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Abstract
This study explores how higher temperatures influence corn yield response to planting
density. Using 1990–2010 field trial data from Wisconsin and econometric models with
a variety of specifications, we find that higher temperatures reduce the yield benefits of
increasing planting density. However, these adverse high-temperature effects are smaller
for genetically modified corn varieties, especially those with rootworm-resistant traits.
Consistent with previous studies, these results support the notion that varietal improve-
ments through genetic modification may have paved the way for higher planting densities
in US corn production. Moreover, our results imply that expected in-season temperatures
are important considerations when making planting density decisions.
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Since the development and diffusion of corn hybrids in the 1930s, commercial corn
yields in the United States (US) have increased dramatically over the last 80 years.
Data from the US Department of Agriculture (USDA) National Agricultural Statistics
Service (NASS) indicate that US corn yields have increased eight-fold from roughly
20 bu/acre in the mid-1930s to about 175 bu/acre in 2016. This tremendous growth
implies a yield increase at a rate of about 1.8 bu/acre/year.

Previous literature has posited that a variety of factors, such as varietal improvement
(i.e., through traditional plant breeding or genetic modification) and better agronomic
practices, have contributed to this observed yield growth (Duvick 2005; Assefa et al.
2018). However, a number of studies argue that the impressive yield increases seen in
US corn can be mainly attributed to increases in planting density or plant population
(i.e., the number of plants per acre) rather than to increases in per-plant yields
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(i.e., mainly through technological advances) (Tollenaar and Lee 2002; Tokatlidis and
Koutroubas 2004; Duvick 2005).1

Growth in corn plant populations in the US has roughly tracked the growth in corn
yields from 1964 to 2016. In this period, yields have more than doubled, from approx-
imately 60 to 175 bu/acre, and at the same time, plant population has also more than
doubled, from about 14,000 plants/acre to close to 30,000 plants/acre. These figures sug-
gest that yield per plant is only slightly higher in 2016 as compared to 50 years ago and
therefore support the notion that corn yield growth may be largely attributed to plant-
ing density increases. However, it is likely that the link between improved corn yields
and higher plant densities over time is directly influenced by increasing temperatures
due to climate change, as well as varietal improvement and better agronomic practices
(Lobell et al. 2014; Assefa et al. 2018).

The objective of this study is to determine how the yield response of corn to increas-
ing planting density is affected by high temperatures. We are also interested in the role
of genetically modified (GM) corn varieties with regard to the impact of high temper-
ature on the “yield-planting-density” relationship. To accomplish these objectives, we
utilize plot-level field trial data collected by the University of Wisconsin over the period
1990–2010 (see Shi, Chavas, and Lauer 2013; Chavas and Shi 2015), which is then
merged with publicly available weather data. Yield regression models with a variety
of specifications (and interaction terms) are then estimated to understand if and how
higher temperatures impact corn yield response to increasing planting density.

There is now a robust literature about corn yield response to increasing planting
density, and how varietal traits and agronomic practices influence this response (see
Carlone and Russell 1987; Porter et al. 1997; Sangoi 2001; Stanger and Lauer 2006;
Van Roekel and Coulter 2011; Assefa et al. 2016; Lindsey and Thomison 2016;
Carter et al. 2018; Fromme, Spivey, and Grichar 2019). For example, previous research-
ers, such as Coulter et al. (2010), Brown et al. (1970), Beech and Basinski (1975), Cox
(1996), Widdicombe and Thelen (2002), Nafziger (1994), Nielsen (1988), Varga et al.
(2004), have examined the likely impacts of hybrids on a variety of corn agronomic
responses to plant density. However, there have only been a handful of studies that spe-
cifically explored how the contribution of planting density to improved corn yields are
affected by environmental factors and growing conditions.

Articles, such as Sangakkara et al. (2004), Abbas et al. (2012), Brown (1986), Van
Averbeke and Marais (1992), and Muchow, Sinclair, and Bennett (1990), have examined
the impact of soil characteristics (such as soil water availability and/or soil fertility) on the
relationship between corn yields and planting density. Assefa et al. (2016, 2018) grouped
observations into four hypothetical growth environments based on yield levels (e.g., low-
yield, medium-yield, high-yield, and very high-yield environments), then estimated the
corn-yield–planting density relationship for each subgroup by utilizing maximum-
likelihood and least-squares-based statistical approaches. These studies found that
increasing planting density has a larger positive effect on yield under a high-yield envi-
ronment than a low-yield environment, which is consistent with the hypothesis in Lobell
et al. (2014). In contrast, Carter et al. (2018) find no evidence that higher planting density
is associated with increased sensitivity to droughts (e.g., low-yield environments).

1Notwithstanding the implication from these studies (i.e., that the main source of yield growth in US
corn is planting density increases rather than technological advances), one could also argue that increasing
planting density while maintaining per plant yields is, in and of itself, a reflection of the contribution of
technological progress.
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The studies of Chavas, Shi, and Lauer (2014) and Chavas and Shi (2015) also inves-
tigated the effect of planting density on corn yields for different yield environments. But
note that these latter two studies utilized quantile regression techniques to estimate the
“yield-planting-density” function (i.e., rather than defining specific high versus low-
yield subgroups and using maximum likelihood or least squares to estimate the function
for each subgroup). In addition, Chavas, Shi, and Lauer (2014) and Chavas and Shi
(2015) also explored how GM traits influence corn yield response to increases in plant-
ing density. They found that the yield benefits of increasing planting density would be
further strengthened when GM varieties are used. However, we have not found any
study that looked at how temperature changes may directly affect corn yield response
to higher planting density using econometric methods and long-run field trial data.

Our main contribution is that we examine the role of a specific environmental factor
—temperature changes—with respect to how planting density affects corn yields. This
has important implications for corn farmers, crop breeders, and other agricultural
stakeholders, especially in a world with an increasingly warming climate and the
need for climate change adaptation strategies. Although previous studies have explored
how a “low-yield” environment generally influences corn yield response to planting
density, none of these past studies have particularly investigated how increasing temper-
atures affect corn yield response to planting density. A better understanding of the effect
of temperature on the “yield-planting-density” relationship would allow farmers to
make better decisions at the start of the season (e.g., planting density and varietal
choices) based on expected in-season temperatures during the growing period
(Solomon, Chauhan, and Zeppa 2017).

