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Abstract. Let T be p-hyponormal or log-hyponormal on a Hilbert space H.
Then we have XT ¼ T �X whenever XT� ¼ TX for some X 2 BðHÞ. This is an
extension of Patel’s result. Also for p-hyponormal or log-hyponormal T �, dominant
S and any X 2 BðHÞ such that XT ¼ SX, we have XT� ¼ S�T.
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1. Introduction. For complex Hilbert spaces H and K, B(H), B(K) and B(H,K)
denote the set of all bounded linear operators on H, the set of all bounded linear
operators on K and the set of all bounded linear transformation from H to K
respectively. Throughout this paper, H and K are Hilbert spaces, and Hilbert spaces
mean complex Hilbert spaces. A bounded linear operator T on a complex Hilbert
space H is called normal if T �T ¼ TT �. Also T is called p-hyponormal for p > 0 if
ðT �TÞp 	 ðTT �Þ

p, log-hyponormal if T is an invertible operator which satisfies
logðT �TÞ 	 logðTT �Þ. Throughout this paper, we consider the case where p 2 ð0; 1
.
T is called hyponormal iff it is 1-hyponormal. We say that T is M-hyponormal for
M > 0 if ðT� �ÞðT� �Þ� �MðT� �Þ�ðT� �Þ for all � 2 C, and is dominant if
ranðT� �Þ 
 ranðT� �Þ�, for all � 2 C. If T satisfies jT 2j 	 T �T, then we say that T
belongs to the classA (or simply, T is classA). We also say that T is co-hyponormal,
co-M-hyponormal, co-dominant, co-p-hyponormal and co-log-hyponormal if T � is
hyponormal, M-hyponormal, dominant, p-hyponormal and log-hyponormal
respectively. It is well known that M-hyponormal is dominant and also well-known
that p-hyponormal and log-hyponormal are classA. By definition, the restriction of
an M-hyponormal (resp. dominant) operator to an invariant subspace is always
M-hyponormal (resp. dominant). The parallel results for p-hyponormal (resp.
classA) have been obtained by the author ([18], [19]), i.e., it is true that the restriction
of p-hyponormal (resp. classA) to an invariant subspace is always p-hyponormal
(resp. classA).

The following Fuglede-Putnam’s theorem is famous.
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Theorem. (Fuglede-Putnam’s theorem [4], [12]). Let A 2 BðHÞ and B 2 BðKÞ be
normal operators on Hilbert spaces H and K, respectively. Let C 2 BðH;KÞ be an
operator which satisfies CA ¼ BC. Then CA� ¼ B�C.

Many mathematicians have extended this theorem to various classes of opera-
tors. The following is one of them.

Theorem. (Duggal [3], Yoshino [21]) Let A� 2 BðHÞ be M-hyponormal and
B 2 BðKÞ be dominant. Let C 2 BðH;KÞ be an operator which satisfies CA ¼ BC.
Then CA� ¼ B�C.

We say that a closed linear subspaceM ofH, invariant under T, is a normal part of
T if the restriction TjM of T toM is normal. It is a famous result of Stampfli [15] that
every normal part of a dominant operator B is always a reducing subspace of B.

Recently, Patel [10] has proved the following result.

Theorem. Let T be an injective p-hyponormal operator on H with the property
that every normal part of T reduces T. Let X be a bounded linear operator on H such
that TX ¼ XT �. Then T �X ¼ XT.

In this paper, we shall show that if T is p-hyponormal or log-hyponormal then
every normal part of T is a reducing subspace of T. Consequently the conclusion of
the theorem of Patel [10] above remains true without the assumption of injectivity or
reduceness of the normal parts. Further, the conclusion of the theorem remains true
if the hypothesis of p-hyponormality of the operator is replaced by that of log-
hyponormality. Finally we shall prove the following partial generalization of the
theorem of Duggal [3] and Yoshino [21] stated above.

Theorem. Let A� 2 BðHÞ be p-hyponormal or log-hyponormal and B 2 BðKÞ be
dominant. If C 2 BðH;KÞ and CA ¼ BC, then CA� ¼ B�C.

2. Preliminaries The following lemmas are well known except Lemma 3. For
the sake of convenience, we state them without proof.

