard
index [Cl(X) : Pic(X)] = µ and Cox ring of the form

K[T0, . . . , Tr, S1, . . . , Sm]/〈αiT
li
i + αi+1T

li+1
i+1 + αi+2T

li+2
i+2 ; 0 � i � r − 2〉.

In this situation we have r < µ + ξ(µ) − 1, where ξ(µ) denotes the number of primes
smaller than µ. Moreover, for w0

i ∈ Z>0 and u0
k ∈ Z>0, where 0 � i � r, 1 � k � m, and

the exponents li, one has

li � µ, w0
i � µr, u0

k � µ.
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Proof. Consider the total coordinate space X̄ ⊆ Kr+1+m and the quotient p : X̂ → X,
as well as the points x̄(k) ∈ X̂ having (r + k)th coordinate 1 and all other coordinates 0.
Set x(k) := p(x̄(k)). Then, u0

k divides the order of the local class group Cl(X, x(k)). In
particular, we have that u0

k � µ.
For each 0 � i � r, fix a point ȳ(i) = (ȳ0, . . . , ȳr, 0, . . . , 0) in X̂ such that ȳi = 0 and

ȳj �= 0 for i �= j, and set yi := p(ȳ(i)). We then obtain that

gcd(w0
j , j �= i) | |Cl(X, y(i))|.

By Lemma 2.6 we have that lcmj �=i(gcd(li, lj)) | |Cl(X)t|. Now consider l′i such that
li = lcmj �=i(gcd(li, lj))l′i. The homogeneity condition liw

0
i = ljw

0
j then gives l′i | w0

j for
all j �= i, and, consequently, l′i | gcd(w0

j , j �= i). Since li = l′i lcmj �=i(gcd(li, lj)), we can
conclude that li � µ by using the formula

[Cl(X) : Pic(X)] = lcmx∈X(gcd(w0; w ∈ WX̄))|Cl(X)t|

of Proposition 2.3 (ii). Since the l′i are pairwise coprime, we obtain l′0 · · · l′r | γ0 and
l′0 · · · l′r | µ, where γ0 := deg(g0)0 = liw

0
i . From liw

0
i = ljw

0
j we deduce that

li = l0
w0

0

w0
i

= l0
w0

0 · · ·w0
i−1

w0
1 · · ·w0

i

= ηi

gcd(w0
0, . . . , w

0
i−1)

gcd(w0
0, . . . , w

0
i )

� µ,

where 1 � ηi � µ. In particular, the last fraction is smaller than µ. All in all, this gives
us

w0
0 =

w0
0

gcd(w0
0, w

0
1)

gcd(w0
0, w

0
1)

gcd(w0
0, w

0
1, w

0
2)

· · ·
gcd(w0

0, . . . , w
0
r−2)

gcd(w0
0, . . . , w

0
r−1)

gcd(w0
0, . . . , w

0
r−1)

� µr−1µ

= µr.

Analogously, we get the boundedness for all w0
i . Now let q be the number of l′i that are

greater than 1. Since all l′i, 0 � i � r, are coprime, q is bounded by ξ(µ), the number of
primes smaller than µ. To avoid the toric case we assume that li �= 1 for all 0 � i � r.
Consequently, if l′i = 1, then there exists at least one 0 � j � r such that gcd(li, lj) > 1.
Since gcd(li, lj) divides µ, we get r + 1 − q < µ as a rough bound. All in all, we get that
r + 1 = r + 1 − q + q < µ + ξ(µ). �

Proof of Theorem 1.5. Let X be a variety as in Theorem 1.5. Each monomial of
the Cox ring relations then depends on only one variable, i.e. ni = 1 for 0 � i � r (see [7,
Theorem 1.2] for details). Consequently, Proposition 3.1 provides bounds for the discrete
data, such as the non-torsion parts of the weights w0

ij and u0
k, the exponents lij and the

number of Cox ring relations r. Since |Cl(X)t| � µ holds, the number of possibilities for
the torsion part of the grading is also restricted, which implies the assertion. �

Theorem 3.2. Let X be a Fano variety with complexity-one torus action as introduced
in Construction 2.1. Fix the dimension d = dim(X) = m + n + r and the Picard index
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µ = [Cl(X) : Pic(X)]. The number of Cox ring relations r, the free part of the degree of
the relations γ0, the weights w0

ij , u0
k and the exponents l0ij , where 0 � i � r, 1 � j � ni

and 1 � k � m, are then bounded. In particular, one obtains the following effective
bounds. We have

u0
k � µ for 1 � k � m and |Cl(X)t| � µ.

Moreover, the handling of the remaining data can be organized into five cases, where
ξ(x) denotes the number of primes smaller than x.