In addition, understanding the interrelationships among crop yields, high tempera-
tures, and planting density also provides further insights into an apparent puzzle in the
climate change impacts literature. Previous studies have indicated that US crop yields
and farm productivity are increasingly becoming more sensitive to higher temperatures
(Lobell et al. 2014; Ortiz-Bobea, Knippenberg, and Chambers 2018). Lobell et al. (2014)
also hypothesized that the rise in planting density may be one of the main factors con-
tributing to this increased sensitivity (though they did not prove this using observa-
tional data). To the best of our knowledge, no study has yet provided empirical
evidence to show that higher planting density substantially contributes to the increased
sensitivity of US crop yields to higher temperatures (i.e., mainly due to limited availabil-
ity of long-term planting density data). Thus, findings from our study help address this
gap in the literature.2

The second main contribution is the exploration of whether GM traits would cause
heterogeneity in the effect of high temperatures on the “yield-planting-density” relation-
ship. We investigate the role of GM hybrids by including dummy variables for GM corn
in the empirical specification (i.e., one for GM varieties with the rootworm
(RW)-resistant trait and one for other GM varieties that do not include an

2Please note that we structure our present study such that we determine how high temperatures impact
the yield–planting-density relationship. In the aforementioned climate change literature, the “puzzle” is
framed by asking whether planting density influences the yield–high-temperature relationship. Although
our research is structured a little bit differently, our marginal effect estimates (as discussed below) still
give the same information on whether the negative yield effect of heat is exacerbated at higher planting
density (i.e., adverse yield impacts tend to be higher in high temperature and high planting density
environments).
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RW-resistant trait).3 Even though there have been previous studies that examined the “tri-
ple” inter-relationship among corn yields, planting density, and GM traits (Chavas, Shi,
and Lauer 2014; Chavas and Shi 2015), to the best of our knowledge, there have been no
studies that examined the “quadruple” inter-relationship among corn yields, planting
density, GM traits, and high temperatures. Hence, the present study contributes to further
understanding of the so-called genotype (G), environment (E), and management (M)
interactions (G × E × M) that determine crop yield outcomes (i.e., in our case, G is
the GM trait, E is high temperatures, and M is the planting density choice).

Results from our study indicate that corn yield response to planting density varies
with temperature, and the degree of variation with temperature is influenced by the
GM traits. In general, the yield benefits of increasing planting density diminish as tem-
perature increases. We find that the yield benefit of increasing planting density is
reduced by 1.86 percent for every 1°C increase in the minimum and maximum temper-
atures in each month of the cropping season. But note that the diminishing yield ben-
efits of higher planting density (in the presence of higher temperatures) are mitigated by
the use of GM crop varieties, especially those with RW resistance traits.

Data sources and empirical approach

In this study, we use data from three sources: (1) annual corn field trial data collected by
University of Wisconsin researchers over the period 1990–2010; (2) weather data drawn
from the work of Schlenker and Roberts (2009), which includes interpolated daily min-
imum and maximum temperature information for 4 km grid cells within the United
States from 1950 to 2017; and (3) county-level Palmer Drought Severity Index
(PDSI) data from the Centers for Disease Control and Prevention(CDC).4

The University of Wisconsin field trial data include information about plot-level yields
(measured in bushels per acre) and farming inputs applied (e.g., fertilizer and insecti-
cides). Input use and management practices (e.g., tillage, rotation) utilized in the trial
plots are similar to neighboring commercial fields and are consistent with normal agro-
nomic recommendations (Chavas and Shi 2015). The management practices employed
are typical of those used on corn farms practicing rainfed agriculture in the US corn
belt. Fertilizer applications are based on soil type, soil moisture, and soil pH provided
by a series of soil tests. Insecticide is only applied when the insect infestation level is
above an action threshold (i.e., the pest density or damage level at which insecticide appli-
cation is needed to prevent or reduce economic loss). Herbicide is used when it is nec-
essary to control weed growth. The experimental design for these field trials was a
randomized complete block design in which each corn hybrid variety was grown in at
least three separate plots (replicates) at each site (i.e., to account for field variability).
These trials were conducted over the years for the purpose of evaluating the yield

3GM corn varieties with RW-resistant traits are separately investigated since it is widely believed that below-
ground RW protection allows for larger and healthier corn root balls. These larger and healthier roots then
allow these RW-resistant varieties to be more resilient to heat stress and higher temperatures (Goodwin and
Piggott 2020). However, other GM traits aside from RW resistance may also influence the effect of high tem-
peratures on the yield–planting density relationship, which is why we also explore the potential impact of other
GM varieties. It may be that there is perhaps something common among GM hybrids (not just the RW trait)
that can affect how temperatures influence how yields respond to changes in planting density.

4The PDSI data are from Centers for Disease Control and Prevention. National Environmental Public
Health Tracking Network. Available at: https://data.cdc.gov/Environmental-Health-Toxicology/Palmer-
Drought-Severity-Index-1895-2016/en5r-5ds4/data (accessed April 7, 2019).
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performance of different corn hybrids (e.g., conventional hybrids versus various GM
hybrids). Hence, these trials were not explicitly designed to assess planting density. As
such, management practices are typically the same for plots in each site-year (i.e.,
which has implications for our empirical specifications as discussed further below).
Further note that this is the same data set used in Shi, Chavas, and Lauer (2013) and
Chavas and Shi (2015) to mainly evaluate the production risk effects of various GM traits.

For the field trial data that span crop years 1990–2010, a total of 4,748 hybrids were
tested in which 2,653 were conventional hybrids and 2,095 were GM hybrids. Some
hybrids were tested in multiple locations and for multiple years. The data include
31,799 usable yield observations. However, for the present study, only 28,521 rainfed
observations are utilized given the central role of temperature changes in our analysis.
Summary statistics and descriptions of the field trial variables utilized in this study are
provided in Table 1.

The corn field trials were conducted in 12 experimental locations (11 for rainfed
corn), which are located in four production zones in the state of Wisconsin: South,
South Central, North, and North Central (see Figure 1). All of the field trial locations
are in what is commonly called the Northern Corn Belt. The South production zone
includes three locations (or sites) in the following cities/villages: Arlington, Janesville,
and Lancaster. The South Central production zone includes sites in Fond Du Lac,
Galesville, and Hancock. The Chippewa Falls, Marshfield, Seymour, and Valders field
trial locations are located in the North Central production zone. Lastly, the North pro-
duction zone includes experimental locations in Spooner and Coleman. In general, the
climatic conditions for the field trial location within a particular production zone are
similar. However, it should be noted that the trial locations in the Southern production
zone tend to have a more favorable climate as compared to the sites located in the other