Lemma 1. ([13]). If N is a normal operator on H, then we have\
�2C

ðN� �ÞH ¼ f0g:

Lemma 2. ([1], [17]). If T is p-hyponormal for 0 < p < 1 (resp. log-hyponormal)
and T ¼ UjTj is the polar decomposition of T, then the Aluthge transformeTT ¼ jTj12UjTj12 of T is hyponormal if p 	 1

2 and ðpþ 1
2Þ-hyponormal if 0 < p � 1

2 (resp. 1
2-

hyponormal).

In [11], Patel showed that a p-hyponormal operator is normal whenever its
Aluthge transform is normal. The following is an extension of Patel’s result.

Lemma 3. Let T be a p-hyponormal (respectively log-hyponormal) operator on H
and let UjTj be the polar decomposition of T. Let M is a closed subspace of H such
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that the Aluthge transform eTT is of the form eTT ¼ N� T 0 on H ¼M�M
?, where N is

a normal operator on M. Then T and U are of the form T ¼ N� T1 and
U ¼ U11 �U22, where T1 is p-hyponormal (resp. log-hyponormal) and N ¼ U11jNj is
the polar decomposition of N.

In particular, if the Aluthge transform eTT of T is normal, then T is normal.

Proof. For p-hyponormal or log-hyponormal T, it was shown by Aluthge [1]
and Tanahashi [17] that

jeTTj 	 jTj 	 jeTT �j:

Hence, we have

jNj � jT 0j 	 jTj 	 jNj � jT 0�j

by assumption. This implies that jTj is of the form jNj � L, for some positive operator

L. Let U ¼
U11 U12

U21 U22

� �
be the 2� 2 matrix representation of U with respect to the

decompositionH ¼M�M?. Then the definition eTT ¼ jTj12UjTj12 means that

N 0
0 T 0

� �
¼

jNj
1
2 0

0 L
1
2

� �
U11 U12

U21 U22

� �
jNj

1
2 0

0 L
1
2

� �
:

Hence, we have
N ¼ jNj

1
2U11jNj

1
2; ð1Þ

jNj
1
2U12L

1
2 ¼ 0; ð2Þ

L
1
2U21jNj

1
2 ¼ 0: ð3Þ

If T is p-hyponormal, then ranU ¼ ranT 
 ranjTj. Since KerU ¼ KerT ¼
KerjTj we also have

KerN 
 KerU11;KerU21 ð4Þ

ranU11; ranU12 
 ranjNj ¼ ranN ð5Þ

KerL 
 KerU12;KerU22 ð6Þ

ranU21; ranU22 
 ranL: ð7Þ

(1), (4) and (5) imply that N ¼ U11jNj.
(2), (5) and (6) imply that U12 ¼ 0.
(3), (4) and (7) imply that U21 ¼ 0.

Hence U is of the form U ¼ U11 �U22, and so we obtain

T ¼ UjTj ¼ U11jNj �U22L ¼ N� T1;

where T1 ¼ U22L. The p-hyponormality of T1 is immediate from that of T. Hence
the assertion holds for p-hyponormal operators.
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If T is log-hyponormal, then N and L are invertible, since T is invertible. Hence
(1) implies N ¼ U11jNj and (2), (3) imply that U12 ¼ 0 and U21 ¼ 0. By the same
argument as above, we have the conclusion. &

Lemma 4. (Putnam [14]). Let T 2 BðHÞ, D 2 BðHÞ with 0 � D �
MðT� �Þ ðT� �Þ� for all � in C, where M is a positive real number. Then, for every
x 2 D

1
2H there exists a bounded function f : C!H such that ðT� �Þ f ð�Þ � x.

Lemma 5. ([5], [6]). Every p-hyponormal and every log-hyponormal operator is
classA.

Lemma 6. (Löwner-Heinz’s inequality [9], [8]). Let A 2 BðHÞ, B 2 BðHÞ. If
0 � A � B and � 2 ð0; 1
, then 0 � A� � B�.

Lemma 7. (Hansen’s inequality [7]) If A;B 2 BðHÞ satisfy A 	 0 and kBk � 1,
then ðB�ABÞ� 	 B�A�B, for all � 2 ð0; 1
.