(i) Suppose that r = 0, 1 holds. Then, n + m � d + 1 holds and one has the bounds

w0
ij � µ for 0 � i � r and 1 � j � ni,

and the Picard index is given by

µ = lcm(w0
ij , u

0
k; 0 � i � r, 1 � j � ni, 1 � k � m)|Cl(X)t|.

(ii) Suppose that r � 2 and n0 = 1 hold. Then, r � µ + ξ(µ) − 1, n = r + 1 and
m = d − 1 hold, and one has that

w0
i1 � µr, li1 | µ for 0 � i � r, γ0 � µr+1,

and the Picard index is given by

µ = lcm(gcdi(w
0
j1; i �= j), u0

k; 0 � i � r, 1 � k � m)|Cl(X)t|.

(iii) Suppose that r � 2 and n0 > n1 = 1 hold. We may then assume that l11 � · · · �
lr1 � 2, we have r � µ + ξ(6dµ) − 1 and n0 + m = d and the bounds

w0
01, . . . , w

0
0n0

� µ, l01, . . . , l0n0 � 6dµ, γ0 < 6dµ,

w0
11 < 2dµ, w0

21 < 3dµ, w0
i1, li1 < 6dµ for 1 � i � r,

and the Picard index is given by

µ = lcm(w0
0j , gcd(w0

11, . . . , w
0
r1), u

0
k; 1 � j � n0, 1 � k � m)|Cl(X)t|.

(iv) Suppose that n1 > n2 = 1 holds. We may then assume that l21 � · · · � lr1 � 2, we
have r � µ + ξ(2(d + 1)µ) − 1 and n0 + n1 + m = d + 1 and the bounds

w0
ij � µ for i = 0, 1 and 1 � j � ni, w0

21 < (d + 1)µ,

γ0, w0
ij , lij < 2(d + 1)µ for 0 � i � r and 1 � j � ni,

and the Picard index is given by

µ = lcm(w0
ij , u

0
k; 0 � i � 1, 1 � j � ni, 1 � k � m)|Cl(X)t|.
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(v) Suppose that n2 > 1 holds, and let s be the maximal number with ns > 1. We may
then assume that ls+1,1 � · · · � lr1 � 2, we have s � d, r � µ + ξ((d + 2)µ) + d − 1
and n0 + · · · + ns + m = d + s and the bounds

w0
ij � µ for 0 � i � s, γ0 < (d + 2)µ,

w0
ij , lij < (d + 2)µ for 0 � i � r and 1 � j � ni,

and the Picard index is given by

µ = lcm(w0
ij , u

0
k; 0 � i � s, 1 � j � ni, 1 � k � m)|Cl(X)t|.

Note that assertions (i) and (ii) do not require the Fano condition.

The remaining part of this section is devoted to the proofs of the main statements of
this paper. To prove Theorem 3.2 we need the following essential lemma.

Lemma 3.3. Consider the ring K[Tij ; 0 � i � 2, 1 � j � ni][S1, . . . , Sk]/〈g〉, where
n0 � n1 � n2 � 1 holds, and let K be a finitely generated abelian group of the form
K = Z ⊕ Kt with torsion part Kt. Suppose that g is homogeneous with respect to the
K-grading of K[Tij , Sk] given by degTij =: wij = w0

ij + wt
ij ∈ K with w0

ij ∈ Z>0, and
degSk =: uk = u0

k + ut
k ∈ K with u0

k ∈ Z>0, and assume that

deg(g)0 <

2∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i .

Let µ ∈ Z>1, assume that w0
ij � µ whenever ni > 1, 1 � j � ni, and that u0

k � µ for
1 � k � m, and set d := n0 + n1 + n2 + m − 2. Depending on the shape of g, one obtains
the following bounds.

(i) Suppose that g = η0T
l01
01 · · ·T l0n0

0n0
+ η1T

l11
11 + η2T

l21
21 with n0 > 1 and coefficients

ηi ∈ K∗ holds. If we have l11 > l21 � 2 and gcd(l11, l21) | µ, then we have

w0
11 < 2dµ, w0

21 < 3dµ, l22, l21, deg(g)0 < 6dµ.

If we have l11 = l21 � 2, then we have

l11, w
0
11, l21, w

0
21, deg(g)0 � µ.

(ii) Suppose that g = η0T
l01
01 · · ·T l0n0

0n0
+ η1T

l11
11 · · ·T l1n1

1n1
+ η2T

l21
21 with n1 > 1 and coef-

ficients ηi ∈ K∗ holds, and we have l21 � 2. Then we have

w0
21 < (d + 1)µ, deg(g)0 < 2(d + 1)µ.

