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Abstract. Let T be p-hyponormal or log-hyponormal on a Hilbert space H.
Then we have X7 = T*X whenever XT* = TX for some X € B(H). This is an
extension of Patel’s result. Also for p-hyponormal or log-hyponormal T*, dominant
S and any X € B(H) such that X7 = SX, we have XT* = S*T.
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1. Introduction. For complex Hilbert spaces H and C, B(H), B(K) and B(H,K)
denote the set of all bounded linear operators on H, the set of all bounded linear
operators on K and the set of all bounded linear transformation from H to K
respectively. Throughout this paper, H and K are Hilbert spaces, and Hilbert spaces
mean complex Hilbert spaces. A bounded linear operator T on a complex Hilbert
space H is called normal if T*T = TT*. Also T is called p-hyponormal for p > 0 if
(T*TY > (TT*Y, log-hyponormal if T is an invertible operator which satisfies
log(T*T) > log(TT*). Throughout this paper, we consider the case where p € (0, 1].
T is called hyponormal iff it is 1-hyponormal. We say that T is M-hyponormal for
M >0 if (T—2)(T—x1)"<M(T—-2)(T—2xr) for all L €C, and is dominant if
ran(T — 1) C ran(T — A)*, for all A € C. If T'satisfies | T %| > T*T, then we say that T
belongs to the classA (or simply, T is class4). We also say that T is co-hyponormal,
co-M-hyponormal, co-dominant, co-p-hyponormal and co-log-hyponormal if T* is
hyponormal, M-hyponormal, dominant, p-hyponormal and log-hyponormal
respectively. It is well known that M-hyponormal is dominant and also well-known
that p-hyponormal and log-hyponormal are class4. By definition, the restriction of
an M-hyponormal (resp. dominant) operator to an invariant subspace is always
M-hyponormal (resp. dominant). The parallel results for p-hyponormal (resp.
class4) have been obtained by the author ([18], [19]), i.e., it is true that the restriction
of p-hyponormal (resp. class4) to an invariant subspace is always p-hyponormal
(resp. classA).

The following Fuglede-Putnam’s theorem is famous.
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THEOREM. (Fuglede-Putnam’s theorem [4], [12]). Let A € B(H) and B € B(K) be
normal operators on Hilbert spaces H and IC, respectively. Let C € B(H, K) be an
operator which satisfies CA = BC. Then CA* = B*C.

Many mathematicians have extended this theorem to various classes of opera-
tors. The following is one of them.

TaeoreM. (Duggal [3], Yoshino [21]) Let A* € B(H) be M-hyponormal and
B e B(K) be dominant. Let C € B(H,K) be an operator which satisfies CA = BC.
Then CA* = B*C.

We say that a closed linear subspace M of H, invariant under 7, is a normal part of
T if the restriction 71, of T to M is normal. It is a famous result of Stampfli [15] that
every normal part of a dominant operator B is always a reducing subspace of B.
Recently, Patel [10] has proved the following result.

THEOREM. Let T be an injective p-hyponormal operator on H with the property
that every normal part of T reduces T. Let X be a bounded linear operator on 'H such
that TX = XT*. Then T*X = XT.

In this paper, we shall show that if 7" is p-hyponormal or log-hyponormal then
every normal part of T is a reducing subspace of 7. Consequently the conclusion of
the theorem of Patel [10] above remains true without the assumption of injectivity or
reduceness of the normal parts. Further, the conclusion of the theorem remains true
if the hypothesis of p-hyponormality of the operator is replaced by that of log-
hyponormality. Finally we shall prove the following partial generalization of the
theorem of Duggal [3] and Yoshino [21] stated above.

THEOREM. Let A* € B(H) be p-hyponormal or log-hyponormal and B € B(K) be
dominant. If C € B(H, K) and CA = BC, then CA* = B*C.

2. Preliminaries The following lemmas are well known except Lemma 3. For
the sake of convenience, we state them without proof.