Lemma 8. (Douglas’s theorem [2]). For A;B 2 BðHÞ, the following are equivalent.
(1) AA� � �BB�.
(2) ranA 
 ranB.
(3) A ¼ BC for some C 2 BðHÞ.

The following result is well known but we have been unable to find an explicit
reference. A proof is included for completeness.

Lemma 9. Let
A B
B� C

� �
2 BðH �KÞ be a positive operator. Then ranB 
 rmA

1
2.

In fact, B ¼ A
1
2DC

1
2, for some contraction D 2 BðK;HÞ.

Proof. Let
A B
B� C

� �
be a positive operator on H�K. Then for every

x
y

� �
2 H�K, we have

0 �
A B
B� C

� �
x
y

� �
;

x
y

� �� �
¼ A

1
2x

��� ���2þ2Re x;By
� 	

þ C
1
2y

��� ���2:
This implies that

A
1
2x

��� ���2�2 x;By
� 	

 

þ C

1
2y

��� ���2	 0; for every x 2 H and y 2 K:

If we replace y by ty for t > 0, then we have

t2 C
1
2y

��� ���2�2t x;By
� 	

 

þ A

1
2x

��� ���2	 0; for all t > 0;

and this is equivalent to

x;By
� 	

 

 � A

1
2x

��� ��� C
1
2y

��� ���; for all x 2 H and y 2 K:
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https://doi.org/10.1017/S0017089502030057 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030057


By the inequality above, we see that

ranA
1
2 � ranC

1
2 3 A

1
2x;C

1
2y

� �
7! x;By
� 	

2 C

is a continuous sesqui-linear form (with its norm less than or equal to 1) and so it
can be extended uniquely to a continuous sesqui-linear form on ranA

1
2 � ranC

1
2 ¼

ranA� ranC. Hence, there exists a contraction D0 2 B ranC; ranA

 �

such that

x;By
� 	

¼ A
1
2x;D0C

1
2y

D E
for all x 2 H and y 2 K;

by Riesz’s representation theorem. Let P 2 BðKÞ be the orthagonal projection onto
ranC and let D ¼ D0P. Then D 2 BðK;HÞ and

x;By
� 	

¼ A
1
2x;DC

1
2y

D E
; for all x 2 H and y 2 K:

Thus we have B ¼ A
1
2DC

1
2. This completes the proof. &

It is well known, by [16], that a hyponormal operator which is quasi-similar to a
normal operator is always normal. The following is an extension of this result to the
case of p-hyponormal or log-hyponormal operators.

Theorem 1. Let T be p-hyponormal or log-hyponormal, N be normal on H and K
respectively. Let X 2 BðK;HÞ be injective with dense range which satisfies TX ¼ XN.
Then T �X ¼ XN�.

Proof. First, we prove the case in which T is p-hyponormal and p 	 1
2. The

p-hyponormality of T implies that KerT reduces T. Also KerN reduces N, since N is
normal. Using the orthogonal decompositions H ¼ ½jTjH
 � kerT and K ¼ ½NK

�N, we can represent T and N as follows.

T ¼
T1 0
0 0

� �
ð8Þ

N ¼
N1 0
0 0

� �
; ð9Þ

where T1 is injective and p-hyponormal on ½jTjH
 and N1 is injective and normal on
½NH
. The assumption TX ¼ XN implies that X maps N to ranT 
 ½jTjH
 and KerN
to KerT. Hence X is of the form

X ¼
X1 0
0 X2

� �
; ð10Þ

where X1 2 Bð½NK
; ½jTjH
Þ;X2 2 BðKerN;KerTÞ. Since TX ¼ XN, we have that

T1X1 ¼ X1N1: ð11Þ
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Since X is injective with dense range, X1 is also injective with dense range. Put
W ¼ X1