Table 1. Descriptive statistics of variables for Wisconsin data

Variable Unit Mean St. Dev. Median Min Max

Yield bu/acre 176.46 40.26 178.53 21 289.81

plant density 1,000 plants per acre 28.44 1.95 28.18 18.25 33.41

pcorn 1 if previous crop is corn 0.29 0.46 0 0 1

psoy 1 if previous crop is soybean 0.61 0.49 1 0 1

palf 1 if previous crop is alfalfa/hay 0.07 0.26 0 0 1

pwhe 1 if previous crop is wheat 0.02 0.13 0 0 1

plup 1 if previous crop is lupine 0 0.06 0 0 1

ft Fall tillage, 1 if yes, 0 if no 0.51 0.5 1 0 1

st spring tillage, 1 if yes, 0 if no 0.92 0.27 1 0 1

ic apply insecticide, 1 if yes, 0 if no 0.38 0.49 0 0 1

fertilizer N lbs acre−1 122.86 41.76 130 0.5 201.5

conventional 1 if conventional corn is planted 0.62 0.49 1 0 1

RW 1 if expressing Bt trait for corn
rootworm

0.14 0.35 0 0 1

other GM 1 if without Bt trait for corn
rootworm

0.24 0.43 0 0 1
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zones. The field trial locations in the South Central, North Central, and North produc-
tion zones typically have a colder climate and a shorter growing season. Figures S1 and
S2 show box-and-whisker plots of yield and plant density, respectively, for each of the
four production zones. Notice that corn yields generally decrease as one goes further
north, which is consistent with the observation that climate conditions of more south-
ern sites are more favorable for corn. The temporal pattern of average yield and average
planting density for all trial sites are presented in Figures S3 and S4. The temporal yield
and planting density patterns in the data are consistent with the national trend where
corn plant population growth roughly tracks the growth in corn yield.5

The grid-level weather data drawn from the work of Schlenker and Roberts (2009)
were aggregated up to the city (or village) where the field trial sites are located. After
this aggregation, the monthly average daily minimum (tmin) and maximum (tmax) tem-
perature data are then calculated. The monthly county-level PDSI data are also matched
to the city (or village) where the field trial sites are located. For field trial sites wholly
located in a single county, we use the PDSI value for the specific county where the

Figure 1. Map of Research Locations of Wisconsin Field Experimental Data. Available at: http://corn.agronomy.
wisc.edu/HT/images/Map.jpg (accessed April 7, 2019).

5In addition, temporal patterns of the number of plots in the filed trial data that planted conventional
corn, GM hybrids with the RW resistance trait, and GM hybrids without the RW resistance trait are pre-
sented in Figures S6, S7, and S8, respectively.
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trial site is located. However, for field trial sites that are on the border of two or more
counties, we use a county-level average PDSI value for the corresponding counties
near these trial sites. Given the nature of the weather data described above, it is impor-
tant to note that all field trial plots within each site-year are assumed to have the same
weather given that the tmin, tmax, and PDSI data are aggregated at the city (or village)
where each field trial site is located. All weather variables are then merged with the plot-
level field trial data. The summary statistics for relevant monthly minimum temperature,
maximum temperature, and monthly PDSI are reported in Table 2. Moreover, the yearly
changes in minimum temperatures, maximum temperatures, and PDSI for the period
1990–2010 are presented in Figures S9 and S10 for each production zone.

Empirical specification and estimation strategies

The main empirical specification to determine how higher temperatures affect corn
yield response to planting density is defined as follows:

ln (yilzt) = az + f (tminlzmt , tmaxlzmt , PDSIwlzmt , PDSIdlzmt , Dlzt)+ gXilzt + ht

+ 1ilzt (1)

Table 2. Summary statistics of weather variables

Month Variable Mean St. Dev. Median Min Max

May tmin (°C) 7.03 2.153 7.01 1.58 12.26

tmax (°C) 19.60 2.092 19.60 13.76 24.74

PDSI 0.78 1.676 0.96 −4.11 5.53

prec (mm) 98.65 47.23 90.43 23.73 310.79

June tmin (°C) 12.82 1.748 13.08 7.95 16.47

tmax (°C) 24.96 1.732 24.93 20.36 29.46

PDSI 0.95 2.060 1.09 −4.72 7.06

prec (mm) 122.89 58.20 117.34 20.42 355.04

July tmin (°C) 14.97 1.754 15.10 9.88 19.07

tmax (°C) 26.98 1.778 26.98 22.07 31.20

PDSI 0.98 2.246 1.03 −4.95 6.99

prec (mm) 102.46 49.64 94.27 18.28 268.96

August tmin (°C) 14.23 1.891 14.28 9.45 19.74

tmax (°C) 26.08 1.629 26.34 21.56 29.96

PDSI 0.81 2.127 0.73 −5.05 7.17

prec (mm) 105.92 58.41 92.95 20.86 367.83

September tmin (°C) 9.54 1.634 9.57 4.47 12.87

tmax (°C) 21.85 1.981 21.81 16.39 26.75

PDSI 0.52 2.147 0.31 −3.74 6.59

prec (mm) 83.50 44.75 75.75 8.17 235.18
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where ln( yilzt) is the natural log of corn yield in bushels per acre (bu/acre) for plot i,
field trial location l, production zone z, and year t.6 We estimate equation 1 using ordi-
nary least squares (OLS) regression that includes a production zone fixed effect αz to
eliminate any concerns about time-invariant unobservables at the production zone
level.7 We also include a linear time trend ηt to account for the technological improve-
ment over time. Control variables that represent input use (or practices) are included in
the vector Xilzt (e.g., fertilizer, tillage, and other variables in Table 1).

We call f( · ) in equation 1 the “weather-plant-density” function, which includes as
arguments the following weather-related variables: tmin, tmax, PDSIw, and PDSId for
field trial location l, production zone z, month m, and year t. Note that PDSIw refers to
positive PDSI values that measure the degree of wetness (w), while PDSId refers to the
absolute value of negative PDSI values that reflect the degree of dryness (d). Large
PDSId values usually reflect drought conditions, and large PDSIw typically reflect
extremely wet conditions (i.e., flooding).8 The planting density variable (in ’000s of
plants per acre) is also included in f( · ) and is represented by Dlzt.

In particular, the “weather-plant-density” function is defined as follows:

dDlzt +
∑5

m=1

b1mtminlzmt +
∑5

m=1

b2mtmaxlzmt +
∑5

m=1

c1m(tminlzmt ×Dlzt)

+
∑5

m=1

c2m(tmaxlzmt ×Dlzt)+
∑5

m=1

b31mPDSIwlzmt +
∑5

m=1

c31m(PDSIwlzmt ×Dlzt)

+
∑5

m=1

b32mPDSIdlzmt +
∑5

m=1

c32m(PDSIdlzmt ×Dlzt).

(2)

The growing season is specified as spanning 5-months (m = 1, 2, …, 5) from May to
September. The ψ parameters associated with the interaction terms in equation 2
give us insight into how weather variables affect corn yield response to planting densi-
ties. To facilitate inference, we utilize Eicker–Huber–White (EHW) heteroskedasticity
robust standard errors.9

6Note that field trial locations (l) are at a finer spatial scale relative to the production zones (z). See
Figure 1.