LemMma 1. ([13)). If N is a normal operator on H, then we have

(V= MH = {0}.

reC

LemMmA 2. (1], [17)). If T is p-hyponormal for 0 < p < 1 (resp. log-hyponormal)
and T = U| 71”| is the polar decomposition of T, then the Aluthge transform
T = |T\2U|T\: of T is hyponormal if p > %and(p + %)-hyponormal if0<p=< % (resp. %—
hyponormal).

In [11], Patel showed that a p-hyponormal operator is normal whenever its
Aluthge transform is normal. The following is an extension of Patel’s result.

LEMMA 3. Let T be a p-hyponormal (respectively log-hyponormal) operator on 'H
and let U|T| be the polar decomposition of T. Let M is a closed subspace of H such
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that the Aluthge transform Tis of the form T=N&T onH=Ma&M?", where N is
a normal operator on M. Then T and U are of the form T=N& T, and
U= U & Uy, where T is p-hyponormal (resp. log-hyponormal) and N = U||N] is
the polar decomposition of N. _

In particular, if the Aluthge transform T of T is normal, then T is normal.

Proof. For p-hyponormal or log-hyponormal 7, it was shown by Aluthge [1]
and Tanahashi [17] that

T =T = |T7].

Hence, we have
IN|@® |T'| = |T| = IN| & |T"|

by assumption. This implies that |7 is of the form |N| & L, for some positive operator
Un Un
U Un
o o, -~ 1 1
decomposition H = M @ M*. Then the definition T = |T|2U|T|> means that

N O\ _(INE 0)(Un Un\(INE 0
0 7 0 L:)\Uy Un o L)

Hence, we have

L.Let U= ( ) be the 2 x 2 matrix representation of U with respect to the

N = |NFUy|NE, (1)
INFURLE =0, )
L2Uy [N = 0. 3)

If T is p-hyponormal, then ranU =ranT C ran|7]. Since KerU = KerT =
Ker|T| we also have

KerN C KerUj;, KerUy; 4
ranUy;, ranU; C ran|N| = ranN &)
KerL C KerUj,, KerUs, (6)
ranU,;, ranU,, C ranL. (7

(1), (4) and (5) imply that N = U};|N|.

(2), (5) and (6) imply that U;, = 0.

(3), (4) and (7) imply that U,; = 0.

Hence U is of the form U = Uj; @ Uy, and so we obtain

T=UT =UnN@UnL=Na@T,

where T} = UpL. The p-hyponormality of 7 is immediate from that of 7. Hence
the assertion holds for p-hyponormal operators.
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If T is log-hyponormal, then N and L are invertible, since 7 is invertible. Hence
(1) implies N = Uj;|N| and (2), (3) imply that Uj; =0 and U} = 0. By the same
argument as above, we have the conclusion. O

Lemma 4. (Putnam [14]). Let TeB(H), DeB(H) with 0<D<
M(T — ) (T — A)* for all ) in C, where M is a positive real number. Then, for every
x € DM there exists a bounded function f: C — H such that (T — 1) f (1) = x.

LemMmA 5. ([5], [6]). Every p-hyponormal and every log-hyponormal operator is
classA.

LEmMA 6. (Lowner-Heinz’s inequality [9], [8]). Let A € B(H), B € B(H). If
0<A<Bandée(0,1], then 0 < A% < B°.

LemMmA 7. (Hansen’s inequality [7]) If 4, B € B(H) satisfy A >0 and ||B| <1,
then (B*AB)’ > B*A’B, for all § € (0, 1].

Lemma 8. (Douglas’s theorem [2]). For A, B € B(H), the following are equivalent.
(1) A4* < ABB*.

(2) ranA4 C ranB.

(3) A = BC for some C € B(H).

The following result is well known but we have been unable to find an explicit
reference. A proof is included for completeness.

LEMMA 9. Let (;* g) € B(H & K) be a positive operator. Then ranB C rmAz.
In fact, B = A%DC%,for some contraction D € B(KC, H).