�jT1j
1
2. Then W : ½jTjH
 ! ½NK
 is a one-to-one mapping which has dense

range and satisfies WeT1T1
� ¼ N1

�W. Here eT1T1 is the Aluthge transform of T1. Since eT1T1

is hyponormal, for every x 2 ðeT1T1
�eT1T1 � eT1T1

eT1T1
�Þ

1
2H, there exists a bounded function

f : C!H such that ðeT1T1
� � �Þ f ð�Þ � x, for all � 2 C, by Lemma 4. Hence

Wx ¼W eT1T1
� � �

� �
f ð�Þ

¼ N�1 � �

 �

Wf ð�Þ

2 ran N�1 � �

 �

; for all � 2 C:

By Lemma 1, we have Wx ¼ 0, and hence x ¼ 0 because W is one-to-one. This
implies that eT1T1 is normal. By Lemma 3, T1 is normal and therefore T ¼ T1 � 0 is
also normal. The assertion is immediate from Fuglede-Putnam’s theorem.

Next, we prove the cases in which T is p-hyponormal for p � 1
2 or log-

hyponormal. Let T1;N1;X1 and W be as above. Then eT1T1 is 1
2-hyponormal and

W� : ½NK
 ! ½jTjH
 is a one-to-one mapping with dense range that satisfies

eT1T1W
� ¼W�N1:

By using a previous argument we see that eT1T1 is normal. Hence T1 is normal by
Lemma 3. This implies that T is normal. The assertion follows by Fuglede-Putnam’s
theorem. &

3. Main theorems In order to obtain our generalization of Patel’s result [10]
discussed earlier we require some preliminary lemmas.

Lemma 10. (Stampfli-Wadhwa [16]) Let T 2 BðKÞ be dominant and S 2 BðKÞ be
co-hyponormal. If W 2 BðH;KÞ is a one-to-one mapping with dense range and
WS ¼ TW, then T and S are normal.

Lemma 11. Let T ¼
T1 S
0 T2

� �
be a classA operator on H ¼M�M

?, where

M is a T-invariant subspace such that the restriction T1 ¼ TjM is normal. Then the
range of S is included in KerT1. In particular, if T is injective, every normal part of T
reduces T.

Proof. Let P be the orthogonal projection ontoM. Then we have

T �
1T1 0

0 0

� �
¼ PT �TP � P T 2



 

P ðsince T is classAÞ

�
ðT �21 T 2

1Þ
1
2 0

0 0

 !
ðby Hansen

‘

s inequalityÞ

¼
T �

1T1 0

0 0

� �
ðsince T1 is normalÞ:

402 ATSUSHI UCHIYAMA AND KÔTARÔ TANAHASHI
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Let jT 2j ¼
X Y
Y� Z

� �
be the 2� 2 matrix representation of jT 2j or

H ¼M�M
?. Then we have X ¼ T1

�T1 by the inequality above. Since
jT 2j2 ¼ T �2T 2, we have

X2 þ YY� XYþ YZ
ZY� þ Y�X Y�Yþ Z2

� �
¼

T1
�2T1

2 T1
�2T1S

S�T1
�T1

2 S�Sþ T2
�2T2

2

� �
;

and hence X2 þ YY� ¼ T1
�2T1

2 ¼ ðT�1T1Þ
2
¼ X2. This implies that Y ¼ 0. Thus we

have

jT 2j ¼
T1
�T1 0
0 Z

� �
	 T �T ¼

T1
�T1 T1

�S
S�T1 S�Sþ T2

�T2

� �

and hence T1
�S ¼ 0. Thus the range of S is included in KerT1

� ¼ KerT1. If T is
one-to-one, then T1 is also one-to-one. Hence the second statement of Lemma 11
follows trivially. &

Lemma 12. If T is p-hyponormal or log-hyponormal, then every normal part of T
reduces T.

Proof. If T is log-hyponormal, then T is invertible. Hence the assertion holds for
log-hyponormal operators by Lemma 11.