Proof. We prove (i). Set c := (n0 + m)µ = dµ for short. Using the homogeneity of g

and the assumed inequality, we then obtain that

l11w
0
11 = l21w

0
21 = deg(g)0 <

2∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i � c + w0

11 + w0
21.
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First look at the case l11 > l21 � 2. Putting this into the above inequalities, we arrive
at 2w0

11 < c + w0
21 and w0

21 < c + w0
11. We conclude that w0

11 < 2c and w0
21 < 3c.

Consequently, we obtain that

deg(g)0 < c + w0
11 + w0

21 < 6c = 6dµ.

If we have l11 = l21, the homogeneity condition l11w
0
11 = l21w

0
11 gives us w0

11 = w0
21.

Thus, we have that gcd(w0
11, w

0
21) = w0

11 = w0
21 | µ and, by assumption, gcd(l11, l21) =

l21 = l11 | µ. Consequently, l11, w
0
11, l21, w

0
21, deg(g)0 � µ.

We prove (ii). Here we set c := (n0 + n1 + m)µ = (d + 1)µ. The assumed inequality
then gives that

l21w
0
21 = deg(g)0 <

1∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i + w0

21 � c + w0
21.

Since we assumed that l21 � 2, we can conclude that w0
21 < c. This in turn gives us

deg(g)0 < 2c. �

Proof of Theorem 3.2. As before, we denote by X̄ ⊆ Kn+m the total coordinate
space, and we consider the quotient p : X̂ → X.

We first discuss the case when X is a toric variety. The Cox ring is then a polynomial
ring, R(X) = K[S1, . . . , Sm]. For each 1 � k � m, consider the point x̄(k) ∈ X̂ having kth
coordinate 1 and all other coordinates 0, and set x(k) := p(x̄(k)). By Proposition 2.3,
the order of the local class group Cl(X, x(k)) is then divisible by u0

k. Together with
Proposition 2.3 (ii) we get u0

k � µ for 1 � k � m and |Cl(X)t| � µ, which settles
assertion (i).

We now treat the non-toric case, which means that r � 2. Note that we have n � 3.
The case n0 = 1 is covered in Proposition 3.1, which proves assertion (ii). Hence, we are
left with n0 > 1. For every i with ni > 1 and every 1 � j � ni, there exists the point
x̄(i, j) ∈ X̂ with ij-coordinate Tij equal to 1 and all other coordinates equal to 0, and,
thus, we have the point x(i, j) := p(x̄(i, j)) ∈ X. Moreover, for every 1 � k � m, we
have the point x̄(k) ∈ X̄ having the k-coordinate Sk equal to 1 and all other coordinates
equal to 0; we set x(k) := p(x̄(k)). Proposition 2.3 provides the bounds

w0
ij � µ, u0

k � µ for ni > 1, 0 � i � r, 1 � j � ni, 1 � k � m. (3.1)

Let 0 � s � r be the maximal number with ns > 1. Then gs−2 is the last polynomial
such that each of its three monomials depends on more than one variable. For any t � s,
we have the ‘cut ring’

Rt := K[Tij , Sk]/〈g0, . . . , gt−2〉,

where 0 � i � t, 1 � j � ni, 1 � k � m and the relations gi depend on only three
variables when i > s holds. For the free part of the degree γ0 of the relations we have
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that

(r − 1)γ0 = (t − 1)γ0 + (r − t)γ0

= (t − 1)γ0 + lt+1,1w
0
t+1,1 + · · · + lr1w

0
r1

<

r∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i

=
t∑

i=0

ni∑
j=1

w0
ij + w0

t+1,1 + · · · + w0
r1 +

m∑
i=1

u0
i .

Note that the inequality is derived from the Fano condition of Proposition 2.3 (iv). Since
li1w

0
i1 > w0

i1 holds, in particular, for t + 1 � i � r, we derive from this the inequality

γ0 <
1

t − 1

( t∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i

)
. (3.2)

To obtain the bounds in assertions (iii) and (iv), we consider the cut ring Rt with t = 2
and apply Lemma 3.3 and Proposition 2.3; note that we have d = n0 + n1 + n2 +
m − 2 for the dimension d = dim(X) and that l21 � 2 due to the fact that X is non-
toric. The bounds w0

i1, li1 < 6dµ for 3 � i � r in assertion (iii) follow from γ0 < 6dµ.
Similarly, w0

ij , lij < 2(d + 1)µ for 0 � i � r, 1 � j � ni in assertion (iv) follow from
γ0 < 2(d + 1)µ. We still have to prove the restriction for the number of relations, which
means bounding r. Recall from Lemma 2.6 the definition �i := gcd(li1, . . . , lini

), and set
�i = lcm0�j �=i�r(gcd(�i, �j))�′

i. Then �′
0, . . . , �

′
r are coprime. For i � 1, we have ni = 1.