Proof. Let (;* 2) be a positive operator on H @ K. Then for every

(x) € H & K, we have

T D01

This implies that

‘2+2Re<x, By) + H C%y 2.

2 2
HA%X‘ =2|(x, By)| + HC%y‘ > 0, for every x € H and y € K.

If we replace y by ¢ty for ¢ > 0, then we have

ZZHC%y ‘2—2t|(x, By>| + HA%x ’22 0,forall > 0,

and this is equivalent to

(x, By)| < HAéx ,forall x e Hand y € K.

Jeb
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By the inequality above, we see that
rand? x ranC? > (A%x, C%y)l—>(x, By) eC
is a continuous sesqui-linear form (with its norm less than or equal to 1) and so it

can be extended uniquely to a continuous sesqui-linear form on ranA? x ranC? =
ranA x ranC. Hence, there exists a contraction D’ € B (ranC, ranA) such that

(x, By) = <A%x, D/C%y> forall xe Handy €K,

by Riesz’s representation theorem. Let P € B(K) be the orthagonal projection onto
ranC and let D = D'P. Then D € B(K, H) and

(x, By) = (A%x, DC%y), forall x € H and y € K.
Thus we have B = A:DC:. This completes the proof. ]

It is well known, by [16], that a hyponormal operator which is quasi-similar to a
normal operator is always normal. The following is an extension of this result to the
case of p-hyponormal or log-hyponormal operators.

THEOREM 1. Let T be p-hyponormal or log-hyponormal, N be normal on H and K
respectively. Let X € B(IC, H) be injective with dense range which satisfies TX = XN.
Then T*X = XN*.

Proof. First, we prove the case in which T is p-hyponormal and p > % The
p-hyponormality of 7 implies that Ker7 reduces 7. Also KerN reduces N, since N is
normal. Using the orthogonal decompositions H = [|T|H] ® ker T and K = [NK]
@®N, we can represent 7" and N as follows.

T, 0O

Tz(&o) ®)
Ny 0

N:(O1 0): ©)

where T is injective and p-hyponormal on [|T|H] and N; is injective and normal on
[NH]. The assumption TX = XN implies that X maps N to ranT C [|7|H] and KerN
to Ker7. Hence X is of the form

(X1 O
= (5 2) w
where X7 € B(NK], [|TIH]), X> € B(KerN, KerT). Since TX = XN, we have that

T\X; = X|N,. (11)
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Since X is injective with dense range, X is also injective with dense range. Put
W= X1*|T1|%. Then W:[|TIH] — [NK] is a one-to-one mapping which has dense
range and satisfies WT1* = N*W. Here T is tllle Aluthge transform of 7. Since T
is hyponormal, for every x € (T1*Ty — Th T1*)"H, there exists a bounded function
f: C — H such that (T7* — 1) f(1) = x, for all A € C, by Lemma 4. Hence

WR::W(ﬁ*—A)ﬂ})

= (N} = 2)Wf ()
€ ran(N} — A), forall » € C.

By Lemma 1, we have Wx =0, and hence x =0 because W is one-to-one. This
implies that 7; is normal. By Lemma 3, T; is normal and therefore 7= T, & 0 is
also normal. The assertion is immediate from Fuglede-Putnam’s theorem.

Next, we prove the cases in which T is p-hyponormal for pf% or log-
hyponormal. Let T}, Ni, X; and W be as above. Then Tj is %—hyponormal and
W* . [NK] — [|T|'H] is a one-to-one mapping with dense range that satisfies

T\ W* = W*N;.

By using a previous argument we see that T, is normal. Hence T; is normal by
Lemma 3. This implies that 7 is normal. The assertion follows by Fuglede-Putnam’s
theorem. OJ

3. Main theorems In order to obtain our generalization of Patel’s result [10]
discussed earlier we require some preliminary lemmas.