Now, we assume that T is p-hyponormal. Let M be a normal part of T. By

Lemmas 5 and 11, T is of the form
N S
0 T1

� �
onM�M

?, where N is normal and
ranS 
 KerN. It is easy to see that

T �T ¼
Nj j2 0

0 S�Sþ T �
1T1

 !
;

TT � ¼
Nj j2þSS� ST �

1

T1S
� T1T

�
1

 !
:

Put ðTT �Þ
p
¼

X Y
Y � Z

� �
. Then the p-hyponormality of T implies that

ðT �TÞ p ¼
jNj2p 0
0 ðS�Sþ T1

�T1Þ
p

� �
	

X Y
Y� Z

� �
¼ ðTT �Þ

p:

We have ranY 
 ranX
1
2 by Lemma 9 and ranX

1
2 
 ranjNjp by Lemma 8. Hence we

have ranX;[ ranY 
 ranX
1
2 
 ranjNjp. Put ðTT �Þ

1�p
¼

A B
B� C

� �
. Hence

TT � ¼ ðTT �Þ
p
ðTT �Þ

1�p
¼

X Y
Y � Z

� �
A B
B � C

� �
:

This implies that jNj2 þ SS� ¼ XAþ YB�. Therefore,
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ranðSS�Þ 
 ranjNj2 þ ranXþ ranY 
 ranjNjp 
 ranN;

while, ranðSS�Þ 
 ranS 
 KerN. This shows that ranðSS�Þ ¼ f0g and therefore
S ¼ 0. This completes the proof. &

Theorem 2. Let T 2 BðHÞ be p-hyponormal or log-hyponormal and L 2 BðHÞ be
a self-adjoint operator which satisfies TL ¼ LT �. Then T �L ¼ LT.

Proof. We first show that if TL ¼ LT � ¼ 0 then T �L ¼ LT ¼ 0. Since KerT
reduces T, TL ¼ 0 implies that ranL 
 KerT 
 KerT � and (by taking orthogonal
complements) ranT 
 KerL. Hence we have T �L ¼ LT ¼ 0.

Next, we prove the case in which TL 6¼ 0. Assume that T is p-hyponormal. Using
the decomposition H ¼ ranL�KerL, the operators L and T can be represented as
follows:

L ¼
L1 0
0 0

� �
; ð12Þ

T ¼
T1 S
0 T2

� �
; ð13Þ

where L1 is self-adjoint with KerL1 ¼ f0g (hence it has dense range) and T1 is also
p-hyponormal by [18]. The assumption TL ¼ LT � implies that T1L1 ¼ L1T1

�. Since
KerT1 reduces T1 and L1, they are of the form T1 ¼ T11 � 0 and L1 ¼ L11 � L22 on
ranL ¼ ranjT1j �KerT1. It is easy to see that T11 is an injective p-hyponormal
operator and L11 is an injective self-adjoint operator which satisfies T11L11 ¼

L11T11
�. If p 	 1

2, then
gT11T11W ¼WgT11T11

�
, where W ¼ jT11j

1
2L11jT11j

1
2 is injective self-

adjoint andgT11T11 is hyponormal. We havegT11T11 is normal by Lemma 10 and T11 is also
normal by Lemma 3. Hence T1 ¼ T11 � 0 is also normal. By Fuglede-Putnam’s
theorem we see that T1

�L1 ¼ L1T1. Since T1 is normal S ¼ 0 by Lemma 12, so we
have T �L ¼ LT. Hence the assertion holds for p-hyponormal operators for p 	 1

2. If
0 < p < 1

2,
gT11T11 is an injective ðpþ 1

2Þ-hyponormal. Using the previous argument, we
have thatgT11T11 is normal and hence T1 is normal. By the same reasoning as above, the
assertion holds for p-hyponormal operators for 0 < p < 1

2.
If T is log-hyponormal, then the Aluthge transform ~TT of T is 1

2-hyponormal.
Moreover it satisfies

j ~TTj 	 jTj 	 j ~TT �j: ð14Þ

See [17]. Put W ¼ jTj
1
2LjTj

1
2. Then W is self-adjoint and satisfies

~TTW ¼W ~TT �: ð15Þ

By the previous argument, we have that the restriction ~TTjranW of ~TT to its invariant
subspace ranW is normal and

~TT �W ¼W ~TT: ð16Þ

Hence ranW reduces ~TT, by Lemma 12, and so ~TT is of the form ~TT ¼ N� S on
ranW�KerW, where N is normal. By Lemma 3, T ¼ N� B, for some log-hypo-
normal operator B. Let W ¼W1 � 0 and
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L ¼
L11 L12

L21 L22

� �
on ranW�KerW. Then L12 ¼ 0;L21 ¼ 0 and L22 ¼ 0 follows from the equality
W ¼ jTj

1
2LjTj

1
2. By assumption, NL11 ¼ L11N

�, we have N�L11 ¼ L11N by Fuglede-
Putnam’s theorem and therefore T �L ¼ LT. &

Corollary 1. Let T 2 BðHÞ be p-hyponormal or log-hyponormal. If X 2 BðHÞ
and TX ¼ XT �, then T �X ¼ XT.