Thus, analogously to the proof of Proposition 3.1, we get that r + 1 = r + 1 − q + q �
µ+ξ(6dµ), where q is the number of �′

i that are greater than 1 and satisfy ni = 1. For the
bound in assertion (iv), the same argument yields r+1 = r+1−q+q � µ+ξ(2(d+1)µ).

To obtain the bounds in assertion (v), we consider the cut ring Rt with t = s. Using
ni = 1 for i � t + 1 and applying the inequalities (3.1) and (3.2), we can derive an upper
bound for the degree of the relation as follows:

γ0 <
(n0 + · · · + nt + m)µ

t − 1
=

(d + t)µ
t − 1

� (d + 2)µ.

We have that w0
ij lij � γ0 for any 0 � i � r and any 1 � j � ni, which implies that

all w0
ij and lij are bounded by (d + 2)µ. Since n0, . . . , ns−1 > 1 holds, the number s is

bounded by s = 2s − (s − 1) − 1 � d. Consequently, we obtain that

r + 1 = r + 1 − s − q + s + q � µ + ξ((d + 2)µ) + d,

where q is defined as above.
Finally, we have to express the Picard index µ in terms of the free part of the

weights w0
ij , u0

k and the torsion part Cl(X)t, as claimed in the assertions. This is a
direct application of the formula of Proposition 2.3. �
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Proof of Theorem 1.1. Theorem 3.2 provides bounds for the exponents and the
number of relations, as well as for the free part of the weights and the torsion part
of Cl(X). Since we have that |Cl(X)t| � µ, the possibilities for the torsion part of the
weights are also restricted. One computes that the number δ(d, µ) of different deformation
types is bounded above by

µµ2+3µ+ξ(µ)2+ξ(6dµ)+5d(6dµ)2µ+2ξ(6dµ)+3d−2,

which leads to the results of Theorem 1.1. �

Proof of Theorems 1.2 and 1.4. For fixed d and µ, Theorem 3.2 bounds the
number of possible data lij , w0

ij , u0
k belonging to Fano varieties. We identify all these

constellations by a computer-based algorithm. Since |Cl(X)t| � µ holds, there are only
a finite number of possibilities for the torsion part of the weights that we have to check.
By this procedure we obtain Tables 1–5.

We claim that no two of the listed Cox rings describe varieties that are isomorphic to
each other. Two minimal systems of homogeneous generators of the Cox ring contain (up
to reordering) the same free parts of generator degrees w0

ij , u0
k ∈ Z. Consequently, they

are invariant under isomorphy. Furthermore, the exponents lij > 1 represent the orders
of all finite non-trivial isotropy groups of one-codimensional orbits of the action T on X

(see [7, Theorem 1.3]). Moreover, since none of the listed Cox rings is polynomial the
varieties are all non-toric. This implies that every complexity-one action is maximal and,
consequently, can be assigned to a maximal torus in Aut(X). Note that Aut(X) is also
acting effectively on X. Since the maximal tori of Aut(X) are all conjugated, the varieties
with complexity-one torus action are isomorphic if and only if they are T -equivariantly
isomorphic. Thus, running through the exponents lij we see that no two of the varieties
listed in Theorem 1.2 are isomorphic.

In the case of Theorem 1.4 there is some more work to do. There are no isomorphic
3-folds varying only in the torsion part of the weights; see, for example, the numbers 2, 3
and 4. In these cases, comparing the torsion parts of the gradings shows that it is not
possible to install a Cl(X)-graded ring isomorphism between the Cox rings of two different
3-folds.

As an example we consider the 3-folds 2 and 3: let D2 be a prime divisor, representing
deg(T2) ∈ Cl(X), and let E1 be a prime divisor, representing deg(S1) ∈ Cl(X). Then,
D2 has isotropy group of order l2 = 3 and E1 has infinite isotropy. In the case of 3-fold 2
the term D2 −E1 represents a non-trivial torsion element, whereas in the case of 3-fold 3
it is the zero element in Cl(X). Thus, these two varieties are not isomorphic. Analogously,
we proceed with all other cases to finally obtain Table 5.

Finally, we apply [4, Corollary 4.9] to compute the Gorenstein index ι(X) for all listed
varieties, i.e. we have to find the smallest integer ι(X) such that ι(X)KX is contained in
all local divisor class groups Cl(X, x) (see also Proposition 2.3). �
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7. J. Hausen and H. Süß, The Cox ring of an algebraic variety with torus action, Adv.
Math. 225 (2010), 977–1012.
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