LeEmMA 10. (Stampfli-Wadhwa [16]) Let T € B(K) be dominant and S € B(K) be
co-hyponormal. If W e B(H,K) is a one-to-one mapping with dense range and
WS = TW, then T and S are normal.

LEMMA 11. Let T = (f)l 7§ ) be a classA operator on H = M @ M*, where
2

M is a T-invariant subspace such that the restriction T\ = T\, is normal. Then the
range of S is included in KerT). In particular, if T is injective, every normal part of T
reduces T.

Proof. Let P be the orthogonal projection onto M. Then we have

(T*I‘Tl 0

0 0) = PT*TP < P|T*|P (since T is classA)

#2 T 2\%
< ((Tl OTl)z g) (by Hansen’s inequality)

(TTTI 0
0 0

) (since T is normal).
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Let |T? = f/( g

H=Ma&M?'. Then we have X = T,*T; by the inequality above. Since
|T??> = T*2T2, we have

be the 2 x2 matrix representation of |T?| or

B T1*2T12 T1*2T15

XP+YY* XY+YZ
o S*Tl*le S*S + T2*2T22 ’

ZY*+ Y*X Y'Y+ Z°
and hence X?> + YY* = T,*2T\> = (T T1)* = X>. This implies that ¥ = 0. Thus we

have
2 (TW'Ty 0 v [ T1* Ty T*S
= '—( o z)=TT=\sn ss+rym

and hence 71*S = 0. Thus the range of S is included in Ker7,* = KerT;. If T is
one-to-one, then 77 is also one-to-one. Hence the second statement of Lemma 11
follows trivially. ]

LemMA 12. If T is p-hyponormal or log-hyponormal, then every normal part of T
reduces T.

Proof. If T is log-hyponormal, then 7 is invertible. Hence the assertion holds for

log-hyponormal operators by Lemma 11.
Now, we assume that T is p-hyponormal. Let M be a normal part of 7. By

Lemmas 5 and 11, T is of the form (1(;[ 5? ) on M & M*, where N is normal and
ranS C KerN. It is easy to see that !

. INI? 0
T"T = ,
0 S*S+T:iT,

2 sk T*
rpe_ [INPHSST ST
T\S*  T\T*

Put (TT*Y = < {,Y* ; > Then the p-hyponormality of T implies that

I 0 (X YN\ s
T T)p_( 0 (S*S+T1*T1>”)—(Y* Z>_(TT "

We have ranY C ranX? by Lemma 9 and ranX 1C ran|N|” by Lemma 8. Hence we

have ranX, UranY C ranXz C ran|NJP. Put (TT*)' 7 = (;* g) Hence

P wip (X Y\(A4 B
TT* = (TT*Y(TT )1"_<Y* z)(g* c)‘

This implies that |N|> + SS* = X4 + YB*. Therefore,
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ran(SS*) C ran|N|> + ranX +ranY C ran|NJ”’ C ranN,

while, ran(SS*) C ranS C KerN. This shows that ran(SS*) = {0} and therefore
S = 0. This completes the proof. O

THEOREM 2. Let T € B(H) be p-hyponormal or log-hyponormal and L € B(H) be
a self-adjoint operator which satisfies TL = LT*. Then T*L = LT.

Proof. We first show that if TL = LT* =0 then T*L = LT = 0. Since KerT
reduces 7, TL = 0 implies that ranL C KerT C Ker7T* and (by taking orthogonal
complements) ran7 C KerZ. Hence we have T*L = LT = 0.