Proof. Let X ¼ Lþ iK be the Cartesian decomposition of X. Then we have
TL ¼ LT � and TJ ¼ JT �, by the assumption. By Theorem 2, we have T �L ¼ LT
and T �J ¼ JT. This implies that T �X ¼ XT. &

Remark 1. If we use Patel’s result and Lemma 12, the assertion of Theorem 2
for p-hyponormal is immediate, since T and L are of the form T ¼ T1 � 0 and
L ¼ L1 � L2 on ranjTj �KerT, where T1 is an injective p-hyponormal operator.

If we use the 2� 2 matrix trick, we easily deduce the following result.

Corollary 2. Let T � 2 BðHÞ and S 2 BðKÞ be p-hyponormal (resp. log-hypo-
normal). If X 2 BðH;KÞ and XT ¼ SX, then XT � ¼ S�X.

Proof. Put A ¼
T � 0
0 S

� �
and B ¼

0 0
X 0

� �
on H�K. Then A is a p-hypo-

normal (resp. log-hyponormal) operator on H�K that satisfies BA� ¼ AB. Hence
we have BA ¼ A�B, by Corollary 1, and therefore XT � ¼ S�X. &

Lemma 13. Let T � 2 BðHÞ be p-hyponormal(resp. log-hyponormal) and UjTj be
the polar decomposition of T. Let M be a closed subspace of H such that the Aluthge
transform ~TT is of the form ~TT ¼ N� T 0 on H ¼M�M

?, where N is a normal

operator on M. Then T and U are of the form T ¼
N A
0 T1

� �
and

U ¼
U11 U12

0 U22

� �
(resp N� T1 and U ¼ U11 �U22) on H ¼M�M

?, where

N ¼ U11jNj is the polar decomposition of N and ranU12 
 KerN.
In particular, if N is one-to-one, then T ¼ N� T1 and U ¼ U11 �U22 on

¼M�M?.

Proof. Since T � is p-hyponormal or log-hyponormal,

j ~TTj � jTj � j ~TT �j;

by Aluthge [1] and Tanahashi [17]. Hence, we have

jNj � jT 0j � jTj � jNj � jT 0�j;
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by assumption. This implies that jTj is of the form jNj � L, for some positive operator

L. Let U ¼
U11 U12

U21 U22

� �
be the 2� 2 matrix representation of U with respect to the

decomposition H ¼M�M
?. Then the definition ~TT ¼ jTj

1
2UjTj

1
2 means that

N 0
0 T 0

� �
¼

jNj
1
2 0

0 L
1
2

� �
U11 U12

U21 U22

� �
jNj

1
2 0

0 L
1
2

� �
;

Hence, we have

N ¼ jNj
1
2U11jNj

1
2; ð17Þ

jNj
1
2U12L

1
2 ¼ 0; ð18Þ

L
1
2U21jNj

1
2 ¼ 0: ð19Þ

Since KerU ¼ KerT ¼ KerjTj, we have

KerN 
 KerU11;KerU21; ð20Þ

KerL 
 KerU12;KerU22: ð21Þ

Let N ¼ VjNj be the polar decomposition of N. Then ranðU11 � VÞ 
 KerN by (17)
and (20). Hence, for arbitrary x 2 ranN, we have

kxk2 	 kU11xk
2 ¼ kVxk2 þ kðU11 � VÞxk2; by Pythagoras

‘

theorem;

¼ kxk2 þ kðU11 � VÞxk2; since V is unitary on ranN;

	 kxk2:

Therefore, we obtain U11 ¼ V. Since

kxk2 ¼ kUxk2 ¼ kU11xk
2 þ kU21xk

2 ¼ kxk2 þ kU21xk
2 for x 2 ranN;

we have U21 ¼ 0 by (20). Also, we see that ranU12 
 KerN by (18) and (21). Hence,

T ¼ UjTj ¼
U11 U12

0 U22

� �
jNj 0
0 L

� �
¼

N U12L
0 U22L

� �
:

In particular, if T � is log-hyponormal, then N and L are invertible. Hence
U12 ¼ 0 and U21 ¼ 0 immediately from (18) and (19). This completes the proof of
the first statement.