7As mentioned above, plant density and other production inputs are the same for all plots for each
location-year combination. Therefore, there is no variation in plant density for each field trial location
and year. Therefore, we use production zone fixed effects rather than plot or field trial location fixed effect
in our empirical specifications. This means that identification comes from across production zone variation
(for a particular year) and within production zone temporal variation (across years) (i.e., deviations from
production zone mean).

8PDSI values range from −10 to +10. As alluded to above, negative PDSI values reflect dryness, while
positive PDSI values reflect wetness. Typically, PDSI values of −4 or below represent extreme drought,
while PDSI values of 4 or above reflect an extremely wet environment (i.e., flood conditions).

9In one of our robustness checks below, we also used standard errors clustered by year to account for
potential spatial correlation across observations within a year (i.e., contemporaneous dependence across
spatial units). However, based on insights from Abadie et al. (2017) and Cameron and Miller (2015), we
believe clustering by year makes the standard errors more conservative (relative to the case where only
EHW standard errors are used). Therefore, as seen in our robustness checks with standard errors clustered
by year, the estimated standard errors increased such that we lose statistical significance in some of our
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The specification in equations 1 and 2 is consistent with previous studies that
examined crop yield effects of weather variables (see Peng et al. 2004; Lobell and
Field 2007; Schlenker and Lobell 2010; Welch et al. 2010; Lobell, Schlenker, and
Costa-Roberts 2011; Tack, Barkley, and Nalley 2015). These studies typically use
the following variables in their specifications: tmin, tmax, and a weather variable
that reflects water availability (e.g., typically quadratic functions of precipitation or
rainfall). However, in contrast with these aforementioned studies, our specification
above utilizes a drought index, specifically the PDSI, as a measure of water availability
rather than quadratic functions of precipitation or rainfall levels.10 A drought index
like PDSI is appropriate as a measure of water/moisture availability because its values
are referenced to local climate, which allows one to calculate dryness or wetness rel-
ative to local norms (Xu et al. 2013; Kolář et al. 2014). In addition, local soil attributes
are partly accounted for when calculating drought indices, which is an important fac-
tor in a crop’s ability to handle extreme dryness or wetness. Using both the positive
and negative PDSI values in our specification also adequately accounts for nonline-
arities in the effects of water availability (i.e., typically reflected by having a quadratic
precipitation term in previous studies).

Another feature of the specification in equation 2 is the linear relationship between
planting density (D) and crop yields. Previous studies have typically assumed a qua-
dratic specification for planting density (see Assefa et al. (2018) for example).
However, a linear specification is appropriate in our case given that the range of our
planting density data does not usually reach the reported “optimal” planting density
levels recommended for Wisconsin (i.e., the yield-maximizing planting density level
where corn yields plateau (the “turning point”) and consequently decreases in a qua-
dratic specification). For example, Stanger and Lauer (2006) suggest that the optimal
planting densities for Wisconsin are approximately 39,984 plants per acre for
non-GM corn and 42,290 plants per acre for GM corn with the Bt trait (for the period
between 2002 and 2004). Based on field trial data locations across the corn belt, Assefa
et al. (2018) indicate that optimal planting density ranges from 30,500 plants per acre
(in 1987) to about 37,900 plants per acre in the 2007–2016 period. In our field trial data
from 1990 to 2010, the range of planting density values is from about 18,250 plants per
acre to around 33,409 plants per acre. This data range is more consistent with the
upward sloping (and close to linear) part of the corn yield response function to planting
density, which again supports our linear specification. Furthermore, a straightforward
regression of the natural log of corn yield on planting density using our data set indi-
cates a relationship that is very close to linear and without a turning point (see
Supplementary Figure S5).

Marginal effects

To achieve the study objective of assessing how the yield impact of planting density
changes with temperature, we calculate the marginal effect of planting density on
corn yields under different temperature scenarios based on the empirical model spec-
ified in equations 1 and 2. The marginal percentage effect of increasing plant density

estimates. But note that the main inference from the study still holds even with the more conservative stan-
dard errors from clustering by year.

10Although we use PDSI in our main specification, we also conduct robustness checks below where we
utilize a quadratic precipitation specification.
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is the percentage change in corn yields as a result of a 1 unit (in this case, 1,000 plants
per acre) increase in planting density. This marginal effect calculation can be expressed
as follows:

∂ ln (yt)
∂Dt

= d+
∑5

m=1

c1mtminmt +
∑5

m=1

c2mtmaxmt +
∑5

m=1

c31mPDSIwmt (3)

if PDSI in each month is positive, and:

∂ ln (yt)
∂Dt

= d+
∑5

m=1

c1mtminmt +
∑5

m=1

c2mtmaxmt +
∑5

m=1

c32mPDSIdmt (4)

if all monthly PDSIs are negative.
In order to examine how temperature changes influence the yield response to plant-

ing density, we calculate marginal effects under two higher-temperature scenarios: (1) a
scenario where both tmin and tmax change by 1°C increments, and (2) a scenario
where tmin and tmax change separately by 1°C increments. To calculate the marginal
effects of planting density under the first high-temperature scenario, we first assume
that both the monthly tmin and tmax variables deviate from their means by the follow-
ing amounts: − 1°C, − 2°C, − 3°C, − 4°C, +1°C, +2°C, +3°C, +4°C. This calculation
structure allows us to see how corn yield response to planting density changes as
both the minimum and maximum temperatures change (holding PDSI constant at
its mean).11 The marginal effect of planting density under the first high-temperature
scenario can then be expressed as follows:

∂ ln (yt)
∂Dt

= d+
∑5

m=1

c1m([1.1]tminmt + k)+
∑5

m=1

c2m([1.1]tmaxmt + k)

+
∑5

m=1

c31m[1.1]PDSImt (5)

where [1.1]tminmt , [1.1]tmaxmt , and [1.1]PDSImt are set at the means in month m and
year t, and the nine assumed temperature deviations are where k =−4,− 3, …, 0,…, + 3,
+ 4.12

Under the second higher-temperature scenario, the marginal effects of planting den-
sity are calculated assuming that tmin and tmax separately change in 1°C increments
(where k =−4,− 3, …, 0, …, + 3, + 4). The marginal effect of planting density when

11We understand that changes in temperatures also likely affect PDSI (i.e., the increasing temperature
may result in more drier conditions (and lower PDSIs)). Hence, the marginal effect calculation where
we hold PDSIs constant at the mean can be considered a lower bound for the effect of increasing temper-
atures on the corn yield response to planting density.