Next, we prove the case in which 7L # 0. Assume that 7' is p-hyponormal. Using
the decomposition H = ranL & KerL, the operators L and T can be represented as

follows:
(L 0
L_<0 0), (12)

T, S
T:(O B)’ (13)

where L is self-adjoint with KerZ; = {0} (hence it has dense range) and T is also
p-hyponormal by [18]. The assumption TL = LT* implies that T, L; = L; T\*. Since
KerT) reduces 77 and L, they are of the form 77 = T, @& 0 and L) = L] @ Ly on
ranl = ran|7T;| & KerT;. It is easy to see that 77 is an injective p-hyponormal
operator and L11 is an_injective self-ad]omt operator which satisfies 77;L; =
LyTy*. If p >3, then TyW = WTyy , where W= |T11|1L11|T11|2 is injective self-
adjoint and Ti 1 1s hyponormal. We have T11 is normal by Lemma 10 and 77, is also
normal by Lemma 3. Hence 7| = T7; ® 0 is also normal. By Fuglede-Putnam’s
theorem we see that T\*L; = L;T;. Since T is normal S = 0 by Lemma 12, so we
have T* L = LT. Hence the assertion holds for p-hyponormal operators for p > 1 If
0<p<3 T Ty is an injective (p + 2) -hyponormal. Using the previous argument we
have that T11 is normal and hence 77 is normal. By the same reasoning as above, the
assertion holds for p-hyponormal operators for 0 < p < 2

If T is log-hyponormal, then the Aluthge transform 7 of T is —-hyponormal
Moreover it satisfies

1T > |71 = |T"|. (14)
See [17]. Put W = |T|%L|T|%. Then W is self-adjoint and satisfies

TW = WT*. (15)
By the previous argument, we have that the restriction 7' |77 of T to its invariant
subspace ran ¥ is normal and

T*W = WT. (16)
Hence ranW reduces T, by Lemma 12, and so T is of the form T=N® S on

ranWW @ KerW, where N is normal. By Lemma 3, 7= N & B, for some log-hypo-
normal operator B. Let W= W; & 0 and
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Ly L
L=
<L21 Ly
on ranW @ KerW. Then L, =0, L, =0 and L, =0 follows from the equality

W= |T|%L|T|%. By assumption, NL; = L;; N*, we have N*L;; = L1 N by Fuglede-
Putnam’s theorem and therefore T7*L = LT. O

COROLLARY 1. Let T € B(H) be p-hyponormal or log-hyponormal. If X € B(H)
and TX = XT*, then T*X = XT.

Proof. Let X = L +iK be the Cartesian decomposition of X. Then we have
TL=LT* and TJ =JT*, by the assumption. By Theorem 2, we have T*L = LT
and T7*J = JT. This implies that T*X = XT. O

REMARK 1. If we use Patel’s result and Lemma 12, the assertion of Theorem 2
for p-hyponormal is immediate, since 7 and L are of the form 7= T, &0 and
L=L,® L, onran|T| & KerT, where T) is an injective p-hyponormal operator.

If we use the 2 x 2 matrix trick, we easily deduce the following result.

COROLLARY 2. Let T* € B(H) and S € B(K) be p-hyponormal (resp. log-hypo-
normal). If X € B(H, K) and XT = SX, then XT* = S*X.

Proof. Put 4 = (7(; g) and B = <1(‘), 8) on H&@ K. Then 4 is a p-hypo-

normal (resp. log-hyponormal) operator on H @ K that satisfies BA* = AB. Hence
we have BA = A*B, by Corollary 1, and therefore X7T* = S*X. O

LeEmMA 13. Let T* € B(H) be p-hyponormal(resp. log-hyponormal) and U|T| be
the polar decomposition of T. Let M be a closed subspace of 'H such that the Aluthge
transform T is of the form T=N& T’ on H=M& M*, where N is a normal

operator on M. Then T and U are of the form T= ](;/ 7/} and
1
UZ(%I gu)(feSP N T, and U=Uy®Uyn) on H=MeM", where
2

N = Uy|N] is the polar decomposition of N and ranU;, C KerN.
In particular, if N is one-to-one, then T=N® T, and U= U, & Uy on
=Me M.