The second statement is trivial, since U12 ¼ 0 is immediate from
ranU12 
 KerN ¼ f0g. &

Theorem 3. Let A 2 BðHÞ be such that A� is p-hyponormal or log-hyponormal.
Let B 2 BðKÞ be dominant. Then CA� ¼ B�C whenever CA ¼ BC, for some
C 2 BðH;KÞ.
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Proof. Let A� be a p-hyponormal operator for p 	 1
2 and UjAj be the polar

decomposition of A. Then the Aluthge transform eAA of A is co-hyponormal and
satisfies

j ~AAj2 � jAj2 � j ~AA�j2; ð22Þ

C 0 ~AA ¼ BC 0; ð23Þ

where C0 ¼ CUjAj
1
2. Using the decompositions H ¼ KerC0? �KerC0 and K ¼

ranC0 � ranC0?, we see that eAA, B and C0 are of the form

~AA ¼
A1 0
S A2

� �
; B ¼

B1 T
0 B2

� �
;C0 ¼

C1 0
0 0

� �
;

where, A1 is co-hyponormal, B1 is dominant and C1 is a one-to-one mapping with
dense range. Since C0eAA ¼ BC0, we have

C1A1 ¼ B1C1: ð24Þ

Hence A1 and B1 are normal by Lemma 10, so that S ¼ 0, by Lemma 12 and
T ¼ 0 by [15]. Thus jAj ¼ jA1j � L, for some positive L, by (22) and

U ¼
U11 U12

0 U22

� �
by Lemma 13. Let C ¼

C11 C12

C21 C22

� �
be a 2� 2 matrix repre-

sentation of C with respect to the decompositions H ¼ KerC0? �KerC0 and
K ¼ ranC0 � ranC0

?
. Then, C0 ¼ CUjAj

1
2 implies that C1 ¼ C11U11jA1j

1
2 and hence

KerA1 
 KerC1 ¼ f0g. This shows that A1 is one-to-one (hence, it has dense range),
so that U12 ¼ 0 and A ¼ A1 � A3, for some co-p-hyponormal operator A3 by
Lemma 13. Since,

C1 0
0 0

� �
¼ C0 ¼ CUjAj

1
2 ¼

C11 C12

C21 C22

� �
U11jA1j

1
2 0

0 U22jA3j
1
2

� �
;

we deduce the following statements.

C12U22jA3j
1
2 ¼ 0; hence C12A3 ¼ 0 because A3 ¼ U22jA3j: ð25Þ

C21U11jA1j
1
2 ¼ 0; hence C21 ¼ 0 because U11jA1j

1
2 has dense range: ð26Þ

C22U22jA3j
1
2 ¼ 0; hence C22A3 ¼ 0: ð27Þ

The assumption CA ¼ BC tells us that,

C11A1 ¼ B1C11; ð28Þ

C12A3 ¼ B1C12 ¼ 0; by ð25Þ; ð29Þ

C22A3 ¼ B2C22 ¼ 0; by ð27Þ: ð30Þ
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Since A1 and B1 are normal we have C11A1
� ¼ B1

�C11, by Fuglede-Putnam’s theo-
rem. The p-hyponormality of A3

� shows that ranA3
� 
 ranA3. Also we have

KerB2 
 KerB2
� from the fact that B2 is dominant. Hence, we also have

C12A3
� ¼ B1

�C12 ¼ 0 and C22A3
� ¼ B2

�C22 ¼ 0. This implies that CA� ¼
C11A1

� � 0 ¼ B1
�C11 � 0 ¼ B�C.