12For the purpose of calculating the marginal effect in equation 5, as well as in equations 6, 7, 9, 10, and 11,
the term [1.1]PDSImt is calculated by taking the average over all PDSIs in the data (i.e., both negative and
positive). Thus, the superscript for the PDSI variable (e.g., w or d) has been omitted in these marginal effect
expressions.
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only tmin changes can be calculated as follows:

∂ ln (yt)
∂Dt

= d+
∑5

m=1

c1m([1.1]tminmt + k)+
∑5

m=1

c2m[1.1]tmaxmt

+
∑5

m=1

c31m[1.1]PDSImt , (6)

where tmax and the PDSIs are held at their mean values. On the other hand,
the marginal effect of planting density when only tmax changes can be expressed as
follows:

∂ln(yt)
∂Dt

= d+
∑5

m=1

c1m[1.1]tminmt +
∑5

m=1

c2m([1.1]tmaxmt + k)

+
∑5

m=1

c31m[1.1]PDSImt (7)

where tmin and the PDSIs are held at their mean values.
The marginal effect calculations above assume that changes in temperature occur in

all months of the season. However, previous literature has argued that the June to
August months are the critical months for corn growth. During this period, crop
growth is frequently affected by environmental stresses such as high temperatures
(McWilliams, Berglund, and Endres 1999). Since silking occurs in the summer time,
stress conditions that happen two weeks before or after silking typically lead to
substantial reductions in yield (see McWilliams, Berglund, and Endres 1999).
Therefore, we also calculate the marginal effects of increasing planting density under
both the scenarios described above, but only imposing changes in the temperatures
for the June to August months (i.e., and where temperatures in the other months are
set at their means).

Another issue of interest in this study is to determine the role of GM corn varieties,
especially those that have RW-resistant traits, with regard to how corn yield responds to
planting density under different high-temperature scenarios (i.e., the “quadruple” inter-
relationship among corn yields, planting density, GM traits, and high temperatures).
Given this interest, we modify the “weather-planting-density” function in (2) to allow
for “triple” interaction terms among the planting density variable, the weather variables,
and GM corn varietal dummy variables. In this case, the corn varieties in the field trial
data set are categorized into three groups: conventional varieties, GM-RW hybrids, and
other GM hybrids. Note that GM-RW hybrids are those varieties that have RW resis-
tance, either as a single-trait GM crop with only RW resistance, or a “multi-stack” vari-
ety with RW resistance combined with other traits (i.e., such as a double-stack GM with
combined above-ground corn borer resistance together with below-ground RW resis-
tance). The “other GM hybrids” category includes those GM varieties with GM traits,
but specifically without the RW resistance trait (e.g., single-trait Bt corn with resistance
only to European corn borers).

With the GM variety categorization above, the “weather-planting-density” specifica-
tion in (2) is modified as follows (to include the GM variety dummies and triple
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interaction terms):

dDlzt +
∑2

r=1

zrV
r
ilzt +

∑2

r=1

hr(Dlzt × Vr
ilzt)+

∑5

m=1

b1mtminlzmt +
∑5

m=1

b2mtmaxlzmt

+
∑5

m=1

b31mPDSIwlzmt +
∑5

m=1

b32mPDSIdlzmt +
∑2

r=1

∑5

m=1

u1rm(tminlzmt × Vr
ilzt)

+
∑2

r=1

∑5

m=1

u2rm(tmaxlzmt × Vr
ilzt)+

∑2

r=1

∑5

m=1

u31rm(PDSIwlzmt × Vr
ilzt)

+
∑2

r=1

∑5

m=1

u32rm(PDSIdlzmt × Vr
ilzt)+

∑5

m=1

c1m(tminlzmt ×Dlzt)

+
∑5

m=1

c2m(tmaxlzmt ×Dlzt)+
∑5

m=1

c31m(PDSIwlzmt ×Dlzt)+
∑5

m=1

c32m(PDSIdlzmt ×Dlzt)

+
∑2

r=1

∑5

m=1

k1rm(tminlzmt ×Dlzt × Vr
ilzt)+

∑2

r=1

∑5

m=1

k2rm(tmaxlzmt ×Dlzt × Vr
ilzt)

+
∑2

r=1

∑5

m=1

k31rm(PDSIwlzmt ×Dlzt × Vr
ilzt)+

∑2

r=1

∑5

m=1

k32rm(PDSIdlzmt ×Dlzt × Vr
ilzt)

(8)

where Vr
ilzt represents the GM variety dummy variables for plot i, field trial location

l, production zone z, and year t. In the specification above, conventional corn
hybrids are designated as the base group (e.g., the omitted category) and Vr

are dummy variables that represent the two GM varietal groups, where r = 1 corre-
sponds to the GM-RW hybrids, and r = 2 refers to the other GM hybrids. Among
the 28,521 plots in the field trial data, there are 17,680 with conventional corn,
4,044 with GM-RW hybrids, and 6,797 with the other GM hybrids. The change in
varietal adoption rate over time for the four production zones is shown in Figures
S6, S7, and S8.

Given the “weather-planting-density” specification in equation 8, the marginal
yield effect of increasing planting density for conventional corn under the first
high-temperature scenario (for k =−4,− 3, .., 0, .., + 3, + 4) can then be calculated as
follows:

∂ ln (yt)
∂Dt

= d+
∑5

m=1

c1m([1.1]tminmt + k)+
∑5

m=1

c2m([1.1]tmaxmt + k)

+
∑5

m=1

c31m[1.1]PDSImt (9)

where the weather variables are set at their mean values in all 5 months of the growing
season. On the other hand, the marginal effect of increasing planting density for the
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GM-RW hybrids can be written as:

∂ ln (yt)
∂Dt

= d+ h1 +
∑5

m=1

c1m([1.1]tminmt + k)+
∑5

m=1

c2m([1.1]tmaxmt + k)

+
∑5

m=1

k11m([1.1]tminmt + k)+
∑5

m=1

k21m([1.1]tmaxmt + k)+
∑5

m=1

c31m[1.1]PDSImt

+
∑5

m=1

k311m[1.1]PDSImt

(10)

where the weather variables are again set at their mean values in all 5 months of the
growing season. Similarly, the marginal effect of increasing planting density for the
other GM hybrids can be calculated as follows:

∂ ln (yt)
∂Dt

= d+ h2 +
∑5

m=1

c1m([1.1]tminmt + k)+
∑5

m=1

c2m([1.1]tmaxmt + k)

+
∑5

m=1

k12m([1.1]tminmt + k)+
∑5

m=1

k22m([1.1]tmaxmt + k)+
∑5

m=1

c31m[1.1]PDSImt

+
∑5

m=1

k312m[1.1]PDSImt

(11)

where the weather variables are again set at their mean values in all 5 months of the
growing season. Although not shown here, similar marginal effect calculations can
also be computed for the second high-temperature scenario, and for the case where
we only consider temperature changes in June to August months.