Proof. Since T* is p-hyponormal or log-hyponormal,
171 < 1T < 1T,

by Aluthge [1] and Tanahashi [17]. Hence, we have

INl@ |T'| < |TI < IN| @ |T"],
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by assumption. This implies that | 7] is of the form |N| & L, for some positive operator
Un Un
Uz Un
o, o ind 1 1
decomposition H = M @ M™*. Then the definition T = |T|2U|T]> means that

N 0\ _(INF 0\/Uu Un\[(INE 0
0 7)o r»2)\Un Uxn o L)

Hence, we have

L.Let U= < ) be the 2 x 2 matrix representation of U with respect to the

N = |NFUINE, (17)
INFULLE =0, (18)
LUy INJ = 0. (19)

Since KerU = KerT = Ker|T]|, we have

KerN c KerUyy, KerU,y, (20)

KerL C KerUj,, KerU»y. 2D

Let N = V|N] be the polar decomposition of N. Then ran(U;; — V) C KerN by (17)
and (20). Hence, for arbitrary x € ranN, we have

IxI1> > | Unx|> = [1VxlI* + (Ui — V)x|1%, by Pythagoras’ theorem,
= ||x|I> + (U1, — V)x]|1%, since ¥ is unitary on Fanh,

> ||x]%.
Therefore, we obtain Uy = V. Since

2 2 2 2 2 2
IxI” = 1UxII” = 1UnxlI” + 1Uax]I” = [Ix]I” + [[U21x]|” for x € ranN,

we have Up; = 0 by (20). Also, we see that ranU;; C KerN by (18) and (21). Hence,
_ _(Un Un\(IN 0\ _ (N UxL
T_U|T|_( 0 U22)< 0 L) \0 UpxpL)
In particular, if T* is log-hyponormal, then N and L are invertible. Hence
Uy, =0 and Uy; = 0 immediately from (18) and (19). This completes the proof of
the first statement.

The second statement is trivial, since Uj, =0 1is immediate from
ranU;, C KerN = {0}. O

THEOREM 3. Let A € B(H) be such that A* is p-hyponormal or log-hyponormal.
Let Be B(K) be dominant. Then CA* = B*C whenever CA = BC, for some
C e B(H, K).
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Proof. Let A* be a p-hyponormal operator for p 2% and U|A| be the polar
decomposition of A. Then the Aluthge transform A4 of A is co-hyponormal and
satisfies

AP < 4% < |4*P, (22)

C'A=BC, (23)

where C' = CU|AJ-. Using the decompositions H = KerC* @ KerC' and K =
ranC @ ranC’t, we see that 4, B and C are of the form

~ (A4 0 _(Bi T\ ., _(Ci O

i=(§ a)2=(0 5)c=(50)
where, 4, is co-hyponormal, B; is dominant and C) is a one-to-one mapping with
dense range. Since C'A = BC’, we have

Ci4, = B, C;. (24)

Hence A4; and B; are normal by Lemma 10, so that S =0, by Lemma 12 and
T=0 by [15]. Thus |A4|=|A4,|® L, for some positive L, by (22) and

Un Un Cn Cn .
U= by Lemma 13. Let C = be a 2 x 2 matrix repre-
0 Uzz) Y Gy Cx P
sentation of C with respect to the decompositions H = KerC't @ KerC' and

K =TanC @ ranC'". Then, C' = CU|A[ implies that C; = C;;Uyi|4;|* and hence

KerAd; C KerC; = {0}. This shows that 4 is one-to-one (hence, it has dense range),
so that U, =0 and 4 = A; ® A3, for some co-p-hyponormal operator A3 by
Lemma 13. Since,

(5 8)=c—comar=(G &) o)
we deduce the following statements.
Ci2 U22|A3|% =0; hence CjpA43 =0 because A3 = Uy|Aj]. (25)
Cy U11|A1|% =0; hence C,; =0 because U11|A1|% has dense range. (26)
C»Un|A3 = 0; hence Cyds =0. 27)

The assumption CA4 = BC tells us that,

Cnd, = BCqy, (28)
CipA; = B1C1; =0, by (25), (29)
CynAdsz = B,Cyn =0, by (27). (30)
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Since 47 and B; are normal we have Cj14,* = B1*Cy;, by Fuglede-Putnam’s theo-
rem. The p-hyponormality of A43;* shows that rand;* C rand;. Also we have
KerB, Cc KerB,* from the fact that B, is dominant. Hence, we also have
CpA3* =B1*C1p =0 and CpAz* = B,*Cy»n =0. This implies that CA* =
C1A1*®0=B"C;;®0 = B*C.