Next, we prove the case where A� is p-hyponormal for 0 < p � 1
2. Let C0 be as

above. Then ~AA is co-ðpþ 1
2Þ-hyponormal and satisfies C0 ~AA ¼ BC0. Use the same

argument as above. We obtain ~AA ¼ A1 � A2 on H ¼ KerC0? �KerC0 and
B ¼ B1 � B2, where A1 is an injective normal operator and B1 is also normal. Hence,
we have A ¼ A1 � A3 for some co-p-hyponormal A3, by Lemma 13. Again using the
same argument as above, we obtain C21 ¼ 0, C11A1

� ¼ B1
�C11, C12A3

� ¼

B1
�C12 ¼ 0 and C22A3

� ¼ B2
�C22 ¼ 0, where C ¼

C11 C12

C21 C22

� �
is the 2� 2 matrix

representation of C with respect to the decompositions H ¼ KerC0? �KerC0 and
K ¼ ranC0 � ranC0?. Hence we have CA� ¼ B�C.

Finally, we assume that A� is log-hyponormal. Let ~AA and C0 be as above. Then
C0 ~AA ¼ BC0 and ~AA� is 1

2-hyponormal and satisfies

j ~AAj � jAj � j ~AA�j: ð31Þ

By the same argument as above, we have ~AA ¼ A1 � A2 on H ¼ KerC0? � kerC0

and B ¼ B1 � B2 on K ¼ ranC0 � ranC0?, where A1 is an invertible normal operator,
B1 is normal, A2 is invertible, co-12-hyponormal and B2 is dominant. By Lemma 13,
we have that A is of the form A ¼ A1 � A3, for some log-hyponormal A3

�. Let

C ¼
C11 C12

C21 C22

� �
. Then C0 ¼ CUjAj

1
2 implies that C12 ¼ 0, C21 ¼ 0 and C22 ¼ 0.

The assumption CA ¼ BC implies that C11A1 ¼ B1C11; hence C11A1
� ¼ B1

�C11 by
Fuglede-Putnam’s theorem. Thus we have CA� ¼ C11A1

� � 0 ¼ B1
�C11 � 0 ¼ B�C.

This completes the proof. &

Remark 2. Let T be an operator such that KerT does not reduce T and let P be
the orthogonal projection onto KerT. Then P does not commute with T; otherwise
ranP ¼ KerT reduces T. Hence PT 6¼ 0 ¼ TP. It is easy to see that TP ¼ PT � ¼ 0
but T �P 6¼ PTð6¼ 0Þ because ranT �P 
 ranT � 
 KerT? ¼ ð1� PÞ. Hence the
assertion of Theorem 2 does not hold for such T. Also, if we put A ¼ T �; B ¼ 1� P
and C ¼ P, then

CA ¼ PT � ¼ 0 ¼ ð1� PÞP ¼ BC:

However

CA� ¼ PT 6¼ 0 ¼ ð1� PÞP ¼ B�C:

Hence the assertion of Theorem 3 does not hold for such T.
This is an example of a classA operator T such that T does not reduce T.

Example 1. Let feng
1
n¼�1 be a complete orthonormal system forH. We denote the

orthogonal projection onto Cen by Pn. Let W be a weighted shift onH defined by

408 ATSUSHI UCHIYAMA AND KÔTARÔ TANAHASHI
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Wen ¼

ffiffiffi
2

p
enþ1 ðn 	 0Þ;

enþ1 ðn < 0Þ:

�
Then W�W�WW� ¼ P0. Define an operator T on a Hilbert space K ¼ H� Ce0 by

T ¼
W P0

0 0

� �
:

Then

T �2T2 � ðT �TÞ2 ¼ T �fT �T� TT �gT

¼
W� 0

P0 0

� �
0 W�P0

P0W P0

� �
W P0

0 0

� �
¼

W� 0

P0 0

� �
0 0

P0W
2 P0WP0

� �
¼ 0:

Hence T�2T2 ¼ ðT �TÞ2 and therefore jT2j ¼ T �T. This shows that T is classA. It
is easy to see that

KerT ¼ Cð�e�1 � e0Þ and KerT � ¼ f0g � Ce0:

Hence T does not reduce T and therefore the assertions of Theorems 2 and 3 are not
necessarily true for classA operators.
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