Estimation results and marginal effects

The main empirical model as specified in equations 1 and 2 is estimated by OLS and, in
the spirit of conciseness, the parameter estimates are presented in Supplementary
Table S1.13

High-temperature effects

To determine the influence of higher temperatures on the yield effects of planting den-
sity, we calculate the marginal effects of increasing planting density under the two sce-
narios described in the previous section and present results in Table 3. For the first

13Consistent with equation 1, the results presented here are for the case where ln( yilzt) is the dependent
variable. We also ran all the models where the dependent variable is the actual yield in bu/acre (i.e., not
taking the natural logarithms) Results for those runs are consistent with what is presented here and is avail-
able from the authors upon request.
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high-temperature scenario, where both tmin and tmax are assumed to change by 1°C
increments, we find that the yield benefit of increasing planting density is reduced by
1.86 percent (95 percent CI [1.67, 2.05]) for every 1°C increase in the minimum and
maximum temperatures in each month of the cropping season. This result suggests
that the yield benefits of increasing planting density diminish in the presence of higher
temperatures.

As described in the previous section, we also calculate the marginal effect of increas-
ing planting density as temperature deviates from the mean by 1°C increments (see
equation 5). The results of these marginal effect calculations are graphically presented
in Figure 2. The mean temperature result in Figure 2 indicates that, for average weather
conditions in the study area (e.g., average minimum and maximum temperatures, as
well as average PDSI), increasing planting density would negatively affect corn yields
(albeit by a relatively small percentage amount). Moreover, as the minimum and max-
imum temperatures increase relative to the mean, increasing planting density becomes
more detrimental to corn yields (e.g., a 1,000 plants per acre increase in planting density
results in more than 5 percent yield reduction when minimum and maximum temper-
atures increase by more than 3°C from the mean). On the other hand, note that increas-
ing planting density has a positive marginal effect on yield when temperatures are lower
than the mean. The diminishing marginal effect of increasing planting density in a
higher-temperature environment is consistent with the idea that inter-plant competi-
tion for nutrients and resources (i.e., water) intensifies as planting density increases,
and this competition escalates further when temperatures increase.

To better contextualize the magnitudes of our estimates, we conduct a simple
back-of-the-envelope calculation. First, consider the average corn yields (176.4 bu/
acre) and the average planting density in the sample (28,440 plants/acre). Then, from
Figure 2, we make the assumption that when tmin and tmax are at their means,
increasing planting density does not change yields (i.e., there is close to zero yield
impact of increasing planting density). Thus, if we increase average planting density
by 1,000 plants/acre (to 29,4400) and our temperature variables remain at the mean,
then yields will still be around 176.4 bu/ac. Now suppose that tmin and tmax increase
by 1°C (as in our first scenario), then our findings suggest that yields will fall by 1.86

Table 3. Estimated changes in the effects of plant density on yield as a result of 1°C increase in
temperatures

All months Jun–Aug

Estimates p-value Estimates p-value

tmin & tmax −0.0186 0.000 −0.0055 0.000

tmin −0.0066 0.000 0.0116 0.000

tmax −0.0121 0.000 −0.0170 0.000

Notes: (1) The results here are estimated through our main specification in equations 1 and 2. (2) The first column
indicates what weather variables the marginal effects of plant density are based on. The first row indicates a 1°C increase
in both tmin and tmax. The second row refers to a scenario where only tmin increases by 1°C. The third row refers to a 1°
C increase in tmax. (3) The second and the third column report coefficients and p-values of the changes in the marginal
effects of plant density as a result of higher temperatures (both tmin and tmax increase, and tmin and tmax separately
increase) where the temperature of each month of the May–September growing season increases by 1°C. The last two
columns provide coefficients and p-values of the changes in the marginal effects where the temperature of each month
from June to August increases by 1°C.
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percent compared to the scenario where there are no changes in mean temperatures. In
this case, yields will be around 173.11 bu/ac (= 176.4 × 0.9814) where 0.9814 = 1−
0.0186. This suggests that when tmin and tmax increase by 1°C, increasing planting
density will result in a yield reduction of about 3.29 bu/ac. This does not seem like a
large reduction, but if a farmer operates 1,000 acres and corn price is at $5/bu (consis-
tent with prices in spring 2021), this is a revenue loss of $16,450 in one cropping season.
For farms with thin margins, this revenue loss from high temperatures is substantial.

Results from the second higher-temperature scenario, where we assume that tmin
and tmax increase separately in 1°C increments in all months, are fairly consistent
with the marginal effect estimates calculated in the first scenario described above (see
Table 3). But we note that increases in tmax tend to have a larger negative impact
on the yield effects of increasing planting density (as compared to the impact of
increases in tmin). This suggests that increases in daytime temperatures are more likely
to negatively influence yield response to increasing planting density. This result is in
line with Kucharik and Serbin (2008) where they find that tmax plays a stronger role
than tmin in creating variability for Wisconsin corn.

For the case where the two higher-temperature scenarios are applied only to the crit-
ical growth months of June to August, the marginal effect estimates are still largely con-
sistent with the results from the earlier results where increasing temperatures affect all
growing season months (see Table 3 and Supplementary Figure S11). The general pat-
tern of results in Supplementary Figure S11 is almost the same as in Figure 2. However,
the magnitudes of the temperature effects are relatively smaller for the case where
increasing temperatures are only felt in the June to August months.

Figure 2. Marginal Percentage Effect of Plant Densities as tmin and tmax of Each Month Deviate from the Mean
by 1°C Increments. Notes: The main specification in equations 1 and 2 is implemented. The Impacts are reported
as the percentage change in yield. The vertical solid lines show 90 percent confidence interval.
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GM traits and temperature effects

The role of GM traits is examined based on the empirical specification in equations 1
and 8. Parameter estimates for the specification that includes the GM dummy variables
(and the corresponding interactions) are presented in Supplementary Table S2. Similar
to the results in Supplementary Table S1, the planting density effect on corn yields is
positive if GM traits and weather variables are not taken into account.

The marginal effects of increasing planting density that considers GM traits under
our two increasing temperature scenarios are presented in Table 4. Results from
these marginal effect calculations generally suggest that the negative effect of higher
temperatures is more strongly felt for conventional corn varieties, as compared to the
GM-RW hybrids and other GM hybrids. That is, the marginal yield effect of increasing
planting density is more negatively affected by increasing temperatures when conven-
tional varieties are used. Hence, the adverse effect of higher temperatures on the
yield–planting-density relationship is less for GM corn in general.