Next, we prove the case where 4™ is p-hyponormal for 0 < p < % Let C' be as
above. Then A4 is co-(p—i—%)—hyponorgnal and satisfies C’4 = BC'. Use the same
argument as above. We obtain 4 =4, & A4, on H= KerC'*t @ KerC' and
B = B| @ B;, where A; is an injective normal operator and B is also normal. Hence,
we have 4 = 4| & A3 for some co-p-hyponormal 43, by Lemma 13. Again using the
same argument as above, we obtain Cy =0, Cp4* = B1*Cyy, CpAds* =
Bl*Clz =0 and C22A3* = BZ*CQQ = 0, where C = C” C12
Cy Cx»
representation of C with respect to the decompositions H = KerC'* @ KerC' and
K =ranC @ ranC*. Hence we have CA* = B*C.

_Finally, we assume that 4* is log-hyponormal. Let A and C' be as above. Then
C'A = BC' and A* is %—hyponormal and satisfies

is the 2 x 2 matrix

4] < 14| < |4%]. 31)

By the same argument as above, we have A= A, & A, on H = KerC'* @ ker C'
and B= B, ® B, on K = ranC’ @ ranC'*, where A, is an invertible normal operator,
B is normal, A4, is invertible, co-%—hyponormal and B; is dominant. By Lemma 13,
we have that 4 is of the form A = 4 & A4s, for some log-hyponormal A3*. Let

C— (Cn C12)_ Then C' = CU|A|% implies that Cj, =0, Cy; =0 and Cy = 0.

Gy Cx
The assumption CA4 = BC implies that C;14; = B;Cjy; hence C1 4" = B*Cy; by
Fuglede-Putnam’s theorem. Thus we have CA* = C;14,* ® 0= B;*Cy; ® 0 = B*C.
This completes the proof. O

REMARK 2. Let T be an operator such that Ker7 does not reduce 7 and let P be
the orthogonal projection onto Ker7. Then P does not commute with 7 otherwise
ranP = KerT reduces 7. Hence PT # 0 = TP. It is easy to see that TP = PT* =0
but T*P# PT(#0) because ranT*P C ranT* C KerT™ = (1 — P). Hence the
assertion of Theorem 2 does not hold for such T. Also, if weput 4 =T7* B=1—-P
and C = P, then

CA=PT*=0=(l— P)P = BC.

However

CA* = PT#0=(1 — P)P = B*C.
Hence the assertion of Theorem 3 does not hold for such 7.
This is an example of a classA4 operator T such that 7 does not reduce 7.

ExAMPLE 1. Let {e,}72_ be acomplete orthonormal system for H. We denote the

orthogonal projection onto Ce, by P,. Let W be a weighted shift on H defined by
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\/Een—kl (” > 0)»

We, =
¢ {qﬂ (n < 0).

Then W*W — WW* = P,. Define an operator T on a Hilbert space K = H @ Ce, by
(W P
r=(W 1)

T*7° —(T*TY = T{T*T — TT*}T
ws 0 0 W* P, W Py
:<P0 0)(P0W Py )(0 0>
wE 0 0 0
=<m 0(%W %W%)ZQ

Hence 7*272 = (T*T)* and therefore | 72| = T*T. This shows that T'is classA. It
is easy to see that

Then

KerT = C(—e_1 ® ¢p) and KerT* = {0} & Cey.

Hence T does not reduce T and therefore the assertions of Theorems 2 and 3 are not
necessarily true for class4 operators.
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