To better visualize the role of GM traits, we graph the marginal effects of increasing
planting density under the first high-temperature scenario (i.e., increasing both tmin
and tmax in all months) but separating it out by the hybrid type—conventional,
GM-RW, and other GM (see Figure 3). First, at the mean temperature levels, it is
important to note that increasing planting density results in a negative yield impact
for conventional corn yields. In contrast, for GM-RW hybrids and other GM hybrids,
the marginal yield effect of increasing planting density is positive at mean temperature
levels. Second, the positive marginal effect of increasing planting density is higher for
GM-RW hybrids as compared to the other GM hybrids. Moreover, even at tempera-
tures above or below the mean level, the positive marginal effect of planting density
for GM-RW hybrids is still consistently larger than the other GM hybrids. Lastly, the
slope of the marginal effect line for the conventional hybrids is steeper than those of
the GM-RW and other GM hybrids, suggesting that the marginal effect of increasing
planting density diminishes more rapidly (as temperature rises) for conventional
corn, relative to the GM-RW and other GM hybrids. Overall, these results provide
some evidence that the typical yield benefits of increasing planting density can be
more easily maintained under high-temperature conditions if corn varieties with GM
traits are used. This outcome suggests that corn varieties with GM traits (especially
GM-RW hybrids) may be more efficient in utilizing nutrients and moisture even
under intensified inter-plant competition due to increasing planting density and higher
temperatures. Moreover, the GM trait results here support the idea that the use of GM
varieties may have facilitated the increases in planting density over time.

Robustness checks

To verify the strength and stability of our results, we conduct several robustness checks
that consider the following alternatives to our main empirical specification (as described
in equations 1 and 2): (a) the main specification without including the managerial
inputs and practices (Xilzt) as control variables, (b) the main empirical specification
that includes an interaction term between the time trend and the plant density, and
(c) the main specification but using a quadratic form of precipitation of the May–
September growing season as a measure of water availability (instead of PDSI).

We conduct the first robustness check, which excludes the managerial inputs, to
account for concerns that input choices in the production process may be endogenous.
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However, note that this endogeneity concern may be largely mitigated by the fact the
data set used in this study is based on field trial data rather than actual farm-level pro-
duction data collected through a survey. Estimation results for the first robustness check
are presented in Supplementary Table S3, and the corresponding marginal effects of
increasing planting density for our two higher-temperature scenarios are reported in
Supplementary Table S4. Supplementary Figure S12 shows the marginal percentage
impact of increasing planting density for the scenario where both tmin and tmax of
each month change by 1°C increments when managerial inputs are not considered
in the specification. Results from this first robustness check are largely consistent
with our main high-temperature results reported in the previous section. The magni-
tudes of the temperature effects on the corn yield response to increasing planting den-
sity are very similar to the original results above. Overall, the first robustness check still
strongly supports the notion that yield effects of increasing planting density diminish as
temperature levels increase.

The second robustness check aims to show whether our results still hold when one
assumes that the marginal effect of increasing planting density is not constant through
time. Parameter estimates for the second robustness check that include interaction
terms between the time trend and planting density are presented in Supplementary
Table S5, and the corresponding marginal effects are presented in Supplementary
Table S6. Moreover, Supplementary Figure S13 graphically shows the marginal impacts

Table 4. Estimated changes in the effects of plant density on yield as a result of 1°C increase in
temperatures (accounting for the type of corn hybrid)

All months Jun–Aug

Estimates p-value Estimates p-value

tmin & tmax Conventional −0.0279 0.000 −0.0069 0.000

GM-RW −0.0127 0.227 0.0123 0.388

Other GM −0.0019 0.490 −0.0002 0.960

tmin Conventional −0.0194 0.000 0.0118 0.000

GM-RW −0.1480 0.000 0.0458 0.000

Other GM −0.0016 0.620 −0.0240 0.000

tmax Conventional −0.0085 0.000 −0.0186 0.000

GM-RW 0.1353 0.000 −0.0334 0.030

Other GM −0.0004 0.908 0.0238 0.000

Notes: (1) The table displays coefficients and p-values of the changes in the marginal effects of plant density as a
result of 1° in temperatures. The results are calculated from the estimated results of the model specification in equations
1 and 8 (the specifications including interactions among the weather, plant density, and GM varietal dummy variables).
(2) The first column indicates what weather variables the marginal effects of plant density are based on. The first row of
the first panel indicates a 1°C increase in both tmin and tmax. The first row of the second panel refers to a scenario
where only tmin increases by 1°C. The first row of the third panel refers to a situation where only tmax increases by 1°C.
(3) The second column indicates the hybrid groups: “RW” is GM hybrids expressing Bt trait for corn rootworm. “other GM”
refer to GM hybrids without Bt trait for corn rootworm. (4) The third and fourth column report coefficients and p-values
of the changes in marginal effects of plant density as a result of higher temperatures (both tmin and tmax increase, and
tmin and tmax separately increase) where the temperature of each month of the May–September growing season
increases by 1°C. The last two columns provide coefficients and p-values of the changes in marginal effects where the
temperature of each month from June to August increases by 1°C.
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of increasing planting density under the first high-temperature scenario in five-year
increments (from 1990 to 2010). Again, the second robustness check validates our
results from the main specification in the previous section. The patterns of results in
Supplementary Figure S13 (for all years) are consistent with our main specification
result in Figure 2. An interesting pattern to note in Supplementary Figure S13 is that
the marginal yield impact of increasing planting density (for all temperature levels)
shifted upward through time. This is consistent with the observation that GM adoption
has increased through time, which in turn may have brought about a better yield
response to increasing planting density even in higher-temperature environments
(see the previous sub-section).

Then, we conduct a third robustness check where we replace PDSI as a measure of
water availability with a quadratic function of precipitation (e.g., we added prec and
prec2, instead of the PDSI variables in equations 1 and 2).14. For this last robustness
check, the parameter estimates are reported in Supplementary Table S7 for the case
where GM traits are not yet considered, and the corresponding marginal effects of
increasing planting density for this specification are presented in Supplementary

Figure 3. Marginal Impacts of Plant Density for the Three Corn Hybrid Groups, as tmin and tmax of Each Month
Deviate from the Mean by 1°C Increments. Notes: The figure shows the results of the model specification in equa-
tions 1 and 8 (i.e., models including interaction terms among weather, planting density, and GM varietal group
dummy variable). Impacts are reported as the percentage change in yield. The vertical solid lines show 90 per-
cent confidence interval.

14For this robustness check, we use the mean of monthly cumulative precipitation for the whole growing
season. But further note that we also ran an additional specification that uses monthly cumulative precip-
itation. The results are similar to what is presented here. Results for the specification that uses monthly
precipitation are available from the authors upon request
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Table S8. The visual representation of the marginal planting density effects for this last
robustness check (under the first high-temperature scenario) is presented in
Supplementary Figure S14. All of the results for this last robustness check are fairly con-
sistent with the direction and magnitudes of the marginal impacts of increasing plant-
ing density using the main specification. Even when we use precipitation as a measure
of water availability, the marginal yield response to increasing planting density
decreases when temperature levels increase.

To consider the possibility that the year effect changes over the field trial period, we
run a regression using year fixed effects rather than a linear time trend in our main
models. In addition, to account for a potential nonlinear plant density effect, we also
run a specification that includes a quadratic plant density term into the main model.
The changes in the marginal impact of plant density as a result of 1°C increase in tem-
peratures are presented in Tables S12 and S14 and the density impacts at different tem-
peratures estimated by these two alternative models are visually presented by Figures
S16 and S17. The results from these two models are consistent with our findings in
the main models above.

Parameter estimates for the specification where a quadratic form of the precipitation
variable is used and GM traits are considered can be seen in Supplementary Table S9.
Moreover, the marginal effects associated with this specification are presented in
Supplementary Table S10. A corresponding graphical representation of the marginal
effects of increasing planting density under the first higher temperature scenario, and
separated out by GM type, are shown in Supplementary Figure S15. The robustness
check results with precipitation used as a measure of water availability are still
consistent with the results from the main specification above. At mean temperatures,
the marginal effect of increasing planting density is still the strongest for GM-RW
hybrids and is higher than both the conventional and other GM hybrids. At larger
positive deviations from mean temperatures, this pattern still holds (as before). But
note that, for mean temperatures, the marginal effect of increasing planting density
for conventional corn is positive (as compared to it being negative in the main
specification). In addition, the slope of the marginal effect line for conventional corn
is still the steepest among the three hybrid groups. However, in contrast to the main
specification results (with PDSI), the slope of the marginal effect line for GM-RW is
flatter than the other GM hybrids. Nonetheless, even when precipitation is used as a
measure of water availability, these robustness check results still support the notion
that yield benefits of increasing planting density are better maintained under
high-temperature conditions when corn varieties with GM traits are utilized.

Lastly, we conduct a robustness check where we cluster standard errors by year. This
approach controls for potential spatial correlation across observations within a year
(i.e., contemporaneous dependence across spatial units in a year). Regression results
for this robustness check are presented in Supplementary Table S15, and the corre-
sponding marginal effects for the main specification are in Supplementary Table S16.
The marginal effects for the specification with GM interactions can also be seen in
Supplementary Table S17. As expected (see footnote 9), clustering by year resulted in
more conservative standard errors (relative to the case where only EHW standard errors
are used) (Cameron and Miller 2015; Abadie et al. 2017). Thus, a number of parameters
in the regression, as well as some of the marginal effect estimates, becomes statistically
insignificant. Nevertheless, even with the more conservative standard errors, the results
here are still consistent with the insights from main models. That is, the first row (and
first p-value column) in Tables S16 and S17 still supports the main insight that higher
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temperatures reduce the yield benefits from increasing planting density. The fact that
inferences from our models still hold even in the presence of more conservative stan-
dard errors speak to the robustness of our findings.

Conclusions

This study aims to explore how yield response to planting density is influenced by
higher temperatures and to understand the role of GM traits in this situation.
Plot-level field trial data from Wisconsin over the period 1990–2010, as well as the cor-
responding weather data for these field trial locations, are used to fulfill the study objec-
tives. Yield regression models are then developed with interaction terms among
planting density, weather variables, and GM hybrid dummy variables to ascertain the
impact of higher temperatures and GM traits on the corn yield response to increasing
planting density. Results from these models suggest that the yield benefits of increasing
planting density largely diminish as temperature levels increase, and the rate of decrease
is larger for conventional corn hybrids without GM traits. GM corn with RW resistance
traits generally is better able to maintain the yield benefits of increasing planting density
under high-temperature conditions. These results indicate that inter-plant competition
for resources (e.g., nutrients and moisture) is further intensified as planting density
increases and when temperatures rise, which results in diminishing benefits. But GM
corn hybrids (in general) may be more efficient in utilizing these resources such that
they perform better than conventional varieties even in situations with increasing plant-
ing density and higher temperatures.

Findings from the present study point to a couple of important implications. First,
results from the study highlight the important role that expected growing season tem-
peratures should play when farmers make planting density decisions and varietal
choices at the start of the season. Increasing planting density does not necessarily result
in yield benefits even at mean temperatures when conventional corn hybrids are used.
And yield increases from higher planting density still diminish when temperatures rise.
Hence, growers would likely benefit from optimizing planting density and variety
choices by partly conditioning these decisions on temperature forecasts for the growing
season (Solomon, Chauhan, and Zeppa 2017). For example, if the forecasted summer
season temperature is higher than normal, then based on our results, it may be prudent
to not increase planting density for conventional corn production (or only increase it
slightly for GM varieties). Second, the study findings also imply that further research
investments in developing corn varieties that are more tolerant to higher temperatures
would likely facilitate higher optimal planting densities going forward. Not only will
more heat-tolerant varieties directly reduce heat-related losses, but these types of vari-
eties may also indirectly provide planting density-induced yield benefits. Therefore,
public and private research investments for developing heat-tolerant corn varieties
(i.e., either through genetic modification or traditional plant breeding) would be impor-
tant to continue the trend of increasing planting density and yields into the future, espe-
cially if climate change continues to result in warmer temperatures.

Although the present study provides important insights regarding the role of higher
temperatures and GM traits on the yield response to increasing planting density, there
are study limitations that need to be acknowledged. First, the geographical scope of the
current study is limited to the Northern corn belt and the data are from experimental
field trial data rather than actual farmer data from commercial corn production. Future
studies may consider using actual farm production data (i.e., data collected through
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farm surveys or through precision agriculture technologies) and expanding the geo-
graphical scope to more areas in the corn belt (or other locations and other corn-
producing countries). Exploring the “yield-planting density” relationship in warmer cli-
mates (e.g., tropical locations) may also be beneficial. Second, the empirical analysis
here would also be further improved if we had a true panel data set at the plot (or
trial location) level. This would allow for using plot (or location) fixed effects and better
identification of the planting density and high-temperature effects on yields. In addi-
tion, a long-term field trial data explicitly aimed to examine how planting density influ-
ences yields (e.g., field trials designed specifically to explore planting density effects
(instead of variety effects) on yields) would also help in more precisely teasing out
the high-temperature and GM trait effects. Lastly, having data for a longer period
(i.e., more than 30 years) would also allow one to more accurately estimate long-term
warming effects on the yield response to increasing planting density. We leave all these
potential extensions for future work.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/age.2021.10.
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